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Abstract

The seafloor is a unique environment, which allows insights into how geochemical processes affect the diversity of
biological life. Among its diverse ecosystems are deep-sea brine pools - water bodies characterized by a unique
combination of extreme conditions. The ‘polyextremophiles’ that constitute the microbial assemblage of these deep hot
brines have not been comprehensively studied. We report a comparative taxonomic analysis of the prokaryotic
communities of the sediments directly below the Red Sea brine pools, namely, Atlantis II, Discovery, Chain Deep, and an
adjacent brine-influenced site. Analyses of sediment samples and high-throughput pyrosequencing of PCR-amplified
environmental 16S ribosomal RNA genes (16S rDNA) revealed that one sulfur (S)-rich Atlantis II and one nitrogen (N)-rich
Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment
samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota were the most
abundant bacterial and archaeal phyla in both the S- and N-rich sections. Relative abundance-based hierarchical clustering
of the 16S rDNA pyrotags assigned to major taxonomic groups allowed us to categorize the archaeal and bacterial
communities into three major and distinct groups; group I was unique to the S-rich Atlantis II section (ATII-1), group II was
characteristic for the N-rich Discovery sample (DD-1), and group III reflected the composition of the remaining sediments.
Many of the groups detected in the S-rich Atlantis II section are likely to play a dominant role in the cycling of methane and
sulfur due to their phylogenetic affiliations with bacteria and archaea involved in anaerobic methane oxidation and sulfate
reduction.
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Introduction

The Red Sea represents a 450,000-km2 inlet of the Indian

Ocean located between the African continent and the Arabian

Peninsula. Among the most intriguing ecological niches in the Red

Sea are its deep-sea brines, which exhibit unique and diverse

geochemical conditions [1]. Twenty-five brine pools have been

described to date in the Red Sea [2], however, our knowledge of

the microbial communities that inhabit these pools, and how these

organisms are affected by and contribute to the geochemical

properties of their extreme environments, remains sparse.

For example, the hot brine system at Atlantis II Deep (ATII) is

the largest and best characterized pool in the Red Sea. Located at

a depth of approximately 2200 m near the Central Rift (at around

21u209 N), it is less than 100 m thick, and covers an area of 60 km2

[3–5]. The combination of anoxia and high pressure, increased

temperature (68uC) and salinity (250 parts per thousand or 7.5

times that of normal seawater [6]) in the brine pool makes it an

ideal setting for the study of extremophiles. The Atlantis II Deep is

the largest marine sulfide deposit currently known and contains

high concentrations of manganese, iron, molybdenum, cadmium,

cobalt, copper, nickel, lead and zinc, as well as methane and other

hydrocarbons [7–8]. The brine is stratified, with the lower

convective layer (LCL) exhibiting the highest temperature and

salinity, while the three upper convective layers (UCL1, 2 and 3)

display step-wise drops in salinity and temperature [4]. Discovery

Deep (DD) is likely linked to Atlantis II via subsurface connections

[9,10]. However, the lack of documented long-term temperature

variations, suggests the absence of hydrothermal activity at this site

PLOS ONE | www.plosone.org 1 August 2012 | Volume 7 | Issue 8 | e42872

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Woods Hole Open Access Server

https://core.ac.uk/display/9340586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


[11]. The conditions in the Discovery Deep brine are less harsh

and not as well described as Atlantis II, with relatively high

concentrations of metals and a milder temperature of 44.8uC [12].

The microbial life found in the hot brine pools in the Red Sea

has been little studied owing to technical constraints [reviewed in

[12]. Microbial diversity studies based on cultivation-dependent

and cultivation–independent approaches have focused mostly on

the colder, northern brine pools of the Red Sea. These surveys have

revealed an unexpected microbial diversity, including the identifi-

cation of several new deeply branching phylogenetic lineages, and

the isolation and description of several new unusual extremophiles

[13,14]. Studies on the hot brines of the Red Sea were much more

limited, and include the isolation and description of Flexistipes

sinusarabici (phylum Deferribacteres) from the Atlantis II brine pool

[15]. A recent 16S rDNA survey suggested the presence of similar

microbial communities in Atlantis II and Discovery Deep brines

[16], while a comparative metagenomic analysis revealed profound

differences in the dominant bacterial groups in these environments

[17]. The latter study also identified genes associated with

degradation of aromatic compounds in Atlantis II [17].

Whereas these previous studies have yielded insights into the

composition and metabolic capabilities of microbial organisms in

brine pools, the microbial assemblages that inhabit the sediments

underlying the hot brine-pools in the Red Sea and it’s relationship

to sediment geochemistry have not been reported previously. Here

we analyze and compare the prokaryotic microbiomes in several

chemically and geologically distinct sediment sections of Atlantis II

(ATII), Discovery (DD), Chain Deep (CD) and an adjacent brine-

influenced (BI) site (Fig. 1) using 16S rDNA pyrotag sequencing. In

this poorly explored marine environment, distinctively unique

prokaryotic communities were observed in a sulfur-rich Atlantis II

and a nitrogen-rich core section of Discovery Deep brine pool,

providing insight into how geochemical components allocates

‘polyextremophiles’.

