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Abstract 

Milk protein concentrate (MPC, 79% protein) reconstituted at 13.5% (w/v) protein was 

heated at 90°C for 25 min (pH 7.2) with or without added calcium chloride (2.5 or 5 mM). 

After fractionation of the casein and whey protein aggregates by fast protein liquid 

chromatography (FPLC), the heat stability (90°C for up to 1 h) of the fractions (0.25%, w/v, 

protein) was assessed. The heat-induced aggregates were composed of whey protein and 

casein, in whey protein:casein ratios ranging from 1:0.5 to 1:9. The heat stability was 

positively correlated with the casein concentration in the samples. The samples containing the 

highest proportion of caseins were the most heat-stable, and close to 100% (w/w) of the 

aggregates were recovered post-heat treatment in the supernatant of such samples 

(centrifugation for 30 min at 10,000×g). κ-Casein appeared to act as a chaperone controlling 

the aggregation of whey proteins, and this effect was stronger in the presence of αs- and β-

casein.  
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1. Introduction 

Dairy protein-based ingredients are widely used in the food industry due to their high 

nutritional value (Hambræus & Lönnerdal, 2003) and their functional properties, such as 

emulsification, foaming and encapsulation (Buggy, McManus, Brodkorb, Carthy, & Fenelon, 

2016; Doherty et al., 2011; Morr, 1982; Ryan, Zhong, & Foegeding, 2013; Tavares, 

Croguennec, Carvalho, & Bouhallab, 2014). Today, they are common ingredients in sport 

drinks, meal replacers and infant formula (Early, 2012; Smithers, 2015).  

Heat treatment is widely applied in the dairy industry, normally to increase the shelf-life of 

products, but also to improve functional properties. Nevertheless, intensive thermal treatment 

can lead to undesirable outcomes such as gelation, Maillard reactions, and precipitation (i.e., 

fouling and sedimentation) of proteins. Bovine milk protein contains 80% (w/w) caseins and 

20% (w/w) whey protein. However, the heat-induced coagulation of milk is a process 

dominated by the chemistry and reactivity of β-lactoglobulin, the major whey protein in milk. 

Inducing the aggregation of whey proteins into nano- to micro-sized particles, by pre-heating, 

is known to increase their heat stability (Joyce, Brodkorb, Kelly, & O’Mahony, 2016; Ryan et 

al., 2012) and has been extensively applied to whey proteins solution and skim milk (Laiho, 

Ercili-Cura, Forssell, Myllärinen, & Partanen, 2015; Ryan & Foegeding, 2015; Ryan et al., 

2012; Sağlam, Venema, de Vries, & van der Linden, 2014). Milk protein solutions with high 

thermal stability are characterized by low viscosity, low turbidity and high solubility after 

heating. These conditions are influenced by physico-chemical properties of the particles, such 

as surface hydrophobicity, aggregate size, shape and charge (Joyce et al., 2016; Ryan et al., 

2013; Wijayanti, Bansal, & Deeth, 2014). As a result, the heat stability of proteins varies 

greatly with the pH at heating, the ionic strength of the dispersion, and the heat load applied. 



Revised and submitted (February 2017) Author version of  
Gaspard, S. J., Auty, M. A. E., Kelly, A. L., O’Mahony, J. A., & Brodkorb, A. (2017). Isolation and characterisation 
of κ-casein/whey protein particles from heated milk protein concentrate and role of κ-casein in whey protein 
aggregation. International Dairy Journal, 73, 98-108. DOI: 10.1016/j.idairyj.2017.05.012 

Page 5 of 39 

 

Combined aggregates of whey proteins and caseins show higher heat stability than whey 

protein aggregates. In fact, a solution of acid whey protein prepared by ultrafiltration, 

containing around 3.2% (w/w) protein, gelled immediately when heated at 93°C; however, a 

blend of whey protein and caseins, in the proportion 1:1 and heated under the same 

conditions was stable for up to 30 min of heating at 93°C, i.e., at least 97% of the total 

protein initially present in solution were still soluble after heating (Patocka, Jelen, & Kalab, 

1993). It is generally accepted that this is due to a chaperone-like activity of the caseins. 

Chaperone activities can stabilize proteins from unfolding, aggregation and precipitation 

(Morgan, Treweek, Lindner, Price, & Carver, 2005).  In dairy science and technology, 

aggregation is probably the more important phenomenon, as uncontrolled aggregation can 

lead to destabilisation. αs-, β- and κ-casein have been shown to exhibit chaperone activity 

against aggregation (Mounsey & O'Kennedy, 2010). In fact, experiments carried out in a 

tubular heat exchanger at 95°C (Guyomarc'h, Law, & Dalgleish, 2003) and in Teflon tubes 

(4.6 cm
3
) in an oil bath at 145°C (Kehoe & Foegeding, 2011) showed that the size of whey 

protein aggregates is reduced when the whey proteins are heated in the presence of casein 

micelles or β-casein.  

Hydrophobic interactions, ionic interactions, Van der Waals interactions and disulphide 

bonding are responsible for the formation of reversible and irreversible aggregates between 

caseins and whey proteins (Guyomarc'h et al., 2003). The aggregates in the serum phase of 

heated milk are mainly composed of κ-casein, β-lactoglobulin and α-lactalbumin 

(Guyomarc'h et al., 2003). Bovine serum albumin (BSA), lactoferrin, β-casein and αs-caseins 

are also involved in these aggregates, albeit to a minor extent (Donato & Dalgleish, 2006). 

