
Learning to Play Othello

with N -Tuple Systems

Simon M. Lucas

Department of Computer Science

University of Essex, Colchester, UK

sml@essex.ac.uk

Abstract

This paper investigates the use ofn-tuple systems as position value functions

for the game of Othello. The architecture is described, and then evaluatedfor use

with temporal difference learning. Performance is compared with previously de-

veloped weighted piece counters and multi-layer perceptrons. Then-tuple system

is able to defeat the best performing of these after just five hundred games of self-

play learning. The conclusion is thatn-tuple networks learn faster and better than

the other more conventional approaches.

Keywords: Othello,n-tuple network, temporal difference learning.

1 Introduction

Games provide an ideal test-bed for the study of artificial intelligence. Early pioneers

of computing and information theory such as Alan Turing and Claude Shannon were

intrigued by the idea that computers might one day play grand-master level chess, and

sketched out ideas of how this might be achieved. Computers know play at super-

human levels on many complex games. Remarkably, checkers isnow a solved game

[23], the result being a draw if both players play optimally.Chess is far from being

solved, but computers play at world-leading level.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/9341735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The immediate goal of the research described in this paper isnot to produce world

leading AI players. Rather, it is to study the effectivenessof machine learning ap-

proaches to game playing: how well a machine can learn to play, rather than how

well we can program it to play. In particular we are interested in how well the sys-

tem can learn to play without any expert tuition, and withoutrecourse to an expert

opponent to practice against. The two main ways to achieve this are with temporal

difference learning (TDL), and with co-evolution. For board games such as Othello,

these techniques usually work by learning a value function that operates within a game-

tree search algorithm.

Temporal difference learning (TDL) was applied by Samuel asfar back as 1957

[22] and Michie in 1961 [18]. A famously successful application of TDL was Tesauro’s

TD Gammon [25], which was followed up by an evolutionary approach to the same

problem by Pollack and Blair. In recent years there has been asurge of interest in

evolutionary approaches to this type of learning. Much of this was probably inspired

by the work of Pollack and Blair [19], and Chellapilla and Fogel [4] [5] [7].

All the systems under test in this paper play at one-ply. Thisputs the emphasis

entirely on the quality of the learning, not on the details ofthe game-tree search, and

provides the most efficient way to compare a set of learners. The learner aims to learn

a good position value function that when combined with a one-ply search algorithm

will encode a strategy for playing the game. Limiting to one-ply does overlook the

computational cost of the method, which might be viewed as anoversight, since higher

computational cost would lead to more limited game-tree search if these learners were

to be used for real. It does however provide an interesting challenge.

The most popular methods for approximating value functionsin games are linear

functions (perceptrons), multi-layer perceptrons (MLPs), and spatially arranged MLPs

as used in Blondie [5]. This paper describes a new approach tovalue function learning

based onn-tuple systems. Whilen-tuple systems date back to the late 1950s, their

use for learning game strategies is novel, and was recently introduced by the author

[16]. This work is still in its initial stages, but has already proved to be remarkably

successful. Ann-tuple network trained with a few hundred of self-play gameswas

able to significantly outperform the CEC 2006 champion.

2



The rest of this paper is structured as follows. Section 2 describes the game of

Othello, and the randomised version of the game used in this paper. Section 3 gives

a brief overview ofn-tuple systems, and describes hown-tuples are used as position

evaluators for Othello. Section 4 explains how temporal difference learning can be

used to trainn-tuple networks. Section 5 reports the results and section 6concludes.

2 Othello

This section gives a brief description of the nature of the game, and then summarises

previous approaches to learning to play it. Othello is a challenging unsolved game,

where the best computer players already exceed human ability. Othello is played on an

8x8 board between two players, black and white (black moves first). At each turn, a

counter must be placed on the board if there are any legal places to play, else the player

passes. At each move, the player must place a counter on an empty board square to

‘pincer’ one or more opponent counters on a continuous line between the new counter

and an old counter. All opponent counters that are pincered in this way are flipped over

to the color of the current player. The initial board has fourcounters (two of each color)

with black to play first. This is shown in figure 1, with the opencircles representing

the possible places that black can play (under symmetry, allopening moves for Black

are identical). The game terminates when there are no legal moves available for either

player, which happens when the board is full (after 60 non-passing moves, since the

opening board already has four counters on it), or when neither player can play. The

winner is the player with the most pieces of their color at theend of the game.

