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ABSTRACT

Data Center Network Placement and Data Backup Against Region Failures

by

Lisheng Ma

Rapid growth of cloud computing has enabled a wide scope of new applications such

as e-commerce and social networking. As the underlying supporting infrastructure,

data center networks (DCNs) deployed in geographically distributed (geo-distributed)

locations are becoming increasingly important. However, geo-distributed DCNs are

vulnerable to large-scale region failures due to disasters. This makes DCN protection

against region failures a critical task. Proactive protection is an important way to

fight against DCN failures by network planning before disasters occur. To this end,

this thesis investigates DCN placement and data backup against region failures via

proactive protection mechanisms.

We first study optimal DCN and content placement with the objective of min-

imizing DCN failure probability. In this part, we combine the probabilistic region

failure model and the grid partition scheme to capture the key features of the general

non-uniform distribution of a potential region failure (in terms of its occurring prob-

ability and intensity) and to conduct network vulnerability assessment. Based on the

vulnerability information, we further develop an integer linear program (ILP)-based

theoretical framework to achieve optimal DCN and content placement with the mini-
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mum DCN failure probability. A heuristic is also proposed to make our solution more

scalable for large-scale networks.

We then optimize data backup for a particular DCN node threatened by an up-

coming disaster by properly exploring the ε early warning time of the disaster, where

ε denotes the time interval between the earliest moment that the DCN node is aware

of the disaster and the latest moment that the disaster indeed hits the DCN. In this

part, we investigate urgent data backup within the ε early warning time of the dis-

aster for both homogeneous and heterogeneous data backup scenarios (the former

concerns with the scenario that different types of data are backed up to the same set

of backup DCN nodes while the latter considers the scenario that different types of

data may be backed up to the different sets of backup DCN nodes).

In the homogeneous data backup scenario, we divide our design into two sub-

problems: Backup Capacity Evaluation (BCE) and Backup Cost Minimization (BCM).

BCE helps DCN operators to find the maximum backup capacity, and thus fully uti-

lize the early warning time to back up as much data as possible. Since the maximum

backup capacity may not be sufficient for backing up all data, priority can be given to

those more important data. On the other hand, BCM minimizes backup cost by prop-

erly selecting a set of safe backup DCN nodes and routes for those more important

data. We propose both ILPs and heuristic for the two sub-problems.

In the heterogeneous data backup scenario, we propose two backup schemes: max-

imum data backup scheme (MDBS) and fairness data backup scheme (FDBS). The

former maximizes the total amount of data that can be backed up, and the latter

maximizes the same proportion of data backup for each type of data in a fair manner.

For each scheme, an ILP and a heuristic are proposed to properly select a set of safe

backup DCN nodes and corresponding backup routes.

Our proposed solutions for DCN and content placement can effectively protect

DCNs and contents against a potential region failure under the global non-uniform
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distribution. By taking the early warning time into account, our proposed backup

schemes can generate efficient solutions for urgent data backup against ε-time early

warning disaster. It is expected that the study in this thesis can provide a fundamental

guideline to the design of disaster survivable DCNs.
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CHAPTER I

Introduction

In this chapter, we first introduce the background of data center networks and

disaster threats. Then we describe the motivations and contributions of this thesis.

Finally, we give the outline of this thesis.

1.1 Data Center Networks

A data center network (DCN) is a warehouse-scale and massively parallel com-

puting and storage resource. It consists of hundreds or even thousands of servers

organized in racks, which are connected with a high-speed communication network

[1–3]. In recent years, many large enterprises (e.g., Google, Amazon and Microsoft)

have built their own DCNs in geo-distributed locations around the world to provide

cloud services [4–6]. For example, according to [7], Google has more than 30 data

centers around the world which include more than 450,000 servers and can process

more than 20 petabytes of data per day.

Nowadays, most online services are geo-distributed to serve millions of user-

s around the world such as online video, social networking, web search, etc., and

then geo-distributed DCNs make it easy for any service to become geo-distributed

[8, 9]. Based on geo-distributed DCNs, services or contents can be replicated among

multiple DCNs located at different network regions and services can be provided by
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the anycast service mode (i.e., a service request can be served by any DCN that con-

tains such service.) [10]. Such geo-distributed DCNs bring the following benefits: 1)

a service request can be served by a nearby DCN that provides such service such that

the service cost and latency can be reduced; 2) they can improve service survivabil-

ity under failures, as services can still be supported by other DCNs containing the

replicas of these services upon the failures of services at a particular DCN; 3) they

can reduce the operating cost by exploiting the regional differences in prices of energy

and real estate.

Due to these attractive advantages of geo-distributed DCNs, they are becoming

important infrastructures to meet the growing demands of the emerging applications

such as e-commerce, social networking, cloud computing, etc. As the trends like our

increasing reliance on online services and many applications in mobile device changing

into cloud services develop, it is believe that geo-distributed DCNs will play a more

important role in the future communication networks.

1.2 Disaster Threats

With the increase of frequencies of disasters, geo-distributed DCNs are facing

more and more potential large-scale disaster threats, both natural and human-made.

Some recent major network disruptions due to disasters include 2012 Sandy Hurri-

cane, 2011 Japan Tsunami, 2008 China Wenchuan earthquake, etc. [11–19]. Such

disasters usually affect a specific geographical region, causing failures of a set of net-

work components and degradations or even breakdowns of vital network services.

For example, China Wenchuan earthquake in 2008 affected over 60 enterprise DCNs

and more than 3000 telecom offices, as well as around 30,000 kilometers optic cables

[13, 18], and Japan Tsunami and earthquake in 2011 affected tens of DCNs and more

than 2000 telecom buildings [15, 19].

It is notable that different disasters with different features (e.g., intensity, pre-
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dictability and location) lead to different impacts on network. Thus, network op-

erators should consider different measures for different types of disasters to protect

network. For the natural disasters such as earthquakes, hurricanes, floods and t-

sunamis, based on climatic and environmental conditions the potential intensity and

location of those disasters can be estimated by using predictable technologies of dis-

asters [20, 21] before disasters occur. Then, network operators can take the potential

disasters into account in the network planning stage (e.g., deploying a new DCN).

On the other hand, the early warning systems for disasters are widely applied in the

world which can help us to obtain certain early warning information (e.g. affected

region and time) of an upcoming disaster. For example, REIS (real-time earthquake

information system) [22] is an earthquake early warning system deployed in Japan.

It can estimate location and magnitude of an earthquake within 5 seconds after the

P-waves arrive. Besides, national hurricane center in America [21] can provide early

hurricane warnings on a time basis from hours to days. For different types of disas-

ters, we can obtain different early warning times (from a few seconds to a few days).

Based on the early warning information, network operators can carry out the urgent

protection schemes for the network facilities that will be affected by an upcoming

disaster.

In addition to natural disasters, human-made disaster threats such as weapons of

mass destruction (WMD) attacks, electromagnetic pulse (EMP) attacks are rising [23,

24]. In general, human-made attacks choose large cities and important infrastructures

as targets such as government, DCNs. Thus, network operators also need to consider

the possible human-made disasters in the network deployed regions when they design

the network protection schemes.
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Figure 1.1: U.S. national seismic hazard map

1.3 Motivations and Contributions

As the above discussions, geo-distributed DCNs are vulnerable to large-scale dis-

aster threats. Thus, it is crucial to study the DCN protection measures against region

failures due to disasters, and then disaster survivable DCNs can be achieved [25–30].

To this end, this thesis focuses on the DCN and content placement with the consider-

ation of a potential large-scale region failure due to disaster and data backup in DCNs

against an upcoming disaster. Given a network, the DCN and content placement in

the network with the consideration of a potential region failure usually concerns with

the following two aspects: 1) to assess the network vulnerability due to a region fail-

ure; 2) based on the network vulnerability information, to properly place the DCNs

and contents in the network such that the DCN failure probability due to region fail-

ure is minimized. For network vulnerability assessment, the previous works [31–35]
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all assumed that both occurring probability and intensity of region failure(s) follow

the uniform distribution in the network area (Please see Section 2.1 for related work).

As illustrated in Fig. 1.1, from U.S. national seismic hazard map [20], we can observe

that in the real world, however, a disaster may happen in different areas with differ-

ent probabilities and different intensities (i.e., non-uniform distribution of a disaster).

Thus, it is desirable to capture the key features of the general non-uniform distribu-

tion of a potential region failure due to disaster in terms of its occurring probability

and intensity, and then apply them to conduct the network vulnerability assessment.

Note that since DCN and content placement with the consideration of a potential

region failure is implemented based on network vulnerability information, the previous

works [36–40] on DCN and content placement also failed to take into account the

global non-uniform distribution of potential region failures in terms of their occurring

probabilities and intensities (Please see Section 2.2 for related work). On the other

hand, in a large-scale network there are multiple paths between an arbitrary pair of

nodes, which indicates that the probability that these paths simultaneously fail due

to disaster is very small. In contrast, if a DCN hosting node fails after disaster, the

contents provided by this node will be unavailable and the adverse impact of such

failure on the DCN is even greater than the path failure. Thus, the tradeoff between

failure probabilities of DCN hosting nodes and failure probabilities of requesting paths

should be considered. Also, since content or service providers in DCNs wish to satisfy

user demands with low latency, we need to consider the traffic transmission delay issue

as well in the DCN design.

Data backup is an important proactive approach against disasters in DCNs by

storing multiple redundancies across geo-distributed DCNs. The existing studies

mainly focused on periodical data backup [41, 42] (Please see Section 2.3 for re-

lated work). Such periodical backup schemes may not result in high data protection

efficiency under the disaster scenario, because a sudden disaster generally occurs in
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an unpredictable manner, and thus newly generated data may not be well protected

in time due to the fixed data backup period. Based on the early warning information

from the early warning systems, recently early warning time backup against disasters

was proposed in [43] and [44] to maximize data owners’ utility and the number of

contents that can be evacuated, respectively. However, this problem have not been

fully explored yet. For example, backup cost as a major concern for DCN operators

to select a protection strategy and the heterogeneous data backup scenario (i.e., dif-

ferent types of data hosted at a DCN node may be backed up to the different sets of

backup DCN nodes) are not considered.

To address the above limitations on the DCN placement and data backup against

region failures due to disasters, this thesis studies the DCN and content placement

with the consideration of global non-uniform distribution of a potential region failure

and urgent data backup by fully utilizing the early warning time of an upcoming

disaster. The main contributions of this thesis are summarized as follows.

1. Region failure-aware DCN and content placement.

We study the optimal DCN and content placement in this part to minimize the

DCN failure probability under a region failure. We first propose a general grid

partition-based scheme to evaluate the vulnerability of a given network due to the

global non-uniform distribution of a region failure, in which the probabilistic region

failure model is applied to determine the failure probability of a node/link. Then

we can create a “vulnerability map” for DCN and content placement in the network.

Based on the grid partition-based scheme and the corresponding vulnerability map,

we further develop an integer linear program (ILP)-based theoretical framework to

achieve optimal DCN and content placement, which leads to minimum DCN failure

probability against a region failure. To make the problem more scalable for large-scale

problems, a heuristic is also proposed to achieve the time-efficient solution. Finally,

we present extensive numerical results to demonstrate the validity of the proposed
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network vulnerability assessment scheme and the proposed ILP and heuristic for DCN

and content placement.

2. Homogeneous data backup based on early warning of region failure.

In this part, we investigate the urgent data backup for a particular DCN node

threatened by a region failure due to an upcoming disaster with the early warning

time ε, where we consider the homogeneous data backup (i.e., different types of data

hosted at the DCN node are backed up to the same set of backup DCN nodes). We

first formulate an ILP to find the maximum amount of data that can possibly be

protected by fully utilizing the given early warning time ε. This helps to determine

which data should be protected according to data importance. Then, we formulate

another ILP to achieve minimum cost backup by properly selecting a set of safe backup

DCN nodes and corresponding backup routes for those selected important data. To

get real-time solutions for engineering practice, we also propose a heuristic to achieve

cost-efficient backup for ε-time early warning disaster. Finally, extensive numerical

results show that our solutions can be self-adaptive to different early warning times.

3. Heterogeneous data backup based on early warning of region failure.

In this part, we also focus on the optimal data backup for a particular DCN node

threatened by a region failure due to an upcoming disaster with the early warning

time ε, where the heterogeneous data backup (i.e., different types of data hosted at the

DCN node may be backed up to the different sets of backup DCN nodes) is taken into

account. To this end, two backup schemes are developed to carry out urgent backup

within the given early warning time ε, which are maximum data backup scheme

(MDBS) and fairness data backup scheme (FDBS). The former is to maximize the

total amount of data that can be backed up, and the latter is to maximize the same

proportion of data backup for each type of data in a fair manner. For those backup

schemes, we first develop the corresponding ILP models by properly selecting a set of

safe backup DCN nodes and routes to obtain the optimal backup solutions. To meet
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the real-time requirement of engineering practice, we then propose the corresponding

heuristics. Finally, extensive numerical results show that the solutions from both

schemes are adaptive to different early warning times

1.4 Thesis Outline

The rest of this thesis is organized as follows. Chapter II discusses the related

work of this thesis. We investigate the region failure-aware data center network and

content placement in Chapter III. Chapter IV presents the work on homogeneous

data backup based on early warning of region failure and Chapter V introduces the

work regarding heterogeneous data backup based on early warning of region failure.

Finally, we conclude this thesis, and discuss the topics for future research in Chapter

VI.
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CHAPTER II

Related Work

In this chapter, we present the previous works related to our study in this thesis,

including network vulnerability assessment, data center network and content place-

ment, as well as network protection.

2.1 Network Vulnerability Assessment

To evaluate network vulnerability under disasters, different models can be adopted

to capture the key features of region failures due to disasters, which include deter-

ministic model and probabilistic model [45]. Under deterministic model, any network

component (e.g., node, link, etc.) fails with the probability 1 if it falls within the

failure region due to a disaster, whereas that falling within the failure region fails

with a certain probability between 0 and 1 based on probabilistic model, and such a

failure probability depends on the intensity of failure, the distance to failure center

and also the dimension of the component (such as the length of a link).

Based on the aforementioned region failure models, some works have been done

on the assessment of network vulnerability and identification of vulnerable network

zones due to region failure [31–35]. By using the deterministic circular/line cut re-

gion failure models, the network vulnerability assessments were conducted in [31, 32].

Since under a real-world disaster the network components rarely are completely de-
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stroyed, the real-world disasters have probabilistic rather than deterministic impacts

on network components, and then probabilistic model is more suitable for network

vulnerability assessment under disasters. In [33] and [34], a probabilistic failure model

and grid partition based framework were developed to efficiently evaluate the network

vulnerability. Recently, network vulnerability assessment with the consideration of

multiple simultaneous probabilistic failures was investigated in [35].

