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Abstract
We consider a neo-classical model of aptimal economic growth with c.r.r.a. utility
which the traditional deterministic trends representing population growth, techno-
logical progress, depreciation and impatience are replaced by Brownian motigns with
drift. When transformed 40 ‘intensive’ units, this is equivalent to a stochastic model of
optimal saving with diminishing returns to capital. For the intensive model, we give
sufficient conditions for optimality of a consumption plan (open-ioop control) com-
prising a finite wellare condition, a martingale condition for shadow prices and a trans-
versality condition as ¢ + co. We then replace these by conditions for oplimality of a
plan generated by a cansumption function (closed-loop control), ie. a function H(2)
expressing log-consumption as a time-invariant, deterministic function of log-capital z.
Making use of the exponential martingale formula we reptace the martingale condition
by a non-inear, non-autonomous second order o.d.e. which an optimal consumption
function must satisfy; this has the form T"(z) = F{H'(z),%2),2], where
#z) = exp{H(z)-z}. Economic considerations suggest certain limiting values which
H'(z) and #(z) should satisfy as z =+ 0o, thus defining a two-point boundary value
problem (b.v.p.) — or rather, a family of problems, depending on the values of para-
meters. We prave two theorems showing that a consumption function which solves the
appropriate b.v.p. generates an optimal plan. Proofs that a unique sclution of each

b.v.p. exists will be given in a separate paper (Part B).
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1. FORMULATION OF THE BROWNIAN GROWTH MODEL

As stated in the Abstract, our concern here is with the form of the optimal con-
sumption function in a version of the traditional neo—classical model of economic
growth in which the various exogenous time trends are replaced by Brownian motions
with drift. We begin with an outline of such a model, based on a slightly altered
version of the deterministic model considered in the standard work by Arrow and Kurz
[1970 ], (henceforth A&K).

Stated informally, the stochastic problem of optimal growth is to choose a
random process C(t) > 0 from a suitable class (see below) so as to maximise a welfare

functional

(1.1) EH o)) May,

subject to the condition that the solution K(t) of the stochastic differential equation
(s.d.e.) of growth

(1.2) dK(t) = {¥[K(t),L{t)] — C(t)TI(t)}dt — K(t)dT(t),

with initial condition K(0) = K_> 0, be almost surely (a.s.) non—negative for all
t > 0. Here C(t) represents consumption per head of the population and K(t) the
total capital stock, all expressed in ‘natural’ units (such as bushels or dollars). The
population — or, with a constant employment ratio, the labour force — is

M(t) = N(0)exp{n(t)}, where =(t) is a given process and o) =1, =(0) =0 for
convenience. The ‘effective’ labour force is by definition L(t) = exp{n{t)+4(1)},
where f(t) with £(0) = 0 is another process representing labour—augmenting techno-
logical progress {(or decline!). The term dT'(t) represents the random rate of depre-

ciation (or appreciation) of capital, which is omitied from the main exposition in



A&K. The production function ¥(k,L),! representing gross output in natural units,
is defined for k2> 0, L > 0 with ¥(0,L} = ¥(x,0) =0 and is homogeneous of degree
one (‘constant returns to scale’), concave and C? {i.e. twice continuously differentiable,
including one—sided limits on the axes); and for ¥ > 0, L > 0 it is increasing and

strictly concave in each variable separately (‘law of diminishing returns’). We write

(1.3) WK) = ¥(x,1), with ¢/ (g) > 0 > ¢*(x)
and further assume
(14) () 0<¥(0) <oo,  (b) ¥()=0,

(¥’(0) and 9’(co} being defined as one—sided limits while ¥(0) = 0.). Condition (a)
departs from the usual assumption, made in A&K, that ¥’{0) = oo, and although
immaterial at this stage will be important for our characterisation of the optimal
consumption function. As regards the functional (1), U represents ‘felicity’ (or
‘undiscounted utility’), and p(t) with p(0) = 0 is a process representing ‘impatience’
(or random subjective discounting). The function U, defined for consumption ¢ > 0,

is assumed to have a derivative of the form U’ = C_b

with b > 0. More precisely, we
assume one of the forms

(1.5) U(o) = (1=b) b, by,

— distinguishing between b < 1 (positive felicity, unbounded above) and b > 1
(negative felicity, unbounded below) — or

(1.6) U(c) = Inc;

sometimes we consider explicitly only (5), and then it is implicit that the formulae

stated remain valid for (6) with b =1,

Before proceeding we need to make the stochastic structure more precise. As

! Note the use of small capitals. These will often {(but not exclusively) be used to
distinguish capital, labour, consumption etc considered as real variables from corresponding
processes or functions of time.



usual, there is given a complete probability space (2, .£4,P) with a filtration
(.At;t > 0} satisfying the usual conditions of right continuity and completeness; also
./50 is almost trivial and €= ./(m. All processes considered will be adapted to the
given filtration, which may be thought of as representing the information available to
an economic planner or forecaster. There are given four processes f,7,7,p which are
Brownian motions (Wiener processes) with drift relative to (.A!t) Explicitly, letting
7= (n(t);t > 0) denote any one of these processes, we have
(1.7) Wwt) = ,u.nt + Uan(w,t),
where z_ and T > 0 are constants and B?? is standard Wiener relative to (Jét)?
The economic interpretation of f,7, and p has been indicated above. The process ~
serves to define the process I'(t) appearing in (2} as the ‘martingale logarithm’ of
exp(—7), i.e.
(18) 1) =T aEe™M), or —arg) - (h,~4o2)di + 5,dB (1), T(0) = 0.
For simplicity we assume that the processes §,7,7,p are pairwise independent.
For later use we set out some further definitions and formulae. We write

