View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Essex Research Repository

L earning to Play Othello
with N-Tuple Systems

Simon M. Lucas
Department of Computer Science
University of Essex, Colchester, UK

smi@essex.ac.uk

Abstract

This paper investigates the useretuple systems as position value functions
for the game of Othello. The architecture is described, and then evaloatese
with temporal difference learning. Performance is compared withiquely de-
veloped weighted piece counters and multi-layer perceptronsn¥hple system
is able to defeat the best performing of these after just five hundreégaf self-
play learning. The conclusion is thattuple networks learn faster and better than

the other more conventional approaches.

Keywords: Othello,n-tuple network, temporal difference learning.

1 Introduction

Games provide an ideal test-bed for the study of artificiadliigence. Early pioneers
of computing and information theory such as Alan Turing afau@e Shannon were
intrigued by the idea that computers might one day play graadter level chess, and
sketched out ideas of how this might be achieved. Computeos kplay at super-
human levels on many complex games. Remarkably, checkemsiisa solved game
[23], the result being a draw if both players play optimalGhess is far from being

solved, but computers play at world-leading level.

https://core.ac.uk/display/9341735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The immediate goal of the research described in this papati® produce world
leading Al players. Rather, it is to study the effectiveneésnachine learning ap-
proaches to game playing: how well a machine can learn tq péker than how
well we can program it to play. In particular we are interdsite how well the sys-
tem can learn to play without any expert tuition, and withmetgourse to an expert
opponent to practice against. The two main ways to achiegeatie with temporal
difference learning (TDL), and with co-evolution. For bdarames such as Othello,
these techniques usually work by learning a value functiahdperates within a game-
tree search algorithm.

Temporal difference learning (TDL) was applied by Samuelaasack as 1957
[22] and Michie in 1961 [18]. A famously successful applioatof TDL was Tesauro'’s
TD Gammon [25], which was followed up by an evolutionary aygmh to the same
problem by Pollack and Blair. In recent years there has besurge of interest in
evolutionary approaches to this type of learning. Much & tias probably inspired
by the work of Pollack and Blair [19], and Chellapilla and Ebpt] [5] [7].

All the systems under test in this paper play at one-ply. hits the emphasis
entirely on the quality of the learning, not on the detailgshef game-tree search, and
provides the most efficient way to compare a set of learndre.ldarner aims to learn
a good position value function that when combined with a plyesearch algorithm
will encode a strategy for playing the game. Limiting to gig-does overlook the
computational cost of the method, which might be viewed asvansight, since higher
computational cost would lead to more limited game-treecteifithese learners were
to be used for real. It does however provide an interestiadjetge.

The most popular methods for approximating value functiongames are linear
functions (perceptrons), multi-layer perceptrons (ML Rs)d spatially arranged MLPs
as used in Blondie [5]. This paper describes a new approagiide function learning
based om-tuple systems. While-tuple systems date back to the late 1950s, their
use for learning game strategies is novel, and was recentlyduced by the author
[16]. This work is still in its initial stages, but has alrgadroved to be remarkably
successful. Am-tuple network trained with a few hundred of self-play games

able to significantly outperform the CEC 2006 champion.

The rest of this paper is structured as follows. Section Zrigss the game of
Othello, and the randomised version of the game used in #pemp Section 3 gives
a brief overview ofn-tuple systems, and describes haviuples are used as position
evaluators for Othello. Section 4 explains how temporded#nce learning can be

used to traim-tuple networks. Section 5 reports the results and sectmn6ludes.

