
[20:10 3/11/2009 Bioinformatics-btp559.tex] Page: 3121 3121–3127

BIOINFORMATICS ORIGINAL PAPER Vol. 25 no. 23 2009, pages 3121–3127
doi:10.1093/bioinformatics/btp559

Gene expression

Integration of heterogeneous expression data sets extends the
role of the retinol pathway in diabetes and insulin resistance
Peter J. Park1,2,3,, Sek Won Kong1,4, Toma Tebaldi5,6, Weil R. Lai3, Simon Kasif1,7,8 and
Isaac S. Kohane1,2,3,∗
1Children’s Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology, 2Brigham
and Women’s Hospital, 3Center of Biomedical Informatics, Harvard Medical School, 4Department of Cardiology,
Children’s Hospital, Boston, MA 02115, USA, 5Centre for Integrative Biology, 6Department of Information Engineering
and Computer Science, University of Trento, Italy, 7Center for Advanced Genomic Technology, Boston University and
8Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA

Received on June 14, 2009; revised on September 7, 2009; accepted on September 22, 2009

Advance Access publication September 28, 2009

Associate Editor: Joaquin Dopazo

ABSTRACT

Motivation: Type 2 diabetes is a chronic metabolic disease that
involves both environmental and genetic factors. To understand the
genetics of type 2 diabetes and insulin resistance, the DIabetes
Genome Anatomy Project (DGAP) was launched to profile gene
expression in a variety of related animal models and human subjects.
We asked whether these heterogeneous models can be integrated
to provide consistent and robust biological insights into the biology
of insulin resistance.
Results: We perform integrative analysis of the 16 DGAP data
sets that span multiple tissues, conditions, array types, laboratories,
species, genetic backgrounds and study designs. For each data
set, we identify differentially expressed genes compared with
control. Then, for the combined data, we rank genes according
to the frequency with which they were found to be statistically
significant across data sets. This analysis reveals RetSat as a widely
shared component of mechanisms involved in insulin resistance and
sensitivity and adds to the growing importance of the retinol pathway
in diabetes, adipogenesis and insulin resistance. Top candidates
obtained from our analysis have been confirmed in recent laboratory
studies.
Contact: Isaac_kohane@harvard.edu

1 INTRODUCTION
Type 2 diabetes mellitus is a chronic, progressive metabolic disorder
and is one of the fastest-growing public health problems. Given
an increased prevalence of obesity and aging population, recent
estimates suggest that the worldwide prevalence will grow from
2.8% in 2000 to 4.4% in 2030, affecting 171 million in 2000 to 366
million in 2030 (Wild et al., 2004). The primary characteristics of
type 2 diabetes are insulin resistance, relative insulin deficiency and
hyperglycemia, and it can be easily diagnosed based on chronic
elevated blood glucose concentration. While there is a strong
inheritable component, this has not been defined in the vast majority
of cases.

∗To whom correspondence should be addressed.

To understand the interface between insulin action, insulin
resistance, obesity and the genetics of type 2 diabetes, the Diabetes
Genome Anatomy Project (DGAP) was initiated in 2003 to use a
multi-dimensional genomic approach to characterize the relevant set
of genes and gene products as well as the secondary changes in gene
expression that occur in response to the metabolic abnormalities
present in diabetes. Over the course of the project, a variety of
data sets were collected through expression profiling studies on the
Affymetrix platform, both from human and mouse tissues. In human
studies, gene expression data were collected from case–control
studies involving normal, insulin resistant, obese and diabetic
subjects; in mouse studies, expression patterns were obtained before
and after insulin stimulation in normal and various knock-out
models, and adipogenic diets. An open question was whether
there were common mechanisms in insulin resistance or sensitivity
that could be identified by integrating results across this highly
heterogeneous corpus.