Even though the formation of casein-whey protein aggregates have been shown (Jang & 

Swaisgood, 1990), part of the aggregates analysed may also be polymers of κ-casein (Farrell 
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Jr, Wickham, & Groves, 1998) or aggregates of whey proteins only (Boye, Alli, Ismail, 

Gibbs, & Konishi, 1995). In the serum phase of skim milk heated at 90°C for 10 min (pH 

6.7), the ratio of whey protein to κ-casein in the aggregates is in the range 1:0.2 to 1:0.7 

(Donato & Dalgleish, 2006). The whey protein and casein aggregates appear to be roughly 

spherical with a size ranging from 50 to 70 nm, which increases with the whey protein 

content of the solution (Beaulieu, Pouliot, & Pouliot, 1999; Liyanaarachchi, Ramchandran, & 

Vasiljevic, 2015). The molecular weight of the aggregates was estimated to be 2×10
7 

Da, the 

apparent isoelectric point of the aggregates was 4.5 in milk permeate, and the surface charge 

at pH 7.0 was 17 mV (Jean, Renan, Famelart, & Guyomarc’h, 2006). The mechanism leading 

to the chaperone-like activity of caseins on whey proteins is still poorly understood and little 

research has been done on the heat stability of milk protein concentrates and isolated 

aggregates of caseins and whey proteins. However, some authors have proposed that the 

aggregates exhibit a higher charge density than the native whey proteins, limiting the 

interactions with other proteins (Guyomarc'h, Nono, Nicolai, & Durand, 2009; Kehoe & 

Foegeding, 2014). The internal structure of the heat-induced aggregates is also affected by the 

presence of κ-casein; aggregates are less dense, and have a more porous structure, when they 

include κ-casein (Guyomarc'h et al., 2009). 

Calcium chloride greatly influences the mineral equilibrium in milk and favours aggregation 

of whey protein during heating (On-Nom, Grandison, & Lewis, 2012). Calcium is naturally 

present in milk (31 mM) and is present at elevated concentration in milk protein concentrates 

when reconstituted at 13.5% protein w/w (84 mM calcium); it also plays a major role in the 

heat stability of proteins (Crowley et al., 2014). Heating conditions, calcium content and pH 

influence the aggregation of whey proteins and caseins, the morphology of the resulting 

aggregates, and the extent of aggregation (Nicolai & Durand, 2013). Calcium ions can bind to 
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the carboxylate groups of the proteins, thereby shielding their repulsive charges. Thus, 

aggregates are more dense and less porous when calcium is added prior to heating. Heating at 

high ionic strength allows the proteins to get closer and interact initially via hydrophobic 

interactions, followed by the gradual formation of disulphide bonds (Mounsey, O’Kennedy, 

Fenelon, & Brodkorb, 2008; Ndoye, Erabit, Flick, & Alvarez, 2013). 

In the present study, the formation of heat-induced whey protein aggregates in MPC80, as 

influenced by calcium chloride concentration was investigated. In addition, the heat stability 

of these aggregates with different casein profiles, as well as aggregates formed from mixtures 

of κ-casein and whey proteins, were examined. The aim of this study was to understand the 

relationship between heat stability and the physico-chemical characteristics of aggregates of 

caseins and whey proteins in high-protein milk ingredients.  

2. Material and Methods 

2.1 Materials 

The milk protein concentrate (MPC) powder used in this study was produced on-site (Bio-

functional Food Engineering Facility (BFE) at the Teagasc Food Research Centre Moorepark, 

Fermoy, Co. Cork, Ireland). The skim milk was pre-heated in a temperature of the range of 

40-50°C and concentrated by ultrafiltration as described previously (Huffman & Harper, 

1999; Renner & Abd-El-Salam, 1991). The concentrate was dried, giving a powder with a 

total protein content of 79% (w/w, Kjeldahl analysis, nitrogen to protein conversion factor of 

6.38) of which 73% (w/w) was casein. The resulting MPC powder contained 8.9% (w/w) 

lactose, 2.1% (w/w) calcium and 1.4% (w/w) phosphorus. 

Whey protein isolate (WPI) Bipro
®
 was purchased from Davisco Foods International (Eden 

Prairie, Minnesota, U.S.A.) and contained 93.7% (w/w) protein. Freeze-dried κ-casein was 
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purchased from Sigma Aldrich (Saint-Louis, Missouri, U.S.A.); the purity of the κ-casein 

powder was greater than 70% (w/w). All reagents were purchased from Sigma Aldrich 

(Saint-Louis, Missouri, U.S.A.) unless stated otherwise. 

2.2 Production and purification of the casein and whey protein aggregates 

Figure 1 summarizes the steps of purification and analysis carried out on the reconstituted 

MPC. MPC was reconstituted at 13.5% (w/v) protein in distilled water, and sodium azide 

(0.05%, w/v) was added to prevent microbial growth. When reconstituted at 13.5% (w/v) 

protein, the concentrate was 3.6-fold more concentrated in protein and 2.8-fold more 

concentrated in calcium than skim milk, assuming a skim milk density of 1.035 kg.m
-3 

(Nutting, 1970). During the first step of rehydration, the reconstituted MPC was incubated at 

45°C for 2 h under constant stirring using an impeller, and calcium chloride was added at 0, 

2.5 or 5 mM. The MPC solution was then stirred overnight at 4°C to ensure complete 

rehydration. On the following day, the solution was equilibrated to 22 °C and the pH was 

adjusted to 6.7 or 7.2 using 0.5 M NaOH and 0.5 M HCl, as required. Varying the pH of 

heating influences the casein dissociation and consequently the amount of caseins reacting 

with whey proteins in the serum phase (Donato & Guyomarc'h, 2009). After 1 h of 

equilibration at 22°C, re-adjustment of the pH was performed, if needed. Half of the samples 

did not undergo a heat treatment, and were used as controls. 