(1.9) vit)=vz(1-b)f+7—>p

w(t)=w=z(b-1)y+br—p

x(t) = x = {y+f+7)
and note the relations
(1.10) v+ x=—7+bf+p), v+ (I-blx=w.
The processes (9) and (10} are again Brownian motions with drift {though not indepen-

dent of one another) and we may represent them as in (7). The drifts f azE obtained

2 je. B?;f with BTJ(O) =0 is an a.s. continuous (.4 )—martingale with
E{[Bff(t) - BH(T)]?/ £} =t=T fort > T, whenceit follows that B17 is a process with
stationary independent increments and that each variable B_(t) is normally distributed

with zero expectation and variance t.



from (9) by linearity, similarly the processes aan , €.8.
(1.11) w(t) = bt +0,B (t), where
B, = ("J—l)iuT + by~ “,
o B, = (b~l)a7B7 + bUwB:rr_ rrpo ,
while the variances (diffusion coefficients) and covariances are given by the usual
formulae for sums, e.g.
(1.12) op = (1-b)20g + o2 + a2,
a‘:r = (b—l)%}; + b%r,fr + or; )
a)%: cr}‘r+aé+a;_,
o = Cov[v(1),x(1)] = (b——l)arfi ~o2,
Tux = Cov[w(1)x(1)] = (l—b)a?y —bo2 .
Usually we write just by = i, cr; = o2 Using the above calculations we further define

parameters ¢, n, and m as follows:

(1.13) e = ge'(l) o exp{nv+§a‘2r} :
—bn w(l
e = ge*(l) < exp{p, +io2},
m v(1)+x(1
e = Ee ( ) ( ) = exp{,uv+x+§03+x}.
Consequently we have
(1.14) 13 ge(t) <oo iff g > 0 jg Ee¥(t) < oo iff n> 0.
Direct calculation yields the useful relations
(1.15) 4 = 0+ (b-1)}(m+4bo?)/b = m + Iy +HJ’2}‘ + (2b—1)aﬁ —a?]
(1.16) Q&n—m/b+§ba2:=q~m+§az=p+afy+baé.

Returning now to our informal development of the neo—classical model, we
introduce ‘intensive’ capital and consumption processes k and ¢ as well as the
‘standardised’ processes k and ¢ by
(1.17) k(t) = K(t)e MR _ )ex(t)

(1) = C(t)e ) = ¢(1)eX(t)

H

noting that k = Ke”, ¢ = CeTt7 By virtue of the linear homogeneity of ¥ we have,
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using (3},
(118) IR (1), L(1)] = $(R(t), e"0FAY) o MO+ ey,
gso that the average and marginal products of capital, in either intensive or natural
units, are respectively
(L19)  afk(t)] = ROI/E() = HR(L), LO)K(),
¥ [k(1)] = dyfk(t))/dk(t) = G¥[K(t), L(t)}/3K(t),
or simply, treating capital as a real variable K,
(1.20) a(k) = ¥(&)/x, ¢'(k) = 0¥[x, 1)/, &> 0.
Of course, we have 0 < ¢’(k) < a(k) for x > 0, and we obtain a{0) = ¥ (0} = ¥,
as the limit of a(k) as k | 0 and a(co) = 0 as the limit as ¥ { co. We often write
(1.21) z(t) = nk(t), z=Ink,
and refer to z(t) or z simply as log—capital. The average and marginal product

functions are then written as

(1.22) Az) = a(x),  M(z) = ¥ (k)

Note that
(1.23) A’(z) = da(¥)/din & = P (K)-a(K) = M(2)-A(z) = A(2)[M(2)/A(z)-1},
so that A’(z) <0 for z€ R with A’(x x0) = 0.

We now rewrite (2} properly in integral form, say for short
(1.24) K = K+ [o(¥, - C,I,)dt — |7 K drt.
This is a generalised Doléans integral equation, and for a suitable C the
(semimartingale) solution is given by
(1.25) K, = e“”T(T){K0 +f7 e'}{‘)(qxt — C,11,)dt)
50 long as this expression remains positive, taking into account that + is the
martingale exponential of I', see Jacod [1979] Ch.VI. On replacing ¥, by the right-

hand side of (18}, passing to intensive units as in (17), using the definition of x in (9)

and rearranging, (25) becomes



(1.26) ke D=k + T Oyi,) -2 Jac
This equation may again be rewritten in various useful ways. On the one hand, it is
seen that the process ke ™ =k has absolutely continuous sample paths, so that on
passing to standardised units as in (17) and differentiating one can identify solutions
of (26) pathwise with solutions of the ordinary d.e.

(1.27) ak(v)/dt = Dyl —cr),  x(0) =K.

On the other hand, if we multiply both sides of (26) by ex(T), then take stochastic

derivatives on both sides, use (26) to eliminate the integral and simplify, we get

(1.28) dk, = [¥(k,)—¢, + k(a+io?)]dt + kodB,, k =K,
or, in logarithmic form,
(1.29) dz, = din Et = [a(ﬁt) - Et/l_(t + ujdt +edB, z =K

So far, we have not specified precisely the class of admissible consumption processes C
(or € or ¢). Actually, it makes little difference for the purposes of this paper whether
we require consumption to be progressively measurable, or optional, or predictable, or
even continuous. To be specific, we define an (admissible) consumption plan in
standardised form as a non-negative, progressive process ¢ = ¢{w,t) such that the
solution k of the o.d.e. (1.27) is a.s. uniquely defined and non—negative for all
0 ¢t < o0, and denote by € the set of all such processes. (This definition implies
that Jg c(wt)dt < oo for all T a.s.). The set € of consumption plans in intensive
form is then the image of & under ¢~ ¢ = ce¥, or equivalently the set of non-
negative, progressive processes ¢ such that an {a.s. continuous) solution k of the
s.d.e. (1.28) is uniquely defined and a.s. non—negative for 0 < t < oo. Similarly for C.
If now we rewrite the welfare functional in standardised and intensive units we
have, for b # 1,
(1.30) o= (1-b) B )P e May = 1) E 2 ()P e Ve,
and when necessary we write p(c) or @(¢) to distinguish the two forms. In case

b =1, we have v =w = 7—p, and the functional becomes



(131) ¢ =E 2 [t} VMgt = B [ (1 c(e)+a(0))e VP (ge.
The expected integrals in (30) and (31) are defined as Lebesgue integrals. (To avoid
tedious reservations in the case b =1 weset ¢ = —co if the integrals have the form
+00 + (—00), although in fact this cannot occur under the assumptions of Theorems
2-3 below.) In (31) it is natural to drop in each expression the terms not involving
consumption, and to maximise simply