In this work, we carry out an integrative analysis of the ∼450
arrays from the 16 data sets collected in this project. Analysis
of the aggregate data presents complications due to the multiple
sources of heterogeneity, such as species, platforms, laboratories,
sample sizes and experimental design. The data set, for instance,
includes several array types including Hu6800 and U133 (human)
and U74, U74v2 and MOE430 (mouse). Few are simple two-group
comparisons of clinical samples, while others involve strain, age,
tissue comparisons in multi-factorial designs. A few of the data
sets have been studied extensively already but in isolation. We
aim to carry out a comprehensive analysis of the aggregate data
focusing on the commonalities between the data sets. There are
two important underlying assumptions in our analysis. The first
is that the individual experiments were appropriately designed to
capture a transcriptome signature relevant to insulin resistance
whether in a mouse model of IRS-1 ‘knock outs’ versus wild-
type mice or in a comparison of obese diabetic humans versus
obese non-diabetics. Second, given the well known heterogeneity
of measurement across different platforms (Kuo et al., 2002),
even from the same manufacturer (Nimgaonkar et al., 2003), only
robustly shared molecular processes pertaining to several models
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of insulin resistance, obesity and/or diabetes will be detectable.
That is, regardless of the multiplicity of etiologies, we assume
that there exists a small number of common pathophysiological
mechanisms across diabetes, insulin resistance and obesity. Based
on our computations with these two assumptions, we have been
able to extend previous findings that implicate the retinol pathway
(Yang et al., 2005) in insulin sensitivity/resistance and adipogenesis,
as well as reconfirming the well known dysregulation of oxidative
phosphorylation (Lowell and Shulman, 2005; Mootha et al., 2003;
Patti et al., 2003) and the JAK-STAT pathway (Schwartz and Porte,
2005).

2 METHODS

2.1 Data availability, normalization and quality control
Both raw data (CEL files) and processed data are available from the DGAP
website (http://www.diabetesgenome.org). The total number of data sets in
this database is 19. Three data sets were excluded for the following reasons:
dataset 1 was generated on MG-U74A array, which was later found to have
a large fraction of incorrectly labeled probes; dataset 3 was a time-course
experiment on adipocyte differentiation that did not have a proper control
to be informative for this study; dataset 9 was excluded because it was the
only one generated on the Affymetrix hu6800 platform. Including this early-
model platform would have reduced the total number of genes common to
the platforms significantly.

Given the large number of arrays generated in multiple laboratories, it
is inevitable that some hybridizations failed or had experimental biases
that require special attention. Visual inspection of array images revealed
several arrays with spatial artifacts. But because each probe set on Affymetrix
arrays consists of many probes distributed randomly on the array, a small
amount of spatial artifacts observed were unlike to affect the expression
values significantly. We also calculated the distribution of expression values,
the number of Present/Absent calls, and other statistics for each array to
ensure that only high quality arrays are used. We found two arrays that
failed entirely and were not therefore included in the analysis. As expression
levels in different data sets are often derived from raw data using different
algorithms, we recalculated the expression levels for all arrays with the same
PLIER algorithm (Affymetrix, 2005). Data were normalized by setting the
trimmed mean of all arrays to be the same.

2.2 Identification of differentially expressed genes
Several different experimental designs are present in the data, but in each
case, a control group was present and two-group comparisons were possible.
To identify differentially expressed genes, the t-test was used. When the
sample size was small, a regularized form of the test was used to guard
against false positives that may appear due to under-estimated gene-specific
variance.

To determine statistical significance in a genome-wide study, adjustment
for multiple hypotheses is usually applied. To adjust for multiple hypothesis
testing correctly, three layers of multiplicity must be considered. The first is
due to the large number of genes within each data set; the second is due to the
multiple groups within each data set; and the last is due to the multiple data
sets that are involved. In this study, we applied a liberal, relaxed criterion
for each data set and used the multiplicity of data sets to filter the gene list.
Thus, we used standard P=0.05 for each data set and applied a Bonferroni-
type correction only for the number of comparisons in certain study designs.
For instance, the data set on muscle insulin receptor knockout (MIRKO)
and control mice (Yechoor et al., 2004) requires four separate comparisons:
WT versus Stz (insulin resistant) and WT versus Stz insulin, on both Lox
strain and MIRKO strain. Therefore, the threshold for this data was set at
P = 0.05/4 = 0.0125. The final significance was computed by a permutation
approach.

3 RESULTS

3.1 Combining data from multiple studies
The data sets in this project were highly diverse, as shown in Table 1.
For unbiased analysis, variables to consider in analysis include
organism (human, mouse), array type (MG-U74Av2, MOE430, HG-
U133A), tissue type (adipocyte, brown preadipocyte, fibroblast,
hepatocyte, myocyte, pancreas, skeletal), mouse strain (B6 versus
129), mouse genotype (WT versus IRS-1 KOs), insulin sensitivity,
treatment (DM2, IGT, NGT), laboratory in which the experiment
was conducted, and study design (case versus control, time series).
After mapping the human and mouse genes using the Homologene
database (release 43.1), we displayed all usable arrays as points in
a 3D principal component space (Figure 1A). To examine possible
artefactual variations, we examined the distribution of the points
by each variable including species, tissue type, array type, and
laboratory (Figures 1B–E). In Figure 1C, for instance, we show the
example of variation due to tissue type for mouse data. The figure
illustrates that the variation due to tissue type is greater than that
within each data set. In Figure 1E, we show the clustering effect
for the laboratory setting. The data from the four laboratories in
which the experiments were performed are clearly separated. Some
of the variation is due to the differences in array type or species
used in each laboratory, but there is clear effect of experimental
protocols or technician at each site. These data sets were generated
some time ago, and we expect that some of these variations have
been reduced in more recent data sets due to improved technology;
however, these variations still do exist and it is important to avoid
confounding effects due to these factors when data are integrated.