In the above works, both occurring probability and intensity of region failure(s)

follow the uniform distribution in the network area which cannot match the real-world

disasters that may occur in different regions with different probabilities and different

intensities. Thus, this thesis studies the network vulnerability assessment with the

consideration of the global non-uniform distribution of a potential region failure due

to disaster in terms of its occurring probability and intensity.

2.2 Data Center Network and Content Placement

Regarding the data center network (DCN) and content placement, the work in [46]

studied DCN and content placement with the objective of minimizing the network’s

power consumption. To solve the scalability issue, a fully scalable DCN architecture

with distributed placement of component sets in a given optical network was proposed

in [47], which can remove the environmental constraints and also reduce the system

cost. Recently, content placement was considered in [48] to identify the optimal

placement of videos in a large-scale VoD system such that the total network bandwidth

consumption is minimized.

With the consideration of potential network failure(s), Xiao et al. in [36] studied

the optimal DCN placement problem with service routing and protection to minimize

the network cost, while ensuring fast protection of all services against any single link

failure or service failure at a particular DCN. By assuming multiple region failures

in fixed locations, the works in [37, 38] concerned with the joint design of content
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placement, routing, and protection of paths and contents to achieve more efficient

protection of optical DCNs than dedicated single-link failure protection, while the

works in [39, 40] investigated the DCN and content placement to minimize both the

contents unavailability due to DCN hosting nodes damage and requests unreachability

due to paths damage from disasters. Besides, extensive efforts have been focused on

node placement problems considering minimizing the traffic weighted mean internodal

distance of a network, the number of deployed nodes, cost, etc. [49–51].

The previous works on the DCN and content placement with the consideration of

potential network failure(s) failed to take into account the non-uniformly distribut-

ed region failure, and these works also did not consider the inherent tradeoff among

failure probabilities of DCN hosting nodes, failure probabilities of requesting paths

and traffic transmission delay. This thesis investigates the DCN and content place-

ment with the consideration of global non-uniform distribution of a potential region

failure, where the tradeoff among failure probabilities of DCN hosting nodes, failure

probabilities of requesting paths and traffic transmission delay is considered.

2.3 Network Protection

Network protection against region failures due to disasters can be achieved by

either proactive approaches or post-disaster restoration schemes [52]. The former

designs scheme to prevent network failures by network planning before disasters occur.

The latter utilizes resources available at the disaster time to recover network. Due to

the uncertainty of disasters, proactive approaches require a relatively large amount of

resources to achieve a desired level of protection. In contrast, post-disaster restoration

is cost-saving, but the effect is generally poor due to the best-effort nature. For

proactive approaches, the work in [38] studied the protection scheme against a single

disaster failure by providing the backup path and data center for a request affected by

the disaster. A disaster-risk-aware provisioning was proposed in [53] in which valuable
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connections are routed on no-(or low-) risk regions due to disasters such that the risk

and penalty can be reduced under such disasters, and the link-disjoint primary and

backup paths are also provided to avoid the simultaneous failures of those paths under

disasters. The study in [54] focused on the disaster-aware service provisioning scheme

which multiplexes service over multiple paths destined to multiple serves (or data

centers) with manycasting against failures of links and nodes caused by disasters.

In terms of proactive approach, data backup is an important proactive protection

method. Based on the mutual backup model in [55], some periodical data backup

schemes were proposed in [41] and [42] to jointly optimize backup site selection and

data transmission paths. Recently, early warning time backup against disasters was

proposed in [43] and [44] to carry out urgent backup within the early warning time for

those data that may not be well protected by regular backup in time due to the fixed

data backup period. The work in [43] evacuated as much contents as possible from

the DCN node threatened by disaster to a single backup DCN node within the early

warning time, while the study in [44] carried out time-constrained urgent backup to

maximize data owners’ utility. In addition, some works [56] and [57] focused on the

real-time data replications in DCNs whereas data generated in a certain past period

of time is not considered.

Regarding post-disaster restoration schemes, three post-disaster reprovisioning

schemes were proposed in [58] to maintain network connectivity and maximize the

traffic flow in the post-disaster network. The work in [59] considered the issue of

restoration in optical cloud networks for fiber link failure and then a restoration-

based survivability strategy was developed by combining the benefits of both cloud

service relocation and service differentiation concepts to restore cloud services. A

post-disaster re-provisioning scheme was proposed for telecom mesh networks in [60]

which takes fairness-aware degradation and multipath deployment into account. Un-

der a large-scale disaster, multiple network components will be affected, and then
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the failed components may be repaired through multiple restoration stages for some

reasons e.g., limited repair resources. Thus, the progressive disaster recovery is an

attractive topic in recent years which was investigated in [61–63]. Some summaries

of network protections against disasters were presented in [64–68].

In this thesis, the study of DCN protection falls into the same category as [43] and

[44]. We propose urgent backup schemes for homogeneous and heterogeneous data

backup, respectively, and our solutions can be self-adaptive to different early warning

times.
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CHAPTER III

Region Failure-Aware Data Center Network and

Content Placement

In this chapter, we focus on the region failure-aware data center network (DCN)

and content placement in which the non-uniform distribution of a potential region

failure due to disaster is considered. Given a network for DCN placement, a general

probabilistic region failure model is adopted to capture the key features of a region

failure and to determine the failure probability of a node/link in the network under

the region failure. We then propose a general grid partition-based scheme to flexibly

define the global non-uniform distribution of a potential region failure in terms of

its occurring probability and intensity. Such grid partition scheme also helps us

to evaluate the vulnerability of a given network under a region failure and thus to

create a “vulnerability map” for DCN and content placement in the network. With

the help of the vulnerability map and by taking into account the tradeoff among

failure probabilities of DCN hosting nodes, failure probabilities of requesting paths

and traffic transmission delay, we further develop an integer linear program (ILP)-

based theoretical framework to identify the optimal DCN and content placement,

which leads to the minimum DCN failure probability against a region failure. To make

the overall placement problem more scalable for large-scale networks, a heuristic is also

proposed by dividing the problem into two sub-problems (i.e., DCN placement and
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content placement). Finally, extensive numerical experiments are carried out based

on the real gridded data of U.S. national seismic hazard map [69] to demonstrate our

proposed network vulnerability assessment scheme and to validate the efficiency of

the proposed ILP and heuristic for DCN and content placement under non-uniform

spatial and intensity distribution of a potential disaster.

3.1 Network Vulnerability Assessment

We consider a network with deployment area Z and denote it as a graph G =

(V,E), where V is a set of nodes and E is a set of network links.

3.1.1 Probabilistic Region Failure Model

A real-world disaster is usually confined in a specific geographical region. A net-

work component (like a link or node) in this disaster region will fail with certain

probability, and such a failure probability depends on the intensity of failure, the dis-

tance to failure center and also the dimension of the component (such as the length

of a link). To capture these key features of a region failure, we adopt the general

probabilistic region failure (PRF) model proposed in [34].

• PRF Model Definition :

(1) As illustrated in Fig. 3.1, the PRF is defined by a set of consecutive concentric

annuluses with radius ri, i = 1, ...,m.

(2) The ith annulus is associated with failure probability pi, and such probability

is monotonously decreasing with annulus, i.e., pi ≥ pi+1, 1 ≤ i ≤ m−1. Here,

the region failure is only confined within the circle area of radius rm, beyond

which the failure probability is regarded as 0.
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Figure 3.1: Probabilistic region failure model, m=3

It is notable that under a probabilistic region failure, multiple network components

(e.g. nodes and links) may simultaneously fail, but with a certain probability for each.

In this thesis we evaluate failure probabilities of node and link separately without any

dependency between the two. Since failure probability evaluations of nodes and links

are different from each other as follows, the proposed approaches can properly handle

various scenarios.

Based on the PRF model, the failure probability Pv for a node v in the ith annulus

can be formulated as

Pv = pi. (3.1)

In general, a link spans multiple annuluses of a region failure, and each annulus

contains a segment of the link. Then, failure probability of the link is determined by

that of all those segments. Therefore, the failure probability Pl for a link l can be
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formulated as

Pl = 1−
m∏
i=1

(1− Pli), (3.2)

wherem is the number of annuluses in the PRF model and Pli is the failure probability

of segment li on link l that falls into the ith annulus.

Consider a segment li on link l that falls into the ith annulus. We first divide

such a segment into multiple shorter segments, and each of them is approximated as

a node to evaluate the failure probability of li. Then, the failure probability Pli for li

can be formulated as

Pli = 1− (1− pi)
|li|
ξ , (3.3)

where ξ is a pre-defined factor representing the length of the shorter segment and |li|

represents the length of segment li. Note that in a practical fiber-optical network,

each fiber link has a set of amplifiers. Generally, a link failure is mainly caused by

failures of those amplifiers. Similar to [35], we can equivalently treat a segment on

a particular link as a sequence of amplifiers, with each approximated as a node to

evaluate its failure probability. This explains equation (3.3).

For the example in Fig. 3.1, the failure probabilities of segments on link l are

evaluated as

Pl1 = 1− (1− p1)
|l1|
ξ ,

Pl2 = 1− (1− p2)
|l2|
ξ ,

Pl3 = 1− (1− p3)
|l3|
ξ , (3.4)
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where

|l2| = |l2a|+ |l2b|, |l3| = |l3a|+ |l3b|. (3.5)

Based on link failure probability, failure probability Pr for a path r can be formu-

lated as

Pr = 1−
∏
l∈r

(1− Pl), (3.6)

where Pl is the failure probability of a link l on path r.

3.1.2 Vulnerability Metrics

To evaluate the vulnerability of a network, we consider the following two vulner-

ability metrics:

• NFP (node failure probability): The probability that a node fails due to

a PRF.

• LFP (link failure probability): The probability that a link fails due to a

PRF.

For a given network, one straight-forward approach to assessing the vulnerability

of a metric △ is to first partition the overall network area into some disjoint region

failure location (RFL) zones

• RFL Zone Definition : A RFL zone for a specified metric △ (e.g. NFP or

LFP) is a network subarea that any PRF with center in it will always induce

the same value of △ to the network.

For a specified metric △, suppose that we have already divided the network de-

ployment area Z into a set of disjoint RFL zones Zn, where a PRF in Zn induces the

value △Zn of △ to the network. Then the overall metric △ can be calculated as
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Figure 3.2: A grid partition for U.S. InternetMCI network

△ =
∑
Zn

PZn · △Zn . (3.7)

Here, PZn denotes the probability that a PRF falls within the RFL zone Zn.

It is notable that to directly apply (3.7) for calculating a metric △, we first need

to find out all RFL zones of the metric, which involves the complicated geometric

computation and quickly becomes computationally intractable for a large-scale net-

work [33, 34]. In the following section, we propose a general grid partition-based

scheme, which helps us to flexibly define the non-uniform distribution of PRF and to

efficiently evaluate the vulnerability of a network.

3.1.3 Grid Partition-Based Vulnerability Evaluation

As illustrated in Fig. 3.2 for U.S. InternetMCI network [70], we apply a grid

partition scheme to evenly divide the network area Z into M small square cells.

Based on this grid partition scheme, if we regard each cell as a “RFL” zone and take

the center point of the cell as the failure center to calculate the metric △, then we
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Algorithm 1 NFP evaluation:
Input:

Network topology information, a set of nodes V and failure model parameters.
Output:

NFP : △NFPv evaluation for node v ∈ V .
1: for each node v in V do
2: △NFPv = 0;
3: for n ∈ [1, 2, ...,M ] do
4: calculate NFP △v

Zn
for v by using (xZn , yZn) as the center point of concentric

circles in PRF model with parameters Zpara
n ;

5: △NFPv = △NFPv + PZn · △v
Zn
;

6: end for
7: end for
8: return △NFPv , v ∈ V .

Algorithm 2 LFP evaluation:
Input:

Network topology information, a set of links E and failure model parameters.
Output:

LFP : △LFPl
evaluation for link l ∈ E.

1: for each link l in E do
2: △LFPl

= 0;
3: for n ∈ [1, 2, ...,M ] do
4: calculate LFP △l

Zn
for l by using (xZn , yZn) as the center point of concentric

circles in PRF model with parameters Zpara
n ;

5: △LFPl
= △LFPl

+ PZn · △l
Zn
;

6: end for
7: end for
8: return △LFPl

, l ∈ E.
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Figure 3.3: Vulnerability map

can get an evaluation of metric △ based on (3.7). Since the intensity of a disaster

may be different in different regions, a PRF with center falling within different cells

may have different parameters of ri and pi.

If we use (xZn , yZn) to denote the center point of cell Zn, with the help of the grid

partition scheme the evaluations of NFP and LFP are summarized as Algorithms

1 and 2, respectively. Here, the number of square cells M , PRF model parameters

Zpara
n and the probability PZn that a PRF falls within the zone Zn can be determined

according to the information of real disaster data, such as the gridded data of U.S.

national seismic hazard map [69].

It is notable that the grid partition scheme can also help us to create a “vulner-

ability map” of a given network, in which the NFP for each node and LFP for each

link in the network are illustrated.

For example, for the network shown in Fig. 3.2, its “vulnerability map” is shown in

Fig. 3.3 (See Table 3.1 for link information and subsection 3.4.1 for related parameter
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Table 3.1: Links in the U.S. InternetMCI network

Link No. Link Link No. Link Link No. Link

0 (0,1) 11 (4,8) 22 (9,10)
1 (0,3) 12 (4,9) 23 (9,16)
2 (1,2) 13 (4,16) 24 (11,12)
3 (2,3) 14 (5,8) 25 (11,14)
4 (2,7) 15 (6,7) 26 (12,13)
5 (2,9) 16 (6,12) 27 (12,14)
6 (2,10) 17 (7,12) 28 (14,15)
7 (3,7) 18 (8,9) 29 (14,16)
8 (3,15) 19 (8,14) 30 (15,16)
9 (3,16) 20 (8,16) 31 (16,17)
10 (4,5) 21 (8,18) 32 (17,18)

settings). Such “vulnerability map” will be helpful for identifying the optimal DCN

and content placement in the network to lead to the minimum DCN failure probability.

3.2 ILP for Data Center Network and Content Placement

With the help of the “vulnerability map” of a given network, we consider here

the optimal DCN and content placement in the network to minimize the DCN failure

probability due to a region failure. The inherent tradeoff among failure probabilities of

DCN hosting nodes, failure probabilities of requesting paths and traffic transmission

delay is also considered in the optimal placement problem.