Aliquots (22 mL) were filled into 25-mL glass bottles (Pyrex, Greencastle, Pennsylvania, 

U.S.A.) and heated at 90°C for 25 min (15 min hold time) in a water bath, which allowed 

heating of several samples of large volume simultaneously.  Higher temperature may have 

caused the degradation of the negatively charged residues on κ-casein (Alais, Kiger, & Jollès, 

1967; Villumsen et al., 2015). After heating, the samples were cooled for 7 min in ice water 
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and warmed for 20 min at 22°C. Weighted aliquots of unheated and heated samples (20 mL) 

were then centrifuged for 1 h at 38,360×g and 20°C in a centrifuge (Sorvall Lynx 6000) 

using the rotor Fiberlite F21-8x50y (Thermo Fisher Scientific, Waltham, Massachusetts, 

USA). After centrifugation, the fat layer was discarded and the supernatants were filtered 

through 0.45 μm hydrophilic filters (Sartorius, Gottingen, Germany). 

To further purify and analyse the aggregates, the method developed by Parker, Donato et al. 

(2005) was followed. Briefly, supernatant (0.8 mL) was fractionated by fast protein liquid 

chromatography (FPLC) on a size-exclusion column HiPrep 16/60 (GE Healthcare, Little 

Chalfont, Buckinghamshire, U.K.) containing Sephacryl S-500 HR beads (fractionation range 

4×10
4
-2×10

7 
Da). The absorbance was monitored at 280 nm by an AKTA Purifier 10 system 

(GE Healthcare, Little Chalfont, Buckinghamshire, U.K.), at a flow rate of 1 mL.min
-1

. The 

buffer was a solution of Bis-Tris Propane 20 mM and 0.02% NaN3 at pH 6.7 or 7.2, 

depending on the original pH of the samples. Fractions (5 mL) were automatically collected 

using a Frac950 and the total elution time for all samples was 120 min. The separation by 

FPLC was carried out at least in duplicate. The physico-chemical properties of the 

κ-casein/whey protein aggregates were measured on the FPLC fractions. Separately, the WPI 

and κ-casein powder were mixed overnight at 4°C to reach a ratio of whey proteins to κ-

caseins of 1:1 or 1:0.7, and were called respectively mixture 1 and mixture 2, respectively. 

2.3 Protein content measurement 

Protein content of liquids and powder were determined by Kjeldahl (IDF Standard, 26, 2001); 

the protein to nitrogen conversion factor used was 6.38. Due to the very low protein content 

of the fractions collected by chromatography, the protein content of those samples was 

determined using a Bicinchoninic acid assay (BCA) kit (Thermo Fisher Scientific, Waltham, 
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U.S.A.); bovine serum albumin was used as standard. The protein content of the centrifugal 

supernatants was also determined using this assay. All measurements were made in duplicate.  

2.4 Protein profile analysis 

The protein profile of all samples were analysed by SDS-PAGE electrophoresis under 

reducing or non-reducing conditions following a modified method of Laemmli (Laemmli, 

1970). LDS (lithium dodecyl sulfate) was used instead of SDS (sodium dodecyl sulfate). 

NuPage Bis-Tris gels at 12% (w/w) acrylamide were used with the NuPage cells and the 

NuPage power supply (Life Technologies, Carlsbad, California, U.S.A.), in line with the 

instructions for this system. The samples were first dissolved in the sample buffer at a ratio 

LDS:protein 200:1. A volume of 2 μL dithiothreitol (DTT) at 500 mM was added to reduce 

the disulphide bonds between proteins, while addition of DTT was omitted in the case of non-

reducing samples. Following the manufacturer’s recommendations, the mixture was heated at 

70°C for 10 min in a water bath. Sample (10 μL) containing 1.8 μg of protein was loaded in 

each well and a constant voltage of 200 V was applied for 50 min. The gels were stained in a 

solution of 0.5% Coomassie Blue R250, 25% isopropanol and 10% acetic acid. Two stages of 

destaining were performed; the gels were first left for 1 h in a solution of 10% isopropanol 

and 10% acetic acid, and then held overnight in distilled water. Commercially sourced bovine 

serum albumin (BSA), αs-casein (αs1 and αs2-casein were quantified together), β-casein, κ-

casein, β-lactoglobulin and α-lactalbumin were used for calibration.  The purified proteins 

were dissolved in the sample buffer, with or without reducing agent, and 10 μL of this 

mixture of standard proteins was loaded per well. In total, five calibration points ranging 

from 0.06 to 2 μg of each protein standard per well were included for every gel. Because of 

unavoidable variations in staining, the calibration points were run on the same gels as the 

samples. All gels were scanned using an Epson V700 film scanner (Epson, Suwa, Nagano, 
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Japan) and analysed using the software ImageQuant TL (GE Healthcare, Little Chalfont, 

Buckinghamshire, U.K.). The scanner was not calibrated for optical density. Therefore, the 

range of protein content of the samples and standards was chosen to be in the linear, and thus 

unsaturated, region of the scanner. The quantification of the samples was deduced by plotting 

the known protein content of the purified proteins as a function of the integrated intensity of 

the standard bands.  

2.5 Measurement of hydrodynamic diameter  

The hydrodynamic diameter of the aggregates was determined by dynamic light scattering 

(DLS) using a Zetasizer Nano ZS (Malvern Instruments, Malvern, Worcestershire, U.K.). 

These measurements were carried out at 20°C on the freshly-collected fractions. All samples 

were equilibrated at room temperature for 120 s in the instrument prior to measurement. The 

refractive index of the material was considered to be 1.450 and the absorption was 0.001. 