Counters placed in one of the four corners can never be flippedand therefore play

a vital role in the game. Placing a high value on the corners tends to be the first thing

learned, a fact that can be seen easily by inspecting the evolution of weight values in

a weighted piece counter (WPC). Indeed the WPC [27] used as a benchmark in that

study also reflects this. The highest value of1 is given to all four corners. To hinder the

possibility of an opponent getting a corner, the squares next to them should be avoided.

For this reason they are given the lowest value−0.25. As a consequence the WPC

encourages the players to place its counter at advantageoussquares. The total set of

3



Figure 1: The opening board for Othello.

weights for this heuristic player is given in Figure 2, and depicted in Figure 3. These

weights are symmetric under reflection and rotation, and have just10 distinct values

out of a possible64. Experiments by the author (but not presented in this paper)show

that enforcing this symmetry increases the learning speed.High levels of play can be

learned more quickly when symmetry is enforced. However, Lucas and Runarsson

did not enforce symmetry, and were able to learn a weighted piece counter that out-

performed the standard symmetric weights given below, but only after a large number

of games. Symmetry is exploited by then-tuple system described in this paper, and

does seem to enable very rapid learning.

1.00 -0.25 0.10 0.05 0.05 0.10 -0.25 1.00

-0.25 -0.25 0.01 0.01 0.01 0.01 -0.25 -0.25

0.10 0.01 0.05 0.02 0.02 0.05 0.01 0.10

0.05 0.01 0.02 0.01 0.01 0.02 0.01 0.05

0.05 0.01 0.02 0.01 0.01 0.02 0.01 0.05

0.10 0.01 0.05 0.02 0.02 0.05 0.01 0.10

-0.25 -0.25 0.01 0.01 0.01 0.01 -0.25 -0.25

1.00 -0.25 0.10 0.05 0.05 0.10 -0.25 1.00

Figure 2: The weights (w) for the heuristic player [27].

As play proceeds, the piece difference tends to oscillate wildly, and some strategies

4



Figure 3: The standard heuristic weights, with lighter shades corresponding to more

positive numbers.

Figure 4: The Othello board, shaded to show squares that are equivalent under

reflection and / or rotation.

5



Figure 5: Typical volalite trajectory of piece difference during the game of Othello.

aim to have few counters during the middle stages of the game to limit possible oppo-

nent moves. Figure 5 shows how piece difference can change during the course of a

game. This shows the player based on the heuristic weights shown above versus a pure

random player. This piece difference trajectory is fairly typical of a match between

these two players.

2.1 AI Othello Players

The first strong learning Othello program developed was Bill[10, 11]. Later, the first

program to beat a human champion was Logistello [3], the bestOthello program from

1993–1997. Logistello also uses a linear weighted evaluation function but with more

complex features than just the plain board. The weights wereinitially estimated from

a large database of games, and then tuned automatically using self-play. Logistello

also uses an opening book based on over23, 000 tournament games and fast game tree

search [2].

More recently, Chonget al [6] co-evolved a spatially aware multi-layer perceptron

(MLP) for playing Othello. Their MLP was similar to the one used by Fogel and

Chellapilla for playing checkers [5], and had a dedicated input unit for every possible

sub-square of the board. Together with the hidden layers this led to a network with

6



5, 900 weights, which they evolved with around one hundred thousand games. The

n-tuple systems described below are randomly constructed but typically have around

15,000 weights, yet can learn highly effective Othello strategy in a few hundred games

of self-play.

2.2 Othello for Computational Intelligence Research

Due to its extremely simple rules yet significant complexityand engaging gameplay,

Othello makes an excellent benchmark for machine learning algorithms and trainable

architectures. Most trainable architectures used in game strategy learning go through

two phases: learning, and then testing. In the learning phase an algorithm is used to

adjust the parameters of the architecture, which are then fixed during testing against

other players. This is quite unlike human competition play,where players learn from

their mistakes during a series of games against an opponent,and in particular, they will

build some form of opponent model in order to optimise their play. A human player

will try to avoid losing in the same way twice against the sameopponent. While it is

certainly possible to use on-line learning with neural networks, most previous research

uses the two-phase approach of separating learning from testing.