3.2.1 Problem Description

In this placement problem, we consider to place multiple DCNs and different types

of contents in a given network, and each DCN and each type of content are treated

equally. Our objective is to determine the locations of DCNs and contents in a given

network such that DCN failure probability under a region failure is minimized. Thus,

we consider the simple scenario in which the size of each type of content and the

constraints of bandwidth on each link, storage capacity of each DCN deployed node
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and the service ability of each DCN node are not taken into account. Regarding a

request for a content, we only consider the traffic transmission delay to avoid the long

communication latency between the requesting node and content hosting node, and

other requirements are also not taken into account. We use the length of a path to

approximate the transmission delay of the traffic along it, and formulate the optimal

DCN and content placement problem as an ILP problem as follows.

3.2.2 Notation List

The detailed inputs and variables used in the ILP formulation are listed in Tables

3.2 and 3.3.

Table 3.2: Parameters for Inputs

Notation Definition

V The set of all nodes in network G(V , E).

E The set of all links in network G(V , E).

V ′ The set of DCN candidate hosting nodes, V
′ ⊆ V .

C The set of contents provided by DCNs.

δ The scaling factor for adjusting the weight among total fail-

ure probability of DCN hosting nodes, total failure prob-

ability of requesting paths and total traffic transmission

delay.

S The set of requesting nodes, S ⊆ V .

Rsv The set of paths between requesting node s and DCN host-

ing node v.

Nd The number of DCNs to be placed.

Nc The maximum number of replicas of content c.
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Nsv The number of paths between requesting node s and DCN

hosting node v.

β Predefined constant greater than the number of contents

|C|.

PFv The failure probability of DCN candidate hosting node v

(△NFPv) obtained by “vulnerability map”.

PFrsv The failure probability of path r between requesting node

s and DCN hosting node v obtained by Pr = 1−
∏
l∈r

(1−Pl).

PFsv The average failure probability of paths between requesting

node s and DCN hosting node v.

Lrsv The length of path r between requesting node s and DCN

hosting node v.

Lsv The average length of paths between requesting node s and

DCN hosting node v.

Table 3.3: Variables

Notation Definition

Hv Binary variable. It takes 1 if a DCN is placed at node v

and 0 otherwise.

Hc
v Binary variable. It takes 1 if content c is hosted at DCN

hosting node v and 0 otherwise.

Hsc
v Binary variable. It takes 1 if requesting node s requests

content c provided by DCN hosting node v and 0 otherwise.
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3.2.3 ILP Formulation

Minimize
{
δ
∑
v∈V ′

HvPFv +
∑
v∈V ′

∑
s∈S

∑
c∈C

Hsc
v (PFsv + Lsv)

}
. (3.8)

Subject to

PFsv =

∑
r∈Rsv

PFrsv

Nsv

,∀s ∈ S, ∀v ∈ V ′; (3.9)

Lsv =

∑
r∈Rsv

Lrsv

Nsv

, ∀s ∈ S,∀v ∈ V ′; (3.10)

Hv ≥
1

β

∑
c∈C

Hc
v, ∀v ∈ V ′; (3.11)

∑
v∈V ′

Hv ≤ Nd; (3.12)

∑
v∈V ′

Hc
v ≥ 2,∀c ∈ C; (3.13)

∑
v∈V ′

Hc
v ≤ Nc, ∀c ∈ C; (3.14)

Hsc
v ≤ Hc

v, ∀v ∈ V ′,∀s ∈ S, ∀c ∈ C; (3.15)
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∑
v∈V ′

Hsc
v = 1,∀s ∈ S, ∀c ∈ C. (3.16)

Objective (3.8) (abbreviated as failure risk) minimizes the total failure probabili-

ty of DCN hosting nodes and requesting paths, as well as the total traffic transmission

delay. The scaling factor δ is used to control the weight among total failure proba-

bility of DCN hosting nodes, total failure probability of requesting paths and total

traffic transmission delay. Equation (3.9) determines the average failure probability

of paths between requesting node s and DCN hosting node v while Equation (3.10)

calculates the average length of paths between requesting node s and DCN hosting

node v. Constraint (3.11) implies that if any content c is provided by a node v, then

a DCN must be placed at this node. Here, we use β larger than |C| to ensure that

constraint (3.11) can be properly established when Hv = 1 and 1 ≤
∑
c∈C

Hc
v ≤ |C|.

Constraint (3.12) indicates a bound on the total number of DCNs placed in the net-

work. Constraint (3.13) guarantees that any content c is replicated at least twice

while constraint (3.14) limits the number of replicas of content c to its maximum pos-

sible number. Constraint (3.15) ensures that if requesting node s requests content c

provided by DCN hosting node v, node v should contain content c. Constraint (3.16)

guarantees that a request from node s for content c can be satisfied by only one DCN

containing content c.

In our work, DCN placement is static, which is implemented at the network plan-

ning stage for only once. However, since the information on disaster and content

properties (e.g. content request) is time-varying, content placement can be adjusted

when the information on disaster and content properties are updated. In general,

content placement can be optimized either periodically according to daily content re-

quests variation, or within the early warning time of an upcoming disaster if the DCN
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failure risk is observed higher than the current risk evaluation. It is notable that the

content requests (i.e., connection requests from requesting nodes for contents) only

depend on the requesting nodes and the amount of contents, and are independent

from the final locations of DCN and content placement. As requesting nodes and

contents are given, the content requests can be modeled/obtained based on those

given parameters by simple statistics.

3.3 Heuristic

To make the overall placement problem more scalable for large-scale networks, we

propose here a heuristic to divide the problem into two sub-problems. We first solve

the DCN placement problem, and then consider the content placement problem by

taking the results of DCN placement as the input.

3.3.1 Algorithm Description

The proposed heuristic is summarized in Algorithms 3 and 4. Algorithm 3 gives

the pseudo code of DCN placement, and then based on the results of Algorithm 3,

the content placement scheme is shown in Algorithm 4. Here, the notations PFsv,

Lsv, PFv, Nd, Nc, V
′, C, S and δ are defined in Section 3.2.2, and let |B| denote the

number of elements in an arbitrarily given set B.

DCN placement: In order to determine DCN hosting nodes, we need to evalu-

ate the failure risk of each candidate DCN hosting node and then the selected DCN

hosting nodes induce small failure risk for connection requests. Since the connection

requests for each content are given which are independent from the final locations

of DCNs and contents, we can use these connection requests (i.e., the information

of content requests) to evaluate the failure risk of each candidate DCN hosting n-

ode. For DCN placement, first, we find a content that has the maximum number of

connection requests from requesting nodes. For each DCN candidate hosting node,
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we calculate the failure risk when the content found before is provided by this node,

respectively. Then, we determine a node that induces the minimum failure risk as the

first DCN hosting node from the set of DCN candidate hosting nodes. After that we

use the iteration to determine all the DCN hosting nodes. In each iteration, a DCN

hosting node from the set of DCN candidate hosting nodes is found which induces the

minimum failure risk when all connection requests are provided by the determined

DCN hosting nodes and this node. For a given network for DCN placement, our

algorithm can find the DCN hosting nodes from the set of DCN candidate hosting

nodes. Then, the small failure risk is achieved if all connection requests from a set of

requesting nodes are provided by these nodes.

Content placement: After determining the DCN hosting nodes, we then assign

the contents to DCNs which should satisfy constraints (3.13) and (3.14) in Section

3.2.3. For each content, we first assign it to these DCN hosting nodes, which induce

the minimum value of total failure probability of requesting paths and total traffic

transmission delay for this content provided by these nodes. To satisfy constraints

(3.13) and (3.14), for each content, we check the number of DCN hosting nodes which

host this content. If a content doesn’t satisfy constraint (3.13), we successively assign

this content to DCN hosting node that doesn’t contain this content until satisfy-

ing constraint (3.13), which induces the minimum value of total failure probability

of requesting paths and total traffic transmission delay for this content. If a con-

tent doesn’t satisfy constraint (3.14), we successively reduce the DCN hosting node

containing this content until satisfying constraint (3.14). Compared with the original

DCN hosting nodes containing this content, we ensure that the remaining nodes bring

about the smallest gap in the value of total failure probability of requesting paths

and total traffic transmission delay for this content.

In Algorithm 3, the initialization is shown in line 1. The content c ∈ C is found

which has the maximum number of connection requests from requesting nodes in line
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Algorithm 3 DCN Placement (DP):

Input:
G(V,E), V ′ ⊆ V , S ⊆ V , PFsv and Lsv for ∀s ∈ S, ∀v ∈ V ′, PFv for ∀v ∈ V ′, C,
δ, Nd and (sc) ∈ Rc: the set of connection requests for content c ∈ C, s ∈ S.

Output:
The set of DCN hosting nodes: L.

1: L = ∅; Riskmin = ∞;
2: c=argc∈C max{|Rc|};
3: for each v ∈ V ′ do
4: Riskv = δPFv +

∑
(sc)∈Rc,∀s∈S(PFsv + Lsv);

5: if (Riskv < Riskmin) then
6: Riskmin = Riskv; u = v;
7: end if
8: end for
9: L = L

∪
{u};

10: while (|L| < Nd) do
11: Riskmin = ∞;
12: for each v ∈ (V ′ − L) do
13: Riskv =

∑
(sc)∈Rc,∀s∈S,∀c∈C min∀u∈(L

∪
{v})(PFsu

14: +Lsu);
15: Riskv = Riskv + δ

∑
∀w∈(L

∪
{v}) PFw;

16: if (Riskv < Riskmin) then
17: Riskmin = Riskv; v

′ = v;
18: end if
19: end for
20: L = L

∪
{v′};

21: end while
22: return L;

2. From lines 3-8, for each DCN candidate hosting node v, we calculate the failure risk

for content c provided by this node, respectively, and find the node u that induces the

minimum failure risk. The failure risk is obtained in line 4. The node u is determined

as the first DCN hosting node in line 9. All the DCN hosting nodes are determined

through the iteration in lines 10-21. In each iteration, we select a DCN hosting node

v′ from the DCN candidate hosting node set V ′−L, and we can obtain the minimum

failure risk when all connection requests are provided by these DCN hosting nodes in

L
∪
{v′}. Here, the failure risk is obtained in lines 13-15.

In Algorithm 4, we can implement the content placement to satisfy constraints
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Algorithm 4 Content Placement (CP):

Input:
G(V,E), V ′ ∈ V , S ∈ V , PFsv and Lsv for ∀s ∈ S, ∀v ∈ V ′, L, Nc, C, (sc) ∈ Rc:
the set of connection requests for content c ∈ C, s ∈ S and k: the minimum
number of replicas of content.

Output:
The set of DCN hosting nodes for the content c placement: Ac,∀c ∈ C.

1: Ac = ∅,∀c ∈ C;
2: for each c ∈ C do
3: for each (sc) ∈ Rc do
4: v=argv∈L min{PFsv + Lsv};
5: if (v /∈ Ac) then
6: Ac = Ac

∪
{v};

7: end if
8: end for
9: end for
10: for each c ∈ C do
11: while (|Ac| < k) do
12: Riskmin = ∞;
13: for each v ∈ (L− Ac) do
14: Riskv =

∑
{(sc)∈Rc,∀s∈S}(PFsv + Lsv);

15: if (Riskv < Riskmin) then
16: Riskmin = Riskv; u = v;
17: end if
18: end for
19: Ac = Ac

∪
{u};

20: end while
21: while (|Ac| > Nc) do
22: Riskmin = ∞;
23: for each v ∈ Ac do
24: Riskv = 0;
25: Riskv =

∑
(sc)∈Rc,∀s∈S min∀u∈(Ac−{v})(PFsu + Lsu)

26: if (Riskv < Riskmin) then
27: Riskmin = Riskv; v

′ = v;
28: end if
29: end for
30: Ac = Ac − {v′};
31: end while
32: end for
33: return Ac,∀c ∈ C.
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(3.13) and (3.14) in Section 3.2.3. First, we find the candidate placement nodes in L

for each content c ∈ C, which induce the minimum value of total failure probability

of requesting paths and total traffic transmission delay for contents provided by these

nodes in lines 2-9. Then, for each content c ∈ C, in lines 11-20 we ensure the

number of replicas of content c to satisfy constraint (3.13). In each iteration, a DCN

hosting node u in L − Ac is selected as the content c hosting node, which induces

the minimum value of total failure probability of requesting paths and total traffic

transmission delay for content c when content c is provided by this node. Here, the

value of total failure probability and total traffic transmission delay is obtained in

line 14. Then, constraint (3.14) is satisfied by the iteration from lines 21-31. In each

iteration, a DCN hosting node v′ ∈ Ac is selected, and then removed from Ac. The

value of total failure probability of requesting paths and total traffic transmission

delay for content c is calculated in line 25 when content c is provided by arbitrary

|Ac| − 1 nodes in Ac, in which the minimum value is obtained when the node v′ is

removed from Ac.

Notice that content placement can be optimized either periodically according to

daily content requests variation, or within the early warning time of an upcoming

disaster if the DCN failure risk is observed higher than the current risk evaluation.

For an upcoming disaster with an early warning time, in order to minimize content

loss, we need to re-optimize content placement within the early warning time. Since

ILP is not scalable in terms of its long running time (i.e., optimal solution may not

be found within the given early warning time), time-efficient heuristic is necessary

to produce real-time response. On the other hand, solving the ILP for optimal joint

design of DCN and content placement with transmission delay optimization is not an

easy task for large-scale networks. To this end, we need a time-efficient heuristic as

well for scalability.
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3.3.2 Complexity Analysis

In this subsection, we analyze the complexity of heuristic for DCN and content

placement. The complexity of the Algorithm 3 is dominated by the iterations. The

complexity in line 2 is O(|C|). The complexity of the iteration from lines 3-8 is

O(|V ′| × |Rc|) and the complexity of the iteration from lines 10-21 is O((Nd − 1) ×

(|V ′| − 1) × |S| × |C| × Nd). Thus, the total complexity of Algorithm 3 is no more

than O(|C| × (Nd)
2 × |V |2).

The complexity of Algorithm 4 is also dominated by the iterations. The complexity

of the iteration in lines 2-9 isO(|C|×maxc∈C(|Rc|)×|L|). The time for the iteration in

lines 11-20 isO((k−minc∈C(|Ac|))×(|L|−minc∈C(|Ac|))×maxc∈C(|Rc|)). The time for

the iteration in lines 21-31 is O((maxc∈C(|Ac|)−Nc)×maxc∈C(|Ac|)×maxc∈C(|Rc|)×

(maxc∈C(|Ac|) − 1)). Thus, the total complexity of Algorithm 4 is no more than

O(|C| × |Nd|3 × |V |). From the complexities of these two algorithms, we can find

that the complexity of the proposed heuristic is no more than O(|C| × |V |2 × (Nd)
2).

