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Abstract 
 
This paper aims to investigate the effects of urbanization, renewable and non-renewable 
energy consumption, trade liberalization, and economic growth on pollutant emissions and 
energy intensity in selected Asian developing countries from 1980 to 2010. We use both 
linear and nonlinear panel data econometric techniques and employ the recently introduced 
mean group estimation methods, allowing for heterogeneity and cross-sectional dependence. 
However, to check robustness of our panel results, we also apply the autoregressive 
distributed lag bound testing approach to country-level data. In addition, the relationship 
between affluence and CO2 emissions is examined in the context of the Environmental 
Kuznets Curve (EKC) hypothesis. The estimation results identify population, affluence, and 
non-renewable energy consumption as the main factors in pollutant emissions in Asian 
countries. However, the results of the EKC hypothesis show that when countries achieve a 
certain level of economic growth, their emissions tend to decline. Whereas nonlinear results 
show that renewable energy, urbanization, and trade liberalization reduce emissions, linear 
estimations do not confirm such outcomes. Thus, substitution of non-renewable for 
renewable energy consumption, as well as cautious and planned urbanization programs, 
and more liberal trading regimes may be viable options for the sustainable growth of these 
emerging Asian economies. 
 
Keywords: renewable energy consumption, urbanization, pollutant emissions, openness, 
EKC hypothesis, panel data 
 
JEL Classification: Q2, E4, C33 
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1. INTRODUCTION 
Urbanization is taking place in an unprecedented speed and scale in developing 
countries. It took approximately 150 years for Europe’s urbanization rate to increase 
from 10% to 50%; in most Asian developing countries, that same shift is currently 
occurring in a time span that is one-third as long. A United Nations report reveals that 
approximately 54% of the world’s population lives in urban areas, a rate that is 
projected to increase to 66% by 2050. The growth of urbanization in Africa and Asia is 
much faster than in other regions of the world, and these two continents are projected 
to be 56% and 64% urban by the middle of this century. The largest rural population 
declines are expected in the People’s Republic of China (PRC), followed by 
Bangladesh, India, Indonesia, Thailand, and Viet Nam (United Nations Population 
Division 2014). Therefore, these countries are predicted to experience more rapid 
urbanization than other countries in the coming decades. Unfortunately, urban growth 
is commonly characterized by unplanned expansion, sprawl, and increasing 
dependence on transportation. Although Asia’s rapid urbanization has led to economic 
development and public safety, increased energy use (and the intensity of that  
use) has adversely affected air quality and climatic conditions. Growing urbanization 
leads to more consumption of energy through shifting production from less to more 
energy-intensive sources. Moreover, urbanization requires more energy because of the 
increasing amount of mobility and transport (Parikh and Shukla 1995; Jones 2004; 
Madlener and Sunak 2011; Sadorsky 2013). Thus, it can be argued that the aggregate 
effects of growing urbanization and the resulting energy consumption lead to 
environmental degradation. This paper’s aim is to investigate the effects of urbanization 
on pollutant emissions and energy intensity controlling for disaggregated energy 
consumption, trade liberalization, and economic growth in selected Asian developing 
countries from 1980 to 2010. 
Urbanization has both negative and positive environmental effects by facilitating the 
release and absorption of carbon in the atmosphere (Chester et al. 2014; Hutyra et al. 
2014). For instance, urbanization induces higher energy use and fossil fuel burning 
through rapid industrialization, the mechanization of agricultural processes, and 
transportation of foods and supplies to and from cities (Jones 1991). Ehrlich and 
Holdren (1971) argued that the magnitude of this positive linkage between urbanization 
and emissions can vary because of diminishing returns, negative synergisms, threshold 
effects, and the disproportionate escalation of cost to ensure environmental quality in 
the presence of growing populations. Alternatively, urban vegetation can absorb carbon 
and building materials, and other urban infrastructure can temporarily store some  
of these emissions (Pataki et al. 2011). Subsequently, the impact of urbanization on 
energy demand and pollutant emissions is dependent on the associated population 
density. As documented in the literature, dense settlements undertake alternative 
methods of energy savings such as encouraging multi-dwelling living, increasing  
use of public transport, cycling and walking, and reducing winter energy demand in 
buildings because of urban heat island effects (Boyko and Cooper 2011; Oleson et al. 
2008). Thus, a negative linkage between population density and fuel consumption 
in transportation is also a possibility (Newman and Kenworthy 1989, 1999). These 
alternative findings are consistent with recent studies on transportation and energy 
consumption (Liddle 2014), buildings’ electricity use (Lariviere and Lafrance 1999), and 
overall urban greenhouse gas emissions (Marcotullio et al. 2013). 
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The relationship between economic growth, energy consumption, and CO2 emissions 
has been extensively investigated for different countries using various econometric 
methods (Soytas et al. 2007; Lean and Smyth 2010; Apergis et al. 2010; Salim and 
Rafiq 2012; Hamit-Haggar 2012). A limited number of studies have included the 
variable of urbanization as a determinant of pollutant emission (Sadorsky 2009; 
Menyah and Wolde-Rufael 2010; Hossain 2011; Shafiei and Salim 2014; Kasman and 
Duman 2015; Rafiq et al. 2016). Some of these studies have focused on developed 
countries; others have focused on emerging economies. However, no studies have 
specifically examined the Asian developing countries, which are experiencing rapid 
increases in both urbanization and CO2 emissions. Furthermore, only a few studies 
have included both urbanization and trade openness in their investigation (Hossain, 
2011, Kasman and Duman, 2015, and Rafiq et al. 2016). Most of the previous 
studies have assumed that the relationship among these variables is linear, with the 
only exception being Rafiq et al. (2016). Following Rafiq et al. (2016), we intend 
to contribute to the literature by examining the linear and non-linear effects of 
urbanization, disaggregated energy consumption (renewable and non-renewable), 
trade liberalization, and economic growth on emissions and energy intensity in Asian 
developing countries. This study also employs recently introduced mean group 
estimation methods that allow for heterogeneity and cross-sectional dependence. 
However, our study differs from Rafiq et al. (2016) as we apply the autoregressive 
distributed lag (ARDL) bound testing approach to get country-specific estimates to 
corroborate our panel results. Furthermore, we perform all relevant diagnostic and 
specification tests, which have been seldom considered in previous studies. 
The remainder of the paper is structured as follows: Section 2 reviews the existing 
literature, followed by research methods and model specifications in Section 3. 
Section 4 discusses data sources and diagnostic tests. The empirical results are 
reported in Section 5. Finally, conclusion and policy implications are presented  
in Section 6. 