The upshot of this is that when playing two trained (but then fixed) function approx-

imators against each other in a perfect knowledge noise-free game such as Othello,

there are only two possible outcomes, depending on which player moves first. This

might give a poor estimate of the true relative ability of twoplayers; the weaker player

might just happen to beat the stronger player on both occasions.

To overcome this problem a simple modification to any such noise-free game is

to force random moves with a given probability. This is the methodology adopted by

Runarsson and Lucas [21] and Lucas and Runarsson [12]. This can also be used for

evaluation of weak players against very strong players, where the stronger player can

be handicapped by the occasional forced random move.

For this paper all position value functions have been evaluated at one-ply. Each

value function under test is used as follows. The computer player expands the current

board to all possible next boards, by making all possible legal single moves. If this set

7



is empty, then the player passes. If it is not empty, then the value function is applied to

each next board, and the move is made that leads to the board with the highest value.

One-ply players are at a significant disadvantage against players searching to greater

ply, but providing all functions play at one-ply, then it is alevel playing field. Further-

more, one-ply is especially easy to implement and fast to compute. When conducting

comparisons with value functions developed by other researchers it also makes matters

simpler. For high-ply minimax search it is harder to make direct comparisons specifi-

cally on the performance of the value function as there are many details of the minimax

search (alpha-beta pruning, variable depth search etc.) which greatly affect the standard

of play.

The author has been running an Othello neural network web server for the past two

years. During that time, well over one thousand neural networks have been uploaded

to the site. When a network is uploaded, it is played against the standard heuristic

weighted piece counter for many games (initially 1,000, butthis has been reduced to

100 to reduce load), and this gives it a ranking in the trial league. Then, for particular

competition events, entrants are allowed to nominate two oftheir best networks to

participate in a round-robin league.

The best network found in this way so far was an MLP. Co-evolution finds it hard

to learn MLPs for this task, and for a long time the best network was an MLP trained

by Runarsson1 using TDL. For the 2006 IEEE CEC Othello competition, however, a

new champion was developed by Kyung-Joon Kim and Sung-Bae Cho. They seeded

a population with small random variations of the previous best MLP, and then ran co-

evolution for 100 generations. This was able to produce a champion that performed in

the round-robin league significantly better than the other players, and than the TDL-

trained MLP that it was developed from. This points toward the value of TDL /

Evolution hybrids.

1The weights for which are available here: http://algoval.essex.ac.uk:8080/othello/html/Othello.html.

8



3 N -Tuple Architectures

N -Tuple networks date back to the late 1950s with the optical character recognition

work of Bledsoe and Browning [1]. More detailed treatments of standardn-tuple

systems can be found in [26] and [20]. They work by randomly sampling input space

with set ofn points. If each sample point hasm possible values, then the sample point

can be interpreted as ann digit number in basem, and used as an index into an array

of weights. Then-tuple works in a way somewhat similar to the kernel trick used in

support vector machines (SVM)s, and is also related to Kanerva’s sparse distributed

memory model [9]. The low dimensional board is projected into a high dimensional

sample space by then-tuple indexing process. There are many varieties ofn-tuple

systems. Originaln-tuple systems were often implemented in hardware, since the

indexed look-up process is easy to implement using RAM chips. The very simplest

of these used a 1-bit wide memory configuration, also known asbinaryn-tuples. Each

memory location in a binaryn-tuple records whether an address has occurred during

training or not. Such systems suffer the risk ofsaturation, where excess training can

make test-set performance worse, since given noisy training data, all addresses will

eventually occur. For this reason, modernn-tuple systems tend to store continuous

value weights, or probabilities. When trained on superviseddata, probabilisticn-tuple

systems can be trained using single-pass maximum likelihood techniques, where the

probability of each address occurring is estimated as the number of times it occurred

during training, divided by the number of occurrences of alladdresses in then-tuple.