Thus, the proposed heuristic runs in polynomial time.

3.4 Numerical Results

In this section, we carry out numerical experiments based on the gridded data

of U.S. national seismic hazard map [69]. Assume that the network is deployed

in a rectangle area with length 2402 and height 1018. We first demonstrate the

proposed vulnerability assessment scheme in Section 3.4.1. Based on the vulnerability

information of a given network, we further validate the efficiency of the proposed ILP

in Section 3.4.2 and heuristic in Section 3.4.3 for DCN and content placement. For

DCN and content placement, Gurobi 6.0 is used to solve the ILP in (3.8)-(3.16). We

run the ILP and heuristic algorithms on a computer that has an Intel Core(TM)

i3-4030U CPU @ 1.90GHz and 4GB memory and also develop a simulator to emulate
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Table 3.4: Parameter settings for PRF model

g from Fig. 1.1 r1 r2 p1 p2

0.8 100 200 0.95 0.75
0.4 60 120 0.8 0.6
0.3 50 100 0.6 0.3
0.2 25 50 0.5 0.25

others 10 20 0.25 0.1

the random connection requests between nodes and contents. Given a network for

DCN and content placement, the simulator generates a random integer of x between 1

and |C| as the number of content requests from each requesting node. The simulator

also ensures that each content is requested.

3.4.1 Vulnerability Assessment

For network vulnerability assessment, we consider the U.S. InternetMCI network

in Fig. 3.2 with 19 nodes and 33 links, where the length of the shorter segment of

link ξ is fixed as 20. To evaluate the vulnerability of network deployed in U.S. due

to the non-uniform distribution of a potential earthquake in U.S., we use the grid

partition scheme to divide the network area into 1201× 509 square cells with a side

length 2 for each according to the gridded data of U.S. national seismic hazard map.

Each PRF is defined by two concentric circles with radiuses (r1, r2) and probabilities

(p1, p2). Since the gridded data of U.S. national seismic hazard map only contains

the information of grid partition and peak ground acceleration (g), we can not obtain

concrete occurring probability of a PRF falling within one cell from the gridded data

of U.S. national seismic hazard map. To facilitate the vulnerability assessment, due

to the fact that the gridded data of U.S. national seismic hazard map is obtained

based on the map in Fig. 1.1 with an exceedance probability of 2% in 50 years,

we set the occurring probability of a PRF falling within one cell as a random value

between 0.02 and 0.5. For the PRF with center falling within one cell, we take the
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(a) Vulnerable network zone distribution evaluated based on the simulation

(b) Vulnerable network zone distribution evaluated based on the new scheme

(c) Vulnerable network zone distribution evaluated based on the old scheme

Figure 3.4: Illustration of NFP vulnerable network zone distribution for all nodes
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center point of the cell as the center of the PRF and set its parameters r1, r2, p1 and

p2 according to the peak acceleration data (g) in the cell from the gridded data of

U.S. national seismic hazard map. The parameter settings are shown in Table 3.4.

We compare our vulnerability assessment results with that in [33] and [34] and that

based on simulation, respectively. For simplicity, the vulnerability assessment based

on our proposed scheme is referred to as new scheme, while that based on [33] and

[34] is referred to as old scheme.

In our simulation, we randomly generate a location in each cell as the center of a

PRF when the PRF occurs in this cell. Other parameter settings keep the same as

above. Here, we have carried out 10 different simulations, and then the vulnerability

for each node (or link) is evaluated by the average of all simulation results. For

vulnerability assessment in [33] and [34], the parameters r1, r2, p1, and p2 of the PRF

are the same and fixed as r1 = 50, r2 = 100, p1 = 0.60, and p2 = 0.30, and the

occurring probability of a PRF falling within one cell is uniformly distributed.

Fig. 3.4 illustrates the NFP vulnerable network zone distributions for all nodes

under the simulation, the new scheme and the old scheme, respectively. The results

in Fig. 3.4 clearly indicate that the NFP vulnerable network zone distribution for all

nodes based on the new scheme generally complies with the simulation results and

both of them match the potential earthquake distribution in U.S. as illustrated in Fig.

1.1. These results show that our proposed vulnerability assessment scheme is efficient

to evaluate the vulnerability of nodes due to the real disaster. It is notable that

since the old scheme does not take the global non-uniform distribution of a disaster

in terms of its occurring probability and intensity into account, the NFP vulnerable

network zone distribution for all nodes based on the old scheme is quite different from

that based on the new scheme.

Fig. 3.5 shows the LFP vulnerable network zone distribution for all links, with

Fig. 3.5(a) for the simulation, Fig. 3.5(b) for the new scheme and Fig. 3.5(c) for the
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(a) Vulnerable network zone distribution evaluated based on the simulation

(b) Vulnerable network zone distribution evaluated based on the new scheme

(c) Vulnerable network zone distribution evaluated based on the old scheme

Figure 3.5: Illustration of LFP vulnerable network zone distribution for all links

37



old scheme, respectively. From Fig. 3.5 we can get similar conclusions as those in

Fig. 3.4. We can also observe that our proposed scheme is efficient to evaluate the

vulnerability of links due to a region failure. Based on such vulnerable network zone

distribution for all nodes or links, we can easily identify the most vulnerable network

zones, i.e., the zones in which the PRF falling within each cell has the most significant

impact to the network nodes or links. Since our proposed vulnerability assessment

can efficiently evaluate the impact to a network from a real disaster, “vulnerability

map” based on the new scheme will be very helpful for us to identify the optimal

DCN and content placement in a given network against the disaster.

In our experiments, the old scheme only takes uniformly distributed data, but

a real disaster generally entails the non-uniform case. The new scheme considers

non-uniform distribution and it covers the old scheme as a special case. By using

uniform distribution for the old scheme in our experiments, we indeed intend to show

the drawback of vulnerability assessment under uniform distribution, rather than

comparing with the new scheme.

3.4.2 Placement in Small-Scale Networks

For our proposed ILP framework for DCN and content placement, we also consider

the U.S. InternetMCI network with 19 nodes and 33 links. In our simulation, we set

β = 100 and δ = 1000 (i.e., the second DCN and content placement scenario in

Section 3.4.4). We consider 4 DCNs and 20 contents, and each content has at least 2

and at most 3 replicas. All nodes in the network are set as candidate placement nodes

for DCNs. The “vulnerability map” for such network is obtained by the vulnerability

assessment with the same parameters as in Section 3.4.1. To facilitate the calculation,

we convert the values of Lsv to values between 0 and 1.

The DCN placement based on the ILP and the old vulnerability assessment scheme

is shown in Fig. 3.6(a) and that based on the ILP and the new vulnerability assess-
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(a) DCN placement for InternetMCI network based on the ILP and the old
vulnerability assessment scheme

(b) DCN placement for InternetMCI network based on the ILP and the new
vulnerability assessment scheme

(c) DCN placement for InternetMCI network based on the heuristic and the
new vulnerability assessment scheme

Figure 3.6: DCN placement scenarios
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Table 3.5: Content placement in DCNs for ILP and heuristic

ILP Heuristic
DCNs Contents DCNs Contents

3
0,1,3,4,5,8,10,11
12,13,14,16,17

3
0,1,3,4,5,8,10,11,12

13,14,15,16,17

5
0,3,4,5,7,8,9,11
12,13,15,19

5
0,3,4,5,7,8,9,11
12,13,15,19

14
1,2,3,4,5,6,7,8,9,10,11
13,14,15,16,17,18,19

8
0,1,2,6,7,8,10,13

16,17,18,19

18
0,1,2,6,7,9,12
15,16,18,19

14
1,2,3,4,5,6,7,9,10,11,12

14,15,16,17,18,19

ment scheme is shown in Fig. 3.6(b). From Figs. 3.6(a) and (b) we can find that

DCNs are placed at nodes 3, 12, 14 and 18 for the former and 3, 5, 14 and 18 for the

latter. Besides, the failure risk is 97.49 (calculated based on the new vulnerability

information) for the former and 96.15 for the latter. Although the gap of failure risk

is only 1.39% (i.e., (97.49− 96.15)/96.15) between the above two scenarios, the total

failure probability of DCN hosting nodes can be dramatically reduced under the new

vulnerability assessment scheme (the total failure probability of DCN hosting nodes

is 0.008111 for the former and 0.000438 for the latter).

Fig. 3.6(c) shows the DCN placement based on the heuristic solution and the new

vulnerability assessment scheme. The DCNs are placed at nodes 3, 5, 8 and 14 and

the failure risk is 100.21. Thus, the gap of failure risk between the ILP and heuristic

under the new vulnerability assessment scheme is 4.22% (i.e., (100.21−96.15)/96.15).

The contents hosted at each DCN are shown in Table 3.5 for ILP and heuristic under

the new vulnerability assessment scheme, respectively. Table 3.5 shows that the same

DCN hosting node determined by the ILP and heuristic contains similar contents.

From Fig. 3.3 and 3.4, we can also find that the DCN hosting nodes based on the

ILP and heuristic under the new vulnerability scheme avoid the nodes with high

NFP and the most vulnerable network zones for all nodes. Besides, under the new

vulnerability assessment scheme we also have carried out other experiments for 10
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different groups of connection requests generated randomly with similar network size.

The average gap of failure risk between the ILP and heuristic is 3.5%, which confirms

the superior performance of the proposed heuristic.

3.4.3 Placement in Large-Scale Networks

To verify the performance of our proposed heuristic for large-scale networks un-

der the new vulnerability assessment scheme, we randomly generate a network by

simulator with 100 nodes and 202 links. In order to reduce the complexity, in this

experiment we only consider link-disjoint k-shortest paths between an arbitrary pair

of nodes to implement routes (k=3). The “vulnerability map” for this network is

obtained in a similar way as that of U.S. InternetMCI network. Except the number

of DCNs and contents to be placed, other parameter settings are similar to those in

Section 3.4.2.

The performance of ILP and heuristic for the cases |C|={10, 20, 30, 40, 50} are

summarized in Table 3.6 when the number of DCNs to be placed is 4. In Table 3.7,

we show the performance of ILP and heuristic for the cases Nd={4, 8, 12, 16, 20,

24, 28, 32, 36, 40} when the number of contents to be placed is 10. From Tables

3.6 and 3.7, we can observe that our proposed heuristic is more scalable, and the

ILP is sensitive to |C|. Table 3.7 also shows that the running time of ILP decreases

and that of heuristic increases when Nd increases, but the running time of heuristic

increases slowly. Besides, from Tables 3.6 and 3.7 we can find that although the gaps

of failure risk between the ILP and heuristic vary with the increases of |C| and Nd,

their sensitivities to the variations of |C| and Nd are different. For a fixed number

of DCNs to be placed of Nd=4 and when we increase the number of contents to be

placed |C| from 10 to 50, the average gap of failure risk is 11.2%. When we increase

the number of DCNs to be placed Nd from 4 to 40 at a fixed number of contents to

be placed of |C|=10, the average gap of failure risk is 26.4%.
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Table 3.6:
Performance analysis in large-scale network with 4 DCNs and different
numbers of contents for ILP and heuristic

|C| ILP Heuristic

Failure risk
Running time
(seconds)

Failure risk
Running time
(seconds)

10 60.74 16.64 68.86 0.44
20 115.43 181.61 128.55 0.51
30 163.03 242.99 185.96 0.53
40 210.15 476.88 228.55 0.56
50 264.74 3297.55 286.57 0.59

Table 3.7:
Performance analysis in large-scale network with 10 contents and different
numbers of DCNs for ILP and heuristic

Nd
ILP Heuristic

Failure risk
Running time
(seconds)

Failure risk
Running time
(seconds)

4 60.74 16.64 68.86 0.44
8 60.45 12.11 74.66 0.56
12 60.67 11.86 76.76 0.61
16 60.94 11.83 79.85 0.71
20 61.21 12.62 80.32 0.8
24 61.49 11.95 78.24 0.88
28 61.77 12.02 80.05 1.04
32 62.05 12.38 79.66 1.039
36 62.34 10.39 80 1.22
40 62.62 10.14 78.22 1.49

3.4.4 Effect of Scaling Factor δ on Placement

The scaling factor δ is used to control the weight among the total failure proba-

bility of DCN hosting nodes, the total failure probability of requesting paths and the

total traffic transmission delay. Thus, for different values of δ, we can obtain different

DCN and content placement scenarios. Considering the ILP with same simulation

settings in Section 3.4.2, for different values of δ, there are five different DCN and

content placement scenarios. In Table. 3.8, we show the total failure probability of

DCN hosting nodes
∑
v∈V ′

HvPFv (abbreviated as DFP ) and the total failure probabil-
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Table 3.8: Tradeoff between DFP and PFP + TD

Placement Scenarios DFP PFP TD

1 0.008111 19.31 70.07
2 0.000438 20.73 74.98
3 0.000329 22.31 79.69
4 0.000283 23.7 84.29
5 0.000282 24.54 87.26

ity of requesting paths
∑
v∈V ′

∑
s∈S

∑
c∈C

Hsc
v PFsv (abbreviated as PFP ) as well as the total

traffic transmission delay
∑
v∈V ′

∑
s∈S

∑
c∈C

Hsc
v Lsv (abbreviated as TD) for five DCN and

content placement scenarios, respectively. From Table. 3.8, we can find a desirable

tradeoff between DFP and PFP +TD by adjusting the value of δ in the DCN design

phase.

3.5 Summary

We studied the DCN and content placement problem under global non-uniform

distribution of a potential region failure due to disaster in large-scale geographical

areas. By proposing a general grid partition-based vulnerability assessment scheme,

we can determine the “vulnerability map” of a given network for DCN and content

placement, which provides an important input for our proposed ILP and heuristic.

Based on the vulnerability map, our proposed ILP can generate optimal DCN and

content placement solutions to minimize the DCN failure risk due to disaster. This

achieves best-effort protection of DCN and content against the region failure. To make

our solution more scalable for large-scale networks, a heuristic was further proposed.