2 Othello

This section gives a brief description of the nature of thegaand then summarises
previous approaches to learning to play it. Othello is alehging unsolved game,
where the best computer players already exceed humarya@ittiello is played on an
8x8 board between two players, black and white (black movsf.fiAt each turn, a
counter must be placed on the board if there are any lega ptaglay, else the player
passes. At each move, the player must place a counter on ay bogrd square to
‘pincer’ one or more opponent counters on a continuous latesben the new counter
and an old counter. All opponent counters that are pinceréus way are flipped over
to the color of the current player. The initial board has foaunters (two of each color)
with black to play first. This is shown in figure 1, with the oparcles representing
the possible places that black can play (under symmetrgpaihing moves for Black
are identical). The game terminates when there are no legatsravailable for either
player, which happens when the board is full (after 60 nossipeg moves, since the
opening board already has four counters on it), or when eefttayer can play. The
winner is the player with the most pieces of their color atehd of the game.
Counters placed in one of the four corners can never be flippddherefore play
a vital role in the game. Placing a high value on the cornerdseo be the first thing
learned, a fact that can be seen easily by inspecting thetevolof weight values in
a weighted piece counter (WPC). Indeed the WPC [27] used aschimamk in that
study also reflects this. The highest valud @ given to all four corners. To hinder the
possibility of an opponent getting a corner, the squarestogkem should be avoided.
For this reason they are given the lowest valu@25. As a consequence the WPC

encourages the players to place its counter at advantagegoases. The total set of

Figure 1: The opening board for Othello.

weights for this heuristic player is given in Figure 2, anghideed in Figure 3. These
weights are symmetric under reflection and rotation, ane fiast 10 distinct values
out of a possiblé&4. Experiments by the author (but not presented in this pagbeyw
that enforcing this symmetry increases the learning spelegh levels of play can be
learned more quickly when symmetry is enforced. Howeverasuand Runarsson
did not enforce symmetry, and were able to learn a weightedeptounter that out-
performed the standard symmetric weights given below, blyt after a large number
of games. Symmetry is exploited by thetuple system described in this paper, and
does seem to enable very rapid learning.

1.00 -0.25 0.10 0.05 0.05 0.10 -0.25 1.00
-0.25 -0.25 0.01 0.01 0.01 0.01 -0.25 -0.25

0.10 0.01 0.05 0.02 0.02 0.05 0.01 0.10

0.05 0.01 0.02 0.01 0.01 0.02 0.01 0.05

0.05 0.01 0.02 0.01 0.01 0.02 0.01 0.05

0.10 0.01 0.05 0.02 0.02 0.05 0.01 0.10
-0.25 -0.25 0.01 0.01 0.01 0.01 -0.25 -0.25

1.00 -0.25 0.10 0.05 0.05 0.10 -0.25 1.00

Figure 2: The weightsw) for the heuristic player [27].

As play proceeds, the piece difference tends to oscilldidlywvand some strategies

Figure 3: The standard heuristic weights, with lighter gfsadorresponding to more

positive numbers.

_H EE N

Figure 4. The Othello board, shaded to show squares that carwadent under

reflection and / or rotation.

piece diff.
-16

-25

34

Move

Figure 5: Typical volalite trajectory of piece differencerihg the game of Othello.

aim to have few counters during the middle stages of the gartimit possible oppo-
nent moves. Figure 5 shows how piece difference can chamiegdhe course of a
game. This shows the player based on the heuristic weightershbove versus a pure
random player. This piece difference trajectory is faiglpital of a match between

these two players.

2.1 Al Othello Players

The first strong learning Othello program developed was[Bdl| 11]. Later, the first
program to beat a human champion was Logistello [3], the ©®#stllo program from
1993-1997. Logistello also uses a linear weighted evalndtinction but with more
complex features than just the plain board. The weights tially estimated from

a large database of games, and then tuned automatically sslfiplay. Logistello
also uses an opening book based on @3000 tournament games and fast game tree
search [2].

More recently, Chongt al [6] co-evolved a spatially aware multi-layer perceptron
(MLP) for playing Othello. Their MLP was similar to the oneeasby Fogel and
Chellapilla for playing checkers [5], and had a dedicatgulitrunit for every possible
sub-square of the board. Together with the hidden layessl¢di to a network with

5,900 weights, which they evolved with around one hundred thodsgames. The
n-tuple systems described below are randomly constructetypically have around
15,000 weights, yet can learn highly effective Othellotefs in a few hundred games
of self-play.