Considering the low protein content of the FPLC fractions, the refractive index and the 

viscosity of the dispersant were assumed the same as that of water, i.e., 1.330 and 1.0031 cP 

respectively. Measurements were carried out at a backscattering angle of 173° and at a 

wavelength of 633 nm using disposable polystyrene cuvettes. The average diameter was 

expressed as zeta-average, though the z-average values can be affected by particle 

characteristics like shape, compressibility, polydispersity, especially if the z-average values 

are greater than the inverse scattering vector 1/q (here 38 nm). In this case, the measured 

particle size is expected to be very close to the real particle size for the afore-mentioned 

reasons. Each sample was measured three times. Each measurement consisted of 12 separate 

readings, and the zeta-average and volume diameter recorded were the means of these 

readings. The attenuation value was between 6 and 10. 
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2.6 Measurement of hydrophobicity  

The protocol used in this study was a modification of the method of Hussain et al. (2012). 

The probe 8-anilinonaphthalene-1-sulfonic acid ammonium salt (8-ANS) was used to 

determine the surface hydrophobicity of the κ-casein/whey protein aggregates. The FPLC 

fractions were diluted to 0.002% (w/v) protein in 20 mM Bis-Tris propane at pH 7.2, and 8-

ANS was added to 4 mL of sample to obtain a final concentration in the range 5-120 μM 8-

ANS. The mixtures were kept in the dark for 30 min before measurement in a Cary Eclipse 

fluorescence spectrophotometer (Agilent, Santa Clara, California, USA). The excitation 

wavelength was 350 nm for the casein/whey protein aggregates and 360 nm for the β-

lactoglobulin standard, and the fluorescence spectrum ranged from 400 to 600 nm. The 

excitation/emission slits were set at 5 nm each. The fluorescence intensity was plotted against 

the concentration of 8-ANS, and the maximum relative fluorescence intensity (RFI) was used 

as an index of hydrophobicity.  

2.7 High-resolution scanning electron microscopy (SEM) 

High-resolution scanning electron microscopy (SEM) was used to evaluate the size and shape 

of the protein aggregates. Protein particle suspensions (10 L) were pipetted onto a freshly 

cleaved mica surface attached to an SEM stub. After air drying at 20°C, the samples were 

sputter coated with chromium prior to examination in a field emission scanning electron 

microscope (Supra 40VP; Carl Zeiss Ltd., Oberkochen, Baden-Württemberg, Germany). 

Images (8 bit, TIFF) were acquired at 2 kV accelerating voltage using the in-lens secondary 

electron detector. 

2.8 Atomic force microscopy (AFM) 
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Casein and whey protein aggregates were imaged by atomic force microscopy, using an 

Asylum Research MFP-3DAFM (Asylum Research UK Ltd., Oxford, UK) in AC-Mode as 

previously described (Kehoe, Wang, Morris, & Brodkorb, 2011). All samples were deposited 

undiluted onto a freshly cleaved mica surface and subsequently dried in a desiccator. Images 

were processed using AFM imaging software Igor 6.12A and Argyle light for 3D images. 

2.9 Heat stability 

The FPLC fractions were concentrated using centrifugal concentration (Vivaspin 20 100,000 

MWCO, Sartorius, Gottingen, Lower Saxony, Germany) to 0.25% (w/v) protein. The heat 

stability of the concentrated FPLC fractions, MPC, WPI and the mixtures of whey proteins 

and κ-caseins were assessed by heating the samples in a water bath at 90°C for 1 h. All 

samples contained 10 mM Bis-Tris propane and 0.01% (w/v) NaN3, without mineral or 

lactose standardization. Glass tubes (120 mm length, 7 mm diameter and 1.5 mm wall 

thickness) were filled with 2.5 g of sample at 0.25% (w/v) protein. After heating, 2 mL of 

each heated sample was centrifuged at 10,000×g for 30 min using a 5417R Eppendorf 

centrifuge with rotor F45-30-11 (Eppendorf, Hamburg, Hamburg, Germany). In these 

conditions, the proteins present in the supernatants were considered as soluble. The 

supernatants were then analysed by SDS-PAGE as described in Section 2.4.  

2.10 Statistical data analysis 

All experiments were carried out using the same batch of powder. The data are expressed as 

means with standard deviations of data from two independent replicates. 

  



Revised and submitted (February 2017) Author version of  
Gaspard, S. J., Auty, M. A. E., Kelly, A. L., O’Mahony, J. A., & Brodkorb, A. (2017). Isolation and characterisation 
of κ-casein/whey protein particles from heated milk protein concentrate and role of κ-casein in whey protein 
aggregation. International Dairy Journal, 73, 98-108. DOI: 10.1016/j.idairyj.2017.05.012 

Page 14 of 39 

 

3. Results and discussion 

 

3.1 Influence of calcium chloride on the solubility of caseins and whey proteins in MPC 

Milk protein concentrate reconstituted at 13.5% (w/v) protein was heated at 90°C for 25 min 

and the casein micelles were removed by centrifugation, together with the whey proteins 

attached to the micelles and the large and dense whey protein aggregates. Table 1 shows the 

protein concentration in the supernatant as a function of the pH at heating and the addition of 

calcium. At pH 6.7, none of the samples gelled after 25 min of heating at 90°C. However, the 

protein concentration recovered in the supernatants was significantly lower in the samples 

heated at pH 6.7 (1-2%) than in the samples heated at pH 7.2 (4%). At pH 6.7, the addition of 

calcium significantly reduced the concentration of protein recovered in the supernatant. The  

protein content in the supernatant, when heated at pH 7.2, did not change significantly with 

the calcium content.  

The proteins in the supernatants from the heated MPC were separated by FPLC into three 

fractions; the composition and volume of each fraction are presented in Figure 2 and Table 2. 