Numerical results showed that our work can lead to a more feasible solution. It can

well protect DCN and content under global non-uniform distribution of the potential

region failure scenario.
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CHAPTER IV

Homogeneous Data Backup Based on Early

Warning of Region Failure

In this chapter, we study the homogeneous data backup based on early warning

of region failure. We assume that there is only one data center network (DCN) node

falling within the region that will be affected by a disaster after ε early warning

time (referred to as threatened DCN node hereafter). We consider urgent backup

within the early warning time ε where different types of data at the threatened DCN

node are backed up to the same set of backup DCN nodes. To this end, we divide

our design into two sub-problems: Backup Capacity Evaluation (BCE) and Backup

Cost Minimization (BCM). The former helps DCN operators to find the maximum

backup capacity, and thus fully utilize the ε early warning time to back up as much

data as possible. Since the maximum backup capacity may not be sufficient for

backing up all data, priority can be given to those more important data. The latter

minimizes backup cost by properly selecting a set of safe backup DCN nodes and

routes for those more important data. Both integer linear programs (ILPs) and

heuristic are proposed for the two sub-problems. Extensive numerical results show

that the proposed algorithms can automatically adapt to different early warning times

ε for generating cost-efficient data backup solutions.

Ii is notable that in this chapter, data can be stored in either a distributed manner
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Figure 4.1: Geo-distributed DCNs with DCN node 3 threatened by a disaster and
other DCN nodes serving as candidate backup nodes.

(across multiple DCNs) or a centralized manner (at a single DCN). Multiple replicas

at different DCNs are allowed as well. Generally, a DCN backs up data or replicas

periodically in its normal operation state when no disaster presents. At the earliest

time when the DCN is aware of the disaster, some data may not have been successfully

backed up in the current period, or still in an unsynchronized state. To this end, the

work in this chapter considers to protect such unsafe data.

4.1 Network Model

We assume multiple DCNs in an optical backbone network, each hosted by a dis-

tinct node. We also assume that data is transmitted in the network through all-optical

paths where the OXCs (optical cross-connects) with wavelength converters (i.e., wave-

length conversion capabilities) are used at intermediate nodes for transparent optical

connections. Network topology is denoted by a graph G(V,E), where V is the set of

all nodes and E is the set of all fiber links. There is a single threatened DCN node

that will be affected by a disaster after ε early warning time. Other DCN nodes will

not be affected by the disaster, and they can serve as candidate backup DCN nodes.

Each candidate backup DCN node has a certain amount of backup storage, whereas
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online bandwidth available on each link at the disaster time can be measured by the

DCN operator. Fig. 4.1 gives an example of the U.S. InternetMCI network [70] with

five geo-distributed DCNs hosted at nodes 3, 8, 12, 14 and 16. Suppose DCN node 3

will be affected by a disaster after ε early warning time, as shown by the shaded area

in Fig. 4.1. Data at the threatened DCN node 3 can be backed up to the backup

DCN nodes 8, 12, 14, and 16. Backup cost consists of data storage and transmission

costs. The former is the sum of costs of required storage (counted in data units) at all

backup DCN nodes, where Wv denotes the storage cost per data unit at backup DCN

node v. The latter counts for the costs of working wavelength capacity (including the

costs of necessary wavelength converters) in all backup routing paths.

In general, a DCN service provider (such as Google) needs to consider the disaster

scenario at the network planning stage. As a result, multiple DCNs are deployed in

different geographical regions to avoid simultaneous failures [4]. Nowadays, such a

geo-distributed DCN architecture is well supported by long-haul optical inter-connects

under the WDM (Wavelength Division Multiplexing) technology. In this thesis, we

assume that multiple DCNs are affiliated to a single DCN provider and there is only

one threatened DCN node.

Note that store-and-forward schemes (using safe DCNs as relays to forward data)

are not considered in this thesis. This is because we assume only a single threatened

DCN, and other DCNs (including those may possibly serve as intermediate DCNs in

a store-and-forward scheme) are taken as safe DCNs. As a result, data will be safely

protected as long as they can arrive at such a safe DCN.

4.2 ILP Formulations

In this section, we first provide an ILP to solve BCE under the ε early warning

time constraint, which can be used to determine the amount of data that should be

backed up in the threatened DCN node. For the determined amount of data that
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should be backed up, we also develop another ILP to solve BCM by identifying the

optimal selections of backup DCN nodes and routes, such that the overall data backup

cost is minimized.

4.2.1 Notation List

The detailed inputs and variables used in the ILP formulations are listed in Tables

4.1 and 4.2.

Table 4.1: Parameters for Inputs

Notation Definition

V Similar to the definition in Section 3.2.2.

E Similar to the definition in Section 3.2.2.

V̄ ⊂ V The set of all backup DCN nodes in network G(V,E).

ε The early warning time of disaster for backing up data (It

is quantified with the number of time units).

P = {p|p =< Sc,Dep, Lp >} The set of paths between the threatened DCN node and

the backup DCN nodes where Sc,Dep, Lp are source DCN

node (i.e., threatened DCN node), destination DCN node

(i.e., backup DCN node), and the set of links on path p.

D =< Sc, V L, V l > The data in the threatened DCN node where Sc is the

threatened DCN node, V L is the amount of data D and V l

is the amount of data that can be backed up, i.e., V l ≤ V L

(V L and V l are quantified with the number of data units).

Re The transmission rate of each wavelength (It is quantified

with the number of data units that are transmitted by one

wavelength per time unit).
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Sv The available storage capacity in DCN node v ∈ V̄ (It is

quantified with the number of data units).

Be The available bandwidth on link e ∈ E (It is counted in

the number of wavelength channels).

Wv The cost of a data unit stored in the DCN node v ∈ V̄

We The cost of a wavelength on link e ∈ E.

Ae
p ∈ {0, 1} It equals to 1 if link e ∈ Lp, p ∈ P .

λ Predefined constant larger than max{Bp, Suv | ∀v ∈

V̄ , ∀p ∈ P}.

Table 4.2: Variables

Notation Definition

Uv Binary variable. It takes 1 if the DCN node v ∈ V̄ is used

for backing up data and 0 otherwise.

Up Binary variable. It takes 1 if the path p ∈ P is used for

backing up data and 0 otherwise.

Suv Non-negative integer. It is the used storage capacity in

node v ∈ V̄ for backing up data.

Bp Non-negative integer. It is the used bandwidth on path

p ∈ P for backing up data.

Mε Non-negative integer. It is the total amount of data that

can be backed up in the threatened DCN node within time

ε.
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4.2.2 ILP for Backup Capacity Evaluation

Maximize
{
Mε

}
. (4.1)

Subject to

Suv ≤ Sv, ∀v ∈ V̄ ; (4.2)

∑
v∈V̄

Suv = Mε; (4.3)

∑
p∈P

Ae
pBp ≤ Be, ∀e ∈ E; (4.4)

Mε ≤
∑
v∈V̄

Sv; (4.5)

∑
v∈V̄

Uv ≥ 1; (4.6)

Up ≤
UDep + 1

2
,∀p ∈ P ; (4.7)
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∑
p∈P,Dep=v

Up ≥ Uv, ∀v ∈ V̄ ; (4.8)

Up ≤ Bp, ∀p ∈ P ; (4.9)

Up ≥ Bp/λ, ∀p ∈ P ; (4.10)

Uv ≤ Suv,∀v ∈ V̄ ; (4.11)

Uv ≥ Suv/λ,∀v ∈ V̄ ; (4.12)

Suv∑
p∈P,Dep=v

Bp

≤ ε ·Re, ∀v ∈ V̄ . (4.13)

Objective (4.1) maximizes the total amount of data that can be backed up. Con-

straint (4.2) ensures that the used storage capacity in a backup DCN node for backing

up data does not exceed the available storage capacity of this DCN node. Constraint

(4.3) guarantees that data with the amount Mε can be backed up to the backup DCN

nodes. Constraint (4.4) ensures that the used bandwidth for backing up data on a

link does not exceed the available capacity of this link. Constraint (4.5) guarantees

that the amount of data that can be backed up does not exceed the total available

storage capacity of all backup DCN nodes. Constraint (4.6) guarantees that data

is backed up to at least one backup DCN node. Constraint (4.7) implies that if a
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path is selected for backing up data, then the destination node of this path must be

selected as the backup DCN node for storing data. Constraint (4.8) implies that if

a DCN node is selected as the backup node for storing data, then at least one path

destined to such DCN node must be selected as the transmission path for backing

up data. Constraints (4.9) and (4.10) define Up while constraints (4.11) and (4.12)

define Uv. Here, we use λ larger than max{Bp, Suv|∀v ∈ V̄ , ∀p ∈ P} to ensure that

the constraints (4.10) and (4.12) can be properly established when Up = 1, Bp > 0

and Uv = 1, Suv > 0, respectively. Constraint (4.13) ensures that the time for backing

up data does not exceed the time ε.

4.2.3 ILP for Backup Cost Minimization

After we achieve the maximum amount of data Mu
ε that can be backed up within

the given ε based on the above ILP, we can determine the amount of data D that

should be backed up. For the determined amount of data D that should be backed

up, we then develop an ILP shown as follows to generate optimal solutions of backup

DCN nodes and routes under the time ε constraint, such that the overall data backup

cost is minimized.

Minimize
{∑

v∈V̄

WvSuv +
∑
p∈P

∑
e∈Lp

WeBp

}
. (4.14)

Objective (4.14) minimizes the overall data backup cost, which consists of two

terms. The first term is the cost of storing all data that should be backed up and

the second term is the total bandwidth cost for transmitting the data that should be

backed up. The constraints in such ILP are similar as those in Subsection 4.2.2 in

which Mε is replaced by the amount of determined data that should be backed up

V l, (V l ≤ min(Mu
ε , V L)) in the constraints (4.3) and (4.5). Although the ILP for
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BCM has two terms, they can be integrated into a single objective for cost minimiza-

tion, with storage and transmission costs counted into a total backup cost. Therefore,

BCM can be taken as a single-objective optimization. Since we assume wavelength

converters at intermediate nodes (if necessary) in the network for transparent optical

connections, our ILP models can simply count the bandwidth (i.e., the number of

available wavelengths) on each link to ensure non-overlapping wavelengths.

To simplify our analysis, we assume static network status within the early warning

time. Nevertheless, this assumption can easily be extended to the scenario where

network status changes within the early warning time. In this case, we can divide

the early warning time into multiple time intervals within which network status can

be taken as static for each. Then, our ILPs can be applied in each time interval for

data backup. Similar technique is also used in [44].

4.3 Heuristic

Since solving ILP for large-scale problems (e.g. a large amount of data to be backed

up and a large number of backup DCN nodes deployed in a large-scale network) is

intractable, it is generally hard to get an optimal ILP solution for data backup in

real-time. To make our approach more scalable, in this section we propose a time-

efficient heuristic for BCE and BCM to meet the practical engineering requirement.

It is notable that to solve BCE by the heuristic, we only need to set the amount of

data to be backed up (V l) as the total available capacity of all backup DCN nodes

(i.e., V l =
∑
v∈V̄

Sv), and then the amount of data (V l) to be backed up for BCM is

determined according to the result from BCE where V l ≤ min(Mu
ε , V L).

4.3.1 Algorithm Description

The proposed heuristic is illustrated in Algorithm 1 which includes two procedures,

i.e., Integer Data Backup and Remainder Data Backup. Here, V̄ , Re, D, P , Sv,
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Algorithm 1 Data Backup (DBu):

Input:
G(V,E), V̄ ⊂ V , Re, D, P , Sv and Wv for ∀v ∈ V̄ , Be and We for ∀e ∈ E, and
the time for backing up data ε.

Output:
The backup scheme, i.e., the sets of backup DCN nodes (Vb) and backup trans-
mission paths (Tp) for data D, the overall backup cost Cost and the total amount
of data that can be backed up within time ε, Mε.

1: Set Vb = ∅, Tp = ∅, Cost = 0, Mε = 0;
2: Set SI

v = ⌊ Sv

ε·Re
⌋ · ε ·Re for ∀v ∈ V̄ , V lI = ⌊ V l

ε·Re
⌋ · ε ·Re for data D;

3: Set SR
v = Sv − SI

v for ∀v ∈ V̄ , V lR = V l − V lI for data D;
4: Call Procedure Integer Data Backup;
5: Set V lR = V lR + V lI for data D;
6: Set SR

v = SR
v + SI

v for ∀v ∈ V̄ ;
7: Call Procedure Remainder Data Backup.

Wv, Be, We, ε and Mε are defined in Section 4.2.1, and let |A| denote the number

of elements in an arbitrarily given set A. Note that in the proposed heuristic the

bandwidth on transmission path is assigned with the integer.

In Algorithm 1, the initialization is first shown in lines 1-3 where we set Vb = ∅,

Tp = ∅ for data D, Cost = 0 and Mε = 0, and the available capacity of each backup

DCN node and the amount of data D that should be backed up are divided into

two parts, respectively, i.e., SI
v and SR

v for ∀v ∈ V̄ , V lI and V lR for data D. Then

we call Procedure 1 (i.e., Integer Data Backup) by taking SI
v , V lI and the inputs of

Algorithm 1 as its inputs. After executing Procedure 1, Procedure 2 (i.e., Remainder

Data Backup) is executed by taking SR
v , V lR and the inputs of Algorithm 1 that

updated by Procedure 1 as its inputs.