(1.31a) o) =B 2 (o)™t or gfe) = E 12 me(u))e (Mg
The resulting functionals are equivalent to one another, and to (1), only if the terms
which are dropped are integrable; (it can be checked that this is always the casc under
the assumptions of Theorems 2-3).

The stochastic problem of optimal growth (or decline) can row be briefly
defined. We consider § (or @) as an integral functional on % (or#%) and assume
directly, or infer from stated assumptions, that it possesses a finite supremum ¢*,
(ie. that p(T) < ¢* < oo forall T€ & and P(c) > —oco for some T € ¥). Then the
problem expressed in intensive (or standardised) units is to find a € (or ¢) which
attains this supremum, if such an element exists. From now on we shall work with
this formulation, leaving aside the original problem in natural units. Clearly, the
transformed models can also be interpreted as models of optimal saving with diminish-
ing returns to capital driven by two correlated Brownian motions, namely v and x in
the intensive form, w and x in the standardised form.

Special interest attaches to plans which are defined in intensive form by
specifying consumption as a function of capital only, with consumption positive
whenever capital is positive. We shall write this in logarithmic form as
(1.32) in T(t) = Hiz(1)], orsimply Inc = H(z),
or equivalently
(1.33) ofk = B2 = gy

and refer to H as the (logarithmic) consumption function and to 0 as the



consumption ratio function (or average propensity to consume out of capital). It is
well known that, under some restrictions on the parameters of the model (narrower
than those in Theorems 23 below) the values of k(t) and ¢(t) determined by a con-
sumption function tend to steady state values as t + oo in the deterministic case,
while in the stochastic case the distributions of k{t) and ¢(t) converge to limiting
distributions. Such asymptotic results are regarded as the jewels in the neo—classical
crown, but we shall have nothing to say about them here. We concentrate instead on
the properties of optimal consumption functions.

It is intuitively fairly clear (because of the strong Markov property of Brownian
motion and the ‘discounted c.r.r.a’ form of utility) that an optimum in the set of
consumption functions defines an optimal plan, and conversely that an optimal plan
can be defined by a consumption function. We shall not prove this here, but rather
adopt a constructive approach, showing that for specified ranges of parameter values
there exist consumption functions which generate plans satisfying sufficient conditions
for optimality. Formally, we shall define an optimal consumption function as a con-
sumption function which generates an optimal plan. Rather surprisingly, little seems
to be known about the properties of optimal consumption functions, even in the deter-
ministic neo—classical growth model. Mirrlees [1967] gives some discussion and
numerical results.

Continuous-time one-sector neo-classical growth models driven by Brownian
motion have received some attention in the economic literature, see Malliaris and
Brock [1982] Ch.3 for a survey. The model closest to the one formulated here appears
to be that considered by Merton [1975], which differs in that population is the only
exogenous process, and that in the functional the generations are not weighted
according to their size and there is no discounting. Actually, Merton’s model is more
or less equivalent to the special case of our intensive model with f= 7= p =0 and

x = —7, Le. lus population process behaves like our « rather than our 7. Merton



considers (i) the steady-state distribution of ¢ and X induced by a given (not
necessarily optimal) consumption function or fixed ratio, a problem also considered by
Bourguignon {1974]; (ii) the Bellman equation for the optimal finite-horizon policy and
its limit (taken informally) as T -+ oo; (iii} the ‘stochastic Ramsey problem’, which
consists of choosing among all consumption functions which eventually generate steady
states that one which maximises expected steady—state utility. Both (ii) and (iii) lead
to a certain first order o.d.e. to be solved for the ‘Ramsey optimal’ consumption
function. Despite a rather ambiguous statement which might suggest the contrary,
this is by no means the same thing as a consumption function which generates an
optimal plan over an infinite horizon for a functional having a finite supremum; the
latter, as we shall see, must satify a certain second order o.d.e.

The following theorem, which gives sufficient conditions for optimality in our
Brownian neo—classical growth model, will serve as a verification theorem for proposed
solutions. It is simply an extension of Theorem 1 of Foldes [1978] designed to take
account of the presence of a concave production function. The economic intuition
suggesting the conditions is also analogous, namely (i) that welfare should be finite, (i1)
that along an optimal plan the shadow price process, defined as marginal utility of con-
sumption multiplied by compound interest calculated according to the marginal pro-
ductivity of capital, should be a martingale, and (i11) that the expected shadow value
of the capital stock (i.e. price » quantity, in compatible units) should tend to zero as
T » co. We refer to these conditions respectively as the finite welfare, martingale and

transversality conditions.? We shall not go into the necessity of these conditions here.

3 The method of proof of Theorem 1 does not depend significantly on the exogenous pro-
cesses being Brownian, or on utility being ‘discounted c.r.r.a’; and it does illustrate the
advantage of working with standardised as well as intensive units, and so being able to use

ordinary calcuylus.