2. URBANIZATION, EMISSION AND ENERGY 
INTENSITY: A CRITICAL REVIEW  
OF THE LITERATURE 

This section briefly reviews the studies focusing on the relationship between 
urbanization and emissions. For this purpose, some studies have used the Stochastic 
Impacts by Regression on Population, Affluence, and Technology (STIRPAT), a 
statistical model. For instance, York et al. (2003) studied a non-linear relationship 
between emissions and factors such as population, urbanization, and economic growth 
for 142 nations, finding a positive relationship between emissions and the independent 
variables. Considering 86 countries from 1971 to 1998, Cole and Neumayer (2004) 
studied the effects of population size and certain other demographic factors, including 
age composition, the urbanization rate, and the average household size on CO2  
and sulfur dioxide (SO2) emissions. The results indicate a U-shaped linkage between 
population size and SO2 and a positive linkage between the urbanization rate and CO2 
emissions. In contrast, a negative relation between urbanization and CO2 emissions  
is found by Fan et al. (2006) for developed countries from 1975 to 2000. The same 
result is obtained by Martínez-Zarzoso (2008), who analyzed the determinants of CO2 
emissions from 1975 to 2003, demonstrating that whereas the elasticity of emission-
urbanization is positive in low-income countries, it is negative in upper-income and 
highly developed countries. Similar to the study of Fan et al. (2006), Poumanyvong and 
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Kaneko (2010) considered different development stages and provided evidence  
of positive effects of population, affluence, and urbanization on CO2 emissions for  
all three of the low-, middle- and high-income groups. Studying a large panel of 
69 countries, Sharma (2011) finds a negative and significant relationship between 
urbanization and CO2 emissions for the global panel and a negative, but insignificant 
relationship in the low-, middle- and high-income panels. Most of the earlier studies 
suffer from their failure to consider diagnostic and specification tests that are essential 
to achieving unbiased and consistent empirical estimates. 
Empirical studies related to the link between environmental degradation and economic 
activities usually refer to the environmental Kuznets curve (EKC) hypothesis, which 
suggests an inverted U-shaped relationship between pollutant emissions and income 
per capita. A large number of studies have tested the nexus between economic growth 
and environmental pollution (Selden and Song 1994; Grossman and Krueger 1995; 
Galeotti and Lanza 1999; Halicioglu 2009; Kearsley and Riddel 2010). A few studies 
have examined the EKC hypothesis in terms of the relationship between pollutant 
emissions and urbanization. For instance, Martínez-Zarzoso and Maruotti (2011) 
analyzed the EKC hypothesis based on the STIRPAT method for developing countries 
from 1975 to 2003. Their results support the existence of an inverted U-shaped 
relationship between urbanization and CO2 emissions, indicating that urbanization at 
higher levels contributes to environmental damage reduction. However, the main 
criticism of this study is its assumption of homogenous relationships among the 
relevant variables over the cross-sections. 
In a recent study, Sadorsky (2014) used a panel regression technique that allows for 
heterogeneous slope coefficients and cross-section dependence to investigate the 
impact of urbanization on CO2 emissions in 16 emerging countries. However, the 
results obtained are inconclusive because the contemporaneous coefficients for the 
urbanization variable were found to have positive signs for most of the specifications. 
Considering energy intensity instead of emissions, Sadorsky (2013) demonstrated  
that whereas income decreases energy intensity, industrialization increases energy 
intensity. The impact of urbanization on energy intensity is mixed, indicating that the 
estimated coefficient for the urbanization variable is sensitive to the estimation 
technique. In addition to urbanization, Shafiei and Salim (2014) included disaggregated 
energy consumption in terms of renewable and non-renewable energy by employing an 
extended framework of two STIRPAT models and one EKC model for the period from 
1980 to 2011 in Organisation for Economic Co-operation and Development (OECD) 
countries. These authors found that renewable energy consumption reduces CO2 
emissions, whereas non-renewable energy consumption increases CO2 emissions. 
They also demonstrated the existence of an EKC between urbanization and CO2 
emissions, suggesting that emissions decline at higher levels of urbanization. Recent 
studies that have included trade openness include Hossain (2011) and Kasman and 
Duman (2015). Considering nine newly industrialized countries (Brazil, the PRC, India, 
Malaysia, Mexico, the Philippines, South Africa, Thailand, and Turkey) from 1971 to 
2007, Hossain (2011) found the existence of a long-running relationship between CO2 
emissions, output, energy consumption, trade openness, and urbanization. In a recent 
study of a panel of 16 EU candidate countries from 1992 to 2010, Kasman and Duman 
(2015) showed that both urbanization and trade liberalization enhance CO2 emissions 
in both the long run and the short run. Although these earlier studies made an 
enormous contribution to the literature, their main weakness is that they overlook the 
possibility of non-linear relationships among the relevant variables. However, there is 
one exception. The most recent study conducted by Rafiq et al. (2016) analyzed the 
impact of trade openness, urbanization, and disaggregated energy consumption on 
CO2 emissions and energy intensity in 22 emerging economies by incorporating the 
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recently developed nonlinear panel estimation techniques. These authors show that 
although non-renewable energy consumption increases both CO2 emissions and 
energy intensity, renewable energy consumption has no statistically significant impact 
on either emissions or intensity at conventional levels. In addition, although trade 
liberalization reduces both CO2 emissions and energy intensity, urbanization 
significantly enhances energy intensity, but has no significant effect on emissions. 
As can be observed above, there is substantial literature on the relationship among 
economic growth, urbanization, energy consumption, and emissions. Nevertheless, its 
results remain inconclusive. Thus, this study attempts to provide a comprehensive 
analysis of how urbanization, energy consumption, trade openness, and affluence 
impact emissions and energy intensity in selected developing countries in Asia. This 
study considers the diagnostic statistics and specification tests that are necessary  
for obtaining non-biased and consistent regression results. It also uses recent  
panel data techniques that allow for both heterogeneous unobserved parameters and 
cross-sectional dependence. In addition, it employs a non-linear panel estimation 
technique to control the robustness of its findings. Finally, this paper also estimates 
country-specific effects of urbanization on pollutant emission and energy intensity by 
using the ARDL bound testing approach to corroborate our panel results. 

3.  ANALYTICAL FRAMEWORK  
This study employs the famous STIRPAT and EKC models to analyze the impact of 
demographic and economic factors on carbon emissions and energy intensity. Four 
models are considered to estimate the effects of different variables (based on the 
objectives of this study) on CO2 emissions and energy intensity. In the first model 
(Model I), the relationship among CO2 emissions, urbanization, and renewable and 
non-renewable energy consumption is investigated to clarify the impact of both 
disaggregated energy and urbanization in Asian countries’ economic activities. The 
model is presented as follows: 

2 0 1 2 3 4

5 1

ln ln ln ln ln ln
 ln ln

it it it it it

it ilt

CO POP AFL REN NRN
URB

δ δ δ δ δ
δ ε

= + + + +
+ +

 (1) 

where CO2 = pollutant emissions, POP = population density, AFL = affluence,  
REN = renewable energy, NRN= non-renewable energy consumption, and  
URB = urbanization. Here, e is the idiosyncratic error term. The subscript i refers to 
countries and t is time. 
In the EKC model (Model II), the variable trade liberalization (OPN) is included within 
the emissions-urbanization framework as follows: 

2
2 0 1 2 3

4 5 2

ln ln ln ln ln
 ln ln

it it it it

it it ilt

CO POP AFL AFL
URB OPN

λ λ λ λ
λ λ ε

= + + +
+ + +

 (2) 

Next, the purpose is to examine the impact of all relevant independent variables on 
energy intensity instead of CO2 emissions. Therefore, we specify Models III and IV, 
with energy intensity (ENI) as the dependent variable in a framework similar to those of 
Models I and II, respectively. Thus, Models III and IV are set up as follows: 
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0 1 2 3 4

5 3

ln ln ln ln ln ln
 ln ln

it it it it it

it ilt

ENI POP AFL REN NRN
URB

ϕ ϕ ϕ ϕ ϕ
ϕ ε

= + + + +
+ +

 (3) 

2
0 1 2 3 4

5 4

ln ln ln ln ln ln
 ln

it it it it it

it ilt

ENI POP AFL AFL URB
OPN

γ γ γ γ γ
γ ε

= + + + +
+ +

 (4) 

Motivated by previous studies such as York et al. (2003), Cole and Neumayer (2004), 
Martínez-Zarzoso (2008), Fan et al. (2006), Poumanyvong and Kaneko (2010),  
and Sharma (2011), we developed Equation (1) above. Equation (2) has been 
undertaken following Martínez-Zarzoso and Maruotti (2011) and Sadorsky (2014). 
Equation (1) implements a STIRPAT-type model, whereas Equation (2) implements an 
EKC-type model to test whether urbanization generates pollutant emissions in major 
Asian emerging economies. As mentioned above, Shafiei and Salim (2014) have 
implemented both of these models, finding evidence of the existence of an EKC 
between urbanization and CO2 emissions, indicating that emissions declined at higher 
levels of urbanization in OECD countries. Likewise, Equations (3) and (4) are designed 
to test whether urbanization has a statistically significant positive link with energy 
intensity. Earlier studies such as Sadorsky (2013, 2014) found mixed results with 
respect to the link between urbanization and energy intensity. It is noteworthy that our 
model settings primarily follow the very recent study of Rafiq et al. (2016). 