Results

Chemical profiling of the sediments from brine pools
Sediment were collected from Atlantis II (ATII), Discovery

(DD), Chain Deep (CD) and an adjacent brine-influenced (BI) site

(Fig. 1 and Table 1) as described in materials and methods.

Carbon Hydrogen Nitrogen & Sulfur (CHN&S) profiling showed

that the analyzed brine sediments and the adjacent BI sediments

differed greatly in C and S content, whereas little variation was

found in H (1.4–1.9% w/w) or N (,0.10 to 0.12% w/w) content

(Table 2). Sulfur content was highest in the ATII sediment sections

(mean 8.3% w/w) with the highest value found in the deepest

analyzed section (ATII-1; 19% w/w). The sulfur content was on

average much lower in the other brine (0.6% in DD and ,0.10%

in CD) and adjacent (BI; 0.3–1.0% w/w) sediments. SO4
22

concentrations varied more between ATII sediments than %

sulfur, but were also found to be highest in the deepest ATII-1

section (20% w/w). Far lower SO4
22 concentrations were

measured in the other brine and BI sediments (Table 2). Carbon

content on the other hand was highest in DD (,7% w/w) and BI

(8.3–8.7% w/w) followed by one order of magnitude lower values

in ATII and CD sediments (,0.8% w/w). The highest level of

carbon was found in DD-2. Interestingly nitrogen (0.22% w/w)

was only detected in the deepest section of DD (DD-1). CHN&S

results are tabulated in Table 2.

Pyrotag 16S rDNA data sets
A total of 1,012,178 reads were generated from the 16 brine and

adjacent sediment samples and the overlying ATII water column

(Table 3), ranging from a total of 14,006 for ATII-1 to 53,665 for

ATII-6 (Table 3). The sediment reads were compared to 388,659

reads from the water column. Of the total sediment pyrotag

library, 242,366 pyrotags represented bacteria and 377,425

represented archaea. The number of bacterial reads varied

between 12,125 in ATII-1 and 22,540 in ATII-6. The number

of archaeal reads generated varied between 1,624 in ATII-1 and

37,451 in DD-5. Unassigned reads (unknown) represented a

relatively small proportion of the total pyrotags.

Taxonomic assignment of OTUs to major archaeal groups
The overall archaeal community structure differed greatly

between the S-rich ATII-1, N-rich DD-1, and the remaining

sediments (Fig. 2, Table 4). Out of 39 archaeal OTUs analyzed, 10

were detected in both water column and sediments (Table S1), 6

were detected only in the water column (data not shown) and 23

were only detected in the sediments (Table S1, Table 4). To

exclude potential contamination from the overlying water column

we focus on the sediment only taxa, that doesn’t exclude the fact

that taxa shared in sediment and water may also be present in

sediments. In the S-rich ATII-1, euryarchaeota clearly dominated

the archaeal community (96%) with 50% of the archaeal tags in

this section being assigned to Marine Benthic Group E (MBG-E;

Thermoplasmata), note that MBG-E was not detected in the water

column. Other abundant euryarchaeota in ATII-1 were Methano-

microbia belonging to ANME-1b (25%) and the Methanosarcinales

clade GOM ArcI. Pyrotags of the latter groups were not detected

in any of the other sediment sections or the water column (Fig. 2,

Table 4).

Similarly, euryarchaeota predominated the archaeal community

in the N-rich DD-1 section (65%). Here, an unclassified family of

the ST-12K10A lineage (SA1 group) represented the most

abundant archaeal group (42%), whereas pyrotags of this archaeal

family were very rare (0.1% in ATII-1) or absent in all other

analyzed sediment sections and the water column. Uncultured

Thermoplasmata of the South African Goldmine (SAG) Group, were

found to be ten times more abundant in DD-1 (15%) than in the S-

rich ATII-1, whereas MBG-E were 250 times less abundant than

in the ATII-1 sections. Marine Group III (MG-III) Thermoplasma-

tales, which were not recovered from ATII-1, represented 0.2% of

the total archaeal pyrotags in DD-1 (Table 4). Although not highly

abundant, we detect a diverse and exclusive Halobacteriales-related

pyrotags only in the N-rich Discovery Deep brine-pool sediments

(Fig. 2, Table 4).

Crenarchaeota assigned to Marine Group I (MGI) comprised

only 1.9% in the S-rich ATII-1 and 34.3% in the N-rich DD-1

sediments, whereas members of this group represented the most

abundant archaea in all other sediment sections (81.668.2%)

including the water column (Table 4). Methanomicrobiales-Methanos-

pirillum, Halobacteriales Deep Sea Hydrothermal Vent Group 6 and

Terrestrial Hot Spring Crenarchaeota were detected in the remaining

sediments but not in the water column (Table 4).