THEOREM 1 (Sufficient conditions for optimality of plans). A plan (é*,E*) is optimal if
the following conditions are satisfied:

(i) o(c*) is finite,

(i1) the process y defined by
(1.34) Yo = (é;)“b exp{v, + x, + Jz w'(fc;)dt}

is a martingale, and

(iii) lim Bly K& exp{-x, — [7 ¢’ (k})dt}] = o,

or equivalently
(1.35) lim ., Efk? f:;*b M = 0.
Proor. Let (€*k*) be a plan satisfying the stated conditions and (c, k } another
plan. We wish to show that {(c) < ¢(T*), and may assume that () > —c0. We
abridge the notation by sometimes omitting the arguments (w,t) and write
fc=t—c¥ k=k-k¥ & =c—* 6k=k-k* ¢k=dbk/dt where k = ke ¥,
c=te * ete, also P'* = ¥’ (k*). We further write 1= gT-exp{ng ¥ dt},
similarly J* and & =3~ J* and note that J = (k — k-¢* *)exp{—] ¢'* dt}.

Using the concavity of the felicity function @, where

u(e) = (l*b)hlé(l_b) for b¢1l, wT)=Inc for b=1,
as well as (34), (17), (27) and the concavity of 3, we have
fice’ < sc.cx PV - 6c-exp{—x—| ¥’ *}-y = bc-exp{—] ¥'*}.y

= {{Wke)—p(k*eNe ™ ~ dk}-exp{-] y'*}-y
¢ {9 *—8k}-exp{-f ¥'*}-y = ~y- 6.

Taking expected integrals Ejg on both sides of the inequality §i-e’ < —y- 61, we
have on the left

B{f] fi-e” dt} -+ (c) - 9(c*) as T+ 00
and to complete the proof we need to show that —E{jz y-61dt} ~ 0.

Now recall that, if y is a positive martingale and ¢ with ¢(0) =0 is an

absolutely continuous process with a non-negative (adapted) derivative ¢, then
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E{f, ¥,-6, dt} = Efy -6} foreach T < ox,
see Foldes [1978] eqs. (1.14—15) for a simple proof. The process & can be written as
the difference between two such processes ¢, and if the expectations of the positive
and negative integrals are finite for each T < oo we may replace ¢ by & in the
preceding equation. In fact, we can do better: for each T < oo the random variable
j; | 6th dt is a.s. bounded, with a uniform bound for all feasible & (see the
footnote 4); consequently

Elfg y,-8,dt] < BTy, | 81, dt} = E{y,-f: |63 ] di} < Ey_-const(1).
The proof is now completed by noting that

—E{f y,- 81, dt} = ~E{y;-61.} < E{ya%} = 0 by Condition (iii).]
COROLLARY. For a plan (T k) generated by a log—consumption function H with ratio
function @, a sufficient condition for the transversality condition (35) to be satisfied is
that
(1.36) {5 E [k, "b V(T Ndr = foE AUz v(T)y, o
(where for brevity we drop the star superscript). We call either of the expressions in
(36) the transversality integral. Note that, for b # 1, we have
(1.37) (1-b)p(2) = J2 Bfe, e Mar = 2 B[ % ¢ ~Pe¥(Djar
where 0 = 0(z ) = f{ink ]. Thus, for b#1,4f &z) is bounded on R, convergence

of (36} implies both finite welfare and transversality; on the other hand, if #Hz) is

¢t To obtain bounds for j |J | dt, bear in mind that k> 0, ¢ > 0 for feasible plans and
that 0 < ¢{k) < k-5 and 0 < %"* < 9;. Now (27) implies, on the one hand, k < k- ¥,
hence k, < k;-exp{ty;}, 'it < kt < Ko¥;-exp{tys}; and, on the other hand,

kp =¥+ fg e Yke™) dt — [T cdt > 0, hence Joedt <k + 9! fTkdt. Also —k <,
s0 =1 = (—k + k-9'*)exp{—f ¥ *} < ¢ + k- ¥5. On integrating the boundson J and —J
and using the bounds on [ ¢ dt and k, one finds that ]E |.it| dt is bounded by a

constant depending only on T. Similarly for f(l; |6.it| dt.
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bounded away from zero on X, then finite welfare implies transversality.

Closely related to Brownian neo—classical growth models are models, often pro-
posed in connection with personal investment in securities, where return or output is
proportional to capital employed; thus, in the present setting, the production function
¥ might be replaced by a linear relation, say
(1.38) ¥ (k) = Ik, k20,
with some real . In this case we shall speak of a linear {Brownian) model, and
assume without special mention a welfare functional of the form (30) or (31-31a).
Strictly speaking the linear models are not special types of neo—classical growth
models, since for !> (¢ the condition 3’{cc) = 0 is violated and for 1< 0 the
condition %’ (k) > 0 is violated. It is, in fact, useful to keep linear Brownian models
as a separate category, since their properties are different in important respects. For
example, the optimal consumption ratio (if it exists) is constant, and there is typically
no steady state distribution. Sometimes it is convenient to associate with each
(Brownian) neo-classical economy, say .# a pair of linear economies, a {ower linear
economy £ derived from 4 by replacing (k) with the zero function, and an
upper hnear economy £* in which 4 is replaced by 1!)6-1;. Obviously 4 is more
productive than ¢~ in the sense that any € (or ¢) which is feasible for % is also
feasible for # but not vice versa, and similarly .#* is more productive than 4
Writing € as usual for the feasible set and " for the least upper bound of @ we
have
(139)  B(L)CB(MCB(LY S22