Integer Data Backup: In this procedure, for data D with the amount V l that

should be backed up, we consider only to back up the amount of data V lI . In line 2,

for BCE, we select a path p (SI
Dep

> 0) from the set P which has nonzero available

bandwidth and the ability to back up the largest amount of data, where the available

bandwidth on path p is Mine∈p{Be} and the amount of data that can be backed up
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Procedure 1 Integer Data Backup (IDBu):

1: while (V lI > 0) do
2: Select a path p, (SI

Dep
> 0) with nonzero available bandwidth Mine∈p{Be} and

the ability to back up the largest amount of data based on (4.15) from the
set P for BCE (Select a path p, (SI

Dep
> 0) with nonzero available bandwidth

Mine∈p{Be} and the smallest cost based on (4.16) from the set P for BCM);
3: if (p is found) then

4: Determine a bandwidth Bp = Min(
SI
Dep

ε·Re
, V lI
ε·Re

,Mine∈p{Be}) on path p;
5: Set V lI = V lI −Bp · ε ·Re, SI

Dep
= SI

Dep
−Bp · ε ·Re;

6: Set Be = Be −Bp for ∀e ∈ p;
7: Set Vb = Vb

∪
Dep, Tp = Tp

∪
p;

8: Set Cost = Cost+WDep ·Bp · ε ·Re+
∑
e∈p

We ·Bp;

9: Set Mε = Mε +Bp · ε ·Re;
10: else
11: Exit procedure;
12: end if
13: end while

by path p is determined as

Min(
SI
Dep

ε ·Re
,
V lI
ε ·Re

,Mine∈p{Be}) · ε ·Re. (4.15)

For BCM, we select a path p (SI
Dep

> 0) from the set P which has nonzero avail-

able bandwidth and the smallest cost. Here, the available bandwidth on path p is

Mine∈p{Be} and the cost is determined as

∑
e∈p

We +WDep · ε ·Re ·Min(
SI
Dep

ε·Re
, V lI
ε·Re

,Mine∈p{Be})

ε ·Re ·Min(
SI
Dep

ε·Re
, V lI
ε·Re

,Mine∈p{Be})
. (4.16)

If we find an available path p, in line 4, the assigned bandwidth Bp on path p for

backing up data D is determined as

Min(
SI
Dep

ε ·Re
,
V lI
ε ·Re

,Mine∈p{Be}). (4.17)
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Procedure 2 Remainder Data Backup (RDBu):

1: while (V lR > 0) do
2: Select a path p, (SR

Dep
> 0) with nonzero available bandwidth Mine∈p{Be} and

the ability to back up the largest amount of data based on (4.15) from the
set P for BCE (Select a path p, (SR

Dep
> 0) with nonzero available bandwidth

Mine∈p{Be} and the smallest cost based on (4.16) from the set P for BCM);
3: if (p is found) then
4: Determine a bandwidth Bp = 1 on path p;
5: if (SR

Dep
≥ V lR) then

6: Set Cost = Cost+WDep · V lR +
∑
e∈p

We ·Bp;

7: Set Mε = Mε + V lR;
8: Set SR

Dep
= SR

Dep
− V lR, V lR = 0;

9: else
10: Set Cost = Cost+WDep · SR

Dep
+

∑
e∈p

We ·Bp;

11: Set Mε = Mε + SR
Dep

;

12: Set V lR = V lR − SR
Dep

, SR
Dep

= 0;
13: end if
14: Set Be = Be −Bp for ∀e ∈ p;
15: Set Vb = Vd

∪
Dep, Tp = Tp

∪
p;

16: else
17: Exit procedure;
18: end if
19: end while

The above expression (4.17) ensures that the assigned bandwidth on path p for back-

ing up data satisfies the constraints of the available capacity of DCN node Dep, the

amount of data that should be backed up and the available bandwidth on path p.

In lines 5-6, we update the values of V lI , S
I
Dep

and Be for each e ∈ p, respectively.

Node Dep is added into set Vb and the path p is also added into set Tp in line 7. The

backup cost and the total amount of data that can be backed up are obtained in lines

8-9, respectively. If we can not find an available path p, procedure exits in line 11.

Remainder Data Backup: In this procedure, for data D with the amount

V l that should be backed up, we consider to back up the amount of data V lR. In

line 2, the path p is selected in the same way as that in Procedure 1. If we find

an available path p, we take a ceiling function of Min( V lR
ε·Re

,
SR
Dep

ε·Re
) where the value of
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Min( V lR
ε·Re

,
SR
Dep

ε·Re
) is less than 1. Then the assigned bandwidth Bp on path p for backing

up data D is set as 1. From lines 5-13, we update the values of V lR, S
R
Dep

, Cost and

Mε for two cases (i.e., SR
Dep

≥ V lR and SR
Dep

< V lR), respectively. In lines 14-15, the

value of Be for ∀e ∈ p, Vb and Tp are updated, respectively. If we can not find an

available path p, procedure exits in line 17.

4.3.2 Complexity Analysis

In this subsection, we analyze time complexity of the proposed heuristic. Before

calculating the complexity of Algorithm 1, we first give the complexity of Procedure

1. In Procedure 1, for backing up data D with the amount V lI , the iteration from

lines 1-13 is executed at most |P | times, i.e., we traverse all paths in set P for backing

up data. For line 2, since we need to traverse all available paths for backing up data

D in set P , the complexity of this operation is no more than O(|P | × |E|). Besides,

the complexity of the operations from lines 4-9 is O(|E|). Thus, the complexity of

Procedure 1 is no more than O(|P |2×|E|). From Procedure 2, we can find that it has

the same complexity of Procedure 1. Since both of the complexities of the operation

from lines 1-3 and that from lines 5-6 in the Algorithm 1 are O(|V̄ |), the complexity

of the Algorithm 1 is O(|V̄ | + |P |2 × |E|) and then the proposed heuristic runs in

polynomial time.

4.4 Numerical Results

In this section, we carry out numerical experiments on U.S. InternetMCI network

with 19 nodes and 33 links to validate the proposed ILP models and heuristic. We

assume that there is an ε-time early warning disaster which will affect DCN node 3

after ε time (i.e., DCN node 3 is the threatened DCN node). The number of available

wavelength channels (i.e., available bandwidth) on each link is set as a random integer
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Table 4.3: The costs of a wavelength on each link in the U.S. InternetMCI network

Link Cost Link Cost Link Cost

(0,1) 625 (4,8) 105 (9,10) 157
(0,3) 133 (4,9) 240 (9,16) 602
(1,2) 352 (4,16) 826 (11,12) 393
(2,3) 488 (5,8) 9 (11,14) 761
(2,7) 1309 (6,7) 35 (12,13) 49
(2,9) 365 (6,12) 223 (12,14) 701
(2,10) 213 (7,12) 249 (14,15) 423
(3,7) 824 (8,9) 135 (14,16) 532
(3,15) 269 (8,14) 1230 (15,16) 128
(3,16) 256 (8,16) 725 (16,17) 249
(4,5) 99 (8,18) 300 (17,18) 252

between 10 and 30. The total available storage capacity in all backup DCN nodes is

set as 2000 data units.

In our experiments, we set the cost of a wavelength on a link as the length of the

link. In particular, wavelength cost on each link in the U.S. InternetMCI network is

shown in Table 4.3. We set the cost of a data unit stored in backup DCN node as

a random value between 40 and 80. We also set λ = 2000 and Re = 1. We here

consider two scenarios, i.e., |V̄ | = 4 backup DCN nodes (i.e., backup DCNs host at

nodes 8, 12, 14 and 16) and |V̄ | = 10 backup DCN nodes (i.e., backup DCNs host at

nodes 2, 5, 7, 8, 9, 11, 12, 14, 15 and 16), respectively. Gurobi 6.0 is used to solve

the ILPs in Section 4.2. The experiments are run on a computer that has an Intel

Core(TM) i3-4030U CPU @ 1.90GHz and 4GB memory.

We first provide the comparisons on the maximum amount of data that can be

backed up between ILP and heuristic for |V̄ | = 4 and |V̄ | = 10, respectively when

ε ranges from 1 to 100 time units, as shown in Fig. 4.2. From Fig. 4.2, we can

observe that the maximum amount of data that can be backed up achieved by the

proposed heuristic is the same as that achieved by ILP. Note that the ILP gives a

mathematical formulation for the BCE sub-problem, whereas its optimal solution
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(b) |V̄ | = 10

Figure 4.2: Comparison between ILP and heuristic on the maximum amount of data
that can be backed up for different times ε
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can indeed be found by the corresponding heuristic. In other words, our heuristic

for BCE is an exact algorithm for generating an optimal solution. This is because

we assume only a single threatened DCN node. Its maximum amount of protectable

data is determined by the available storage capacity of each backup DCN, as well as

the available bandwidth on the paths to those backup DCNs. Since our heuristic fully

utilizes the available bandwidth on all paths to those backup DCNs, it can exactly

achieve an optimal solution as the ILP. Also note that this is only for BCE, and the

situation is different for BCM. We can also find that the maximum amount of data

that can be backed up increases as the time ε increases and the amount of data that

can be backed up reaches to the maximum value 2000 data units for |V̄ | = 4 when ε

is equal to 27 time units and that for |V̄ | = 10 when ε is equal to 28 time units.

In Fig. 4.3, we then show the total backup cost for each maximum amount of

data achieved in Fig. 4.2. For comparison, inspired by references [41] and [43], we

also show the results from the backup scheme with the objective of maximizing the

amount of data that can be backed up (referred to as Max A), which is defined here

as a benchmark of our proposed scheme in terms of backup cost. From the results

in Fig. 4.3, we can observe that Max A involves the large cost and our proposed

scheme is effective in reducing the backup cost. We also use our proposed ILP as a

benchmark to evaluate the performance of the proposed heuristic in Fig. 4.3. We can

find that the maximum gap between ILP and heuristic is 23.9% for |V̄ | = 4 when ε is

equal to 5 time units and that is 34.9% for |V̄ | = 10 when ε is equal to 6 time units.

The average gap between ILP and heuristic is 5.2% for |V̄ | = 4 when ε ranges from

1 to 27 time units and that is 8.2% for |V̄ | = 10 when ε ranges from 1 to 28 time

units. The results in Fig. 4.3 also show that after the maximum amount of data that

can be backed up reaches to the maximum value 2000 data units, the total backup

cost decreases as the time ε increases. This is because more time is available for data

backup, and thus less bandwidth is consumed. The above results indicate that the
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Figure 4.3: Comparison on the total backup cost of the maximum amount of data
that can be backed up based on ILP, heuristic and Max A for different
times ε
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Figure 4.4: Total backup cost comparison between ILP and Heuristic for different
amounts of data with ε = 28 time units
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Figure 4.5: Total backup cost comparison between ILP and Heuristic for different
times ε with V l = 700 data units
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Table 4.4:
Running time (in second) for solving ILP and executing heuristic with
ε = 28 time units

V l
ILP Heuristic

|V̄ | = 4 |V̄ | = 10 |V̄ | = 4 |V̄ | = 10

1000 3.072 11.587 0.168 0.281
1100 4.066 8.178 0.049 0.984
1200 5.123 7.546 0.056 0.13
1300 5.649 7.391 0.062 0.078
1400 3.041 4.75 0.037 0.21
1500 3.541 6.03 0.903 0.103
1600 2.695 5.822 0.033 0.057
1700 3.485 8.429 0.036 0.08
1800 4.254 9.845 0.034 0.065
1900 3.369 72.342 0.047 0.093
2000 1.717 3.723 0.036 0.063

proposed heuristic is efficient.

To further validate the performance of the proposed heuristic, we also give the

following comparisons of the ILP and heuristic. Fig. 4.4 shows total backup costs

from ILP and heuristic for |V̄ | = 4 and |V̄ | = 10, respectively when V l ranges from

1000 to 2000 data units at a fixed ε = 28 time units. The results in Fig. 4.4 indicate

that total backup cost increases with the increase of V l. Although the gap of backup

cost between ILP and heuristic varies as V l and |V̄ | increase, the gap is always less

than 5%. In Fig. 4.5, we show total backup costs from ILP and heuristic for |V̄ | = 4

and |V̄ | = 10, respectively when we increase ε from 10 to 100 time units at a fixed

V l=700 data units. The results in Fig. 4.5 indicate that the total backup cost

decreases as ε increases. We also find that the gap of backup cost between ILP and

heuristic is less than 14%. The above results also indicate that the proposed heuristic

is efficient. It is notable that the results from Figs. 4.2, 4.3 and 4.5 show that our

proposed scheme can automatically adapt to disasters with different early warning

times ε for generating efficient data backup solutions.

Tables 4.4 and 4.5 show running times for solving ILP and executing heuristic
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Table 4.5:
Running time (in second) for solving ILP and executing heuristic with
V l = 700 data units

ε
ILP Heuristic

|V̄ | = 4 |V̄ | = 10 |V̄ | = 4 |V̄ | = 10

10 5.224 5.969 0.197 0.312
20 1.411 3.683 0.056 1.027
30 3.525 5.138 0.048 0.087
40 1.917 2.635 0.061 0.082
50 2.159 2.867 1.077 0.083
60 1.505 3.069 0.039 0.081
70 1.442 2.502 0.04 0.052
80 2.942 4.414 0.036 0.18
90 1.519 3.088 0.036 0.058
100 1.633 2.458 0.03 0.126

in Figs. 4.4 and 4.5, respectively. We can observe that the time for solving ILP

increases with the increase of |V̄ |. In particular, the time for solving ILP reaches

to the maximum value that more than 72 seconds when V l = 1900 and |V̄ | = 10.

However, the time for executing heuristic increases slowly with the increases of |V̄ |

and V l and thus the proposed heuristic is more scalable. Since the time for executing

heuristic is small for large-scale backup problems, we can achieve a real-time solution

based on the proposed heuristic to meet the practical engineering requirement against

an ε-time early warning disaster. For example, under the above mentioned hardware

settings (i.e., an Intel Core(TM) i3-4030U CPU @ 1.90GHz and 4GB memory), the

proposed heuristic can provide backup schemes for all the scenarios in Fig. 4.4 against

a disaster with ε=29 time units early warning time.

4.5 Summary

We studied the minimum cost data backup in geo-distributed DCNs against an

ε-time early warning disaster under a given set of backup resources. Two sets of

algorithms were proposed, each consisting of an optimal ILP and a corresponding
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heuristic. With the ε early warning time constraint, the first set of algorithms can

help DCN operators to evaluate the maximum backup capacity under the limited

amount of backup resources, and the second set of algorithms can minimize backup

cost by properly selecting a set of backup DCN nodes and corresponding backup

routes. By properly exploring the ε early warning time, the proposed scheme can be

more flexible and adaptive to disasters as compared with existing periodical backup

and real-time replication schemes. Our scheme allows simultaneous data backup from

the threatened DCN node to multiple safe DCN nodes in the disaster-disjoint zones.

It was shown that the optimal solution changes with different early warning times ε,

indicating that the proposed scheme is disaster adaptive under different values of ε.
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CHAPTER V

Heterogeneous Data Backup Based on Early

Warning of Region Failure

In this chapter, we investigate the heterogeneous data backup based on early

warning of region failure. Similar to Chapter IV, we also assume that there is only

one data center network (DCN) node (i.e., threatened DCN node) falling within the

region that will be affected by a disaster after ε early warning time. We consider

urgent backup within the early warning time ε where different types of data at the

threatened DCN node may be backed up to the different sets of backup DCN nodes.