Given the clear separation between the samples in different
categories, it is clear that expression levels cannot be combined
directly among different studies. Our previous studies have
suggested that even the data generated on different generations of
the same manufacturer’s platforms introduce sufficient variability
due to the changes in probe locations so that they cannot be directly
combined (Hwang et al., 2004). This suggests that the data should be
combined in a different manner. One such method is at the level of
P-values. Fisher’s statistic, for instance, is based on the summation
of negative log of the P-values across the studies. For this study,
however, we found this to be too sensitive to a small subset of studies
in which a gene may be highly significant. An alternative is a non-
parametric approach to rank the genes from highest to lowest in
significance in each study and to sum the rank of each gene across
the studies. A gene that is significant in multiples should have a
lower combined rank. In contrast to the Fisher’s method, we found
this method to be too sensitive to the case in which a gene is strongly
insignificant. A compromise is the product of ranks, or the sum of
logarithm of ranks, which reduces the impact of low-scoring genes
(Breitling et al., 2004).

Our approach is to determine whether a gene is statistically
significant in each of the studies and to measure the overall
significance of each gene by the total number of data sets in which
it was significant, regardless of its exact P-value. We assumed that
even though the underlying data sets are heterogeneous, the more
often the gene is found to be significant, the more likely it is to be
an important element of insulin signaling, obesity and/or diabetes.
When there were multiple comparisons within a data set, statistical
significance in any of the comparisons (adjusted for multiple testing)
was sufficient to classify the data set as significant. Given the
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Table 1. List of experiments in DGAP

ID Sample size Array type Description

1 27 MG_U74A/B/C 3T3-L1 fibroblast cells, 3T3-L1 adipocyte cells and mouse skeletal
2 28 MG_U74Av2 Brown preadipocyte IRS knockout profiling
3 22 MOE430A/B,

MG-U74Av2/B/C
3T3-L1 adipocyte differentiation—time course

4 14 MG_U74Av2 Low versus high fat diet on mice of two genetic backgrounds (B6 versus 129)—fat
5 16 MG_U74Av2 Low versus high fat diet on mice of two genetic backgrounds (B6 versus 129)—liver
6 17 MG_U74Av2 Low versus high fat diet on mice of two genetic backgrounds (B6 versus 129)—skeletal muscle
7 18 MG_U74Av2 Isolated adipocytes from normal and fat insulin receptor KO (FIRKO) mice sorted into small and large cells
8 6 MG_U74Av2 Liver—ob/ob mice
9 21 Hu6800 Human skeletal muscle—type 2 diabetes and family history positive individuals—Mexican American
10 9 MG_U74Av2 Mouse skeletal muscle—controls, streptozotocin diabetes and insulin treated
11 12 HG-U133A/B Human pancreatic islets from normal and Type 2 diabetic subjects
12 21 MG_U74Av2 Transcription profiling of wild type and PGC-1alpha KO liver and skeletal muscle
13 12 MG_U74Av2 Effect of PGC-1alpha and PGC-1beta on gene expression in myocytes and hepatocytes
14 57 MG_U74Av2 IR and IRS-1, single/double het KO—age and genetic background—epididymal white fat
15 55 MG_U74Av2 IR and IRS-1, single/double het KO—age and genetic background—liver
16 52 MG_U74Av2 IR and IRS-1, single/double het KO—age and genetic background—skeletal muscle
17 12 MG_U74Av2 Effect of insulin infusion on skeletal muscle
18 44 MG_U74Av2 Skeletal muscle—muscle IR KO and control mice—control, streptozotocin diabetic and insulin treated
19 54 HG-U133A Human skeletal muscle—type 2 diabetes—Swedish males

All datasets except 1, 3 and 9 were used (see ‘Methods’ section) in the meta-analysis.