4. DATA SOURCES AND DIAGNOSTIC TESTS 
Based on availability, data for population figures, gross domestic product (GDP), non-
renewable energy consumption, renewable energy consumption, urbanization, carbon 
dioxide emission, energy intensity, and trade were collected for a set of 13 Asian 
countries. The list of countries included Bangladesh, Cambodia, the PRC, India, 
Indonesia, Malaysia, Mongolia, the Philippines, the Republic of Korea, Singapore, Sri 
Lanka, Thailand, and Viet Nam. The data period is from 1980 to 2010. Non-renewable 
and renewable energy consumption data were obtained from the Energy Information 
Administration (EIA) and data on all other variables were taken from the World 
Development Indicators (WDI). 
To start with our empirical estimation, we applied a number of unit root tests, including 
Maddala and Wu’s 1999 version of the Dickey-Fuller and Philips-Perron tests (Dickey 
and Fuller 1979; Philips and Perron 1988), along with the Breitung (2000), Levin et al. 
(2002) and Im et al. (2003) tests to investigate the time series properties. These tests 
have been conducted with a constant and a linear trend term. All of the tests’ lag 
lengths are automatically chosen using the Schwarz information criterion (SIC). The 
test results indicate that all series (CO2, ENI, AFL, AFL2, REN, NRN, URB, and OPN), 
except population, contain unit roots at their levels, implying that these series are  
non-stationary at their levels.1 Because of geographical proximities and socioeconomic 
similarities among the studied countries, it is not surprising that they could have  
cross-sectional dependence among themselves. Thus, three tests—including Friedman 
(1937), Frees (1995), and Pesaran (2004)—are applied to check for cross-sectional 
dependence. The results are presented in Table 1. The results of the three  
cross-section dependence tests under both random and fixed effect estimations show 
that the null hypothesis of no cross-sectional dependence is rejected in all models. 

1  To conserve space, we did not report these tests’ results; however, the results are available  
upon request. 
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Therefore, this study applies the cross-sectional augmented panel unit root (CIPS) test 
by Pesaran (2007) and cross-sectionally augmented Sargan-Bhargava statistics 
(CSB), introduced by Pesaran et al. (2013), that assume cross-sectional dependence. 
According to Pesaran et al. (2013), the proposed CIPS and CSB tests have the correct 
size for all combinations of the cross section (N) and time series (T) dimensions 
considered, although the CSB test performs better than the CIPS test for smaller 
sample sizes. As is apparent from Table 2, the results of the CIPS and CSB tests 
suggest that all of the variables except for the population variable contain unit roots 
indicating non-stationarity at their levels, but become stationary at their first differences.  

Table 1: Cross-sectional Dependence Tests 

Tests 
Pesaran Frees Friedman 

CD test p-value CD(Q) test p-value CD test p-value 
Model I       
FE Estimation –1.317* 0.0511 3.595*** 0.0000 32.444*** 0.0012 
RE Estimation –1.202** 0.0397 3.650*** 0.0000 28.096*** 0.0054 
Model II       
FE Estimation –1.384* 0.0701 2.825*** 0.0000 38.555*** 0.0001 
RE Estimation –2.738 0.0000 2.727*** 0.0000 34.528*** 0.0006 
Model III       
FE Estimation –1.748** 0.0477 4.232 0.0000 18.387 0.1044 
RE Estimation –1.754* 0.0795 4.546*** 0.0000 15.039 0.2393 
Model IV       
FE Estimation –1.378* 0.0523 3.910*** 0.0000 27.365*** 0.0068 
RE Estimation –2.145*** 0.0000 3.757*** 0.0000 27.756*** 0.0060 

Note: FE and RE denote fixed and random effect estimations. (***) indicates that the test statistics are significant at the 
1% level, with (**) indicating 5%, and (*) indicating 10%. 

Table 2: Panel Unit Root Test with Cross-section Dependence  
by Pesaran (2007) and Pesaran (2013) 

 Pesaran 
(2007) 

Pesaran 
(2013) 

 Pesaran 
(2007) 

Pesaran 
(2013) 

Level Variable CIPS z(t-bar) CSB( p̂ ) Diff. Var. CIPS z(t-bar) CSB( p̂ ) 
CO2 –1.467 –1.467 ΔEMI –4.704*** 0.296** 
ENI –1.649 –1.649 ΔENI –4.617*** 0.772*** 
POP –2.134** –2.134** ΔPOP –2.447*** 2.494*** 
AFL –1.409 0.120 ΔAFL –2.799*** 0.876*** 
AFL2 –1.409 –1.409 Δ AFL2 –2.799*** 1.341*** 
REN –1.409 0.037 Δ REN –5.337*** 0.280** 
NRN –1.565 0.050 Δ NRN –4.516*** 0.279** 
URB –1.772 –1.772 Δ URB –3.054*** 0.357*** 
OPN –2.045 0.028 Δ OPN –5.315*** 0.847*** 

Note: The Schwarz Information Criterion (SIC) has been used to determine the optimum lag length. (***) indicates that 
the test statistics are significant at the 1% level, with (**) indicating 5%, and (*) indicating 10%. For CSB tests, critical 
values are obtained from Tables B.3 and B.4 of Pesaran (2013). Assuming m0=1, the critical values for CSB ( p̂ ) are 
0.279 and 0.322. 
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The failure to consider the possibility of structural breaks in data series may lead to 
dubious and unreliable results. Thus, we applied a panel stationarity test by following 
Carrion-i-Silvestre et al. (2005), allowing for multiple structural breaks in our data 
series. Table 3 reports these results. These results show that the null hypothesis of 
stationarity is rejected both at the homogeneous and the heterogeneous long-run 
variance for all of the variables at the conventional level of significance (5%). Thus, it 
can be concluded that the variables contain unit roots even after allowing structural 
breaks in the series. We also applied Monte Carlo simulations based on 20,000 
iterations to identify multiple structural breaks (maximum five breaks) in our series. 
These simulations identified breaks around two periods, for example, in 1990 and 
2010. These breaks coincided with several abnormal global events, including the global 
recession, the Persian Gulf War, the oil price hike in the 1990s and the most recent 
global financial crisis, the credit crunch, and the economic restructuring efforts by the 
US and the major European economies from 2009 to 2010. 

Table 3: Panel Unit Root Test with Structural Breaks  

Variables 
Carrion-i-Silvestre et al. (LM(λ)) 

Break Location (Tb) Test Bootstrap Critical Value (5%) 
CO2    

Ψ𝑡̅ 321.24** 8.2315 1991, 2000, 2009 
Ψ𝐿𝑀���� 300.08** 8.2315 

ENI    
Ψ𝑡̅ 12.912** 8.323 2001, 1995, 1998 
Ψ𝐿𝑀���� 12.102** 8.323 

POP    
Ψ𝑡̅ 9.286** 7.467 1984, 1990, 2000 
Ψ𝐿𝑀���� 8.897** 7.467 

AFL    
Ψ𝑡̅ 16.968** 8.545 1991, 2000, 2003 
Ψ𝐿𝑀���� 14.911** 8.545 

AFL2    
Ψ𝑡̅ 9.969** 7.907 1991, 2000, 2003 
Ψ𝐿𝑀���� 9.157** 7.907  

REN    
Ψ𝑡̅ 9.305** 8.053 1993, 2000, 2003 
Ψ𝐿𝑀���� 9.175** 8.053  

NRN    
Ψ𝑡̅ 18.191** 8.202 1987, 1999, 2004 
Ψ𝐿𝑀���� 17.282** 8.202  

URB    
Ψ𝑡̅ 15.785** 8.568 1984, 1995, 2000 
Ψ𝐿𝑀���� 15.213** 8.568  

OPN    
Ψ𝑡̅ 12.480** 8.236 1990, 2000, 2007 
Ψ𝐿𝑀���� 11.942** 8.237  

Note: The number of unknown structural breaks is set to be 5. The null of the LM (λ) test implies stationarity. The Gauss 
procedure is undertaken based on the code provided by Ng and Perron (2001). The tests are computed using  
the Bartlett kernel, and all of the bandwidth and lag lengths are chosen according to 4(T/100)2/9. The bootstrap critical 
value allows for cross-section dependence. Individual country break dates are also computed and can be furnished 
upon request. (***) indicates that the test statistics are significant at the 1% level, with (**) indicating 5%, and 
(*) indicating 10%. 
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Next, the nonlinear unit root test proposed by Emirmahmutoglu and Omay (2014) was 
conducted. This test is suitable for investigating unit roots in nonlinear asymmetric 
heterogeneous panel data. This test was run in 5,000 iterations to obtain p-values, 
and the results reported in Table 4. The test results suggest that all variables/series 
follow non-stationary processes under exponential smooth transition autoregressive 
(ESTAR) nonlinearity. 