Three fractions from the sample at pH 7.2 were collected between 50 and 60 min, 60 and 75 

min, 75 and 90 min elution time from the size-exclusion column, equivalent to 42-50%, 50%-

63% and 63-76% column volumes, respectively. The fractions collected had increasing 

amount of casein and increased ratios of κ-casein to whey protein as a function of the elution 

time, illustrating the heterogeneity of the aggregates within one sample of heated MPC. Little 

or no absorbance at 280 nm was measured for the samples heated at pH 6.7 with 2.5 or 5 mM 

calcium chloride. The protein content in the supernatants may have been too low to be 

detected by the absorbance detector, while the aggregates larger than 450 nm may have been 

removed by centrifugation or filtration prior to separation by FPLC. High calcium activity 

has been identified as a major factor influencing the heat stability of concentrated milk 
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(Jeurnink & De Kruif, 1995; Rattray & Jelen, 1996; Rose, 1961; Zittle & Dellamonica, 

1956). Decreasing pH promotes a shift in the mineral equilibrium of milk, causing the release 

of ionic calcium into the serum. The high calcium content, coupled with a low pH, 

contributes to the formation of large aggregates, which sediment easily during the 

centrifugation step. This explains the lower absorbance on FPLC (Fig. 2) and lower protein 

recovery in the supernatants for the samples containing calcium (Table 1). The addition of 

calcium also affected the distribution of the aggregates in the samples; without addition of 

calcium, there were 1.4 times more aggregates in fraction A than in fraction C (integrated 

area of each fraction on the absorbance signal of FPLC), while the opposite was observed 

when 5 mM calcium was added before heating. 

3.2 Composition of the fractions from size-exclusion chromatography  

SDS-PAGE under reducing conditions (Fig. 2) showed the presence of proteins in each 

fraction; by comparing the reducing and non-reducing conditions, the extent of disulphide 

bond formation was evaluated. The bands for BSA, α-lactalbumin and β-lactoglobulin 

appeared stronger in reducing conditions, confirming that these proteins were mainly 

involved in aggregate formation through disulphide bonding. However, the major whey 

protein involved in the covalent aggregates was β-lactoglobulin. κ-Casein was also involved 

in the aggregates by disulphide bonding (58-87%, w/w, of κ-casein in the fractions). 

Fractions B and C contained αs- and β-casein, while fraction C contained the highest 

proportion of κ-casein, β-casein and αs-casein, and the lowest ratio of whey protein to κ-

casein. With the addition of calcium chloride, the whey protein/κ-casein ratio and the 

percentage of αs- and β-caseins in each fraction remained unchanged.  

Table 3 presents the physico-chemical characteristics of each fraction. The aggregate size 

ranged from 29 to 59 nm, corresponding to the size range observed in previous studies (del 
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Angel & Dalgleish, 2006). The size of the aggregates decreased with the concentration of 

caseins. Thus, the ratio of whey proteins to caseins positively affected the size of the 

aggregates, as observed in previous studies (Guyomarc'h et al., 2009; Liyanaarachchi et al., 

2015). The chaperone activity of caseins has been reported to reduce whey protein 

aggregation (Kehoe & Foegeding, 2010; Mounsey & O'Kennedy, 2010); the chaperone 

activity of a biomolecule refers to its ability to protect another biomolecule against unfolding, 

aggregation and precipitation. Thus, the difference in particle size between fractions A and B 

(Table 3) may be the result of the chaperone-like activity of the non-covalently bound caseins 

(αs-, β- and κ-casein) to whey proteins in fraction B (Fig. 2).  

Previous studies have shown that micellar material can probably associate into small micelles 

of size 10-20 nm, which elute after the maximum of the aggregate peak on the FPLC profile 

(Guyomarc'h et al., 2003; Ono & Takagi, 1986), corresponding to fractions B and C in our 

study. The size range reported for these “mini-micelles” (10-20 nm) is close to that of the 

aggregates in fractions B and C (Ono & Takagi, 1986). The formation of such small, 

dispersed micelles amongst the aggregates of whey proteins and caseins may have caused a 

shift in the hydrodynamic size measurement. The ratio of κ-casein:[αs-casein + β-casein] 

which was not covalently bound to whey proteins in our study was up to 1:9. This ratio was 

comparable to those found by previous authors (Donnelly, McNeill, Buchheim, & McGann, 

1984) for skim milk fractionated by size-exclusion chromatography. The authors found that 

casein micelles in skim milk had sizes ranging from 62 to 154 nm and ratios of κ-casein:[αs-

casein + β-casein] ranging from 1:6 to 1:21. These results indicate that, in fractions B and C, 

the amount of κ-casein that was not covalently bound to the whey proteins or self-aggregated 

was sufficient to stabilize αs- and β-casein in the form of “mini-micelles”. However, the 
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presence of “mini-micelle” in the fractions and their effect in this study cannot be dissociated 

from those of the aggregates containing whey proteins. 

SEM images (Fig. 3) show the morphology and the size distribution of the largest and the 

smallest aggregates. The smaller aggregates had a narrower size distribution than the larger 

aggregates, as measured by DLS (Table 3). SEM micrographs indicated that the smaller 

aggregates (Fig. 3) were rounded and more spherical than the larger aggregates, which had a 

slightly angular shape. The sphericity of the heat-induced particles made of caseins and whey 

proteins are less likely to increase the viscosity of the solutions to which they would be 

added; thus, they may be a potential candidate for use as ingredients in food applications 

(Ryan et al., 2013).  

Some fractions were also analysed using Atomic Force Microscopy (AFM) in air (Fig. 5). 

The images of aggregates show a near-spherical shape. The cross-section of the height image 

showed a particle size of approximately 25 to 40 nm, which would correspond to a relatively 

low polydispersity. Due to tip broadening in AFM, the height of the recorded particles is 

generally used for estimation of size. However, size measurements by AFM have to be 

considered with extreme caution as the protein samples have been dehydrated and deposited 

on mica, which may lead to a complete collapse of the protein particles. However, dynamic 

light-scattering analysis of the sample shown in Figure 5 gave a surprisingly similar particle 

size (z-average) of 53 nm. 