The linear version of the present Brownian growth model with [ = 0, written in
standardised units, is essentially the same as the model of saving considered in Foldes
[1978] — more precisely the special case, considered in Section 1 of that paper, where
the returns process is Brownian and the welfare functional is ‘discounted c.r.r.a’. In

this case the ‘equation of growth’ (27) reduces to dk/dt = —, hence

12



k1)=K_ -~ jg ¢(t)dt, and the constraint k(1) > 0 forall T a.s. reduces to

j; c(t)dt € K, as. Itis found that tp*(f) is finite if n > 0, and then the optimal
plan is defined by #=n; if b# 1, we have ¢* = Kéﬂb n_b/(1~b). These results can
be checked by applying Theorem 1 above, which remains valid in the linear case.
(Actually n > 0 is also necessary for r,o*( -£7) to be finite, although this is not
proved in Foldes [1978]; for b < 1 this is fairly obvious.) Of course, a linear model
with {# 0 can be transformed into one with ! = 0. It suffices to replace ,uT by

Ho t L hence p by p —14 x(t) by x(t)-&, w(t) by w(t)+(b-1)&, while v
remains unchanged; then k(t} is replaced by k(t)e_&, cf{t) by g(t)e_h, while the
definitions of k and € remain the same. Now n is replaced in the preceding results
by n+ {b—1)/b. In particular, we shall need this formula in case = ¥, Using
notation like that in (39}, and denoting the optimal consumption ratio by ¢*, we
record that

(1.40) P(L)=nifn>0  F(L)=N2n4 ¢ (b-1)/b if N>0.



2. CKABACTERISIRG THE OPTIMAL CONSUMPTION FUNCTION

We turn now to the problem of constructing optimal plans for the Brownian neo-
classical growth model. The procedure will be to guess properties which an optimum
may be expected to possess as well as restrictions on the parameters of the model
which may be expected to ensure that an optimum exists; then to show that, under the
restrictions, a plan with the assumed properties satisfies the sufficient conditions for
optimality stated in Theorem 1; and finally to prove that such a plan does exist. The
last point is deferred to a separate paper, Foldes [1996}, henceforth ‘Part B’. (Of
course, the conjectures are 50 chosen that, with minor qualifications, they will turn out
also to be necessary, either for the existence of an optimum or for a given plan to be
optimal; but these questions also are beyond the scope of the present paper.) Since
from now on we are mainly concerned with the construction or properties of an optimal
plan (2*k*) or (c*k*), we shall often drop the star superscript.

A fundamental conjecture is that an optimal plan may be generated in closed--
loop form by a logarithmic consumption function, say In ¢ = H(z) or
In f(z) = H(z) —z for z € ® asin (1.32-33), and that H may be chosen of class C2.
We then often write
(2.1) 0(2) = [n(z) = 1]6(z), h(z) =H'(z2), b’ (z) = H"(z).
Obvious economic considerations suggest that H will be increasing with limits
H(-o00) = —o00, H(o0) = 00. On the other hand, it is conjectured that §(z) and h(z)
tend to finite limits at both ends and so are bounded on ¥.

Note that (1.29) and (1.27) can now be written more conveniently as
(2.2) dz, = [A(Zt) +p—Hz)]dt + odB,, or
(2.3) (d/dt)(zt—xt) = (d/dt)ink(t) = A(zt) - 0(Zt), z, =K, K,>0.
Since A(z) and #(z) are by hypothesis both bounded, it follows readily that k(t) is

(strictly) positive for all t, a.s., and then the same is true for k(t), ¢(t), and &(t). In
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particular, H really does define a feasible plan.

The next conjecture is that H is such that the shadow price process y corre-
sponding to the plan defined by H is a (true) martingale. Referring to (1.34), y may
now be written as
(2.4) ¥p = exp{=bH[z()] + v(1) +x(1) + |7 M[z(t)]d1}
with y(0) = exp{—bH[zO]}, and clearly y(t) > 0 forall T, a.s. Using Ité's Lemma
and (2.2) we may write
(25)  Hlz)) = H[z ] + ] (M (2)[AGz) +u—0(z )] + 4o H"(2)}dt + of H'(z,)dB,
— where B = Bx’ p=p,o0=0, cf. (1.9-1.12) — and substitute this expression for
H[zT] into (4). On the other hand, y will be a positive martingale if we can represent
it in the form
(2.6) Y1) = y(0)-exp{Z, (g b (B (1) —4f7 h2(OA]}, 1= g,
for all 7, with bounded {adapted) processes hq, see Liptser and Shiryaev [1977] p.232
ff. In order to determine suitable h:;’ we equate (6) with (4) — after substituting
from (5) — take logarithms on both sides of the resulting identity, write out explicitly
the expressions for v, w and x in terms of n= f,v,7p, write each n, as
‘“qt + aquq(t), and finally equate separately the coefficients of each of the four
differentials dBﬂ on both sides as well as the coefficients of dt. This yields
(2.7) h')'(t) = [bH‘(zt)—l]aT; hﬁ(t) = b[H‘(zt)—l]@r h(t) = bH’(zt)aw; hp(t) = =0,
(28) 4%, ha(t) = —bH’(2)|A(s)~0(z, 4] ~ 4b2H"(z,) - (s, +bpaghs) + M(z,)
The h17 are bounded processes since H’ is bounded by assumption. Inserting the ex-
pressions (7) into the left—hand side of (8) and rearranging, using the relations
(1.9-1.13), the resulting equation may be written
(2.9) bo’H" = b’ (H')? + 2bH'[f~n 4+ m/b — {bo® — A] + 2(M—m]
where H", H’, #, A and M are functions of z, = z{w,t), with Hz,) = exp{H(zt)—zt}, It
follows that y in (4) can be written in the form (6) if (9) is satisfied identically for all

t >0 as., and then y will be a martingale. This will be the case, a fortiori, if (9}, with
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H", H’, 8, A, M (and hence H) considered as functions of the real variable z (rather
than the process zt), is satisfied for all z € R. But this is to require that H(z), or
equivalently #(z)=exp{H(z)-z}, satisfy (9) considered as a second order o.d.e. For
purposes of analysis it is usually convenient to replace this equation by a first order
system S = (F,G), say
(2.10)  h’ = F(h,8,z) = bh? + (2/¢?)h[fd — n+m/b-ibo? — A(z)] + 2[M(z)—m]/bg?
¢’ = G(h,0,z) = (h-1)4
where h = H’, h’ = H". Here we shall consider this system only for 8 > 0; (note
that, because ¢’ = (h—1)¢, #2) has constant sign along any solution). Also, we shall
consider only proper solutions with H (or equivalently #) of class C2 on their intervals
of definition; (no distributions). If one sets o2 = 0 in (9), one gets a first order
equation consisten£ with the system analysed by A&LK.