Table 4: Nonlinear Unit Root Test of Emirmahmutoglu and Omay (2014) 

Level Variable 𝑭�𝑨𝑬 𝒕̅𝑼𝑶 𝒕̅𝑰𝑷𝑺𝑩𝑪  

EMI 6.527*** (0.003) –8.427** (0.027) –4.362** (0.015) 
ENI 9.043*** (0.000) –5.828*** (0.005) –11.551*** (0.000) 
POP 10.358*** (0.000) –4.813** (0.024) –7.196*** (0.000) 
AFL 11.704* (0.003) –6.191*** (0.000) –13.006*** (0.000) 
AFL2 8.157** (0.018) –9.942*** (0.000) –10.024*** (0.000) 
REN 5.864** (0.021) –4.328*** (0.038) –8.117*** (0.000) 
NRN 12.053*** (0.000) –8.387*** (0.000) –11.532*** (0.000) 
URB 3.619** (0.029) –4.438** (0.033) –5.947*** (0.000) 
OPN 15.783*** (0.000) –8.958*** (0.000) –10.810*** (0.000) 

Note: (***) indicates that the test statistics are significant at the 1% level, with (**) indicating 5%, and (*) indicating  
10%. The numbers in the parentheses indicate the bootstrap p-values. The UO and IPS tests performed here are 
second-generation tests. B in the IPS test statistics denotes the sieve bootstrap approach. 

Overall, the results of the panel stationarity and unit root tests for all series confirm that 
variables contain unit roots in their levels and, therefore, are non-stationary at level 
values. However, all of the variables turn out to be stationary at their first differences, 
i.e., all of the variables are integrated in the order of one. Consequently, panel 
cointegration tests can be conducted to explore the long-run dynamic equilibrium 
process. For this purpose, the cointegration test introduced by Banerjee and Carrion-i-
Silvestre (2013) is applied. This test is preferred to other panel cointegration tests 
because the test procedures allow for both structural breaks and cross-section 
dependence. The cointegration test results are provided in Table 5. The results show 
that the null hypothesis of spurious regression is rejected at a level above 50%, ranging 
from 61.49% to 67.53% for all models. Therefore, it can be concluded that variables 
have long-run cointegrating relationships in all four model specifications. It is 
noteworthy that the three standard cointegration tests—i.e., the Westerlund (2007),  
Bai Perron (2003), and Johansen Fisher tests proposed by Maddala and Wu  
(1999)2—have also been conducted to check the robustness of our earlier test results. 
All of these tests are also indicative of the existence of cross-sectional dependence 
among the variables. 
Because we attained not only non-stationarity, but also the same integration of order 
one in all of the variables of interest, the next step is to estimate the long-run 
elasticities of variables in each model. For this purpose, this study applies Pesaran and 
Smith’s 1995 Mean Group (MG) estimator, Pesaran’s 2006 Common Correlated 
Effects Mean Group (CCEMG) estimator, and the Augmented Mean Group (AMG) of 
Eberhardt and Teal (2010) and Bond and Eberhardt (2009), which are designed for 
“moderate-T, moderate-N” macro panels, where moderate means from approximately 

2  We did not provide these cointegration test results considering the space limitation; however, the results 
are available upon request. 
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15 time-series/cross-section observations (Eberhardt and Teal, 2010). These 
estimators consider both heterogeneous slope coefficients across group members and 
cross-sectional dependence. 

Table 5: Panel Cointegration Test with Structural Breaks  
and Cross-section Dependence 

 Model I Model II Model III Model IV 
% Individual rejections at the 5% level of sig. 61.49% 67.53% 60.75% 63.83% 
Panel data test statistic [ * ( )iei

tτ λ


] –7.08 –12.51 –9.61 –7.79 

r̂  12 10 10 11 

ˆPr  2 1 3 4 

1̂
NPr  3 3 3 3 

Note: The maximum number of factors allowed is max 12.r =  BIC in Bai and Ng (2004) is employed to estimate the 
optimum number of common factors ( r̂ ). We have chosen Model 5 of Banerjee and Carrion-i-Silvestre’s (2013) test, 
i.e., a stable trend with the presence of multiple structural breaks that affect both the level and the cointegrating vector 
of the model. Thus, this test has further reported two break dates for each individual that are not presented here; they 
could be furnished upon request.  

5. ANALYSIS OF EMPIRICAL RESULTS 
The results from the linear and nonlinear long-run estimations and the causality test  
for CO2 emissions with other independent variables are discussed in the following 
subsection. Next, the results for energy intensity are discussed in subsection 5.2. 
Finally, we check the robustness of our results by estimating across regimes, and the 
discussions are presented in subsection 5.3. 

5.1 Analysis of the Impact on Pollutant Emissions 

The results of the estimation of the independent variables on CO2 emission (Models I 
and II), using the MG, CCEMG, and AMG estimators are presented in Table 6. First, 
we start with the variables common to both models: population, affluence, and 
urbanization. Whereas population shows a positive and significant effect only under the 
MG method in Model I, affluence has a strong positive and significant effect on CO2 
emissions under all estimators and in both models. This finding is consistent with those 
of Rafiq et al. (2016), Shafiei and Salim (2014), and Sadorsky (2014). The positive 
relationship between population and CO2 emissions can be explained through the link 
between population growth and energy use. Population growth expands energy 
demand in sectors such as housing, commercial floor space, transportation, and goods 
and services, which in turn leads to an increased energy consumption. Considering the 
coefficients of urbanization in both models and three specifications, the results indicate 
that there is no significant relationship between urbanization and CO2 emissions in 
Asian countries. The same result for urbanization is found by Rafiq et al. (2016) for 
developing countries. However, we obtain negative signs of urbanization in two 
specifications and positive signs in the other specifications in Model I (Table 6). These 
mixed results indicate that cointegrating relationships between these two variables may 
not hold for each individual country. The existing literature shows mixed empirical 
findings as well for the relationship between urbanization and pollutant emissions. In 
Model II, we obtain positive signs of urbanization in all three specifications, however 
none of these is statistically significant. It is expected that urbanization through 
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accelerating energy consumption also accelerates pollutant emissions, particularly in 
developing countries that are not yet in the same position as developed economies to 
achieve low carbon intensity by adopting new energy technologies. 