While the basic idea ofn-tuple systems is wonderfully simple, getting high per-

formance from them in practice may involve significant design effort. Examples of

this include the continuousn-tuple used for face recognition [13], the scanningn-tuple

used for sequence recognition [17], and the scanningn-tuple grid used for OCR [15].

Interesting results have also been achieved with bit-planedecomposition methods [8].

More recently Lucas [14] introduced a back-propagation training rule based on

optimising a cross-entropy measure. The same back-propagation update rule is used in

this paper, though the error criterion is based on minimising the mean-squared error,

with the target values being set according to the temporal difference training rule.

9



Figure 6: The system architecture of theN -Tuple-based value function, showing a

single3-tuple sampling at its eight equivalent positions (equivalent under reflection

and rotation).

3.1 Application to Othello

To apply ann-tuple system to Othello, we first introduced symmetric sampling. Each

square on an Othello board belongs to a group of either 4 or 8 squares that are all

equivalent under reflection and / or rotation, as was illustrated in Figure 4.

The value function for a board is then calculated by summing over all table values

indexed by all then-tuples.

Figure 6 illustrates the system architecture but shows onlya singlen-Tuple. Each

n-Tuple specifies a set ofn board locations, but samples them under all equivalent

reflections and rotations. The Figure shows a single3-tuple, sampling3 squares along

an edge into the corner.

Eachn-tuple has an associated look-up table (LUT). The output foreachn-tuple

10



is calculated by summing the LUT values indexed by each of itsequivalent sample

positions (eight in the example). Each sample position is simply interpreted as ann

digit ternary (base three) number, since each square has three possible values (white,

vacant, or black). The board digit values were chosen as (white=0, vacant=1, black=2).

By inspecting the board in the Figure, it can be seen that eachn-tuple sample point

indexes the look-up table value pointed to by the arrow. These table values are shown

after several hundred self-play games of training using TDL. The larger the black

bar for a LUT entry, the more positive the value (the actual range for this figure was

between about+/ − 0.04. Some of these tables entries have obvious interpretations.

Good for black means more positive, good for white means morenegative. The LUT

entry for index zero corresponds to all sampled squares being white: this is the most

negative value in the table. The LUT entry for index twenty six corresponds to all

sampled squares being black: this is the most positive valuein the table.

The value of a boardv(b) based on a singlen-tuple is defined in the following

equation, whereb is the board,d is a sampledn digit number in the setD(b) of

symmetric samples given then-tuple, andl is the indexed vector of values in the LUT.

v(b) =
∑

d∈D(b)

l[d] (1)

The value function for a board is simply the sum of the values for eachn-tuple. For

convenient training with error back-propagation the totaloutput is put through atanh

function.

3.2 Choosing the Sample Points

Then positions can be arranged in a straight line, in a rectangle,or as random points

scattered over the board. The results in this paper are basedon random snakes: shapes

constructed from random walks. Eachn-tuple is constructed by choosing a random

square on the board, and taking a random walk from that point.At each step of the

walk, the next square is chosen as one of the eight immediate neighbours of the current

square. Each walk was for six steps, but only distinct squares are retained. So each

randomly constructedn-tuple had between 2 and 6 sample points. The results in this

11



Figure 7: A randomly constructedn-tuple’s sample points, together with its expan-

sions.

paper are based on 30 suchn-tuples. One would expect somen-tuples to be more

useful than others, and there should be scope for evolving the n-tuples sample points

while training the look-up table values using TDL. Each randomly constructedn-tuple

is automatically expanded to place it’s sample points at allsymmetrically equivalent

positions on the board. This must be done in a way that maintains the same relationship

between all the sample points, and is illustrated for the case of a single 3-tuple in

Figure 6.

A randomly constructedn-tuple sample is shown in Figure 7, together with all its

expansions. The original sample points are:{2, 11, 20, 28, 34, 35}. Note that the order

of the points makes no difference, providing that the same relative ordering is used for

all the symmetric expansions also.

4 Learning Value Functions

As explained above, a value function is used to dictate game strategy.