Fig. 1. Sample characteristics and systematic differences in principal component spaces for DGAP experiments. All ∼450 samples are shown in (A), colored
differently for the 17 studies in the combined data set. Systematic differences include differences across murine tissue types (B), species (C), expression
measurement platforms (D), laboratories where the measurements were made (E) and patient phenotypes (F).
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Table 2. A list of significant genes in the meta-analysis

Number of datasets Gene name Description

8/16 RETSAT(FLJ20296) All-trans-retinol 13,14-reductase

7/16 KPNB1 Karyopherin (importin) beta 1
SDHB Succinate dehydrogenase complex, subunit B, iron sulfur (Ip)
MRPL34 Mitochondrial ribosomal protein L34
GPX3 Glutathione peroxidase 3 (plasma)
PAM Peptidylglycine alpha-amidating monooxygenase

6/16 ACTN3 Actinin, alpha 3
CPT1A Carnitine palmitoyltransferase 1A (liver)
RFX1 Regulatory factor X, 1 (influences HLA class II expression)
TSTA3 Tissue specific transplantation antigen P35B
UQCRC1 Ubiquinol–cytochrome c reductase core protein I
DDX3X DEAD (Asp–Glu–Ala–Asp) box polypeptide 3, X-linked
DCTN6 Dynactin 6
TRAPPC4 Trafficking protein particle complex 4
TGFB1I4 Transforming growth factor beta 1 induced transcript 4
HNRPAB Heterogeneous nuclear ribonucleoprotein A/B
IFRD1 Interferon-related developmental regulator 1
SNX3 Sorting nexin 3
GSTM2 Glutathione S-transferase M2 (muscle)
TBX2 T-box 2
TXN2 Thioredoxin 2
NDUFA8 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8, 19 kDa
GABARAPL1 GABA(A) receptor-associated protein like 1
SCD Stearoyl-CoA desaturase (delta-9-desaturase)
TNXB Tenascin XB
LFITM3 Similar to Interferon-induced transmembrane protein 3

The three columns show the number of datasets in which that gene was deemed significant, the human gene name and a brief
description, respectively. The top gene is the all-trans-retinol 13,14-reductase (RETSAT), which was significant in 8 of the 16
datasets.

diversity of study designs and underlying models, this approach is
robust to the varying qualities of the data sets. If one data set is not
informative, its effect on the overall conclusion is minimal.

3.2 A list of common differentially expressed genes
A total of 68 comparisons were carried out in the 16 datasets. For
each dataset, a liberal threshold was applied to define statistical
significance (see Methods for details); if a gene reached statistical
significance in any of the comparisons in a dataset, it was deemed
significant in the dataset. Table 2 shows the main result of the
analysis. The most frequently significant gene was retinol saturase
(all-trans-retinol 13,14-reductase, RETSAT), which was significant
in eight of the 16 datasets. Five genes (KPNB1, SDHB, MRPL34,
GPX3, PAM) were significant in seven of the 16; another 20 were
significant in six of the 16. If we rank the genes not by the number of
datasets in which it was significant but by the mean statistic across
all comparisons, RETSAT is ranked at number 2, while PAM (which
was significant in seven of 16) becomes number 1 (list not shown).

To determine just how unlikely it was to find the number of genes
differentially expressed in common across the number of conditions
in shown in Table 2, we permuted the phenotypic labels of the
data sets 30 000 times and calculated the number of differentially
expressed genes shared across conditions. This allowed us to

Table 3. P-values for number of differentially expressed genes shared across
DGAP experiments

Number of datasets in
which a gene is significant

P Number of genes

8 7.52 × 10−9 1
7 2.25 × 10−7 5
6 5.59 × 10−6 21
5 9.75 × 10−5 122
4 0.0013 371
3 0.013 1072
2 0.090 1958
1 0.41 2061

These P-values were estimated from the distributions obtained from 30 000
permutations. In each permutation, the phenotypic labels within each of the 16
experiments were randomized, lists of differentially expressed genes were generated,
and the results were combined across data sets to generate the null distribution.

calculate P-values for the number of genes shared in conditions
in Table 2. These are shown in Table 3.