Relative abundance-based hierarchical clustering of the 16S

rDNA pyrotags assigned to major taxonomic groups allowed us to

categorize the sediment archaeal communities into three major and

distinct groups (Fig. 3A, Table S1) and to detect a set of sediment/

brine specific archaeal OTUs (23) that were not detected in the

overlying water column (Table S1). Group I (12 OTUs, of which 10

are sediment specific) was unique to the S-rich Atlantis II sample

(ATII-1), group II (13 OTUs, of which 10 are sediment specific) was

characteristic for the N-rich Discovery sample (DD-1), and group

III (8 OTUs, of which 4 are sediment specific) reflected the

composition of the remaining sediment samples.

Unique Prokaryotic Consortia in Red Sea Brine
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Taxonomic assignment of OTUs to major bacterial
groups

Similar to archaea, the bacterial community structure greatly

differed between the S-rich ATII-1, N-rich DD-1, compared to the

remaining overlying and adjacent sediments. Out of 171 bacterial

OTUs, 75 were detected in both water column and sediments

(Table S1), 42 were detected only in the water column (data not

shown) and 48 were only detected in the sediments (Table S1,

Table 4).

In the S-rich ATII-1, Chloroflexi accounted for 32% of the

assigned bacterial OTUs, with the order Anaerolineales predomi-

nating (Table 4, Fig. S1). The distribution of Chloroflexi was

Figure 1. Sediment samples. (1a) Map of the sampling and water depth in the Atlantis II Deep area. The Atlantis II Deep area (between
latitudes 21u 139N and 21u 309N and longitudes 37u 589E and 38u 99E) is in the central rift zone of the Red Sea, between Saudi Arabia and Sudan. The
four sample sites are represented. (1b): Schematic representation of the Atlantis II (ATII), Discovery (DD), Chain Deep (CD) and Brine-Influenced
(BI) sediment cores. The sediment cores are represented individually. Each subsection in each core is presented to scale, and sections are numbered
from bottom to top. See Table 1 for sampling and sample details. ATII (Atlantis II; with a total of six distinctive sediment sections), DD (Discovery
Deep; with seven sections), CD (Chain Deep; one section), and adjacent brine sections (BI; two sections).
doi:10.1371/journal.pone.0042872.g001

Table 1. Samples and sampling locations.

Coordinates Core length Coring Distinct
Water
depth Brine temp

(m) intervals (m) (6C)

Atlantis II (ATII) 21u 20.7329 N, 38u 05.0399 E ,3.5 GGC 6 (ATII-1-ATII-6) 2168 68

Discovery Deep (DD) 21u 17.0859 N, 38u 02.9049 E ,3.5 GGC 7 (DD1-DD7) 2180 45

Chain Deep (CD) 21u 18.1559 N, 38u 05.0049 E ,4 GGC 1 1937 32

Brine Influenced (BI) 21u 24.5329 N, 38u 05.6239 E 0.37 MC 2 (BI-a, BI-b) 1856 22

doi:10.1371/journal.pone.0042872.t001
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relatively constant, but at a much lower abundance (1.7160.98%)

in all other analyzed sediment sections. Fusobacteria (20%) and the

OP1 division (15%) were two of the major bacterial phyla in the S-

rich ATII-1 sample. The latter group also comprised 5% of the

bacterial OTUs in DD-1 but was insignificant elsewhere (including

the water column). In contrast to their high abundance in all the

other samples, Alpha- and Gammaproteobacteria constituted only 1%

and 4% of bacterial OTUs in ATII-1, respectively.

In the N-rich DD-1, Alphaproteobacteria dominated the bacterial

community constituting 25% of bacterial OTUs, followed by

Cyanobacteria with 22%. In other DD sediments, the latter phylum

was far less prominent, and this variability is largely due to the

contributions of an unassigned family related to Prochlorococcus

(21%). Prochlorococcus constituted 4% (68) of water column OTUs,

and therefore the overlying water column could have compro-

mised this sample.

Based on the relative abundance of 16S rDNA pyrotags and

their assignment to major bacterial groups a set of sediment/brine

specific bacterial OTUs (48) were identified (Table S1). Addition-

ally, three distinct sediment groups were observed in our samples.

Group I (41 OTUs, of which 27 are sediment specific) are

enriched in the S-rich Atlantis II sample (ATII-1), group II (31

OTUs, of which 15 are sediment specific) corresponds to the N-

rich Discovery sample (DD-1), group IIIa (20 OTUs, of which 3

are sediment specific) in samples ATII-2 to ATII-5, while group

IIIb (34 OTUs, of which 3 are sediment specific) reflects the

combination of taxa found in all other samples (Fig. 3B, Table S1).

Rare bacterial communities were determined by selecting OTUs

that accounted for less than 1% of reads in all the samples.

Comparative analysis of the less abundant bacterial genera leads to

the same basic division into four consortia (Fig. S2, Table S2). The

distinctive bacterial communities in the S-rich Atlantis II and N-

rich Discovery samples are discussed in relation to sulfur and

methane cycling below.