2.2 Othellofor Computational Intelligence Research

Due to its extremely simple rules yet significant complexityd engaging gameplay,
Othello makes an excellent benchmark for machine learnmgrithms and trainable
architectures. Most trainable architectures used in gdragegy learning go through
two phases: learning, and then testing. In the learninggphasalgorithm is used to
adjust the parameters of the architecture, which are thed fiiring testing against
other players. This is quite unlike human competition plalyere players learn from
their mistakes during a series of games against an opparehin particular, they will
build some form of opponent model in order to optimise théwyp A human player
will try to avoid losing in the same way twice against the sapponent. While it is
certainly possible to use on-line learning with neural reetes, most previous research
uses the two-phase approach of separating learning framges

The upshot of this is that when playing two trained (but theed) function approx-
imators against each other in a perfect knowledge noisedemne such as Othello,
there are only two possible outcomes, depending on whicyeplaoves first. This
might give a poor estimate of the true relative ability of tplayers; the weaker player
might just happen to beat the stronger player on both oagasio

To overcome this problem a simple modification to any suclseifiee game is
to force random moves with a given probability. This is thettmeology adopted by
Runarsson and Lucas [21] and Lucas and Runarsson [12]. &higlso be used for
evaluation of weak players against very strong players revtiee stronger player can
be handicapped by the occasional forced random move.

For this paper all position value functions have been evatliat one-ply. Each
value function under test is used as follows. The computeygrlexpands the current

board to all possible next boards, by making all possiblallsgngle moves. If this set

is empty, then the player passes. If it is not empty, then #hgevfunction is applied to
each next board, and the move is made that leads to the badrtheihighest value.

One-ply players are at a significant disadvantage agaiage searching to greater
ply, but providing all functions play at one-ply, then it isewel playing field. Further-
more, one-ply is especially easy to implement and fast topeden When conducting
comparisons with value functions developed by other rebeas it also makes matters
simpler. For high-ply minimax search it is harder to makecircomparisons specifi-
cally on the performance of the value function as there amgyrdatails of the minimax
search (alpha-beta pruning, variable depth search etichwheatly affect the standard
of play.

The author has been running an Othello neural network welestar the past two
years. During that time, well over one thousand neural netsvbave been uploaded
to the site. When a network is uploaded, it is played agaireststndard heuristic
weighted piece counter for many games (initially 1,000, thig has been reduced to
100 to reduce load), and this gives it a ranking in the triaglee. Then, for particular
competition events, entrants are allowed to nominate twtheir best networks to
participate in a round-robin league.

The best network found in this way so far was an MLP. Co-evatutinds it hard
to learn MLPs for this task, and for a long time the best nekwaas an MLP trained
by Runarssohusing TDL. For the 2006 IEEE CEC Othello competition, howeee
new champion was developed by Kyung-Joon Kim and Sung-Bae They seeded
a population with small random variations of the previoustiLP, and then ran co-
evolution for 100 generations. This was able to produce anplan that performed in
the round-robin league significantly better than the othaygrs, and than the TDL-
trained MLP that it was developed from. This points toward tkalue of TDL /
Evolution hybrids.

1The weights for which are available here: http://algosalex.ac.uk:8080/othello/html/Othello.html.

3 N-TupleArchitectures

N-Tuple networks date back to the late 1950s with the optibatacter recognition
work of Bledsoe and Browning [1]. More detailed treatmentstandardn-tuple
systems can be found in [26] and [20]. They work by randomiy@ang input space
with set ofn points. If each sample point has possible values, then the sample point
can be interpreted as andigit number in basen, and used as an index into an array
of weights. Then-tuple works in a way somewhat similar to the kernel trickcduse
support vector machines (SVM)s, and is also related to Keresparse distributed
memory model [9]. The low dimensional board is projected iathigh dimensional
sample space by the-tuple indexing process. There are many varieties-tfiple
systems. Originah-tuple systems were often implemented in hardware, sinee th
indexed look-up process is easy to implement using RAM chifise very simplest
of these used a 1-bit wide memory configuration, also knowbireey n-tuples. Each
memory location in a binary-tuple records whether an address has occurred during
training or not. Such systems suffer the risksaturation where excess training can
make test-set performance worse, since given noisy tiidaia, all addresses will
eventually occur. For this reason, moderstuple systems tend to store continuous
value weights, or probabilities. When trained on supervid, probabilistia:-tuple
systems can be trained using single-pass maximum likaditechniques, where the
probability of each address occurring is estimated as tihebeu of times it occurred
during training, divided by the number of occurrences ofdfiresses in the-tuple.
While the basic idea ofi-tuple systems is wonderfully simple, getting high per-
formance from them in practice may involve significant desiffort. Examples of
this include the continuous-tuple used for face recognition [13], the scannintuple
used for sequence recognition [17], and the scannitgple grid used for OCR [15].
Interesting results have also been achieved with bit-piEeemposition methods [8].
More recently Lucas [14] introduced a back-propagatioining rule based on
optimising a cross-entropy measure. The same back-propaggdate rule is used in
this paper, though the error criterion is based on minirgishre mean-squared error,

with the target values being set according to the tempofi@rdnce training rule.