3.3 Effect of κ-casein content and pre-heat treatment on the heat stability of whey proteins 

during heating 

The heat stability of the isolated fractions after heating at 90°C for 1 h (pH 7.2) at 0.25% 

(w/v) protein was assessed (Fig. 4 and Table 4). In order to compare the stability of the 
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nanoparticles in buffer after heating, the samples were centrifuged at 10,000×g for 30 min. 

The soluble protein content after heating and centrifugation (10,000×g for 30 min) and the 

visual properties of the samples after heating were the criteria used to determine the heat 

stability of the samples.  

The heat stability of the fractions did not vary significantly with the addition of calcium. With 

the exception of the unheated MPC sample, all samples were transparent before the test and 

no visible differences in opacity were observed. Fraction A, containing aggregates with mean 

diameter of 57 nm and an initial whey protein to κ-casein ratio in the range 1:0.4 to 1:0.5, 

became opaque within a few seconds of heating. After 1h heating and centrifugation at 

10,000×g for 30 min, around 10-13% (w/w) of the initial proteins was recovered in the 

supernatant. In comparison, a pure whey protein isolate at the same concentration coagulated 

during heating; therefore, the aggregates of whey proteins and κ-casein in fraction A were 

more heat-stable than the whey proteins in WPI that did not undergo any pre-heat treatment.  

After heating of fraction A, 4-11% (w/w) of the whey proteins were recovered in the 

supernatant. The comparison of the sample composition before and after the heat stability test 

(Fig. 6) shows a significant loss in whey proteins and κ-casein in fraction A. For comparison, 

a mix of whey protein and κ-casein (at a ratio 1:0.7 or 1:1), that did not undergo any pre-heat 

treatment, showed a protein recovery of 43-47% (w/w), and around 36-49% (w/w) of the 

whey proteins were recovered after heat stability test. The mixture containing whey proteins 

and κ-casein at a ratio 1:0.7 and fraction A had a similar initial composition of caseins and 

whey proteins; the only difference between these two samples was the pre-heat treatment for 

fraction A. Thus, the unheated mixture of whey proteins and κ-casein was more stable than 

aggregates of whey proteins and κ-casein at a ratio of 1:0.7. Therefore, regardless of whether 



Revised and submitted (February 2017) Author version of  
Gaspard, S. J., Auty, M. A. E., Kelly, A. L., O’Mahony, J. A., & Brodkorb, A. (2017). Isolation and characterisation 
of κ-casein/whey protein particles from heated milk protein concentrate and role of κ-casein in whey protein 
aggregation. International Dairy Journal, 73, 98-108. DOI: 10.1016/j.idairyj.2017.05.012 

Page 19 of 39 

 

κ-casein involved in aggregates or not, κ-casein apparently exhibited a stabilising effect on 

the whey proteins.  

When comparing the two mixtures of whey proteins and κ-casein at ratios 1:1 and 1:0.7, no 

difference was observed in protein recovery or composition after the heat stability test. 

Therefore, the maximum amount of native whey proteins that κ-casein can stabilize may have 

been reached at a whey protein to κ-casein ratio of 1:0.7. The compositions of the two 

mixtures may also be too close to exhibit a significant difference in heat stability. 

3.4 Effect of casein profile on stability of whey proteins during heating 

The total protein recovered after heating in fraction B was around 80 to 89% (w/w). Fraction 

B contained aggregates of mean diameter 44 nm and with a whey protein to κ-casein ratio of 

1:0.5 to 1:0.6, containing around 11-14% (w/w, total proteins) of αs- and β-caseins. At equal 

ratios of whey protein to κ-casein, fraction B showed significantly higher heat stability than 

fraction A and the mixtures of unheated whey protein and κ-casein. The non-negligible 

amount of αs- and β-casein may have provided an additional stabilization to the aggregates. 

3.5 Effect of casein structure on whey protein stability during heating. 

Fraction C, made up of aggregates of mean diameter 32 nm, had the highest content of κ-

casein and a whey protein to κ-casein ratio of 1:1.2 to 1:2.0. This fraction also contained the 

highest amount of αs- and β-caseins (60-65% of the total proteins). After one hour of heating, 

sample C was still transparent and the recovery of protein aggregates in the supernatant was 

approximately 90-98% (w/w, total protein). Therefore, the amount of soluble whey protein 

and κ-casein in fraction C did not change significantly after heating (Fig. 6). In agreement 

with the previous observations on fractions A and B, the high casein content may explain this 

greater heat stability. The whey proteins were still soluble after heating, indicating that 



Revised and submitted (February 2017) Author version of  
Gaspard, S. J., Auty, M. A. E., Kelly, A. L., O’Mahony, J. A., & Brodkorb, A. (2017). Isolation and characterisation 
of κ-casein/whey protein particles from heated milk protein concentrate and role of κ-casein in whey protein 
aggregation. International Dairy Journal, 73, 98-108. DOI: 10.1016/j.idairyj.2017.05.012 

Page 20 of 39 

 

caseins may have a chaperone-like activity and protect whey proteins against sedimentation. 

The same test performed on MPC without pre-heat treatment gave a lower soluble protein 

content, of 50% (w/w, total protein). Figure 6 also illustrates the significant loss in αs- and β-

casein (39% w/w, initial αs- and β-casein), of whey proteins (79% w/w, initial whey protein), 

and κ-casein (35%, w/w initial κ-casein) in MPC after heat-stability testing at 90°C. In the 

mixtures and in the fractions, the caseins are present either in individual and soluble form, 

associated with the whey proteins or present in mini-micelles. Caseins in MPC are likely to 

be organized in micelles with average size 150-200 nm (Dalgleish & Corredig, 2012), and 

consequently are less available for association with whey proteins than the soluble casein of 

the heated supernatant of MPC. The dissociation of κ-casein at pH 7.2, together with the 

prolonged heating, could have destabilized the casein micelles, leading to the precipitation of 

most proteins.  