Comparative analysis of microbial community in the Red
Sea sediments with diverse oceanic systems

To assess the uniqueness and diversity of the microbial

communities present in the Atlantis II brine-system sediments,

we compared the pyrotags recovered in this study with a global

survey of sub-seafloor microbial communities. The 16S rDNA tag

sequences that were used for this comparison are publicly available

through the VAMPS website http://vamps.mbl.edu (project title

ICM_GMS). We compared our data with oxic sediments from the

White Oak River estuary in the North Atlantic Ocean [18], anoxic

deep-sea hydrocarbon seeps from both a microbial mat and

sediments [19] in the Gulf of Mexico, a microbial mat from the

oxic Storegga seep enrichment on the continental shelf in the

Norwegian Sea, an anoxic microbial mat from a carbonate reef in

the Black Sea, and a microbial mat from an oxic hydrothermal

vent in the Guaymas Basin in the Gulf of California. These

oceanic sediments were surveyed as part of the ‘Microbial Census

of Methane and Hydrocarbon Seep Sediments in Relation to

Geochemical and Temperature Gradients’. Heat map analysis

revealed four sample groups based on the unique microbial

consortia present: I) ATII-1, II) DD-1, IIIa) ATII-2 to ATII-5 and

IIIb) ATII-6, DD-2 to DD-7 and CD and BI (Fig. 3). A clustering

analysis was used to compare and contrast our data with 16S

rRNA (V6) obtained from the other oceanic systems. With respect

to both Archaea and Bacteria, groups II and III clustered in one

clade (Fig. 4A and 4B). Both the bacterial and archaeal

assemblages at ATII-1 showed greater similarity with the consortia

in the methane and hydrocarbon seep systems. Notably, ATII-1

showed a closer resemblance to the communities at marine

hydrothermal vents in the Gulf of California (Fig. 4A).

Discussion

Unique microbial taxa in the brine pool sediments that
are enriched in the S-rich Atlantis II and the N-rich
Discovery brine-pool sediments

We identify the unique microbial communities in sediments

from the three Red Sea brine pool sites. To exclude potential

contamination from the overlying water column, we focus on the

48 sediment/brine specific bacterial taxa and 23 archaeal taxa.

Although, the microbial communities in sediments from three Red

Sea brine pool deeps and a brine-influenced site displayed very

similar distributions of abundant and rare microbial groups, the

deepest S-rich sediment section from Atlantis II and an N-rich

section from Discovery Deep each revealed unique archaeal and

bacterial communities. Clustering of 16S rDNA pyrotags from

each sediment sample into major bacterial and archaeal groups on

the basis of relative abundance and taxonomic assignment (Fig. 3,

Table S1 and Fig. S2), allowed us to discern three major

assemblages, comprising (I) taxa that are unique for S-rich ATII-1,

(II) taxa unique for N-rich DD-1, (IIIa) taxa that are restricted to

samples ATII-2 to ATII-4, and (IIIb) taxa that are found in all the

remaining samples (i.e., ATII-5 and ATII-6, CD, BI and DD-2 to

DD-7 (Fig. 3A). Note, that the water column is clustered into a

fourth group, with a closer resemblance to group III (data not

shown). Such clustering suggests vertical and horizontal variability

in the prokaryotic community structure within the Atlantis II

deep-sea brine system. Comparison with data from other oceanic

sites revealed that the prokaryotic community in the ATII-1 is

more closely related to prokaryotes found in methane and

hydrocarbon seep sediments (Fig. 4). The detection of OTUs

from known typical marine prokaryotic groups (e.g., MGI,

Cyanobacteria and SAR11) might result from accumulation in the

sediments of non-active or dead cells or even cellular debris

previously active in the water column. It may also be a result of

Table 2. Chemical profiling of the sediments.

ATII-1 ATII-2 ATII-3 ATII-4 ATII-5 ATII-6 DD-1 DD-2 DD-3 DD-4 DD-5 DD-6 DD-7 CD BI-1 BI-2

%C 0.6 0.5 0.6 0.6 2.0 1.0 4.0 9.7 7.5 4.6 8.3 8.2 7.0 0.8 8.7 8.3

%H 0.6 1.6 1.8 1.6 1.8 1.8 1.0 1.6 1.5 1.6 1.5 1.2 1.4 1.9 1.5 1.4

%N ,0.10 ,0.10 ,0.10 ,0.10 ,0.10 ,0.10 0.22 ,0.10 ,0.10 ,0.10 ,0.10 ,0.10 ,0.10 ,0.10 ,0.10 ,0.10

%S 19.1 6.9 3.4 4.2 10.4 4.7 ,0.1 0.6 0.4 1.3 1.4 0.4 0.3 ,0.1 0.3 1

%
SO4

22

20.1 1.8 0.2 0.1 9 1 1.3 0.04 0.01 0.04 0.1 0.05 0.08 0.03 0.08 0.05

doi:10.1371/journal.pone.0042872.t002
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contamination from the overlying water column. However, we