To this end, by fully utilizing the ε early warning time, we propose two backup

schemes which are maximum data backup scheme (MDBS) and fairness data backup

scheme (FDBS). The former is to maximize the total amount of data that can be

backed up, and the latter is to maximize the same proportion of data backup for

each type of data in a fair manner. Corresponding integer linear program (ILP) and

heuristic are developed for each scheme. Extensive numerical results show that the

proposed schemes can flexibly provide different data backup solutions against the

disasters with different early warning times. Note that the allowed storage manner

of data in this chapter is similar to that in Chapter IV.
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Figure 5.1: Illustration of one threatened DCN node and six candidate backup DCN
nodes in geo-distributed DCNs under disaster

5.1 Network Model

We consider the similar network scenario as that in Chapter IV. The network

topology is also modeled as a graph G(V,E), where V is the set of all nodes and E

is the set of all fiber links. We also assume that there is a single threatened DCN

node in the network. The backup DCN nodes are selected from the other safe DCN

nodes under disaster. Each candidate backup DCN node has a certain amount of

backup storage, whereas the available wavelengths on each network link for backup

routing can be measured by the DCN operator at the disaster time. Fig. 5.1 gives

an example of the U.S. InternetMCI network [70] with seven geo-distributed DCNs

hosted at nodes 3, 7, 8, 11, 12, 14 and 16. Suppose there is a sudden disaster will

affect the DCN node 3 area after ε early warning time, as shown by the shaded area

in Fig. 5.1 and there are four types of data that should be backed up in the DCN

node 3. Then, four different backup requirements are formed in such network, i.e.,

{data ID, {backup DCN node list}} (e.g., {1, {8, 12}}, {2, {7, 14}}, {3, {11, 16}},

{4, {7, 8}}). Note that similar to Chapter IV, store-and-forward schemes are also

not considered in this chapter.
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5.2 ILP Formulations

In this section, we provide two ILPs for MDBS and FDBS under the early warning

time constraint, respectively.

5.2.1 Notation List

The detailed inputs and variables used in the ILP formulations are listed in Tables

5.1 and 5.2.

Table 5.1: Parameters for Inputs

Notation Definition

V Similar to the definition in Section 3.2.2.

E Similar to the definition in Section 3.2.2.

V̄ ⊂ V Similar to the definition in Section 4.2.1.

ε Similar to the definition in Section 4.2.1.

P = {p|p =< Scp, Dep, Lp >} Similar to the definition in Section 4.2.1.

Re Similar to the definition in Section 4.2.1.

Sv Similar to the definition in Section 4.2.1.

Be Similar to the definition in Section 4.2.1.

Ap
e ∈ {0, 1} Similar to the definition in Section 4.2.1.

D′ = {d|d =< Cd, Bund, Pd >} The set of different types of data at the threatened

DCN node, where Cd is the amount of the type of

data d that should be backed up (It is quantified

with the number of data units), Bund ⊆ V̄ is a set

of candidate backup DCN nodes for backing up the

type of data d and Pd ⊆ P is a set of possible paths

for backing up the type of data d.
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χ Predefined constant greater than max{Bd
p , Su

d
v |

∀d ∈ D′, ∀v ∈ Bund, ∀p ∈ Pd}.

Table 5.2: Variables

Notation Definition

Ud
v Binary variable. It takes 1 if the DCN node v ∈ Bund is used for

backing up the type of data d ∈ D′ and 0 otherwise.

Ud
p Binary variable. It takes 1 if path p ∈ Pd is used for backing up the

type of data d ∈ D′ and 0 otherwise.

Sud
v Non-negative integer. It is the used storage capacity in DCN node

v ∈ Bund for backing up the type of data d ∈ D′.

Bd
p Non-negative integer. It is the used bandwidth on path p ∈ Pd for

backing up the type of data d ∈ D′.

θ Non-negative integer (0 < θ ≤ N,N = 10n, integer n ≥ 2). θ
N

is the

same proportion of data backup for each type of data in set D′.

5.2.2 ILP for Maximum Data Backup Scheme

Maximize
{ ∑

d∈D′

∑
v∈Bund

Sud
v

}
. (5.1)

Subject to

∑
v∈Bund

Sud
v ≤ Cd, ∀d ∈ D′; (5.2)
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∑
d∈D′

Sud
v ≤ Sv, ∀v ∈ V̄ ; (5.3)

∑
d∈D′

∑
p∈Pd

Ap
eB

d
p ≤ Be,∀e ∈ E; (5.4)

∑
v∈Bund

Ud
v ≥ 1,∀d ∈ D′; (5.5)

Ud
p ≤

Ud
Dep

+ 1

2
,∀d ∈ D′,∀Dep ∈ Bund,∀p ∈ Pd; (5.6)

∑
p∈Pd,Dep=v

Ud
p ≥ Ud

v ,∀d ∈ D′,∀v ∈ Bund; (5.7)

Ud
p ≤ Bd

p ,∀d ∈ D′,∀p ∈ Pd; (5.8)

Ud
p ≥ Bd

p/χ, ∀d ∈ D′, ∀p ∈ Pd; (5.9)

Ud
v ≤ Sud

v,∀d ∈ D′,∀v ∈ Bund; (5.10)
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Ud
v ≥ Sud

v/χ, ∀d ∈ D′, ∀v ∈ Bund; (5.11)

Sud
v∑

p∈Pd,Dep=v

Bd
p

≤ ε ·Re, ∀d ∈ D′,∀v ∈ Bund. (5.12)

Objective (5.1) maximizes the total amount of data that can be backed up at

the threatened DCN node. Constraint (5.2) limits the total amount of each type of

data that is backed up to its maximum possible amount. Constraint (5.3) ensures

that the used storage capacity for backing up data in each backup DCN node v ∈ V̄

does not exceed the available storage capacity of such DCN node. Constraint (5.4)

ensures that the used bandwidth for backing up data on a link does not exceed the

available capacity on this link. Constraint (5.5) guarantees that each type of data is

backed up to at least one backup DCN node. Constraint (5.6) implies that if a path

p ∈ Pd is selected for backing up the type of data d ∈ D′ , then the destination node

of this path Dep ∈ Bund must be selected as the backup DCN node for storing such

type of data. Constraint (5.7) implies that if a DCN node is selected as the backup

DCN node for backing up the type of data d ∈ D′, then at least one path must be

selected as the transmission path for backing up this type of data in such DCN node.

Constraints (5.8) and (5.9) define Ud
p whereas constraints (5.10) and (5.11) define Ud

v .

Constraint (5.12) ensures that the time for backing up each type of data does not

exceed the given backup time ε.

5.2.3 ILP for Fairness Data Backup Scheme

The objective of the ILP for FDBS is to maximize θ as formulated in (5.13), such

that the same proportion of data backup for each type of data d ∈ D′ ( i.e., θ
N
) is
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maximized.

Maximize {θ}. (5.13)

The constraints of the ILP include constraints (5.3)-(5.12) in the ILP for MDBS and

the following new constraints (5.14) and (5.15) which determine the amount of each

type of data that should be backed up.

∑
v∈Bund

Sud
v ≥

θ

N
· Cd − 1,∀d ∈ D′; (5.14)

∑
v∈Bund

Sud
v ≤

θ

N
· Cd,∀d ∈ D′. (5.15)

Since the amount of each type of data that can be backed up is set as an integer, there

may be a gap between
∑

v∈Bund

Sud
v and

θ
N
·Cd for each type of data d ∈ D′. However, the

gap will not be greater than 1. Note that the assumptions of wavelength converters

at intermediate nodes (if necessary) in the network and static network status within

the early warning time are the same as those assumed in Chapter IV.

5.3 Heuristics

Since solving ILP for large-scale problems (e.g. more types of data that should

be backed up) induces the high time complexity, it is generally difficult to obtain

an optimal solution based on ILP for data backup within a limited time. To make

our schemes more scalable, in this section we propose time-efficient heuristics for

MDBS (i.e., Algorithm 1) and FDBS (i.e., Algorithm 2) to get the real-time solutions,

respectively. In these algorithms, V̄ , Re, D′, P , Sv, Be, ε, n and N are defined in
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Algorithm 1 Maximum Data Backup Scheme (MDBS):

Input:
G(V,E), V̄ ⊂ V , Re, D′, P , Sv for ∀v ∈ V̄ , Be for ∀e ∈ E, and the time for
backing up data ε.

Output:
The backup scheme, i.e., the sets of backup DCN nodes (V d

b ) and backup trans-
mission paths (T d

p ) for each type of data d ∈ D′, and the amount of each type of
data d ∈ D′ that can be backed up within the time ε, Md.

1: V d
b = ϕ, T d

p = ϕ , Md = 0 for ∀d ∈ D′, P ′ = P , Flag = 1;
2: Call Procedure 1 Data Backup A;
3: Call Procedure 2 Data Backup B.

Section 5.2.1, and the bandwidth on transmission path is assigned with the integer.

We also use |Φ| to denote the number of elements in a given set Φ.

5.3.1 Heuristic for Maximum Data Backup Scheme

The proposed heuristic for MDBS is illustrated in Algorithm 1. To achieve the

maximum amount of data that can be backed up, the iterative method is adopted. In

each iteration, for each path p in set P we calculate the amount of data that can be

backed up through path p within the given early warning time ε, where the amount

of data that can be backed up through path p depends on the type of data with

the maximum amount at the threatened DCN node that can be backed up to the

destination node of path p, the available storage capacity in the destination node of

path p and the available bandwidth on path p. Then we can select a path that can

be used to back up the maximum amount of data from set P to execute backup. In

Algorithm 1, we first set V d
b = ∅, T d

p = ∅, Md = 0, P ′ = P and Flag = 1 in line

1. Then the Procedure 1 (i.e., Data Backup A) is executed by taking the inputs of

Algorithm 1 as its inputs. After executing Procedure 1, we call Procedure 2 (i.e.,

Data Backup B) by taking the updated inputs of Algorithm 1 by Procedure 1 as its

inputs.

Data Backup A: In this procedure, we back up the amount of data ε · Re · Bt,
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Procedure 1 Data Backup A:

1: while (Flag = 1) do
2: Select a path p with the nonzero maximum available bandwidth to back up

data based on (5.16) from the set P ′;
3: if (p is found) then
4: Determine a bandwidth Bdpmax

p on path p for backing up the type of data dpmax

based on (5.16);
5: Set Cdpmax

= Cdpmax
−Bdpmax

p · ε ·Re, SDep = SDep −Bdpmax
p · ε ·Re;

6: Set Be = Be −Bdpmax
p for ∀e ∈ p;

7: Set V dpmax
b = V dpmax

b

∪
Dep, T

dpmax
p = T dpmax

p

∪
p;

8: Set Mdpmax
= Mdpmax

+Bdpmax
p · ε ·Re;

9: else
10: Set Flag=0;
11: end if
12: end while

where Bt denotes the total number of wavelengths that are selected for backing up

data. For a path p that is selected to back up data, we use dpmax to denote the type of

data with the maximum amount Cdpmax
in set D′ that can be backed up to the backup

DCN node Dep. In line 2, we select a path p with the nonzero maximum available

bandwidth to back up data from set P ′ (i.e., which can be used to back up the

maximum amount of data). Here, the available bandwidth on path p is Mine∈p{Be}

and the maximum available bandwidth on path p for backing up data is determined

as

Min
(⌊ SDep

ε ·Re

⌋
,
⌊Cdpmax

ε ·Re

⌋
,Mine∈p{Be}

)
. (5.16)

The above expression (5.16) ensures that the assigned bandwidth on path p for back-

ing up data dpmax satisfies the constraints of the available capacity of DCN node Dep,

the amount of data Cdpmax
and the available bandwidth on path p. If we can find an

available path p, in line 4 the bandwidth Bdpmax
p on path p for backing up data dpmax

is obtained based on (5.16). We update the values of Cdpmax
, SDep and Be for each

e ∈ p in lines 5-6, respectively and then we add the node Dep and path p into the sets
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Procedure 2 Data Backup B:

1: while (Flag = 0) do
2: Select a path p from the set P ′ with nonzero available bandwidth Mine∈p{Be}

which can be used to back up the nonzero maximum amount of data based on
(5.17);

3: if (p is found) then
4: Determine the amount of the type of data dpmax that can be backed up through

path p based on (5.17);
5: Determine a bandwidth Bdpmax

p = 1 on path p for backing up the type of data
dpmax ;

6: Set Cdpmax
= Cdpmax

−Min(Cdpmax
, SDep), SDep = SDep −Min(Cdpmax

, SDep);

7: Set Be = Be −Bdpmax
p for ∀e ∈ p;

8: Set V dpmax
b = V dpmax

b

∪
Dep, T

dpmax
p = T dpmax

p

∪
p;

9: Set Mdpmax
= Mdpmax

+Min(Cdpmax
, SDep);

10: else
11: Set Flag=1;
12: end if
13: end while

V dpmax
b and T dpmax

p in line 7, respectively. The total amount of data dpmax (i.e., Mdpmax
)

that is backed up to the backup DCN nodes is obtained in line 8. If we can not find

an available path p, the procedure exits.

Data Backup B: In this procedure, we back up the remaining amount of each

type of data in set D′. In line 2, we select a path p with nonzero available bandwidth

from set P ′ which can be used to back up the nonzero maximum amount of data.

Min
(
Cdpmax

, SDep

)
. (5.17)

If we can find an available path p, the maximum amount of data that can be backed

up through path p is determined by (5.17) in line 4 and the bandwidth on path p

for backing up the type of data dpmax is set as 1 in line 5. Then, in lines 6-9 we can

execute the similar operations as those in lines 5-8 of Procedure 1. If we can not find

an available path p, the procedure exits.

Complexity of the heuristic: In Algorithm 1, the complexity of the operation
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in line 1 is O(Max(|D′|+ |P |)). Then we analyze the complexity of Procedure 1. In

Procedure 1, the while-loop from lines 1-12 is executed at most |P | times for backing

up data, i.e., we need to use each path in set P ′ to back up data in the worst case

scenario. In order to select a path p from set P ′ in line 2, we need to traverse all

available paths for backing up data in set P ′, and for each traversed path p, we need

to traverse all types of data in set D′ that can be backed up to the backup DCN

node Dep. Thus, the complexity of line 2 is no more than O(|P | × |E| × |D′|). The

time complexity for update from lines 5-8 is O(|E|). Thus, the time complexity of

Procedure 1 is no more than O(|P |2× |E| × |D′|). Besides, since Procedure 2 has the

same complexity of Procedure 1, the overall time complexity of the Algorithm 1 is

O(|P |2 × |E| × |D′|).

5.3.2 Heuristic for Fairness Data Backup Scheme

The proposed heuristic for FDBS is illustrated in Algorithm 2. To achieve the

data backup for each type of data d ∈ D′ in a fair manner, we maximize the same

proportion of data backup for each type of data in set D′ within the early warning

time ε (X) by using the idea of binary search. For each type of data d ∈ D′, the

backup operation is implemented by the Procedures 1 and 2. When we back up the

type of data d ∈ D′, the set P ′ and the data dpmax, p ∈ P ′ in those procedures are

set as Pd and d, respectively. In Algorithm 2, the initialization is first shown in lines

1-4, where we use C ′
d, S

′
v and B′

e to save the initial values of the amount of the type

of data d ∈ D′, the available storage capacity of the backup DCN node v ∈ V̄ and

the available bandwidth on link e ∈ E, respectively. The while-loop from lines 5-28

executes the binary search to find the maximum proportion X. In each loop, we first

execute the initialization operations from lines 6-11 where the amount of each type

of data d ∈ D′ that should be backed up is determined by the proportion θ
N
. Then,

according to the determined amount of each type of data d ∈ D′, we sort different
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Algorithm 2 Fairness Data Backup Scheme (FDBS):

Input:
G(V,E), V̄ ⊂ V , Re, D′, P , Sv for ∀v ∈ V̄ , Be for ∀e ∈ E, the integer N (n ≥ 2)
and the time for backing up data ε.