4| NTuple LUT ol 0

E

amwo’\u-a-ww—-0|

Figure 6: The system architecture of theTuple-based value function, showing a
single 3-tuple sampling at its eight equivalent positions (equuwélunder reflection

and rotation).

3.1 Application to Othello

To apply amn-tuple system to Othello, we first introduced symmetric slamyp Each
square on an Othello board belongs to a group of either 4 owudreq that are all
equivalent under reflection and / or rotation, as was ilatstt in Figure 4.

The value function for a board is then calculated by summireg all table values
indexed by all thex-tuples.

Figure 6 illustrates the system architecture but shows ardinglen-Tuple. Each
n-Tuple specifies a set of board locations, but samples them under all equivalent
reflections and rotations. The Figure shows a siSefieple, sampling squares along
an edge into the corner.

Eachn-tuple has an associated look-up table (LUT). The outputémhn-tuple

10

is calculated by summing the LUT values indexed by each oédtsivalent sample
positions (eight in the example). Each sample positionrngpbi interpreted as an
digit ternary (base three) number, since each square hes plossible values (white,
vacant, or black). The board digit values were chosen ad€wj vacant=1, black=2).
By inspecting the board in the Figure, it can be seen that eaitiple sample point
indexes the look-up table value pointed to by the arrow. &hable values are shown
after several hundred self-play games of training using TDhe larger the black
bar for a LUT entry, the more positive the value (the actuabeafor this figure was
between about-/ — 0.04. Some of these tables entries have obvious interpretations
Good for black means more positive, good for white means megative. The LUT
entry for index zero corresponds to all sampled squaregbeiite: this is the most
negative value in the table. The LUT entry for index twenty sdbrresponds to all
sampled squares being black: this is the most positive valthe table.

The value of a board(b) based on a single-tuple is defined in the following
equation, where is the board,d is a sampled: digit number in the seD(b) of

symmetric samples given thetuple, and is the indexed vector of values in the LUT.

v(b) = > 1[d] (1)

deD(b)
The value function for a board is simply the sum of the valoeg&chn-tuple. For
convenient training with error back-propagation the totatput is put through &anh

function.

3.2 Choosing the Sample Points

Then positions can be arranged in a straight line, in a rectamglas random points
scattered over the board. The results in this paper are losisethdom snakes: shapes
constructed from random walks. Eagkuple is constructed by choosing a random
square on the board, and taking a random walk from that pdiheach step of the
walk, the next square is chosen as one of the eight immedéggéiours of the current
square. Each walk was for six steps, but only distinct square retained. So each

randomly constructed-tuple had between 2 and 6 sample points. The results in this

11

0 1 3 4 /5 6 ¥
8 9 110 13] 14 | 15
1 17118 |1 21] 22 /}3
24 L s)
a2 M3 39
4{1/ 41 | 42| 4 45 | 46 7
48 | 49 | 50 53| 54 | 55
BB | &7 58/ 59 | 60 1| 62 | 63

Figure 7: A randomly constructed-tuple’s sample points, together with its expan-

sions.

paper are based on 30 suaktuples. One would expect sometuples to be more
useful than others, and there should be scope for evolviag-tiuples sample points
while training the look-up table values using TDL. Each ramdly constructech-tuple
is automatically expanded to place it's sample points aswaihmetrically equivalent
positions on the board. This must be done in a way that mamthe same relationship
between all the sample points, and is illustrated for thes azsa single 3-tuple in
Figure 6.

A randomly constructea-tuple sample is shown in Figure 7, together with all its
expansions. The original sample points &2;:11, 20, 28, 34, 35}. Note that the order
of the points makes no difference, providing that the saraive ordering is used for

all the symmetric expansions also.