attempted to exclude such potential contaminants by subtracting

ATII water column taxa from sediment taxa, and we have stressed

on the sediment/brine-specific taxa in this study. However, this

does not exclude that these OTUs may belong to sediment-clades

or possibly new Atlantis II brine system clades. For example,

members of the MGI seem to dominate the archaeal community

in most sediment layers. Members of this group have been

previously found within the brine-systems, but seemed to be

restricted to the brine-seawater interface [12], probably reflecting

the standard communities found in seawater above the brine. MGI

is dominant in deep-sea water and surface (oxic) sediments,

although populations in these two biotopes should not be assumed

as being identical [20,21] There are specific sediment phylotypes,

distinct from seawater relatives [20].

Although we have only utilized one sediment core at each

sample point, our results can be generalized to the entire brine

because the physical conditions within the spatial dimensions of

the brine pool are uniform. Performing a single DNA extraction

protocol may also be a limitation in our study, suggesting a

representation of, rather than the entire, microbiota in each site.

The composition of the prokaryotic community in the S-rich

section of Atlantis II sediments suggests metabolism based on

sulfate reduction and methane consumption. On the other hand,

the diversity and exclusive detection of selected Halobacteriales in

the N-rich Discovery Deep sediment may be related to its

characteristic elemental profile (discussed below).

The S-rich subsection of the Atlantis II brine-pool
sediment sample harbors a unique consortium of
prokaryotes putatively involved in sulfate-reduction
coupled with anaerobic oxidation of methane

The oxidation of methane in anoxic marine sediments is

mediated by consortia of methane-oxidizing and sulfate-reducing

archaea and bacteria [22], in a process described in previous

studies [23]. The exclusive combined presence of pyrotag related

to archaeal and bacterial sulfate-reducing genera (Archaeoglobus

[24], and Desulfovermiculus sp. (Deltaproteobacteria)) and anaerobic

methane-oxidizing archaeal clusters ANME-1 (Methanosarcinales

and Methanomicrobiales) [25], ANME-2 and ANME-3 (Methanosarci-

nales), strongly argues for an exclusive inhabitance of microbial

sulfate reduction coupled with anaerobic oxidation of methane in

the S-rich ATII section (Fig. 3B).

The distribution of Methanomicrobia in the S-rich Atlantis II

sample is also unique, and quite distinct from those in the

remaining samples. Methanosarcinales species were exclusively

identified in the S-rich ATII-1. Methanomicrobia were identified in

all the sediments analyzed, but their abundance and detailed

composition varied widely. Methanomicrobia were most abundant in

the S-rich ATII-1 and N-rich DD-1 samples, but accounted for

,1% of reads in the remaining samples. The ANME-1b clade and

the Methanosarcinales clade GOM-Arc-1 constituted the majority of

Methanomicrobia in the S-rich ATII-1, while ST-12K10A (SA1)

dominated the N-rich DD-1 sample, which was previously

identified in Shaban Deep and brine-sea water interface of

Discovery Deep [14]. Interestingly, in these two samples,

hydrogenotrophic Methanomicrobiales (DD-1) and acetoclastic

Methanosarcinales (ATII-1) were mutually exclusive. Presence of

sulfate reducers would explain these differences as they would

likely be partially involved in anaerobic methane oxidizing

consortia with ANME and would simultaneously outcompete

and exclude all methanogenic groups with the exception of

Methanosarcinales [25,26]. This implies distinctive styles of methane
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production in the S-rich Atlantis II and N-rich Discovery sediment

sections.

Overall, our comparative taxonomic assignments of OTUs that

defined the four distinct microbial assemblages (Fig. 3B) reveal a

unique consortium of methanogenic, ANME, and sulfate-reducing

microbes that are distinct in the environments of S-rich ATII-1, N-

rich DD-1 and the remaining samples.

Diversity of denitrifying microbes in the N-rich
subsection of the Discovery Deep brine-pool sediment

Nitrification requires several groups of microorganisms and play

a significant role in the nitrogen cycle [27].

Group II archaea were predominantly detected in DD-1

(Table 4 and Figs. 2B, 3B) and included potential ammonium

oxidizers such as Crenarchaeum of the terrestrial hot spring group

(Table 4) [28–30]. On the other hand, archaea known to be

capable of reducing oxidized nitrogen species were also exclusively

identified in DD-1, such as Halobacteriaceae; Natronomonas sp.,

Halococcus sp., Halobacterium sp., Halorabdus sp., Halosimplex sp.,

and an unassigned MSP41 genus (Fig. 2). A previous study

documented an abundance of Halobacteriaceae in the Atlantis II and

Discovery Deep overlying water column [16]. However, our

analysis did not identify such abundance of Halobacteriaceae. These

are capable of reducing nitrate to nitrite during anaerobic

respiration [28–30]. Note that, in contrast to other analyzed brine

and non-brine sediments, the archaea in Group II, which are

present in DD-1, all cluster among ammonium oxidizers.