12



Both Temporal Difference Learning (TDL) and Co-Evolutionary Learning (CEL)

are able to acquire game strategies without reference to anyexpert knowledge of game

strategy, and without using any prior available player to train against. Typically, CEL

achieves this by generating an initial random population ofstrategies which are then

played against each other, with the parents for each successive generation being chosen

on the basis of their playing ability. Standard TDL achievesthis through self-play.

The main difference between the two methods (at least in their most typical forms)

is that CEL uses only the end information of win/lose/draw aggregated over a set of

games, whereas TDL aims to exploit all the information during the course of a game,

as well as at the end of each game when the final rewards are known.

Runarsson and Lucas investigated temporal difference learning versus co-evolution

for learning small-board Go strategies [21], and for Othello strategies [12]. In both

cases they found that TDL learned faster, but that with careful tuning, CEL eventu-

ally learned better strategies. In particular, with CEL it was necessary to use parent-

offspring weighted averaging in order to cope with the effects of noise. For this paper,

only TDL results are reported. Initial experiments with CELwere less successful,

though that could be due to an insufficient number of games being played. A thorough

comparison of TDL with CEL, and with possible hybrids is an obvious candidate for

future work.

In TDL the weights of the evaluation function are updated during game play using

a gradient-descent method. Letx be the board observed by a player about to move, and

similarly x
′ the board after the player has moved. Then the evaluation function may be

updated during play as follows. This is based on Sutton and Barto [24, p.199], and the

formulation of it in Equation 2 is taken directly from Lucas and Runarsson [12].

At each turn of the game, the TDL player either makes an in-game or a terminal

(end-game) update. In the case of an in-game update, the value of the previous board

position is adjusted to be more similar to the value of the current board position. This

is a type of bootstrapping process. For a terminal update, the value of the penultimate

board is adjusted to be closer to the final value of that game (r = +1 for black win,

r = 0 for draw,r = −1 for white win).

13



wi ← wi + α
[

v(x′)− v(x)
]∂v(x)

∂wi

(2)

= wi + α
[

v(x′)− v(x)
](

1− v(x)2
)

xi

where

v(x) = tanh(f(x)) =
2

1 + exp(−2f(x))
− 1 (3)

is used to force the value functionv to be in the range−1 to 1. This method is known

as gradient-descent TD(0) [24]. If x
′ is a terminal state then the game has ended and

the following update is used:

wi ← wi + α
[

r − v(x)
](

1− v(x)2
)

xi

wherer corresponds to the final utilities:+1 if the winner is Black,−1 when White,

and0 for a draw.

Given the explanation above for how the value function is calculated, the LUTl

entries can be seen as the weights of a single layer perceptron. The indexing operation

performs a non-linear mapping to high-dimensional featurespace, but that mapping is

fixed for any particular choice ofn-tuples. Since a linear function is being learned,

there are no local optima to contend with.

The first is how it is interfaced to the Othello game. The game engine calls a

TDL update method for any TDL player after each move has been made: it calls

inGameUpdate during a game, or terminalUpdate at the end of agame.

It is instructive to study the Java code that implements thisprocess as shown in

Figure 8. The variables are as follows:op is the output of the network;tg is the

target value;alpha is the learning rate (set to 0.001);delta is the back error term;

prev is the previous state of the board;next is the current state of the board;net

is an instance variable bound to some neural network type of architecture (ann-tuple

system in this case).

Then-tuple system implements theNet interface, and an instance of one is bound

to thenet instance variable in the code. The forward method calculates the output of

the network given a board as input. TheupdateWeight method propagates an error

14



public void inGameUpdate(double[] prev, double[] next) {

double op = tanh(net.forward(prev));

double tg = tanh(net.forward(next));

double delta = alpha * (tg - op) * (1 - op * op);

net.updateWeights(prev, delta);

}

public void terminalUpdate(double[] prev, double tg) {

double op = tanh(net.forward(prev));

double delta = alpha * (tg - op) * (1 - op * op);

net.updateWeights(prev, delta);

}

Figure 8: The main two methods for TDL learning in Othello.

term, and makes updates based on this in conjunction with theboard input. For then-

tuple system the update method is very simple. While the valuefunction was calculated

by summing over all LUT entries indexed by the current board state, the update rule

simply adds the error termδ to all LUT entries indexed by the current board:

l(d) = l(d) + δ ∀ d ∈ D(b) (4)

One of the best features of ann-tuple system is how it scales with size. Due to the

constant-time indexing operation, it is independent of thesize of the LUT. So, although

the LUT size grows exponentially with respect ton, the speed remains almost constant,

and linear in the number ofn-tuples. Hence,n-tuple value functions with millions of

weights can be calculated extremely quickly.