4 Learning Value Functions

As explained above, a value function is used to dictate garategy.

12

Both Temporal Difference Learning (TDL) and Co-Evolutiopdearning (CEL)
are able to acquire game strategies without reference texgsrt knowledge of game
strategy, and without using any prior available player #&irtagainst. Typically, CEL
achieves this by generating an initial random populatiostrdtegies which are then
played against each other, with the parents for each sugeggneration being chosen
on the basis of their playing ability. Standard TDL achietrgs through self-play.

The main difference between the two methods (at least in thest typical forms)
is that CEL uses only the end information of win/lose/draragated over a set of
games, whereas TDL aims to exploit all the information dyitime course of a game,
as well as at the end of each game when the final rewards arenknow

Runarsson and Lucas investigated temporal differenceiteaversus co-evolution
for learning small-board Go strategies [21], and for Othalirategies [12]. In both
cases they found that TDL learned faster, but that with cartefing, CEL eventu-
ally learned better strategies. In particular, with CEL @&sanecessary to use parent-
offspring weighted averaging in order to cope with the @ffexf noise. For this paper,
only TDL results are reported. Initial experiments with CRlere less successful,
though that could be due to an insufficient number of gamewqaayed. A thorough
comparison of TDL with CEL, and with possible hybrids is arviolos candidate for
future work.

In TDL the weights of the evaluation function are updatedryigame play using
a gradient-descent method. Lebe the board observed by a player about to move, and
similarly ' the board after the player has moved. Then the evaluatiariiummay be
updated during play as follows. This is based on Sutton amtbB24, p.199], and the
formulation of it in Equation 2 is taken directly from LucascaRunarsson [12].

At each turn of the game, the TDL player either makes an inegana terminal
(end-game) update. In the case of an in-game update, the ofthe previous board
position is adjusted to be more similar to the value of theenirboard position. This
is a type of bootstrapping process. For a terminal updageydhue of the penultimate
board is adjusted to be closer to the final value of that game @1 for black win,

r = 0 for draw,r = —1 for white win).

13

ov(x)

w; — w;+alv(x) - ()] D, 2
= wi+afu(z)—v()](1-v(=)?),
where
(&) = tanh(/ (@) j ©

= -1
1+ exp(—2f(x))

is used to force the value functiento be in the range-1 to 1. This method is known

as gradient-descent TD) [24]. If =’ is a terminal state then the game has ended and

the following update is used:
w; — w; 4+« [r — U(m)} (1 — ’U($)2)(Ei

wherer corresponds to the final utilitiest1 if the winner is Black,—1 when White,
ando for a draw.

Given the explanation above for how the value function isw@aled, the LUT
entries can be seen as the weights of a single layer peroefiine indexing operation
performs a non-linear mapping to high-dimensional feagyace, but that mapping is
fixed for any particular choice af-tuples. Since a linear function is being learned,
there are no local optima to contend with.

The first is how it is interfaced to the Othello game. The gamegiree calls a
TDL update method for any TDL player after each move has beademit calls
inGameUpdate during a game, or terminalUpdate at the engaifres.

It is instructive to study the Java code that implements phiscess as shown in
Figure 8. The variables are as followsp is the output of the networktg is the
target valuealpha is the learning rate (set to 0.00Helta is the back error term;
prev is the previous state of the boanggxt is the current state of the boandet
is an instance variable bound to some neural network typecbitacture (am-tuple
system in this case).

Then-tuple system implements tidet interface, and an instance of one is bound
to thenet instance variable in the code. The forward method calcsildie output of

the network given a board as input. TingdateWeight method propagates an error

14

public void inGameUpdate(double[] prev, double[] next) {
double op = tanh(net.forward(prev));
double tg = tanh(net.forward(next));
double delta = alpha * (tg - op) * (1 -o0p =* op)
net.updateWeights(prev, delta);

public void terminalUpdate(double[] prev, double tg) {
double op = tanh(net.forward(prev));
double delta = alpha * (tg - op) * (1 -o0p =* op)
net.updateWeights(prev, delta);

Figure 8: The main two methods for TDL learning in Othello.

term, and makes updates based on this in conjunction withahed input. For the:-
tuple system the update method is very simple. While the valuetion was calculated
by summing over all LUT entries indexed by the current bodaties the update rule

simply adds the error terito all LUT entries indexed by the current board:

I(d) =1(d)+6 ¥V de D(b) 4)

One of the best features of antuple system is how it scales with size. Due to the
constant-time indexing operation, it is independent ofilae of the LUT. So, although
the LUT size grows exponentially with respectighe speed remains almost constant,
and linear in the number of-tuples. Hencep-tuple value functions with millions of

weights can be calculated extremely quickly.