When we first described these results to the DGAP External
Advisory Board, they were quite intrigued given the then-recent
publication by Moise et al. (2008) of RBP4 which had revealed
the retinol signaling pathway as important in modulating insulin
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Fig. 2. Profiles of Retinol saturase (all-trans-retinol 13,14-reductase) transcript. (A) Negative log(P-value) for the RetSat transcript (FLJ20296) across all 68
comparisons in 16 data sets (data sets 1, 3, 9 were not included in our analysis—see ‘Methods’ section). Many studies have a complex design with multiple
groups, which results in multiple comparisons. The red horizontal line indicates p = 0.05; the blue horizontal line indicates the P-value threshold adjusted for
multiple comparisons within each data set using the Bonferroni correction; the green vertical lines divide the comparisons into those belonging to different
data sets. The data set labels correspond to the experiment numbers in Table 1, with the blue label indicating the data sets in which at least one comparison
was statistically significant by the threshold after multiple-testing adjustment. RETSAT is significant in eight data sets. (B) Boxplots of gene expression levels
in each of the eight data sets with significant differential expression. Insulin resistant states are colored red. The eight data sets were divided into models of
adipogenesis (top row) and models of chronic obesity and/or insulin resistance (bottom row).

sensitivity in several in vitro and in vivo models. As shown in
Figure 2, the expression of RETSAT is also very consistently
up-regulated across a variety of mouse and human models of insulin
resistance and down-regulated across models of active adipogenesis.
Subsequent genome-wide analyses by others (see ‘Discussion’
section) have further supported the role of RetSat as another member
of the retinol pathway responsible in part for insulin sensitivity and
adipogenesis (Schupp et al., 2009).

The next most widely differentially expressed genes are KPNB1,
SDHB, MRPL34, GPX3, PAM. Of these genes, variants have been
implicated in several pathological processes but are not implicated
in processes dysregulated in obesity, insulin resistance and diabetes
(see ‘Discussion’ section). However, GPX3 has recently been
identified as reducing extracellular hydrogen peroxide levels causing
insulin resistance in skeletal muscle cells (Chung et al., 2009).

In these experiments, GPX3 expression prevented the antioxidant
effects of the thiazolidine oral hypoglycemic agents on insulin
action.

3.2.1 Pathway analysis The marked significance of RetSat up-
regulation is not directly obvious from a pathway analysis. Indeed,
in the original Gene Set Enrichment Analysis publication (Mootha
et al., 2003), the retinol metabolism pathway was the lowest
ranked pathway. To obtain a perspective on which processes are
most shared across the DGAP experiments, we took the set of
520 genes differentially expressed in four or more data set and
calculated the enrichment of Gene Ontology (GO) labels using
the DAVID program (Dennis et al., 2003) with the results shown
in Table 4. The table highlights the well-known perturbation of
oxidative phosphorylation and energetics in insulin resistant states,
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Table 4. Pathway analysis—pathways implicated by the 420 genes differentially expressed in at least four experiments

GO term Count Set size P

BP GO:0006091 generation of precursor metabolites and energy 47 649 1.97E–09
BP GO:0051186 cofactor metabolic process 23 236 4.44E–07
BP GO:0006732 coenzyme metabolic process 20 197 1.63E–06
BP GO:0009060 aerobic respiration 9 41 1.14E–05
BP GO:0051726 regulation of cell cycle 33 529 1.78E–05
BP GO:0022402 cell cycle process 41 749 2.96E–05
BP GO:0006119 oxidative phosphorylation 13 115 6.32E–05
BP GO:0007259 JAK-STAT cascade 8 43 1.37E–04
BP GO:0044248 cellular catabolic process 33 596 1.70E–04
BP GO:0007243 protein kinase cascade 25 393 1.78E–04
BP GO:0044262 cellular carbohydrate metabolic process 23 350 2.17E–04
BP GO:0006118 electron transport 28 480 2.66E–04
BP GO:0006084 acetyl-CoA metabolic process 7 38 4.91E–04
BP GO:0009059 macromolecule biosynthetic process 43 913 4.97E–04

BP GO:0045786 negative regulation of progression through cell cycle 16 209 5.59E–04
BP GO:0051187 cofactor catabolic process 7 39 5.68E–04

CC GO:0005739 mitochondrion 83 963 1.46E–22
CC GO:0044429 mitochondrial part 56 523 2.71E–19
CC GO:0005740 mitochondrial envelope 40 381 1.74E–13
CC GO:0031966 mitochondrial membrane 39 363 1.79E–13
CC GO:0019866 organelle inner membrane 35 303 4.90E–13
CC GO:0031967 organelle envelope 45 559 3.90E–11
CC GO:0031975 envelope 45 561 4.35E–11
CC GO:0044455 mitochondrial membrane part 17 115 4.03E–08
CC GO:0005759 mitochondrial matrix 20 171 8.94E–08
CC GO:0031980 mitochondrial lumen 20 171 8.94E–08
CC GO:0033279 ribosomal subunit 15 141 1.66E–05
CC GO:0042579 microbody 12 92 2.37E–05
CC GO:0005777 peroxisome 12 92 2.37E–05