Output:
The backup scheme, i.e., the sets of backup DCN nodes (V d

b ) and backup trans-
mission paths (T d

p ) for each type of data d ∈ D′, the amount of each type of data
d ∈ D′ that can be backed up within the time ε, Md, and the maximum same
proportion of data backup for each type of data in set D′ within the time ε, X.

1: Set low = 0, high = N ;
2: Set C ′

d = Cd for ∀d ∈ D′;
3: Set S ′

v = Sv for ∀v ∈ V̄ ;
4: Set B′

e = Be for ∀e ∈ E;
5: while (low <= high) do
6: Set Sv = S ′

v for ∀v ∈ V̄ ;
7: Set Be = B′

e for ∀e ∈ E;
8: Set Cd = C ′

d, V
d
b = ϕ and T d

p = ϕ for ∀d ∈ D′;
9: Set θ = ⌊(low + high)/2⌋, Flag = 1;
10: Set Cd = ⌊Cd∗θ

N
⌋ for ∀d ∈ D′;

11: Set Total =
∑
d∈D′

Cd;

12: Sort different types of data in set D′ in a descending order according to the
amount of each type of data (i.e., Cd, ∀d ∈ D′);

13: for (∀d ∈ D′) do
14: Set P ′ = Pd;
15: Call Procedure 1 Data Backup A;
16: end for
17: Sort different types of data in set D′ in a descending order according to the

remaining amount of each type of data (i.e., Cd,∀d ∈ D′);
18: for (∀d ∈ D′) do
19: Set P ′ = Pd;
20: Call Procedure 2 Data Backup B;
21: end for
22: if (Total =

∑
d∈D′

Md) then

23: Set low = θ + 1;
24: Set θ′ = θ;
25: else
26: Set high = θ − 1;
27: end if
28: end while
29: Set X=Mind∈D′(⌊C′

d∗θ
′

N
⌋/C ′

d).
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Procedure 3 Data Backup C:

1: for each path p ∈ P ′ do
2: Determine a bandwidth Bdpmax

p on path p for backing up the type of data dpmax

based on (5.18);
3: if (Bdpmax

p > 0) then

4: Set C ′ = Min(Cdpmax
, SDep , B

dpmax
p · ε ·Re);

5: Set Cdpmax
= Cdpmax

− C ′, SDep = SDep − C ′;

6: Set Be = Be −Bdpmax
p for ∀e ∈ p;

7: Set V dpmax
b = V dpmax

b

∪
Dep, T

dpmax
p = T dpmax

p

∪
p;

8: Set Mdpmax
= Mdpmax

+ C ′;
9: end if
10: end for

types of data in set D′ in a descending order in line 12. Following, for each type

of data in set D′, the backup operation is executed by calling Procedure 1 in lines

13-16. From lines 17-21, the similar operations are executed as those in lines 12-16

for the remaining amount of each type of data d ∈ D′, where Procedure 2 is called.

After that if the determined amount of each type of data d ∈ D′ in line 10 can be

backed up within the time ε, we change the search scope from θ + 1 to high in line

23. Otherwise, we change the search scope from low to θ − 1 in line 26. At last, the

maximum proportion X can be obtained in line 29.

Complexity of the heuristic: In Algorithm 2, the complexity of the initial-

ization operations from lines 1-4 is O(Max(|D′|, |V̄ |, |E|)). The while-loop from

lines 5-28 is executed log2N(N = 10n) times. In the loop, the complexity of the

operations from lines 6-11 is O(Max(|D′|, |V̄ |, |E|)) and the complexity for sorting

data is at most O(|D′|2). Then, since both of the complexities of Procedures 1

and 2 for solving FDBS are O(|P |2 × |E|), the overall complexity of Algorithm 2 is

O(log2N(|D′|2 +Max(|D′|, |V̄ |, |E|) + |D′| × |P |2 × |E|)).
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Table 5.3: Backup requirements

|D′| = 4 |D′| = 8
Data ID Backup DCNs Data ID Backup DCNs

1 8, 12 1 8, 12
2 7, 14 2 7, 14
3 11, 16 3 11, 16
4 7, 12 4 7, 12

5 12, 16
6 7, 14
7 14, 16
8 8, 11

5.4 Numerical Results

In this section, we simulate MDBS and FDBS on U.S. InternetMCI network to

implement urgent backup. As shown in Fig. 5.1, the network includes 19 nodes and

33 links, and there are seven DCNs hosted at the network. We assume that each link

in the network has a number of available wavelength channels which is determined

by randomly generating an integer between 10 and 30. We also assume that an

upcoming disaster will affect the DCN node 3 area and different types of data at this

node should be backed up within the ε early warning time, where the amount of each

type of data is set as a random integer between 100 and 300 data units.

In our experiments, we set χ = 1000, Re = 1 and n = 2. We consider two

scenarios (i.e., |D′| = 4 and |D′| = 8) for the backup problem, respectively. Here, the

total available storage capacity in all backup DCN nodes is set as 1400 data units for

|D′| = 4 and 2000 data units for |D′| = 8. The backup requirements from different

types of data for |D′| = 4 and |D′| = 8 are shown in Table 5.3. Gurobi 6.0 is used

to solve the ILPs in Section 5.2. The experiments are run on a computer that has an

Intel Core(TM) i3-4030U CPU @ 1.90GHz and 4GB memory.

In Fig. 5.2, we first show the results on the maximum amount of data that

can be backed up obtained by MDBS and FDBS based on ILPs for |D′| = 4 and
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Figure 5.2: Comparison between MDBS and FDBS on the maximum amount of data
that can be backed up based on ILPs for different times ε
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Figure 5.3: Comparison on the total amount of data that can be backed up from
MDBS based on ILP, heuristic and strawman for different times ε
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Figure 5.4: Comparison between ILP and heuristic on the amount of each type of
data that can be backed up from MDBS with ε = 10 time units
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|D′| = 8, respectively under different times ε. The results in Fig. 5.2 indicate that

the maximum amount of data that can be backed up increases with the increase of

the time ε. We can also observe that the maximum amount of data that can be

backed up obtained by FDBS is less than (or equal to) that obtained by MDBS in

both cases, and the gap between MDBS and FDBS increases with the increase of |D′|.

This is because that the objective of MDBS is to maximize the total amount of data

that can be backed up by fully utilizing the available resources and then the upper

bound of the amount of data that can be backed up within the given early warning

time can be achieved, but FDBS needs to ensure the same proportion of data backup

for each type of data which may not fully utilize the available resources and thus the

upper bound of the amount of data that can be backed up cannot be always reached

for any case based on FDBS.

To validate the effectiveness of our proposed heuristics for MDBS and FDBS, we

also provide simple algorithms to solve MDBS and FDBS (referred to as strawman

algorithms), respectively. Strawman algorithms are obtained by only calling Proce-

dure 3 in Algorithms 1 and 2, and removing the sort operation in Algorithm 2 as well.

In such Procedure 3, we successively select an available path from set P to back up

data, and the bandwidth on path p for backing up data is determined by (5.18). The

other operations are similar to those in Procedures 1 and 2.

Min
(⌈ SDep

ε ·Re

⌉
,
⌈Cdpmax

ε ·Re

⌉
,Mine∈p{Be}

)
. (5.18)

We then provide the results obtained by MDBS based on ILP, heuristic and s-

trawman algorithm for |D′| = 4 and |D′| = 8, respectively under different times ε, as

shown in Fig. 5.3, which use to validate the effectiveness of the proposed heuristic

for MDBS. From Fig. 5.3(a), we can find that the total amount of data that can be
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backed up obtained by heuristic within the given early warning time is the same as

that obtained by ILP when |D′| = 4. From Fig. 5.3(b), we can observe that there is

a gap between ILP and heuristic when |D′| = 8, but the maximum gap is less than

7.2% which indicates that the gap varies within a moderate scale. The results in Figs.

5.3(a) and (b) also indicate that the heuristic outperforms the strawman algorithm.

Thus, the proposed heuristic for MDBS is efficient.

Fig. 5.4 shows the amount of each type of data that can be backed up obtained

by MDBS based on ILP and heuristic for two cases (i.e., |D′| = 4 and |D′| = 8)

when ε = 10 time units, respectively. From the results in Fig. 5.4, we can find that

although the total amount of data that can be backed up obtained by heuristic is the

same as that obtained by ILP for the both cases when ε = 10 time units, the amount

of each type of data that can be backed up is different between heuristic and ILP. The

results also indicate that MDBS leads to the differential backup for different types of

data.

To validate the effectiveness of the proposed heuristic for FDBS, in Fig. 5.5 we

also present the results on the same proportion of data backup for each type of data

achieved by FDBS based on ILP, heuristic and strawman algorithm for |D′| = 4 and

|D′| = 8, respectively under different times ε. From the results in Fig. 5.5, we can

observe that the same proportion of data backup for each type of data obtained by

heuristic is similar to that obtained by ILP when |D′| = 4, and although the gap

of the proportion between ILP and heuristic increases with the increase of |D′|, this

gap is less than 10% when |D′| = 8. We can also find that the heuristic is much

better than the strawman algorithm. Thus, the proposed heuristic for FDBS is also

efficient. The results in Figs. 5.3 and 5.5 also indicate that the proposed schemes can

automatically adapt to different early warning times.

Tables 5.4 and 5.5 show running times for solving ILP and executing heuristic

in Figs. 5.3 and 5.5, respectively. From those tables, we can find that the time for
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Figure 5.5: Comparison on the same proportion of data backup for each type of data
from FDBS based on ILP, heuristic and strawman for different times ε
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Table 5.4:
Running time (in second) for solving ILP and executing heuristic with
|D′| = 4

ε
ILP Heuristic

MDBS FDBS MDBS FDBS

1 1.476 3.947 0.241 0.326
3 1.231 2.397 0.085 0.15
6 0.708 4.505 0.07 0.056
9 0.6429 5.203 0.132 0.08
12 0.63 1.58 0.116 0.061
15 0.563 1.64 0.055 0.049

Table 5.5:
Running time (in second) for solving ILP and executing heuristic with
|D′| = 8

ε
ILP Heuristic

MDBS FDBS MDBS FDBS

1 5.602 7.871 0.268 0.513
3 6.174 8.285 0.051 0.208
6 3.342 16.454 0.06 0.089
9 3.418 143.646 0.077 0.092
12 5.68 143.368 0.053 0.062
15 3.942 104.311 0.042 0.067
18 2.684 120.072 0.033 0.083
21 > 1000 5.687 0.056 0.059
24 3.79 4.828 0.052 0.059
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solving ILP is always larger than that for executing heuristic. We can also observe

that the time for solving ILP increases with the increase of |D′|. In particular, the

time for solving ILP dramatically increases for some given ε when |D′| = 8. For

example, the time is larger than 100 seconds for FDBS when ε ranges from 9 to 18

time units and that is larger than 1000 seconds for MDBS when ε = 21 time units.

However, the time for executing heuristic varies in a small scale. The above results

indicate that the proposed heuristics are time-efficient and more scalable, which can

provide the real-time solutions against the disaster with a small early warning time.

5.5 Summary

We studied the urgent heterogeneous data backup across geo-distributed DCNs

against a disaster with the early warning time under a given set of backup resources.

To carry out urgent backup, two backup schemes (i.e., MDBS and FDBS) were pro-

posed, each solving by an optimal ILP and a corresponding heuristic. For different

types of data that should be backed up, MDBS can obtain the maximum amoun-

t of data that can be backed up, and FDBS can maximize the same proportion of

data backup for each type of data to achieve the fair backup for each type of data.

Numerical results showed that the proposed schemes can meet the different backup

requirements from different types of data and adapt to the disasters with different

early warning times.

88



CHAPTER VI

Conclusion

This chapter summarizes the thesis and points out the interesting future research

topics.

6.1 Summary of the Thesis

In this thesis, we focused on the data center network (DCN) placement and data

backup against region failures due to disasters. We first investigated the region failure-

aware DCN and content placement, and then we explored the homogeneous data

backup based on early warning of region failure. Finally, we studied the heterogeneous

data backup based on early warning of region failure.

For region failure-aware DCN and content placement, we investigated in Chapter

III DCN and content placement with the consideration of non-uniform distribution

of region failure in large-scale area. We first evaluated the network vulnerability

by integrating the probabilistic region failure model with the grid partition scheme.

Based on the network vulnerability information, we then identified the optimal DCN

and content placement in the network such that DCN failure probability is minimized,

where the solutions for DCN and content placement can be obtained based on ILP

and time-efficient heuristic. The results in this chapter showed that our proposed

network vulnerability assessment scheme is efficient and also provided the solutions
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for DCN and content placement under non-uniform spatial and intensity distribution

of a potential disaster.

For homogeneous data backup based on early warning of region failure, we pro-

posed in Chapter IV the cost-efficient urgent backup scheme for homogeneous data

backup by fully utilizing the ε early warning time. We also provided the scheme to

obtain the maximum backup capacity within the ε early warning time. The corre-

sponding ILP models and a heuristic are developed to get the backup solutions. The

results in this chapter showed that our proposed schemes are disaster adaptive to

different early warning times ε.

In Chapter V, we addressed the heterogeneous data backup based on early warning

of region failure. We developed two backup schemes to carry out urgent backup within

the ε early warning time. For each scheme, both ILP and heuristic are proposed to

generate backup solutions. The results in this chapter also showed that the proposed

schemes can flexibly adapt to different early warning times ε.

6.2 Future Work

The interesting future research topics are summarized as follows.

• In this thesis, for DCN and content placement problem, each DCN and each

type of content are treated equally. Thus, one interesting future research topic

is DCN and content placement with the consideration of different priorities and

constraints as well as dynamic network traffic.

• In this thesis, we divide the backup problem into two sub-problems (i.e., Backup

Capacity Evaluation (BCE) and Backup Cost Minimization (BCM)) in Chap-

ter IV. Then another attractive future research topic is how to jointly design

an optimization problem to maximize the backup capacity while keeping the

backup cost minimized.
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• It is notable that in heterogeneous data backup, different types of data are

treated equally. Thus, it will be interesting topic to develop urgent backup

scheme with the consideration of the different priorities for different types of

data.
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