3.6 Hydrophobicity of casein and whey protein aggregates  

The aggregates in fraction C were significantly less hydrophobic than those in fractions A 

and B. Caseins are relatively hydrophobic and κ-casein is the second most hydrophobic 

casein after β-casein, with an average hydrophobicity of 5.1 kJ per residue (Bigelow, 1967). 

However, κ-casein is glycosylated by negatively charged hydrophilic groups, which protrude 

at the surface of the casein micelle and ensure its stability in the aqueous phase of milk. Thus, 

in the case of formation of mini-micelles, κ-casein would help in solubilising them, possibly 

explaining the lower hydrophobicity in fraction C and the enhanced heat stability of this 

fraction. In the same way, the hydrophilic part of κ-casein could stay at the surface of the 

aggregates, stabilizing the denatured whey proteins. This mechanism would be similar to that 

of heat-shock proteins, which are intracellular proteins that prevent the complete unfolding, 

aggregation and precipitation of proteins denatured by heat, oxidation or reduction (Richter, 
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Haslbeck, & Buchner, 2010). After binding to non-native proteins by hydrophobic 

interactions and forming high molecular weight complexes, the mobile hydrophilic regions of 

the heat-shock proteins help solubilizing the complex (Guyomarc'h et al., 2009; Treweek, 

Thorn, Price, & Carver, 2011). A similar mechanism has also been postulated for the 

chaperone-like activity of αs- and β-casein against the heat-induced aggregation of whey 

proteins (Morgan et al., 2005; Zhang et al., 2005).  

By comparison, for fractions A and C, the hydrophobicity of the aggregates (Table 3) seemed 

to follow the same trend as the heat stability of the aggregates and the ratio of whey 

protein:casein. The higher the proportion of casein in the aggregates, the lower the resulting 

hydrophobicity and the higher their heat stability. Fraction B contained a greater proportion 

of caseins and was more heat-stable than fraction A; however, no significant difference in 

hydrophobicity was observed. As noted earlier, heat stability is correlated with the charge of 

the aggregates. In addition, the differences between the SDS-PAGE under reducing and non-

reducing conditions do not facilitate understanding of whether αs- and β-casein are associated 

with the aggregates of whey proteins and κ-casein by hydrophobic interactions. It is possible 

that αs- and β-casein associate or dissociate from the whey protein and κ-casein aggregates 

during heat treatment, and thus the hydrophobicity of the κ-casein and whey protein 

aggregates may change, which would influence the heat stability of the aggregates.  

The addition of calcium before heating did not have a significant effect on the hydrophobicity 

of the aggregates in fraction A. This may indicate that the morphology of the κ-casein/whey 

protein aggregates within a fraction was not significantly affected by the addition of calcium 

chloride to the starting material. The high molecular weight of the aggregates and the salt 

concentration of the buffer made the use of isoelectric focusing or zeta potential technique for 

the determination of the charge of the aggregates difficult. However, measuring the charge of 
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the aggregates may be useful for further examination of the chaperone-like mechanism of κ-

casein. Studying mixtures of κ-casein and whey proteins should also be considered in the 

future to gain a better understanding of the changes in hydrophobicity during heating. 
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4. Conclusions 

The presence of caseins provided stabilization of whey protein aggregates during heating. In 

particular, κ-casein exhibited a chaperone-like activity at a whey protein to κ-casein ratio of 

1:0.7, for both heated and unheated mixtures of whey proteins and κ-casein. Pre-heat 

treatment reduced the chaperone-like activity of κ-casein. The presence of αs- and β-casein in 

solution contributed to an enhanced heat stability of the whey proteins. These results are a 

starting point for a better understanding of the heat stability of milk protein and casein 

aggregates. However, the mechanism of chaperone-like activity of κ-casein needs further 

investigation. 
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Table 1.  

Protein content of supernatants after heating milk protein concentrate, reconstituted at 13.5% (w/v) 

protein, at 90°C for 25 min and centrifugation at 38,360×g for 1 h at different pH and calcium 

chloride contents.   

pH Calcium addition 

(mM) 
Protein content of the 

supernatants (%, w/v) 

6.7 0.0 1.9 ± 0.8 
6.7 2.5 1.4 ± 0.3 
6.7 5.0 0.9 ± 0.1 
7.2 0.0 4.2 ± 0.1 
7.2 2.5 4.2 ± 0.3 
7.2 5.0 3.8 ± 0.4 
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Table 2.  1 

Characteristics and composition of the aggregates in fractions A, B and C (see Fig. 2) separated from milk protein concentrate heated at pH 7.2 with up to 5 2 

mM added calcium chloride. The relative amount of protein corresponds to the area under the chromatogram for each fraction compared to the total amount 3 

of eluted protein (from 35 to 100% of the column volume). 4 

FRACTION  A  B  C 

Calcium chloride addition 

(mM) 

 
0 2.5 5  0 2.5 5  0 2.5 5 

Whey protein:κ-casein ratio in the 

aggregates 

 

1:0.4 1:0.5 1:0.5  1:0.5 1:0.6 1:0.6  1:1.2 1:1.3 1:2.0 

Whey protein:κ-casein ratio in the FPLC 

fraction 

 
1:0.5 1:0.6 1:0.7  1:0.7 1:0.8 1:0.8  1:1.7 1:2.2 1:3.0 

αs- and β-casein 

(%, w/w total protein) 

 

1 ± 2 0 ± 0 0 ± 0  14 ± 7 12 ± 1 11 ± 2  60 ± 18 65 ± 2 61 ± 2 

Relative amount of proteins 

(% of the total eluted proteins) 