5 Reaults

Experiments were conducted to test the performanceetople networks trained with

TDL. Play performance was tested by playing against thedstahheuristic weights.

15

. Heuristic e

0.55
won / tot

0.42

0.28

0.15 +
0 10 20 30 40 50

nGames / 25

Figure 9: Variation in win ratio against the heuristic playeach sample point based

on 100 games, 50 each as black and white).

Figure 9 (from [16]) shows how performance improves with tlvenber of self-
play games. After every 25 self play games, performance wessaored by playing
100 games against the standard heuristic player (50 eadacksemd white).

Table 1 (from [16]) shows how performance against the CEG2D@mpion varies
with the number of self play games, in this case playing 20@egagainst the cham-
pion (100 each as black and as white). After the first 500 galf-games have been

played the Champion is defeated in nearly 70% of games.

Table 1: Performance of TDIV-Tuple Player versus CEC 2006 Champion over 200

games, sampled after varying number of self-play gamgs

ng | Won | Drawn | Lost

250 | 89 5 106

500 | 135 6 59
750 | 142 5 53
1000 | 136 2 62
1250 | 142 5 53

Not only has thea-tuple based player reached a higher level of performarene th
any player to date (under this one-ply, 10% forced randomemaaluation scheme),

it has also done so much more quickly. In order to gain somighhsnto how the

16

44

28

12
piece diff.

XN

-18

-34

Move

Figure 10: Plot of piece difference for a TD-traineduple system versus the standard

heuristic player on over 10 games with theuple system playing as black (positive).

n-tuple system plays, some plots of piece difference versmseemumber were made,
when then-tuple system played the standard heuristic weights. Thdtseare shown

in Figure 10. On this sample, thetuple system usually has a worse piece difference
during the middle of the game, and only during the final fifthhef game does it begin
to dominate. On this test the-tuple system wins nine games out of ten — this is
shown by how many lines finish above the draw line. This paldicn-tuple system
had 14,772 weights in it.

6 Conclusions

The results show thal-Tuple architectures offer the best method yet for learning
position value in the game of Othello. They can be traineg vapidly using temporal
difference learning, and reach relatively high playingligbafter just 500 games of
self-play.

The results for Othello show that thé-Tuple networks very clearly out-perform
weighted piece counters and MLPs, both of which have beest#pde diet of compu-
tational intelligence researchers. It seems most likedy the results will carry over to

other board games, and quite possibly to entirely diffegemires of game.

17

A likely reason for this is that-tuple systems factorise well: the values learned
in one element of the look-up table are largely independemt the values learned in
other parts. However, the size of lookup table (and hencedineber of parameters)
for a non-trivial game may need to be made very large. Thigelaearch space makes
for slow progress with evolutionary methods, but tempoiti¢cence learning is able
to exploit more information, during the course of the gammed use features of the
input space to directly adjust the weights in the table. Imsary, the combination
of temporal difference learning with+tuple systems seems a very promising approach

with which to tackle game learning.

References

[1] W. W. Bledsoe and I. Browning, “Pattern recognition aeading by machine,”
in Proceedings of the Eastern Joint Computer Confereh®89, pp. 225-232.

[2] M. Buro, “ProbCut: An effective selective extension tiet Aalpha-Beta algo-
rithm,” ICCA Journa) vol. 18, pp. 71 — 76, 1995.

[8] ——, “LOGISTELLO - a strong learning othello program,” 1997

http://www.cs.ualberta.camburo/ps/log-overview.ps.gz.

[4] K. Chellapilla and D. Fogel, “Evolving neural networls play checkers without
expert knowledge,IEEE Transactions on Neural Netwotrksol. 10, no. 6, pp.
1382-1391, 1999.