We shall study S = (F,G) as a system in its own right in Part B. Here we con-
sider informally the problem of choosing a particular solution (h*,6*) which will
define an optimal consumption plan, anticipating later work where necessary. Qbvious-
ly a ‘candidate’ solution must be defined on the whole of ® and, as already specified, it
should be C? , with #* and h* positive for z € ® and with finite, non-negative limits
for both #* and h* at z = * oo; this implies that the solution is bounded on . {We
say that a solution is bounded, without further qualification, if both h and 4 are
bounded). Further, it is clear from the preceding discussion that any C? solution
which js defined and bounded on ® with #> 0 will define a feasible plan for which
the martingale condition in Theorem 1 is satisfied. Typically there are many of these.

It therefore remains to choose one of them which generates a plan satisfying the finite



welfare and transversality conditions, if such a choice is possible.5 Unfortunately,
there seems to be no way to translate natural economic and mathematical
requirements for an optimal solution directly into an initial value problem. We shall
instead seek ‘boundary’ conditions, as z - oo and z - —oo, which represent reasonable
consumption behaviour when the economy is very rich or very poor, and characterise
the optimal consumption function as the solution of an appropriate two-point boundary
value problem (b.v.p.}). The boundary values naturally depend on the parameters of the
model, sometimes with qualitative (‘structural’) changes accompanying transitions
among different ranges of parameter values.

The rest of this Section will accordingly consider the two—fold problem of
(i) identifying categories of parameter values for each of which an optimal consumption
function is thought to exist and formulating an appropriate b.v.p. for each category,
then (ii) proving in each case that a solution of the b.v.p. (if one exists) generates a
plan satisfying the finite welfare and transversality conditions. There then remains for
Part B the phase analysis of S and the proof that a solution of the appropriate b.v.p.
exists in each case.

Two ways of forming conjectures about reasonable boundary values are open.
One is to use known results about economic models related to the stochastic neo-
classical model. The other is to analyse the system S in order to identify b.v.p.s for
which a solution might exist. We adopt the former approach in the present Section
and defer the latter, which requires different techniques, to Part B.

As was mentioned earlier, one can associate with our Brownian neo—classical

5 A priori there could be more than one optimal plan, but in fact the usual arguments based

on the convexity of the feasible set ¢ and the strict concacity of v 1mply uniqueness up
to null sets. We shall not go into this issue here. The fact that an optimal consumption
function constructed by the method employed here is unique will follow from arguments to
be presented in Part B.
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economy 4 an upper and a lower linear economy — see {1.38—40). Now,if b< 1, ¢
is positive, and a necessary condition for a finite supremum ¢* in 4 is that

¢*(Z") < 00, or equivalently n > 0. But then §*{(.¢") = n, and it is reasonable to
assume that, as z - 0o, so that k + oo and ¥’(k) - 0, the optimal consumption ratio
#*(z) in A4 also tends to n; then the equation &’ = (h—1)8 gives h = 1 as the
limiting value for h*(z). Thus, tf b < 1, we shall always assume that n > 0, and take
as our (conjectural) boundary condition

(2.11) (o) =n, h¥x)=1.

Next,if b > 1, ¢ is negative, and a necessary condition for a finite supremum ga*

in J is that ¢*(.#*) > —00, or equivalently N =n + ¥{(b—1)/b > 0. But then
0*(.£*) = N, and it is reasonable to assume that, as z - —o0, so that k + 0 and

¥ (k) - ¥;, the optimal ratio #*(z} in # also tends to N and hence h*{z) - 1.
Thus, if b > 1, we shall always assume that N > 0, and take as our (conjectural)
boundary condition

(2.12) F{—x) =N, h*(—0)=1.

It may further happen that N > 0 when b <1, orthat n > 0 when b > 1; these
conditions are sufficient for ¢* to be finite. In such cases we impose both conditions
(11) and (12).

If b =1, the finite supremum condition is different, but we have n = N = q,
and the optimal saving ratio in both #- and .#* is again equal to this number if it
is positive; we therefore retain both the conditions (11) and (12).

In case both conditions (11) and {12) apply we refer to a ‘Type 1’ b.v.p. and
state the following theorem, which will be proved later:

THEOREM 2 (‘Type 1’ b.v.ps). Let b>0, n>0 and N> 0.
A solution (h*,0*) of the system S = (F,G) which is defined for all z ¢ X, and has
limits as z~+ 00 and z-—oo given by the boundary conditions (2.11) and (2.12),

generates an optimal plan.
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This problem does not exhaust the possibilities. It can happen that an optimal
plan exists in A with b< 1, n> 02> N, orwith b> 1, N> 0>n. Known results
for the case of certainty are suggestive here, although they relate to economies with
1,1;(’) =00, sothat N=—0 if b< 1 and N=o0 if b > 1. Specifically, let a; =0
for 5 = B,7,7,p and suppose further that o= 0 and py > 0 for 5 # . These
assumptions are commonly considered in the case of certainty, and they ensure in
particular that along an optimal plan the values of k{t) and ©(t) tend, as t - oo, to
a steady siate which is independent of starting values. In this case, the parameters

defined in {1.13—16) satisfy:

(2.13) q = (bul)pﬂﬁ oyt My bn = —by_+ pp = bpﬁ + Hy > 0,
p=—Apgtu) <0, g=n+ (b-1)m/b=m+y,

and it is known that an optimum exists iff g > 0, see A&K pp. 7072, also Koopmans
[1965]. Reverting to our stochastic growth model, we may conjecture that q > 0 can
replace N > 0 when b <1, or n>0 when b> 1, in a set of sufficient conditions
for the existence of an optimum, (the half—variance terms in the definition of q being
somehow attributable to Itdé's Lemma). For b =1 we have q = n = N, so there is
nothing new. Now the boundary condition (11) still makes sense if b < 1, as does
(12) if b > 1, but a new condition is needed for the other end. Presumably
F(—oc) =0 if b< 1 with N<0,and 0*(c0) =0 if b>1 with n < 0, but the
exact limiting values for h*(z) are not obvious (at least to me) on the basis of
economic intuition.

However, two further conditions may be suggested. Presumably #*(z) de-
creases for large negative z | —oo in the former case and decreases for large positive
z | oo in the latier, so # = (h—1)8 suggests a limit h¥*(—o0) > 1 in the former case
and h*(oo) <1 in the latter. We also want the transversality integral (1.36) to con-

t

verge. Bearing in mind that Eev(t) = ¢ ' a reasonable suggestion is that

exp{z—biu(z)} should stay bounded as z +—c0 if b <1 with N <0 < q, and should
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stay bounded as z~+o0 if b> 1 with n <0 < q; asimple condition ensuring this is
that 1-bh*(—o0) > 0 in the former case, 1-bh*{00) < 0 in the latter. Putting these
remarks together, we propose the boundary conditions
(2.14) F(—0) =0, 1<h¥(—0}<1/b i b<1l and q>0>N,
(2.15) F(+00) =0, 1>h*(+oe)>1/b if b>1 and q> 0> n.
Whenever one of these conditions applies we refer to a ‘Type 0’ b.v.p. We are now
ready to state
TxeoreM 3 (‘Type 0’ b.v.p.s).
(i)Let b>1, N>0 and q>0>n.
A solution of S = (F,G) which is defined for all z € ®, and has limits as z -+ co and
Z -+ —o0 given by the boundary conditions (2.15) and (2.12), generates an optimal plan.
(ii)Let b<I, n>0 and q>02>N.
A solution of 8§ = (F,G) which is defined for all z € ®, and has limits as z + 00 and
Z ~ —o0 given by the boundary conditions (2.11) and (2.14), generates an optimal plan.
It will be shown in Part B that solutions of the b.v.p.s defined by the state-

ments of Theorems 2 and 3 exist.

We turn to proofs of Theorems 2 and 3. In each of the cases considered we have
to show that the finite welfare and transversality conditions of Theorem 1 are satisfied.
PROOF OF THEOREM 2.

In what follows, ¢, k, y will refer to the plan generated by the solution (h,) satisfying
the stated conditions; stars are often omitted for brevity. Feasibility is obvious because
#(z) is bounded on R.

(i} Suppose first that b < 1. Since # is contiruous and positive with positive limits
at z = £ oo, it is bounded away from zero. Finite welfare follows immediately from

0 < () < p* < P*( &) < 00,

and since ¢ is bounded away from zero we know {rom the Corollary to Theorem 1
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that finite welfare implies transversality. |}
(ii) Now let b > 1. The method used for b < 1 does not work because it is not known
in advance that (c) > p*(Z"). A direct proof of finite welfare is needed, and then
transversality will follow as before. We have to show that
(2.16) ¢ P(1-b)(T) = [°E exp{(1-b)[H(z,)-H(z )] + v, }dr
is finite. Using the formula (4) for y(T} and noting that v + (1-b)x = w by (1.10),
this may be rewritten as
(2.17) 12E [(3../y YO/ explw. + (1-b)sT M(t)dt/b]| dr

’ 0 Ypi¥o PlWy o] ’
We now replace yT/yO by its formula from (6), with the h’? given by (7). We also
replace w(T) by p, Tt awa(T), then 0,B,, by its formulain (1.11) and
#,, by —bn — jol —see (1.13) — and finally replace o2 in the last-mentioned
expression by its formula in (1.12). In the exponents of the resulting expression we
collect the Brownian terms, which have the form

R(T) = L _{ 1 (t)dB
(1) = 3, {2,()dB,

.= (b-l)H’a,r, Ig= (b~1)(H’—l)oﬁ, ro=[(b-1)(H-1) + bje_, 1 = —0

¥ Top P
then subtract and add back

_ T
~(R); = 43, [T r2(0)d(0),
noting that exp{R, —4(R)} is a (true) martingale since H’ is bounded. After

(t), n=1p8mrp, where

simplifying, using 0l = 03; + cré + 02, itis found that (17) becomes, in abridged
notation,

[*E exp[RT ~ $(R), + (1-b)7 [42(H" (2,)-1)? + M(z,)/bld¢ - nT] dr.
Since b > 1, dropping the coefficient of (1-b) cannot decrease this expression, and
since the expectation of the martingale for each T 1s one, the whole expression cannot
exceed fe "dr and so converges since n > 0. Note that in this proof we had to use
the martingale property of y.
{(ii) Let b=1 Wehave v=w=17-p and n= N = q by assumption. Since

0= t/k is bounded away from zero, say &z)> #.> 0, the transversality integral
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(1.36) converges by
ek Ma ¢ q/0)CEeMa = (1/0) e < oo

In the present case, finite welfare must be verified separately. Using the form of ¢
given in {1.31a}), we have
(2.18) #0) = J°E e, -e"Dldt = [OE [{in (z,) + 7,)e"at
and since In # is bounded on ¥ the part of the integral involving In # converges by an
argument like that just given for transversality. Now, referring to (1.29), we have
(2.19) o(1) = 7, + f3 {A(z,)-0(z,)+u}dt + oB(),
and since A —§+ p is bounded as a function of z € ® it is seen, on substituting into
(18), that the part of the integral involving z, and [(A — 0+ p)dt converges
because Eev(T) =¢ 9T with q > 0. It remains to consider