Interestingly, the S-rich Atlantis II sections (ATII-1), was the only

sample that had no detectable Halobacteriaceae related to nitrogen

cycling. The diversity and detection of archaea previously known

to play a role in nitrogen cycling in the N-rich Discovery sample

implies an active role specifically in nitrogen regulation in this

sediment section.

Conclusion

This study identifies three major microbial consortiums in

sediments of brine and brine-influenced sites in the Red Sea.

Based on taxonomic assignment of 16S rDNA OTUs to major

bacterial and archaeal groups, the characteristic distributions of

both the abundant and the rare taxa was revealed. A sulfur-rich

Atlantis II and a nitrogen-rich Discovery Deep section harbored

distinct prokaryotic assemblages that differed furthermore from

those found in all other sediment samples examined. The exclusive

combined presence of sulfate-reducing and anaerobic methane-

oxidizing prokaryotes strongly argues for an exclusive importance

of microbial sulfate reduction coupled with anaerobic oxidation of

methane in the S-rich ATII section. Additionally, the diversity of

denitrifying microorganisms in the N-rich Discovery section

implies an active role in nitrogen cycling. More in depth

characterization of the physical and chemical properties of these

sediment sections combined with further metagenomics and

metatranscriptomes could shed further insights into microbial

metabolic processes and the cycling of (in)organic matter in these

under-sampled extreme environments.

Materials and Methods

Sample collection
The sediment samples from the Atlantis II, Discovery Deep, and

Chain Deep brines, as well as from the brine-influenced site used

for this study were collected during the 2nd KAUST/WHOI Red

Sea Expedition of the RV Aegaeo in April 2010 (see Table 1 for

details about the samples and sampling locations). All necessary

permits were obtained for the described field studies. Between 3.5

and 4 m-long gravity cores (Benthos Instruments, KC Denmark)

were obtained from the brine sediments, whereas the short BI core

was obtained by multicoring. The water depth of the brine settings

Figure 2. Taxonomic assignment and abundance of archaeal communities in ATII, DD, CD and BI sediment samples. Maximum-
likelihood phylogenetic tree showing the taxonomic diversity and relative abundance of archaeal OTUs in all sediment samples. Bootstrap support
values greater than 50% are indicated by the size of the circle on each branch. The taxonomically assigned OTUs are represented in ST-1.
doi:10.1371/journal.pone.0042872.g002
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varied only between 1937 and 2168 m, but the brines differed

greatly in temperature, being highest at ATII (68uC), followed by

DD (45uC) and CD (32uC) (Table 1). The BI site was slightly

shallower (1856 m water depth) and the temperature (22uC) was

lowest of all settings. Water samples were collected from the

overlying ATII water, at different depth 50 m, 200 m, 700 m and

1500 m (Ferreira et. al., submitted). Water depth in the Atlantis II

Table 4. Taxonomic assignment of OTUs to major archaeal and bacterial groups.

Taxonomy-archaea ATII-1 ATII-2 ATII-3 ATII-4 ATII-5 ATII-6 DD-1 DD-2 DD-3 DD-4 DD-5 DD-6 DD-7 CD BI-1 BI-2
Water
Col.1

Water
Col.2

I- Euryarchaeota

IA- Thermoplasmata

1- Marine Benthic Group E 50.4 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2- South African Goldmine
Group

1.5 0.0 0.0 0.0 0.0 0.0 14.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 1.8

3- Thermoplasmatales
Marine Group III

0.0 0.9 0.9 0.1 14.8 12.1 1.0 13.5 6.4 13.2 12.2 11.9 7.5 7.7 11.5 12.7 12.7 30.0

IB- Methanomicrobia

1- ANME-1 ANME-1b 25.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2- Methanosarcinales GOM
Arc I

10.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3-Methanomicrobiales-
Family (NA)

0 0.07 0.12 0.07 0.18 0.21 0.019 0.24 0.3 0.28 0.24 0.29 0.25 0.24 0.24 0.23 0.0 0.0

4-Methanomicrobiales-
Methanospirillum

0 0.34 0.17 0.09 0.3 0.3 0.06 0.44 0.43 0.66 0.45 0.46 0.5 0.48 0.43 0.4 0.0 0.0

5- ST-12K10A 0.1 0.0 0.0 0.0 0.0 0.0 41.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1C-Halobacteria

1-Halobacteriaceae-
Halobacterium

0.0 0.0 0.0 0.0 0.0 0.0 0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2-Halobacteriaceae-
Halococcus

0.0 0.0 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3-Halobacteriaceae-
Halomicrobium

0.0 0.0 0.0 0.0 0.0 0.0 0.19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4-Halobacteriaceae-
Halorhabdus

0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5-Halobacteriaceae-
Halosimplex

0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6-Halobacteriaceae-Genus
(NA)