[5] ——, “Evolving an expert checkers playing program withowting human
expertise,”|IEEE Transactions on Evolutionary Computatjorol. 5, pp. 422 —
428, 2001.

[6] S.Y.Chong, M. K. Tan, and J. D. White, “Observing the evan of neural net-
works learning to play the game of othelldEEE Transactions on Evolutionary
Computationvol. 9, pp. 240 — 251, 2005.

[7] D. Fogel,Blondie24: playing at the edge of Al Morgan Kaufmann Publishers
Inc., 2002.

18

[8] S. Hoque, K. Sirlantzis, and M. C. Fairhurst, “Bit planec@mposition and the
scanning n-tuple classifief?roceedings of International Workshop on Frontiers

in Handwriting Recognition (IWFHR-8pp. 207 — 212, 2002.
[9] P. KanervaSparse Distributed Memory Cambridge, Mass.: MIT Press, 1988.

[10] K.-F. Lee and S. Mahajan, “A pattern classification agmh to evaluation
function learning,"Artificial Intelligence vol. 36, pp. 1 — 25, 1988.

[11] ——, “The development of a world class othello prograsuiificial Intelligence
vol. 43, pp. 21 - 36, 1990.

[12] S. M. Lucas and T. P. Runarsson, “Temporal differen@rmg versus co-
evolution for acquiring othello position evaluation,” IEEE Symposium on

Computational Intelligence and Game&®06.

[13] S. Lucas, “The continuous n-tuple classifier and itsligpgion to real-time face
recognition,”|EE Proceedings on Vision, Image and Signal Processingy 145,
pp. 343 — 348, (1998).

[14] ——, “Discriminative training of the scanning n-tuple skafier,” in Lecture
Notes in Computer Science (2686): Computational Methotieimral Modelling
Berlin: Springer-Verlag, (2003), pp. 222 — 229.

[15] ——, “Fast convolutional ocr with the scanning n-tupledjtiin Proceedings
of International Conference on Document Analysis and Reitiog (ICDAR)

IEEE Computer Society, 2005, p. to appear.

[16] —, “Computational intelligence and games: Challenged apportunities,”

International Journal of Automation and Computjmm to appear, 2007.

[17] S. Lucas and A. Amiri, “Statistical syntactic methods thigh performance
OCR/" IEE Proceedings on Vision, Image and Signal Processway) 143, pp.
23 -30, (1996).

[18] D. Michie, “Trial and error,” inIn Science Survey, part 2 Penguin, 1961, pp.
129-145.

19

[19] J. Pollack and A. Blair, “Co-evolution in the succedséarning of backgammon

strategy,’Machine Learningvol. 32, pp. 225-240, 1998.

[20] R. Rohwer and M. Morciniec, “A theoretical and experimted account of n-tuple

classifier performanceNeural Computationvol. 8, pp. 629 — 642, (1996).

[21] T. P. Runarsson and S. M. Lucas, “Co-evolution versu§pday temporal
difference learning for acquiring position evaluation mal-board go,”|IEEE

Transactions on Evolutionary Computatioml. 9, pp. 628 — 640, 2005.

[22] A. Samuel, “Some studies in machine learning using tragof checkers|BM

Journal of Research and Developmertl. 3, pp. 211 — 229, 1959.

[23] J. Schaeffer, N. Burch, A. K. Yngvi Bjrnsson, M. Muell®. Lake, P. Lu, and
S. Sutphen, “Checkers is solve&tiencevol. 317, pp. 1518 — 1522, September
2007.

[24] R. Sutton and A. Bartolntroduction to Reinforcement Learning MIT Press,
1998.

[25] G. Tesauro, “Temporal difference learning and TD-gaonih Communications
of the ACM vol. 38, no. 3, pp. 58-68, 1995.

[26] J. Ullman, “Experiments with the n-tuple method of pait recognition, |EEE
Transactions on Computergol. 18, no. 12, pp. 1135-1137, December 1969.

[27] T. Yoshioka, S. Ishii, and M. Ito, “Strategy acquisitidor the game "othello”
based on reinforcement learning,” [RICE Transactions on Information and
Systems E82-D 12999, pp. 1618-1626.

20