5 Results

Experiments were conducted to test the performance ofn-tuple networks trained with

TDL. Play performance was tested by playing against the standard heuristic weights.

15



0 10 20 30 40 50
0.15

0.28

0.42

0.55

0.69

0.82

V. Heuristic

nGames / 25

won / tot

Figure 9: Variation in win ratio against the heuristic player (each sample point based

on 100 games, 50 each as black and white).

Figure 9 (from [16]) shows how performance improves with thenumber of self-

play games. After every 25 self play games, performance was measured by playing

100 games against the standard heuristic player (50 each as black and white).

Table 1 (from [16]) shows how performance against the CEC 2006 champion varies

with the number of self play games, in this case playing 200 games against the cham-

pion (100 each as black and as white). After the first 500 self-play games have been

played the Champion is defeated in nearly 70% of games.

Table 1: Performance of TDLN -Tuple Player versus CEC 2006 Champion over 200

games, sampled after varying number of self-play gamesnsp.

nsp Won Drawn Lost

250 89 5 106

500 135 6 59

750 142 5 53

1000 136 2 62

1250 142 5 53

Not only has then-tuple based player reached a higher level of performance than

any player to date (under this one-ply, 10% forced random move evaluation scheme),

it has also done so much more quickly. In order to gain some insight into how the

16



0 12 24 36 48 60
-34

-18

-2

12

28

44

draw

Move

piece diff.

Figure 10: Plot of piece difference for a TD-trainedn-tuple system versus the standard

heuristic player on over 10 games with then-tuple system playing as black (positive).

n-tuple system plays, some plots of piece difference versus move number were made,

when then-tuple system played the standard heuristic weights. The results are shown

in Figure 10. On this sample, then-tuple system usually has a worse piece difference

during the middle of the game, and only during the final fifth ofthe game does it begin

to dominate. On this test then-tuple system wins nine games out of ten — this is

shown by how many lines finish above the draw line. This particular n-tuple system

had 14,772 weights in it.

6 Conclusions

The results show thatN -Tuple architectures offer the best method yet for learning

position value in the game of Othello. They can be trained very rapidly using temporal

difference learning, and reach relatively high playing ability after just 500 games of

self-play.

The results for Othello show that theN -Tuple networks very clearly out-perform

weighted piece counters and MLPs, both of which have been thestaple diet of compu-

tational intelligence researchers. It seems most likely that the results will carry over to

other board games, and quite possibly to entirely differentgenres of game.

17



A likely reason for this is thatn-tuple systems factorise well: the values learned

in one element of the look-up table are largely independent from the values learned in

other parts. However, the size of lookup table (and hence thenumber of parameters)

for a non-trivial game may need to be made very large. This large search space makes

for slow progress with evolutionary methods, but temporal difference learning is able

to exploit more information, during the course of the game,and use features of the

input space to directly adjust the weights in the table. In summary, the combination

of temporal difference learning withn-tuple systems seems a very promising approach

with which to tackle game learning.

References

[1] W. W. Bledsoe and I. Browning, “Pattern recognition and reading by machine,”

in Proceedings of the Eastern Joint Computer Conference, 1959, pp. 225–232.

[2] M. Buro, “ProbCut: An effective selective extension of the Aalpha-Beta algo-

rithm,” ICCA Journal, vol. 18, pp. 71 – 76, 1995.

[3] ——, “LOGISTELLO – a strong learning othello program,” 1997,

http://www.cs.ualberta.ca/˜ mburo/ps/log-overview.ps.gz.

[4] K. Chellapilla and D. Fogel, “Evolving neural networks to play checkers without

expert knowledge,”IEEE Transactions on Neural Networks, vol. 10, no. 6, pp.

1382–1391, 1999.