0.0 0.1 0.0 0.0 0.6 0.5 2.7 0.5 0.4 0.6 0.7 0.7 0.4 0.7 0.6 0.5 1.1 3.2

7-Halobacteriaceae-
Natronomonas

0.0 0.0 0.0 0.0 0.0 0.0 0.26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8-MSP-41 4.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1D-Archaeoglobi

II- Crenarchaeota 1.9 93.6 95.4 96.1 75.2 78.5 34.3 75.1 85.7 73.2 74.7 74.8 83.1 83.6 76.9 76.9 40.6 90.0

IIA-Marine Group I 0.0 0.0 0.0 0.08 0.02 0.05 0.44 0.01 0.03 0.01 0.04 0.02 0 0.04 0.02 0.01 0.0 0.0

IIB-Terrestrial Hot Spring 50.4 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Taxonomy-Bacteria

Actinobacteria 0.36 10.07 0.1 9.04 10.65 13.32 2.43 12.79 13.01 12.67 12.62 12.89 13.24 13.1 13.1 13 3.08 7.55

Chloroflexi 32.23 1.3 2.86 1.46 1.06 1.22 2.19 1.45 1.3 1.37 1.63 1.25 1.25 1.5 1.33 1.15 4.97 12.48

Cyanobacteria 0.43 1.62 0.2 1.15 7 9.08 22.4 7.58 7.72 8.13 8.7 6.94 8.14 8.5 7.35 8.34 4.33 16.44

Deferribacteres 10.36 6.34 11.41 5.98 3.15 4.36 6.34 4.43 4.15 4.08 4.85 4.72 4.35 4.5 4.78 4.37 11.4 17.04

/-proteobacteria 1.15 54.03 42.27 53.27 34.83 39.17 25.75 39.35 40.54 38.56 38.41 39.16 40.05 36.6 38.4 38.97 34.7 39.9

d-proteobacteria 6.46 7.89 15.55 8.02 3.57 3.92 3.78 4.31 4.39 4.22 3.93 4.24 4.08 4.24 4.25 4.02 12.36 19.95

c-proteobacteria 4 13.34 17 13.56 17.52 22.1 21.77 23.07 22.1 23.74 22.72 23.93 22.35 24.3 23.8 23.4 22.24 30

Fusobacteria 20 0 0 0 0 0 0.83 0 0 0 0 0 0 0 0 0 0 0

OP1 15 0 0 0 0 0 5.11 0 0 0 0 0 0 0 0 0 0 0

Water Col.1: Average OTU in the water column
Water Col.2: Highest OTU in the water column
doi:10.1371/journal.pone.0042872.t004
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Deep area was obtained during the cruise from a bathymetric

survey with single-beam echo sounder on R/V Oceanus (Fig. 1A).

Cores were divided into sections (numbered from bottom to top)

and different sediment sections were studied separately (Fig. 1B).

In ATII, six distinct sections of the sediment core were

macroscopically identified (Fig. 1B). The bottom 50 cm of the

ATII core (ATII-1) consisted of black slurry. ATII-2 was

dominated by brown, ATII-3 by reddish-brown, and ATII-4 by

brown clay. ATII-5 was composed of black slurry, while brownish

slurry sediments (ATII-6) were found at the top of the core facing

the lower convective layer of the pool. The seven DD sediment

samples were less macroscopically distinct than the ATII sections

(Fig. 1B). For the brine-influenced sediments, BI-1 comprised the

top half (0–5 cm) and BI-2 bottom 5 cm of the core, although the

two samples were not macroscopically distinct. All sediment

samples were immediately frozen upon recovery, and kept at

220uC until further analysis.

Chemical analysis
Profiling of the elements C, H, N and S was performed by

oxidation of the samples by flash combustion using a Thermo

FlashEA 1112 elemental analyzer. The combusting gases were then

separated by passage through a chromatographic column using He

as a carrier gas, and were detected with thermal conductivity

detector. Sulfate level was measured by ion chromatography.

DNA extraction, pyrosequencing of 16S rDNA amplicons
and computational analysis

Genomic DNA was extracted 0.5–1 gm of sediment with the

PowerSoilH DNA Isolation Kit (MO-BIO, Calsbad, CA), the total

amount of DNA isolated from the sediments is presented in

Table 2. DNA was used for PCR amplification of environmental

16S rRNA genes (16S rDNA) for archaeal and bacterial

taxonomic assignment after Sogin et. al. (2006) [31]. The primers

utilized in this study were V6-V4 primer pairs (bacterial: 1046R

CGACRRCCATGCANCACCT and 518F CCAGCAG-

CYGCGGTAAN; archaeal: 1048R CGrCrGCCATGyACCwC,

arc517F1 GCCTAAAGCATCCGTAGC, arc517F2

GCCTAAArCGTyCGTAGC, arc517F3 GTCTAAAGGGT-

CyGTAGC, arc517F4 GCTTAAAGnGTyCGTAGC, and

arc517F5 GTCTAAArCGyyCGTAGC. The amplicons recov-

ered were then subjected to pyrosequencing by 454 GS FLX

Titanium technology (454 Life Sciences).