Table 6: Linear Emissions Elasticities 

Elasticities 
Model I Model II 

MG CCEMG AMG MG CCEMG AMG 
POP 1.137*** 

(2.74) 
3.227 
(1.59) 

0.758 
(1.35) 

0.048 
(0.06) 

2.213 
(1.16) 

0.003 
(0.01) 

AFL 0.366*** 
(3.08) 

0.598*** 
(3.23) 

0.375** 
(2.58) 

0.456*** 
(5.15) 

0.987*** 
(3.52) 

0.353*** 
(3.60) 

AFL2    –0.421** 
(–2.14) 

–0.889** 
(2.08) 

0.413 
(0.63) 

REN –0.071 
(–1.23) 

–.075** 
(–2.17) 

–0.053 
(–1.11) 

   

NRN 0.260** 
(2.01) 

0.456*** 
(4.81) 

0.504*** 
(3.39) 

   

URB –0.073 
(–0.07) 

1.322 
(1.22) 

–0.046 
(–0.09) 

0.092 
(0.13) 

1.571 
(1.20) 

0.563 
(0.63) 

OPN    –0.108 
(–0.58) 

–0.065 
(–1.27) 

–0.200 
(–1.23) 

Inflection Point 
(exp(–β2/(2β3)) 

   1.242 1.742 1.533 

Turning Value    9765.035 10648.053 14728.559 
Wald χ2 118.92 

(0.00) 
465.2 
(0.00) 

184.13 
(0.00) 

94.73 
(0.00) 

88.67 
(0.00) 

60.60 
(0.00) 

No. of Obs. 403 403 403 403 403 403 

Note: (***) indicates that the test statistics are significant at the 1% level, with (**) indicating 5%, and (*) indicating 10%. 
Elasticities are based on Pesaran and Smith’s 1995 Mean Group estimator (MG), Pesaran’s 2006 Common Correlated 
Effects Mean Group estimator (CCEMG) and the Augmented Mean Group estimator (AMG) developed in Eberhardt  
and Teal (2010). z-values are provided in the parenthesis. For Wald χ2 tests, p-values are provided in parentheses.  
The coefficients of linear and quadratic terms for affluence are not elasticities. For the affluence variable, inflection 
points and their corresponding turning points are provided. The turning affluence value is in million $ GDP  
(constant 2005 US$). 

With respect to renewable energy consumption in Model I, it is observed that this 
variable has a negative and significant impact on CO2 emissions under the CCEMG 
estimator. This indicates that a 1% increase in renewable energy consumption 
decreases CO2 emissions by 0.075%. The effect of non-renewable energy 
consumption on CO2 emissions is positive and statistically significant, suggesting that a 
1% increase in this factor leads to an increase in CO2 emissions by 0.260% to 0.504%. 
Similar results are found by Rafiq et al. (2016) and Shafiei and Salim (2014). Although 
there is a need for more time and investment to switch to renewable energy sources in 
developing countries, the results obtained in this study indicate that the use of even a 
small amount of renewable sources would lead to a decrease in CO2 emissions. In 
Model II, the results show that the relation of trade openness to CO2 emissions is 
negative, but statistically insignificant. The results also provide evidence supporting  
the EKC hypothesis for the association between affluence and pollutant emissions. 
This finding is as expected and supported by earlier studies. It shows that in Asian 
countries, CO2 emissions initially intensify as affluence increases and subside after a 
certain level of economic growth has been achieved. 
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The assumption of linear relationships among variables may not always be valid. 
Therefore, this study also employs a recently developed nonlinear panel data 
estimation technique by Kapetanios et al. (2014) [KMS (2014), hereafter]. The 
advantage of this model is that it can endogenously generate both “weak” and “strong” 
cross-section dependence, allowing for considerable flexibility. The results of the 
nonlinear panel estimation are presented in Table 7. The spatial parameters (ρ, r) are 
significant for both models. The results show that all of the coefficients of the 
independent variables are statistically significant. For Model I, CO2 emissions are 
positively influenced by population, affluence, and non-renewable energy consumption, 
whereas renewable energy and urbanization are negatively correlated with carbon 
emissions. Similar results are found for population, affluence, and urbanization in 
Model II. The effect of trade openness on emissions is seen to be both negative and 
significant in Model II. It is apparent from Model I that the long-run elasticities of 
pollutant emissions with respect to population density and affluence are 0.422 and 
0.107 while elasticities with respect to renewable energy, non-renewable energy and 
urbanization are –0.490, 0.420, and –0.763, respectively. These coefficients are all 
statistically significant at conventional level of 5% or lower, and the signs are consistent 
with expectations. More specifically, urbanization reduces pollutant emissions in these 
Asian countries. Our results are consistent with those of Rafiq et al. (2016); however, 
the magnitudes of coefficients in our case are larger. This might be attributable to our 
panel including only those emerging Asian economies that have been experiencing 
greater economic growth and urbanization compared to some of the non-Asian 
countries that have been included in Rafiq et al.’s 2016 panel setting.  

Table 7: KMS (2014) Threshold Nonlinear Model of Cross-sectional  
Dependence for Emissions 

Elasticities Model 1 Model II 
βPOP 0.422** 

(2.617) 
0.358** 
(0.032) 

βAFL 0.107*** 
(8.622) 

0.067*** 
(7.518) 

βAFL
2  –0.271*** 

(–5.049) 
βREN –0.490*** 

(–17.112) 
 

ΒNRN 0.420** 
(23.178) 

 

βURB –0.763*** 
(–10.070) 

–0.559*** 
(–5.682) 

βOPN  –0.227*** 
(–14.909) 

Inflection Point (exp(–β2/(2β3))  1.132 
Turning Value  9,563.284 
R 0.027 0.185 
Ρ –0.748*** 

(–6.311) 
–0.753*** 
(–6.596) 

Note: These are the PCCE-KMS estimators proposed by Pesaran (2006), where ft = {ӯt, t}. r and ρ are the threshold 
and the spatial autoregressive parameters. (***) indicates that the test statistics are significant at the 1% level, with 
(**) indicating 5%, and (*) indicating 10%. t-values are provided in parentheses. The coefficients of linear and quadratic 
terms for affluence are not elasticities. For the affluence variable, inflection points and their corresponding turning points 
are provided. Turning affluence value is in million $ GDP (constant 2005 US$). 
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Table 7 shows that the elasticities of pollutant emissions from the non-linear model 
(Model II) are 0.358 for population density, 0.067 for affluence, –0.271 for affluence 
squared, –0.559 for urbanization, and –0.227 for openness. Our results confirm the 
existence of the EKC hypothesis. The empirical findings show that, in the long run, 
urbanization reduce CO2 emissions by approximately 0.559% and openness 0.227%, 
respectively. The findings of negative coefficients for urbanization and trade openness 
are consistent with the results reported in Rafiq et al. (2016) and Hossain (2011). The 
findings also confirm the existence of the EKC hypothesis. Whereas the results  
for trade openness are not surprising, the results for urbanization are interesting. It 
seems that urbanization has brought higher productivity in Asian emerging countries, 
which means that the same output can be produced using fewer resources with  
urban density.  
This study also employs Pesaran et al.’s 1999 pooled mean group (PMG) estimator  
to examine short-run dynamics such as the Granger causality. Table 8 shows the 
empirical results. The error correction terms are negative and statistically significant, 
implying that there are long-run relationships between independent variables, 
emissions, and energy intensity in both models. The results indicate that population, 
affluence, and renewable and non-renewable energy consumption have a positive and 
significant effect on CO2 emissions, implying that these four factors do Granger-cause 
CO2 emissions in the short run.  

Table 8: Panel Causality Test based on Pooled Mean Group  
Analyses for Emissions 

Depnt. 
Variable 

Sources of Causation 
Long Run Short Run (χ2) 

Δ POP Δ AFL Δ AFL2 Δ REN Δ NRN Δ URB Δ OPN ECT 
CO2         
Model I 2.45 

(0.12) 
5.72** 
(0.02) 

 6.93*** 
(0.00) 

22.20*** 
(0.00) 

0.12 
(0.73) 

 –2.673*** 
(0.00) 

Model II 5.07** 
(0.02) 

6.10** 
(0.01) 

1.59 
(0.21) 

  0.27 
(0.61) 

1.40 
(0.24) 

–2.589*** 
(0.00) 

Notes: χ2 tests have been undertaken for short-run analyses. p-values are provided in parentheses. ETC indicates 
estimated error correction terms. The Schwarz Information Criterion (SIC) has been used to determine the optimum lag 
length. (***) indicates that the test statistics are significant at the 1% level, with (**) indicating 5%, and (*) indicating 10%. 