J2 E{oB(t)e"T]d1.
Now 0B = o B + aﬁBﬂ+ o B and v=7—p, andsince 8, v, 7, p are
independent and B‘r , Bﬁ have zero expectations, the terms involving these two
motions vanish and we are left (apart from the sign) with
(2200 [2E[o,B (e Dpar = (= AT g Efg B (r)erPu(Tar.
Write y = aWBr(T) and s = ¢ T for the moment. y isa Gaussian variable with
zero expectation and standard deviation s, and one has
(2.21) E(xe’] = E{(d/da)(e™)] _, = [(d/da)(Ee™)]

= [(d/da)(e?*™")]

=1
RPOYS LN T/ Ly §

a=1 = 5%’ = alre’ nn,

Inserting (21) in (20) and using the definition of q we have simply the convergent

integral jz U%Te_quT]] Incidentally, the calculations showing the convergence of the

terms omitted in passing from (1.31) to (1.31a) are of the same kind.

PROOF OF THEOREM 3.

We consider case (i), b > 1. 1t suffices to show that the transversality integral (1.36)

converges. For suitable numbers z_ < 2° to be determined later, define the following
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indicators of (w,t) sets:

E=1z(wt) <z}, I, = Hz < a(wt) < 2}, I, = Hz(wt) > 2"}
Let z be so large that H’(z) > 1/b for 2 > z°; then, in abridged notation,

°4 b

(2.22) B 1, OOy ¢ 2 bu() g g Vs = conste1/q.
The continuous function z—bk(z) is bounded on the real interval [zq,zb], so that an
inequality like (22} applies (with a different constant) if I, is replaced by I, It is
therefore enough to prove the convergence of (1.36) restricted to I_. Since §(z} -+ N > 0

as z-—oo, #2z) is bounded below on the real interval (—00,z,) by some 0_> 0, and
since 2} = 22 e have £27DH(2) _ O—be(l_b)z, so that
(2.23) E | I‘ez(t)—b}i[z(t)]+v(t)dt ¢ (g_)—b E | [ e{17B)z(t)+v(t)y,
and it is enough to show the convergence of the last expected integral for some suitable
z . To define such a number, let § be such that

0<6<N and (b-1)6<N
and choose z_ so far left that z_ < z,=In K, and

|(z)-N] < 6/2 and A(z) > Yo—8/2 for z<z + 6

We now consider the process z(w,T) determined by the s.d.e. (2.19) as a time-
homogeneous diffusion.¢ Let 7, = 7((w) be the first arrival time of z(w,t} at the
level Z thenlet T, = 1)(w) be the first arrival time at zq+6 after 7, then 7, the
first arrival time at z_ after 1, etc, the value oo being assigned if an arrival never
occurs. These times are (.At)—stopping times. For given w, the set {vz(wt) <z}
is contained in the union of the intervals (Ti(w),'ri(u)), and for given T in the i'th

interval we have

T
2(1) = z,+x(7) —x(r;) + JTi[A(zt)—O(t)]dt > 2+ x(T)x(7;) + [ —N—-g](1-7,).

5 Terminology varies, but in any case the process z(t) satisfies both the definition of a
‘time—homogeneous Markov diffusion’ given by Gihman and Skorokhod [1972], see esp.
55.9-10 and 15, and the definition of a ‘process of diffusion type’ given by Liptser and
Shiryaev [1977]. We use properties of such processes given by these authors without
recalling all the details.
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By virtue of these remarks,we have
E J [ (1D +v(ty (g b [ ﬁ (1-—b)z(t)+v(t)dt]
1
[x

cexpl(1-0) ) § [ [11e (-b)e AT (] ]
Dropping the constant, replacing (1-b)x+v by w and the upper limit of integration
Ti by T = oo, it will be enough to prove the convergence of

(2.24) E iu}]:l eV(Ti) J?i [ew(t)_w(Ti)+(1_b)(¢abn_6)(t_7i)] dt].

Since the 7 are stopping times, it follows from the strong Markov property of
Brownian motion that each variable v(73) is independent of the integral which follows
it. Consequently (24) may be rewritten as a sum of products of expectations, and

because of the strong Markov property and time homogeneity the integrals all have the

same expectations, namely

E r[ew(t)+(1—b)(¢;,—u—6)t} dt = r’
o

4
because Ee¥(t) = ™™ Since LN = bn + (b—1)¢’ by (1.40), the coefficient of ¢
0

[e—bnt +(1—b)(wa—ﬂ—6)t] dt

in the last exponent is just —N + §(b~1), which is negative by our choice of §, so that
the integral converges. It therefore remains only to check the convergence of the series
TE eV(Ti), or equivalently of the series B e¥("3). Write v(ri) = v; for short. Note
first that the variables 73 — 754 for i > 1 are independent of one another (and of 1)
and have identical distributions, so that by the strong Markov property the variables
vi—vi for i > 1 are independent of one another (and of v,) and have identical

distributions. Thus

- H @ . | PR T 2

Let Ee'i v" D for i > 1 and note that Ee¥i<D. Now,
() _ ttoBll) _ oBuloit), -at

and since exp{s B, (1) - jol t} is a continuous positive martingale and q > 0 we

have Eev(T) < 1 for any stopping time 7, hence also D < 1 taking into account the

24



strong Markov property. Thus the right—hand side of (25) does not exceed
D(1+D+D2+...) and so is convergent. This completes the proof for b > 1. The case

b <1 is similar except that the roles of small and large values of z are

interchanged. ||
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