[5] ——, “Evolving an expert checkers playing program without using human

expertise,”IEEE Transactions on Evolutionary Computation, vol. 5, pp. 422 –

428, 2001.

[6] S. Y. Chong, M. K. Tan, and J. D. White, “Observing the evolution of neural net-

works learning to play the game of othello,”IEEE Transactions on Evolutionary

Computation, vol. 9, pp. 240 – 251, 2005.

[7] D. Fogel,Blondie24: playing at the edge of AI. Morgan Kaufmann Publishers

Inc., 2002.

18



[8] S. Hoque, K. Sirlantzis, and M. C. Fairhurst, “Bit plane decomposition and the

scanning n-tuple classifier,”Proceedings of International Workshop on Frontiers

in Handwriting Recognition (IWFHR-8), pp. 207 – 212, 2002.

[9] P. Kanerva,Sparse Distributed Memory. Cambridge, Mass.: MIT Press, 1988.

[10] K.-F. Lee and S. Mahajan, “A pattern classification approach to evaluation

function learning,”Artificial Intelligence, vol. 36, pp. 1 – 25, 1988.

[11] ——, “The development of a world class othello program,”Artificial Intelligence,

vol. 43, pp. 21 – 36, 1990.

[12] S. M. Lucas and T. P. Runarsson, “Temporal difference learning versus co-

evolution for acquiring othello position evaluation,” inIEEE Symposium on

Computational Intelligence and Games, 2006.

[13] S. Lucas, “The continuous n-tuple classifier and its application to real-time face

recognition,”IEE Proceedings on Vision, Image and Signal Processing, vol. 145,

pp. 343 – 348, (1998).

[14] ——, “Discriminative training of the scanning n-tuple classifier,” in Lecture

Notes in Computer Science (2686): Computational Methods inNeural Modelling.

Berlin: Springer-Verlag, (2003), pp. 222 – 229.

[15] ——, “Fast convolutional ocr with the scanning n-tuple grid,” in Proceedings

of International Conference on Document Analysis and Recognition (ICDAR).

IEEE Computer Society, 2005, p. to appear.

[16] ——, “Computational intelligence and games: Challenges and opportunities,”

International Journal of Automation and Computing, p. to appear, 2007.

[17] S. Lucas and A. Amiri, “Statistical syntactic methods for high performance

OCR,” IEE Proceedings on Vision, Image and Signal Processing, vol. 143, pp.

23 – 30, (1996).

[18] D. Michie, “Trial and error,” inIn Science Survey, part 2. Penguin, 1961, pp.

129–145.

19



[19] J. Pollack and A. Blair, “Co-evolution in the successful learning of backgammon

strategy,”Machine Learning, vol. 32, pp. 225–240, 1998.

[20] R. Rohwer and M. Morciniec, “A theoretical and experimental account of n-tuple

classifier performance,”Neural Computation, vol. 8, pp. 629 – 642, (1996).

[21] T. P. Runarsson and S. M. Lucas, “Co-evolution versus self-play temporal

difference learning for acquiring position evaluation in small-board go,”IEEE

Transactions on Evolutionary Computation, vol. 9, pp. 628 – 640, 2005.

[22] A. Samuel, “Some studies in machine learning using the game of checkers,”IBM

Journal of Research and Development, vol. 3, pp. 211 – 229, 1959.

[23] J. Schaeffer, N. Burch, A. K. Yngvi Bjrnsson, M. Mueller, R. Lake, P. Lu, and

S. Sutphen, “Checkers is solved,”Science, vol. 317, pp. 1518 – 1522, September

2007.

[24] R. Sutton and A. Barto,Introduction to Reinforcement Learning. MIT Press,

1998.

[25] G. Tesauro, “Temporal difference learning and TD-gammon,” Communications

of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[26] J. Ullman, “Experiments with the n-tuple method of pattern recognition,”IEEE

Transactions on Computers, vol. 18, no. 12, pp. 1135–1137, December 1969.

[27] T. Yoshioka, S. Ishii, and M. Ito, “Strategy acquisition for the game ”othello”

based on reinforcement learning,” inIEICE Transactions on Information and

Systems E82-D 12, 1999, pp. 1618–1626.

20