The results from both linear and nonlinear estimations indicate that the main 
determinants of CO2 emissions in Asian countries are population, affluence, and  
non-renewable energy consumption. Empirical findings confirm the existence of the 
EKC hypothesis, implying that when a certain level of economic growth has been 
achieved, emissions tend to decline in these countries. By contrast, nonlinear results 
show that renewable energy, urbanization, and trade openness reduce emissions, and 
linear estimations do not confirm such outcomes. 

5.2 Analysis of Impact on Energy Intensity 

In this subsection, we analyze the impacts of population density, affluence, 
disaggregated energy consumption, trade liberalization, and urbanization on energy 
intensity under Models III and IV. The results of long-run elasticities with respect to the 
independent variables obtained from Models III and IV are presented in Table 9. The 
findings indicate that under both models, population and urbanization significantly 
increase energy intensity. Thus, these results do not conform to the compact city 
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hypothesis. However, affluence reduces energy intensity between 0.114 and 0.789 
under both models. In general, energy intensity decreases when total consumer energy 
grows slower than real GDP. In other words, energy efficiency improves as income 
increases. Therefore, as economies develop, energy consumption becomes more 
efficient and thus energy intensity falls. In this case, it can be concluded that the 
selected Asian emerging countries might have reached the level of development at 
which energy intensity has started to decrease. The elasticities of energy intensity with 
respect to urbanization in both models are in line with Sadorsky (2013); for affluence, 
although the signs are consistent with Sadorsky, the magnitudes of these elasticities 
are larger. The elasticities range between –0.53 to –0.57 in Sadorsky. The findings also 
reveal that non-renewable energy consumption has positive and significant signs, 
indicating that whereas non-renewable energy consumption significantly increases 
energy intensity, trade liberalization (openness) significantly reduces energy intensity in 
the long run. 

Table 9: Linear Energy Intensity Elasticities 

Elasticities 
Model III Model IV 

MG CCEMG AMG MG CCEMG AMG 
POP 1.067*** 

(3.31) 
0.633 
(0.66) 

1.055*** 
(5.34) 

1.230*** 
(2.18) 

–0.768 
(0.86) 

1.293** 
(–2.28) 

AFL –0.789***  
(–8.84) 

–0.614*** 
(–4.08) 

–0.756*** 
(–9.38) 

–0.114*** 
(–4.85) 

–0.505*** 
(–4.14) 

–0.681*** 
(–5.45) 

AFL2    0.281*** 
(3.48) 

0.851** 
(2.21) 

1.342* 
(1.74) 

REN 0.021 
(0.59) 

–0.022 
(–1.01) 

–0.014 
(0.71) 

   

NRN 0.358*** 
(4.15) 

0.248*** 
(5.00) 

0.334*** 
(2.87) 

   

URB 0.765* 
(1.89) 

0.336 
(0.64) 

0.903*** 
(4.38) 

1.123* 
(1.76) 

0.583 
(0.68) 

1.185* 
(1.19) 

OPN    –0.045*** 
(–0.53) 

–0.053 
(–0.82) 

0.003 
(0.05) 

Inflection point 
(exp(–δ2/(2δ3)) 

   1.225 1.345 1.289 

Turning Value    7,346.371 10,572.649 16,385.027 
Wald χ2 192.26 

(0.00) 
47.20 
(0.00) 

206.37 
(0.00) 

73.92 
(0.00) 

40.24 
(0.00) 

44.13 
(0.00) 

Obs. 403 403 403 403 403 403 

Note: (***) indicates that the test statistics are significant at the 1% level, with (**) indicating 5%, and (*) indicating 10%. 
Elasticities are based on Pesaran and Smith’s 1995 Mean Group estimator (MG), Pesaran’s 2006 Common Correlated 
Effects Mean Group estimator (CCEMG) and the Augmented Mean Group estimator (AMG) developed in Eberhardt and 
Teal (2010). z-values are provided in parentheses. For Wald χ2 tests, p-values are provided in the parenthesis. The 
coefficients of linear and quadratic terms for affluence are not elasticities. For the affluence variable, the inflection points 
and their corresponding turning points are provided. Turning affluence value is in millions $ GDP (constant 2005 US$). 

Results from the nonlinear model are reported in Table 10. In Models III and IV, all of 
the variables have correct signs and are statistically significant, implying the greater 
power of the nonlinear tests. The sign of the coefficient for each of the independent 
variables such as population, affluence, non-renewable energy, urbanization, and trade 
liberalization are consistent with those of the linear estimation results. However, the 
signs of energy intensity elasticities with regard to renewable energy consumption are 
negative and significant, implying that renewable energy consumption reduces energy 
intensity. Table 11 presents the results of the Granger causality tests. In both models, 
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the error correction terms are significant and negative. The findings demonstrate that 
population, affluence, and non-renewable energy consumption have a positive and 
significant effect on energy intensity, indicating these three variables do Granger-cause 
energy intensity in the short run.  

Table 10: KMS (2014) Threshold Nonlinear Model of Cross-sectional  
Dependence for Energy Intensity 

Elasticities Model III Model IV 
βPOP 0.336*** 

(4.128) 
0.627*** 
(4.295) 

βAFL –0.295*** 
(–17.521) 

–0.391*** 
(–7.031) 

βAFL2  0.581*** 
(6.394) 

βREN –0.035*** 
(–6.617) 

 

ΒNRN 0.083*** 
(9.032) 

 

βURB 0.939*** 
(14.203) 

0.012** 
(2.258) 

βOPN  –0.051* 
(–12.610) 

Inflection point (exp(–δ2/(2δ3))  1.400 
Turning Value  9527.153 
R 0.185 0.177 
Ρ –0.696*** 

(–5.502) 
–0.541*** 
(–4.000) 

Note: These are the PCCE-KMS estimators proposed by Pesaran (2006), where ft = {ӯt, t}. r and ρ are the threshold 
and the spatial autoregressive parameters. (***) indicates that the test statistics are significant at the 1% level, with 
(**) indicating 5%, and (*) indicating 10%. The coefficients of linear and quadratic terms for affluence are not elasticities. 
For the affluence variable, inflection points and their corresponding turning points are provided. Turning affluence value 
is in millions $ GDP (constant 2005 US$). 

Table 11: Panel Causality Test based on Pooled Mean Group Analyses (PMG)  
for Energy Intensity 

Depnt. 
Variable 

Sources of Causation 
Long Run Short Run (χ2) 

Δ POP Δ AFL Δ AFL2 Δ REN Δ NRN Δ URB Δ OPN ECT 
ENI         
Model III 9.95*** 

(0.00) 
61.15*** 
(0.000) 

 0.45 
(0.50) 

17.37*** 
(0.00) 

0.04 
(0.84) 

 –0.176** 
(0.02) 

Model IV 6.03** 
(0.01) 

25.54*** 
(0.00) 

2.65** 
(0.07) 

  0.24 
(0.62) 

0.24 
(0.62) 

–0.165*** 
(0.00) 

Notes: χ2 tests have been undertaken for short-run analyses. p-values are provided in parentheses. ECT indicates 
estimated error correction terms. The Schwarz Information Criterion (SIC) has been used to determine the optimum lag 
length. (***) indicates that the test statistics are significant at the 1% level, with (**) indicating 5%, and (*) indicating 10%. 
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The main findings from both the linear and the nonlinear models show that population, 
non-renewable energy consumption, and urbanization increase energy intensity, 
whereas affluence and trade openness reduce it in Asian countries. The results from 
the nonlinear model also show that renewable energy consumption decreases energy 
intensity in the long run. 