Shown are the top ranked (by P-value) pathways based on the 520 genes differentially expressed in common across four or more DGAP
experiments. Also shown are the number of genes in that GO set measured by each microarray platform (‘Set size’) and the overlap
between the GO category genes and the differentially expressed genes (‘Count’). BP and CC denote ‘Biological Processes’ and ‘Cellular
Components’ in the GO classification. Gene sets with more than 1000 genes were considered non-specific and were eliminated from the
list.

particularly changes localized in mitochondria. It also includes the
perturbation of the JAK-STAT pathway that has also been identified
as perturbed in diabetes, obesity and insulin resistance (Schwartz
and Porte, 2005).

4 DISCUSSION
As the amount of data from expression profiling studies has increased
in recent years, meta-analysis of multiple data sets has become
increasingly important, particularly in the context of a multiplicity of
underpowered experiments with non-overlapping results (Ioannidis,
2007). Analysis using multiple data sets has been done mostly in the
context of cancer studies in an attempt to identify a set of genes that
are consistently dysregulated (Rhodes et al., 2002) across similar
datasets. In other cases, analysis of combined data used one dataset
to extract a signature, which was then validated in other data sets
(Ramaswamy et al., 2003). The approach in this article is similar
to the one in Rhodes et al. (2004), but it is more robust to the data
here, which are more heterogeneous, encompassing human samples
as well as various mouse models in addition to other variables.

The top ranked gene in this integrative analysis, RetSat, is
another member of a growing number of genes in the retinol
pathway implicated in insulin sensitivity and resistance. Mouse
Retsat catalyzes the saturation of the C13–C14 double bond of
all-trans-retinol to produce all-trans-13,14-dihydroretinol.

RetSat is expressed in adipose tissue and therefore may result
in conversion of an inhibitor of adipose differentiation, all trans-
retinol, into a much weaker inhibitor of differentiation (Moise
et al., 2008). Furthermore, this year, Schupp et al. (2009)
independently demonstrated through a genome-wide Chromatin
Immunoprecipation on chip (ChIP-chip) assay of PPARγ an
important target in intron 1 of Retsat in an adipocyte in vitro
system. Furthermore, PPARγ [repeatedly implicated in obesity and
diabetes (Bell et al., 2005; Zeggini et al., 2007)] was shown to
regulate RetSat expression in adipocytes, and loss of RetSat impairs
adipocyte differentiation. Schupp et al. (2009) found that, contrary
to their expectations, there was decreased expression of RetSat in
obese mice possibly related to the increased insulin sensitivity of
adipocytes during expansion of adipose tissue (as compared to older
hypertrophic adipocytes). These findings are mirrored in the results
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shown in Figure 2, and were captured by the metric of shared
differential expression across multiple experiments. As shown in
Table 3, one gene being differentially expressed across eight of the
DGAP experiments by chance was extremely unlikely (P-value of
7.52×10−9).

The next most widely differentially regulated genes across the
various DGAP conditions include KPNB1, SDHB, MRPL34, GPX3
and PAM (in 7 of 16 conditions). One of these, GPX3 (glutathione
peroxidase), is highly correlated in expression with RETSAT across
multiple tissues in the Gene Expression Omnibus (GEO) (Barrett
et al., 2005) as measured on the Affymetrix HG-U133 plus 2.0
platform (calculations not shown). Whether this implicates GPX3 in
the retinol pathway remains to be determined. As noted previously
GPX3 was nonetheless implicated this year in the handling of
oxidative stress in muscle cells leading to insulin resistance (Chung
et al., 2009). Although these top-ranked genes appear to hit the mark,
they are differentially expressed in no more than half the DGAP
experiments.

Determining the extent to which various mouse models correctly
capture the features of the diseases they are supposed to mimic is
difficult. Comparison of expression profiles between a murine model
and human tumors has been used to resolve this issue previously for
lung cancer (Sweet-Cordero et al., 2005). In the instance of insulin
resistance and diabetes, our results here indicate the presence of
some of the common features between human samples and mouse
models. That is, assumptions made here regarding the existence
of common end-point of a multiplicity of etiologies of diabetes
and obesity and across organisms have made the triangulation of
molecular signatures across heterogeneous experiments a productive
effort.
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