Phylogenetic analysis of the sequence tags and subsequent

taxonomic assignments were performed using the resources on

the Visualization and Analysis of Microbial Population Structures

(VAMPS) website, hosted by the Josephine Bay Paul Center, MBL,

Woods Hole (http://vamps.mbl.edu/resources/databases.php).

To infer phylogenetic relationships among the identified Oper-

ational Taxonomic Units (OTUs), an initial taxonomic classification

into bacterial or archaeal groups was performed. The OTUs were

Figure 3. Heat map representation of the relative abundance of major archaeal (3a) and bacterial (3b) groups in ATII, DD, CD and BI
sediment samples. Heat map showing a comparative taxonomic assignment of OTUs to major archaeal taxa (at the genus level). The different taxa
represented in each group are illustrated in Table S1. The dendrogram show the hierarchical clustering of the different sediment sections based on
the relative abundance of the OTUs in each section. The Z-scores shows the rescaling of the value of the row based on its mean and standard
deviation. Group I (ATII-1), group II (DD-1), group IIIa (ATII-2-5), and group IIIb (all other samples) are presented. The taxonomically assigned OTUs are
represented in ST-1.
doi:10.1371/journal.pone.0042872.g003
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estimated by clustering the 910,068 raw 16S reads with an identity

threshold .0.97% using USEARCH (http://www.drive5.com/

usearch/). The seed (longest sequence that is at least 0.97% similar

to all other sequences in the cluster), was utilized as the

representative sequence (i.e., the OTU) of that cluster, resulting

into a non-redundant set of 837 bacterial OTUs and 63 archaeal

OTUs. For each domain, all OTUs across the different samples

were aligned using MUSCLE [32]. The two generated multiple

sequence alignments were visually inspected and manually tuned. A

maximum-likelihood phylogenetic tree was then estimated based on

the refined alignment under the GTR model [33] using FastTree

[34]. Finally, the estimated tree was taxonomically annotated, and

the normalized abundance levels of each OTU in the different

samples were graphically represented on the trees as bars stemming

from the corresponding OTU using iToL [35].

Heat maps were generated using data statistically filtered by a

two-tailed Fisher’s exact test (FET). The normalized read value for

each taxon in a sample was compared to those of other samples,

and to the totals of remaining taxa. Statistical analyses were

performed using R (http://cran.r-prroject.org) [36]. Results were

filtered for a p-value threshold ,0.05. The frequency-normalized

values of the filtered statistically significant data were used to

create heat maps using the ‘enhanced heat map function’ from the

R package gplots (http://cran.r-project.org/package = gplots).

Complete linkage hierarchical clustering was used across the

samples. The Pearson correlation distance matrix was calculated

between the taxa. We also performed Euclidean distance Ward

clustering approach and Spearman’s correlation, which did not

alter the clustering of the data (data not shown).

Supporting Information

Figure S1 Taxonomic assignment and relative abun-
dance of bacterial OTUs in ATII, DD, CD and BI
sediment samples. Maximum-likelihood phylogenetic tree

showing the bacterial taxonomic diversity in sediments and the

abundance for each OTU in all sediment samples.

(EPS)

Figure S2 Heat map and dendrogram of low-abundance
bacterial groups based on recovery of 16S rDNA tags.
Heat map generated up to the genera level, represented by less

Figure 4. Cluster dendrogram illustrating the relationship of the (4a) archaeal and (4b) bacterial communities in the Red Sea to
those in other oceanic systems. The dendrogram shows the complete linkage hierarchical clustering of the different sediment sections based on
the relative abundance of the OTUs in each section. The height indicates the relative distances between the datasets. The data of other oceanic
systems from the Guaymas Methane Seep (ICM GMS) project included Estuarine bulk water, North Atlantic Ocean (ICM GMS 1–2): oxic sediment from
the White Oak River; Cold Seep1 Gulf of Mexico (ICM GMS 3–4): microbial mat; Cold Seep2,3 Gulf of Mexico (ICM GMS 5–8): sediments from anoxic deep-
sea hydrocarbon seeps in the Gulf of Mexico; Continental shelf, Norwegian Sea (ICM GMS 13–14): an oxic microbial mat from the continental shelf at
the Storegga seep enrichment in the Norwegian Sea; Carbonate reef Black Sea (ICM GMS 15–16): an anoxic microbial mat from the Black Sea; Marine
hydrothermal vent1–2, Gulf of California (ICM GMS 17–20): microbial mat from the Gulf of California, oxic hydrothermal vent from Guaymas Basin.
doi:10.1371/journal.pone.0042872.g004
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than 1% of bacterial reads. The taxonomically assigned OTUs are

represented in Table S1.

(TIF)

Table S1 The archaeal assigned OTUs (from Fig. 3A)
and the bacterial assigned OTUs (from Fig. 3B) are
tabulated. OTUs detected only in sediments are in bold.

(DOCX)

Table S2 The rare bacterial assigned OTUs (from SF2)
are tabulated.
(DOCX)
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