5.3 Analysis of Cross-regime Estimations 

We now analyze the relationships between pollutant emissions and the set of 
independent variables using a structural regime-threshold model based on two different 
regimes. Our earlier results identified structural breaks in most series; these breaks 
coincide with the global recession in 1990 and the global financial crisis in 2010. Thus, 
following the seminal works of Enders and Granger (1998) and Hansen (1999), we  
use the year 1990 as the regime break date. This permits regimes to be identified by 
either one or multiple threshold variables. This approach permits an exploration of the 
dynamics of benchmark models’ changes, conditional on the choice of the imposed 
thresholds identified in the above empirical analysis. Thus, our earlier models are 
specified as follows: 
Model I 

2 11 12 13 14

15 2 16 17

18 19 20 2 1

[
              ] ( 1990) [
              ] ( 1990)

it it it it it

it it it it

it it it it it

CO POP AFL REN NRN
URB I CO POP AFL
REN NRN URB I CO

α α α α
α α α
α α α υ

∆ = ∆ + ∆ + ∆ + ∆
+ ∆ ∆ ≤ + ∆ + ∆
+ ∆ + ∆ + ∆ ∆ > +

 (5) 

Model II 

2
2 11 12 13 14

15 2 16 17
2

18 19 20 2 2

[
              ] ( 1990) [

              ] ( 1990)

it it it it it

it it it it

it it it it it

CO POP AFL AFL URB
OPN I CO POP AFL

AFL URB OPN I CO

β β β β
β β β

β β β υ

∆ = ∆ + ∆ + ∆ + ∆
+ ∆ ∆ ≤ + ∆ + ∆

+ ∆ + ∆ + ∆ ∆ > +

 (6) 

Model III 

11 12 13 14

15 16 17

18 19 20 3

[
              ] ( 1990) [
              ] ( 1990)

it it it it it

it it it it

it it it it it

ENI POP AFL REN NRN
URB I ENI POP AFL
REN NRN URB I ENI

π π π π
π π π
π π π υ

∆ = ∆ + ∆ + ∆ + ∆
+ ∆ ∆ ≤ + ∆ + ∆
+ ∆ + ∆ + ∆ ∆ > +

 (7) 

Model IV 

11 12 13 14

15 16 17

18 19 20 4

[
              ] ( 1990) [
              ] ( 1990)

it it it it it

it it it it

it it it it it

ENI POP AFL REN NRN
URB I ENI POP AFL
REN NRN URB I ENI

ζ ζ ζ ζ
ζ ζ ζ
ζ ζ ζ υ

∆ = ∆ + ∆ + ∆ + ∆
+ ∆ ∆ ≤ + ∆ + ∆
+ ∆ + ∆ + ∆ ∆ > +

 (7) 

where I(.) is known as the indicator function, and the rest of the variables have been 
described earlier in Section 3. 
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The estimated parameters of all the models under both regimes are presented in 
Table 12. Interestingly, the signs of all the coefficients and their statistical significance 
remain largely the same under both regimes (before and after 1990) for all variables  
in both linear and non-linear models. The results indicate that whereas urbanization 
plays a significant and positive role in increasing emissions in the second regime 
(Equation 5), openness reduces pollution (Equation 6) in the first regime. With respect 
to findings related to energy intensity, openness significantly reduces energy intensity 
in the first regime in Equation (8). 

Table 12: Estimates of the Multiple-regime Models 
 1st Regime  2nd Regime 
 Coefficient t-statistics  Coefficient t-statistics 

Dependent Variable: Emission 
Model I      
a11 0.747 1.13 a16 0.460 0.50 
a12 0.501*** 3.52 a17 –0.593** –2.26 
a13 –0.103*** –3.51 a18 –0.025 –0.45 
a14 0.421*** 8.25 a19 0.126 1.01 
a15 –0.124 –0.39 a20 4.461*** 4.82 
Model II      
b11 1.876*** 2.88 b16 1.429 1.20 
b12 –15.522** –2.40 b17 –8.124 –0.19 
b13 8.129** 2.40 b18 9.204 0.19 
b14 0.110 0.36 b19 2.137** 2.34 
b15 –0.123*** –3.17 b20 0.011 0.13 
Dependent Variable: Energy Intensity 
Model III      
c11 –0.299 –0.76 c16 –0.987* –1.82 
c12 –0.476*** –5.63 c17 –0.652*** –4.19 
c13 –0.026 –1.53 c18 0.050 1.53 
c14 0.099*** 3.25 c19 0.081 1.09 
c15 –0.146 –0.78 c20 0.863 1.57 
Model IV      
d11 0.032 0.09 d16 –0.897 –1.36 
d12 –7.228 –0.48 d17 4.147 0.29 
d13 8.405 0.48 d18 –2.387 –0.29 
d14 –0.078 –0.47 d19 1.273** 2.51 
d15 –0.063*** –2.93 d20 0.081 1.60 

Note: (***) indicates that the test statistics are significant at the 1% level, with (**) indicating 5%, and (*) indicating 10%. 

5.4 A Further Investigation 

In the above, we use panel estimators, like MG, CCEMG, and AMG, considering that 
the panel is cointegrated as a whole. Although urbanization-pollutant emissions and 
urbanization-energy intensity are shown to be cointegrated, this is not equivalent to 
cointegrating relationships existing for each country of the panel. Rejection of null 
hypothesis of no cointegration in a panel setting could either indicate a cointegrating 
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relationship holds for all cross-sectional units, or that a cointegrating relationship holds 
for only a small fraction of cross-sectional units (Westerlund et al. 2015). However, it is 
valid to proceed with panel estimations and inferences in cases of full panel 
cointegration. Hence, checking the cointegrating property of each country seems 
essential. If the URB is shown to be cointegrated with pollutant emissions or energy 
intensity for each country, the results from panel estimation are further credited. 
Therefore, we resort to applying the autoregressive distributed lag (ARDL)3 bounds 
testing approach. 
Tables 13A and 13B present the bounds testing results and the estimated coefficients 
on URB for all 13 emerging Asian economies. It appears that the cointegrating 
relationship exists for each economy. It validates the earlier result that the panel is 
cointegrated as a whole rather than fractional cointegration due to heterogeneity in 
each economy. These tables also reveal that the estimated error correction term for 
each economy is negative and statistically significant for both pollutant emissions and 
energy intensity. However, the speed of adjustment varies considerably, ranging from 
1% in India to nearly 96% in Mongolia in the urbanization-pollutant emissions model, as 
well as from 3% in the PRC to nearly 58% in the Republic of Korea in the urbanization-
energy intensity model.4 The columns URB and ∆URB report the estimated long-run 
and short-run impacts of urbanization on emissions and energy intensity, respectively. 
The long run results reveal that urbanization significantly increases long-run pollutant 
emissions in Bangladesh, India, Indonesia, the Republic of Korea, Malaysia, Pakistan, 
the Philippines, Thailand, and Viet Nam. By contrast, in the long run, urbanization 
seems to be a vital factor for energy intensity in Bangladesh; the PRC; Hong Kong, 
China; India; Indonesia; the Republic of Korea; Malaysia; Mongolia; and Pakistan. 
Interestingly enough, the direction of these long-run impacts in energy intensity are 
mixed for different countries. This could be influenced by the varying technologies 
adopted in different countries to cope with increasing energy consumption due to rapid 
urbanization. As far as short-run causality is concerned, urbanization causes pollution 
in Hong Kong, China; India; Indonesia; the Republic of Korea; Malaysia; Mongolia; the 
Philippines, Sri Lanka, Thailand and Viet Nam. Short-run causality from urbanization  
to energy intensity only runs in Bangladesh; Hong Kong, China; India; Malaysia; 
Mongolia; Pakistan; the Philippines; and Sri Lanka. These results are consistent with 
our previous results. Another interesting finding from our time series analyses 
regarding two Asian giants is that urbanization plays a very active role in increasing 
pollutant emission and reducing energy intensity in India in both the long and short run, 
while the impact of urbanization is not so significant in the PRC. The answer may lie in 
vigorous adoption of cleaner technologies in the PRC, like the recent investment in 
clean coal and renewables. 
  