 
27 ± 2 31 ± 1 40 ± 3  48 ± 4 44 ± 1 37 ± 3  19 ± 1 16 ± 1 10 ± 2 

 5 

  6 
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Table 3.  7 

Particle size and hydrophobicity, measured as 8-ANS-relative fluorescence intensity, of the 8 

aggregates formed in MPC heated at 90°C for 25 min at pH 7.2 with up to 5 mM added calcium 9 

chloride and collected in fractions A, B and C (see Fig. 2). 10 

Calcium chloride addition  

(mM) 
Fractions 

Average particle size  

(nm) 

Hydrophobicity 

(-) 

0.0 A 56 ± 2 1.3 ± 0.0 

0.0 B 42 ± 2 1.1 ± 0.1 

0.0 C 29 ± 2 0.6 ± 0.1 

2.5 A 56 ± 1 1.3 ± 0.2 

2.5 B 44 ± 0 1.1 ± 0.1 

2.5 C 32 ± 1 0.7 ± 0.2 

5.0 A 59 ± 1 1.3 ± 0.2 

5.0 B 47 ± 1 1.1 ± 0.1 

5.0 C 36 ± 4 0.5 ± 0.1 

 11 

 12 

 13 

  14 
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Table 4.  15 

Composition of size exclusion chromatography-fast protein liquid chromatography fractions A, B and C after heat stability test at 90°C for 1 h and 16 

centrifugation at 10,000×g for 30 min. WPI, MPC80 and mixtures of whey protein and κ-casein (Mixes 1 and 2 had whey protein:κ-casein ratios of 1:1 and 17 

1:0.7, respectively) were also measured for comparison. The samples that coagulated during the heat stability test, preventing further analysis, are marked with an 18 

asterisk. 19 

 20 

  21 

 WPI 
MPC 

 80 

Mix 

1 

Mix 

2 

 
A 

 
B 

 
C 

Calcium chloride 

addition 

(mM) 
0 0 0 0 

 

0 2.5 5 
 

0 2.5 5 
 

   0 2.5 5 

%  soluble fraction 

(w/w, total protein)  
0* 50 ± 12 43 ± 11 47 ± 20 

 
 10 ± 5 9 ± 7 13 ± 10 

 
80 ± 28 87 ± 8 89 ± 16 

 
94 ± 7 98 ± 3 90 ± 4 

% Whey protein  

(w/w, soluble 

fraction) 
0* 4 ± 1 48 ± 13 54 ± 18 

 

31 ± 1 60 ± 19 53 ± 6 
 

39 ± 0 53 ± 7 50 ± 2 
 

6 ± 0 10 ± 3 15 ± 8 

% Casein  

(w/w, soluble 

fraction) 
0* 96 ± 1 52 ± 13 46 ± 18 

 

69 ± 1 40 ± 19 47 ± 6 
 

61 ± 0 47 ± 7 50 ± 2 
 

94 ± 0 90 ± 3 85 ± 8 

Whey 

protein/κ-casein 

ratio in the soluble 

phase 

1:0 1:0.2 1:1.0 1:1.4 

 

1:1.5 1:0.8 1:0.8 

 

1:1.1 1:0.7 1:0.9 

 

1:5.8 1:2.8 1:2.9 
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 22 

 23 

Fig. 1. Flowchart of isolation and analysis of whey protein/κ-casein aggregates. 24 

 25 

  26 
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i. 27 

 28 

ii.  29 

                       30 

  31 

 32 

 33 

 34 

 35 

 36 

 37 

Fig. 2. (i)Size-exclusion chromatography (SEC-FPLC) profiles  of MPC heated at 90C for 25 38 

min, pH 7.2 with 2.5 mM (--), 5 mM (…) or without the addition of CaCl2 (—), with (ii) the 39 

corresponding SDS-PAGE profiles under reducing (R) and non-reducing (NR) conditions.  40 
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 43 

i   iii   

ii   
iv   

 44 

Fig. 3. Scanning electron micrographs from SEC-FPLC fractions; Fraction C (i) and fraction 45 

A (iii), were dried on mica at 20°C. Figures 3 ii and 3 iv show the size distributions by 46 

volume measured by dynamic light scattering for fractions C and A, respectively. 47 
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 50 

 51 

 52 

 53 

 54 

Fig. 4. Heat stability (90°C for 1 h) of SEC-FPLC fractions A, B and C. WPI, MPC80 and mixtures of whey protein and κ-casein (Mixes 1 and 2 55 

had whey protein:κ-casein ratios of 1:1 and 1:0.7, respectively) were also measured for comparison. 56 

 57 

  58 



Revised and submitted (February 2017) Author version of  
Gaspard, S. J., Auty, M. A. E., Kelly, A. L., O’Mahony, J. A., & Brodkorb, A. (2017). Isolation and characterisation 
of κ-casein/whey protein particles from heated milk protein concentrate and role of κ-casein in whey protein 
aggregation. International Dairy Journal, 73, 98-108. DOI: 10.1016/j.idairyj.2017.05.012 

Page 38 of 39 

 

i iii 

ii iv 
 59 

 60 

 61 

 62 

Fig. 5. AFM images showing (i) 3D height, (ii) height across the cross-section marked in the 63 

3D height image, (iii) amplitude, and (iv) phase for a representative sample of the casein and 64 

whey protein aggregates in fraction A. 65 
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i        66 

ii          67 

iii         68 

Fig. 6.  69 

Protein profile ((i) whey protein, (ii) κ-casein  and (iii) αs- and β-casein) of the SEC-FPLC 70 

fractions A, B and C with 0, 2.5 or 5mM CaCl2 addition (see Figure 2 i) before ( ) and after (71 

) heat stability testing (90°C for 1 h). MPC80 and mixtures of whey protein and κ-casein 72 

(Mix 1 and 2 with whey protein:κ-casein ratios of 1:1 and 1:0.7, respectively) were also 73 

measured for comparison. 74 
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