3  We do not specify here the unrestricted error correction version for each model and the detail of the 
ARDL approach to save space. We also presented our key variable, urbanization, in Tables 13A and 13B 
for the same reason. 

4  Three estimated coefficients of ECMt-1 from Pakistan, the Philippines, and Sri Lanka in the urbanization-
pollutant emissions model and two from Bangladesh and Pakistan in the urbanization-energy intensity 
model are larger than one in magnitude, meaning that the economic system is not stable. We suspect 
this may be due to limited observations.  
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Table 13A: Autoregressive Distributed Lag Bounds Testing to Individual 
Countries for Pollutant Emissions 

Economies 
Model I 

Bounds Testing ECMt-1 URB ∆URB 
Bangladesh 4.283** –0.520** 1.221** 3.289* 
The PRC 4.555** –0.310** 0.192 1.735 
Hong Kong, China 4.263** –0.471*** 3.051* 2.037 
India 4.247** –0.010** 4.049*** 9.428*** 
Indonesia 4.166** –0.506*** 4.168*** 14.787*** 
Republic of Korea 2.813** –0.870*** 4.168*** 4.890** 
Malaysia 5.695** –0.536*** 9.459** 2.901* 
Mongolia 7.062** –0.956*** 2.185* 5.235** 
Pakistan 12.103** –1.216*** 3.056*** 1.443 
Philippines 10.971** –1.940*** 0.227* 19.574*** 
Sri Lanka 4.906** –1.311*** 1.577 10.235*** 
Thailand 6.024** –0.718*** 0.561*** 9.160*** 
Viet Nam 4.525** –0.814*** 2.100** 8.836*** 

Economies 
Model II 

Bounds Testing ECMt-1 URB ∆URB 
Bangladesh 8.424** –0.037** –2.276 0.216 
The PRC 4.356** –0.122*** 6.271 0.276 
Hong Kong, China 9.676** –0.881*** 2.053 3.836*** 
India 8.583** –0.384*** 3.522*** 10.912*** 
Indonesia 10.354** –0.145*** –0.189*** 4.948** 
Republic of Korea 6.744** –0. 735*** 1.235*** 6.729*** 
Malaysia 4.513** –0.897*** 7.742*** 5.808** 
Mongolia 4.071** –0.432*** –4.127 3.642* 
Pakistan 4.499** –0.089*** 5.207 1.502 
Philippines 8.333** –0.387*** 1.457** 10.297*** 
Sri Lanka 8.174** –0.696*** –0.865 0.191 
Thailand 8.767** –0.696*** 1.047*** 13.314*** 
Viet Nam 4.990** –0.115** –3.202 0.216 

Note: PRC = People’s Republic of China. (***) indicates that the test statistics are significant at the 1% level, with 
(**) indicating 5%, and (*) indicating 10%. Elasticities are given in the long-run analysis while for short-run χ2 values  
are reported. AIC criterion was adopted for selecting the optimum lag length. t-statistics are in the parentheses for  
long-run coefficients. 
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Table 13B: Autoregressive Distributed Lag Bounds Testing to Individual 
Countries for Energy Intensity 

Economies 
Model III 

Bounds Testing ECMt-1 URB ∆URB 
Bangladesh 6.455** –1.257*** 0.015** 2.452 
The PRC 4.475*** –0.030*** –0.471 1.571 
Hong Kong, China 4.410*** –0.161** –0.288** 4.629** 
India 10.983*** –0.019** –10.900** 6.993*** 
Indonesia 5.159*** –0.012** –4.826*** 0.416 
Republic of Korea 7.480*** –0.579** 0.240*** 5.043 
Malaysia 6.638*** –0.003** –5.719*** 21.043*** 
Mongolia 7.640** –0.580** 1.748 0.205 
Pakistan 10.155** –1.906*** 0.175*** 11.748*** 
Philippines 5.376** –0.457*** –0.300 0.047 
Sri Lanka 7.522** –0.095*** –31.598 12.345*** 
Thailand 12.678** –0.186*** –1.265 1.344 
Viet Nam 4.259** –0.398*** 0.221 0.591 

Economies 
Model IV 

Bounds Testing ECMt-1 URB ∆URB 
Bangladesh 4.200** –0.153*** 1.019** 4.526** 
The PRC 5.380** –0.459** –4.972** 1.593 
Hong Kong, China 4.214** –0.094** –6.766 1.401 
India 4.951** –0.319*** –7.464*** 18.796*** 
Indonesia 4.365** –0.038** 3.270 0.800 
Republic of Korea 5.136** –0.167** 0.521 0.718 
Malaysia 9.349** –0.881*** 4.971*** 4.948** 
Mongolia 6.020** –0.881*** 4.436** 4.180** 
Pakistan 5.241** –0.136*** –4.124 0.688 
Philippines 6.504** –0.021** 30.284 5.674** 
Sri Lanka 7.483** –0.341** –1.648 4.596** 
Thailand 16.540** –0.228*** –0.043 0.012 
Viet Nam 6.725** –0.217*** –4.154 0.925 

Note: PRC = People’s Republic of China. (***) indicates that the test statistics are significant at the 1% level, with  
(**) indicating 5%, and (*) indicating 10%. Elasticities are given in the long–run analysis while for short-run χ2 values  
are reported. AIC criterion was adopted for selecting the optimum lag length. t-statistics are in the parentheses for  
long-run coefficients. 
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6. CONCLUSION AND POLICY IMPLICATIONS 
The objective of this paper is to examine the impact of urbanization on pollutant 
emissions and energy intensity after controlling for disaggregated energy consumption, 
trade liberalization, and economic growth in selected emerging Asian economies.  
We use both linear and nonlinear panel data modeling techniques and employ  
the recently introduced mean group estimation methods that allow for heterogeneity 
and cross-sectional dependence. In addition, the relationship between affluence and  
CO2 emissions is examined in the context of the EKC hypothesis. Moreover, we 
perform all relevant diagnostic and specification tests that are necessary for obtaining 
unbiased and consistent regression results. Finally, we use the ARDL model to get 
country-specific estimates to validate our results from panel estimators. 
The empirical results reveal that the key determinants of CO2 emissions in Asian 
countries are population, affluence, and non-renewable energy consumption. Our main 
variable, that is, urbanization, tends to increase emission; however, the result is not 
statistically significant. This study also finds evidence of the existence of the EKC 
hypothesis, implying that when a certain level of economic growth has been achieved, 
emissions tend to decline. Results from nonlinear estimation show that renewable 
energy consumption, urbanization, and trade openness reduce emissions. The  
short-term findings indicate that population, affluence, and both renewable and  
non-renewable energy consumption have a positive and significant effect on CO2 
emissions, implying that these four factors do Granger-cause CO2 emissions. 
The results from both the linear and the nonlinear models reveal that population and 
non-renewable energy consumption increase energy intensity while economic growth 
and trade openness tend to decrease energy intensity. The results also demonstrate 
that population, affluence, and non-renewable energy consumption have a positive and 
significant effect on energy intensity, indicating that, in the short run, these three 
variables Granger-cause energy intensity. However, results from linear and nonlinear 
estimation show that our key variable, urbanization tends to increase energy intensity 
in these selected Asian developing countries. This result is contrary to the compact city 
hypothesis in that energy efficiency improves with urbanization. The above results are 
also corroborated by country-specific results from the ARDL bound testing approach. 
The above results have some important policy implications. Reduction of energy usage 
and pollutant emissions will be possible along with urbanization if governments of these 
countries do the following: (i) support renewable energy development and encourage 
construction of renewable energy producing and supplying infrastructure; (ii) develop a 
highly energy-efficient and emissions-reducing industry base; (iii) encourage a liberal 
trade regime for clean technology transfer from developed countries; and (iv) promote 
urbanization with low-carbon urban infrastructure and transportation systems to 
achieve sustainable growth in these emerging Asian economies. 
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