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Abstract

Background: Imperfect diagnostic testing reduces the power to detect significant predictors in classical cross-sectional
studies. Assuming that the misclassification in diagnosis is random this can be dealt with by increasing the sample size of a
study. However, the effects of imperfect tests in longitudinal data analyses are not as straightforward to anticipate,
especially if the outcome of the test influences behaviour. The aim of this paper is to investigate the impact of imperfect
test sensitivity on the determination of predictor variables in a longitudinal study.

Methodology/Principal Findings: To deal with imperfect test sensitivity affecting the response variable, we transformed the
observed response variable into a set of possible temporal patterns of true disease status, whose prior probability was a
function of the test sensitivity. We fitted a Bayesian discrete time survival model using an MCMC algorithm that treats the
true response patterns as unknown parameters in the model. We applied our approach to epidemiological data of bovine
tuberculosis outbreaks in England and investigated the effect of reduced test sensitivity in the determination of risk factors
for the disease. We found that reduced test sensitivity led to changes to the collection of risk factors associated with the
probability of an outbreak that were chosen in the ‘best’ model and to an increase in the uncertainty surrounding the
parameter estimates for a model with a fixed set of risk factors that were associated with the response variable.

Conclusions/Significance: We propose a novel algorithm to fit discrete survival models for longitudinal data where values
of the response variable are uncertain. When analysing longitudinal data, uncertainty surrounding the response variable will
affect the significance of the predictors and should therefore be accounted for either at the design stage by increasing the
sample size or at the post analysis stage by conducting appropriate sensitivity analyses.
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Introduction

The estimation of disease incidence and prevalence, and the

identification of potential risk factors associated with a disease are

hampered by imperfect diagnostic tests. While the imperfect

nature of tests is widely acknowledged, and several methods have

been devised to account for imperfect test sensitivity and specificity

when estimating disease incidence and prevalence (e.g. [1–3]), the

impact of imperfect testing on the determination of risk factors has

rarely been directly studied. The methods proposed to correct for

imperfect testing have generally been based on sensitivity analyses

and produce adjusted prevalence estimates for specific scenarios.

This is a valid approach for cross-sectional studies, but ignores the

implications that the test result of an individual subject (or unit)

might affect the testing regime and the subsequent tests performed

on the same subject/unit in a longitudinal setting. In this paper,

we consider the use of discrete time survival models [4] to study

risk factors for disease diagnosis in a dynamic context (i.e. where

the status of an individual unit at a point in time is dependent on

the status at the previous time point), and propose a novel

extension to the standard model to handle imperfect tests using

Monte Carlo Markov chain (MCMC) methods. The methods

proposed can be used in many infectious disease scenarios but here

we focus on modelling of risk factors for bovine tuberculosis (bTB)

in Great Britain using a subset of data from the Randomised

Badger Culling Trial (RBCT) [5]. There are many potential

approaches for modelling this dataset and the purpose of the

current work is not to propose a definitive best fitting procedure

but to examine the impact of test sensitivity on one particular

approach by adjusting for the imperfect sensitivity of the currently

used test to define exposure to bovine tuberculosis, the single intra-

dermal comparative cervical tuberculin (SICCT) test.

Bovine tuberculosis is a major economic problem for the British

cattle livestock industry, which has seen a continuous increase in

the disease incidence rate over the past 25 years [6]. Incidence and

prevalence of bTB is generally reported in terms of numbers of
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new herd break downs (HBDs) per area, where a HBD occurs if at

least one animal in a herd tests positive when the herd is not

currently known to be infected. The number of HBDs is closely

linked to the testing regime and in Great Britain (GB); routine

testing of a cattle herd is conducted at a frequency determined by

the prevalence of bTB in the parish as observed by the testing

regime [7]. The guidelines for testing are in theory quite clear:

during routine testing, all qualifying animals in the herd are tested

using the SICCT test. Three days after testing, the test is read and

if at least one animal is a reactor (i.e. the animal has reacted

positively to the test), the herd is placed under movement

restrictions; all reactors are compulsorily slaughtered and subject

to post mortem examination. This event is known as a HBD. Results

of the post-mortem examination and/or laboratory culture of tissues

lead to the HBD being either classified as confirmed (evidence of

M. bovis found) or not [8]. Herds in which reactor animals are

confirmed are re-tested at a minimum interval of 60 days until

they have had two consecutive clear tests. They are re-tested again

after a minimum interval of 6 months and again after a further

12 months. All reactors removed prior to a second clear 60 day

test are attributed to the breakdown incident and animal

movement restrictions remain in place throughout the period

[9]. Herds in which M. bovis is not confirmed in any reactor are

also placed under restrictions and re-tested after 42 days. If this

test is clear, restrictions are lifted and the herd returns to the

routine testing cycle. Confirmation of a HBD also triggers testing

of contiguous herds and herds from which reactor animals have

been purchased during the period extending back to two months

before the previous clear herd test. Any animals sold by the

breakdown farm to other farms during this same period are also

tested. The testing regime is thus designed to follow possible paths

of transmission to neighbouring herds or through traded cattle to

attempt to contain the infection, as well as to provide surveillance

data.

In the literature, numerous risk factors associated with cattle

HBDs have been identified and can be categorised into cattle- or

herd-related factors (including cattle movements) and wildlife (e.g.

badger) factors [9–17]. The risk factors identified vary between

studies according to the data available and statistical approaches

used. Little attention has so far been given to the effect that the

imperfect nature of the tuberculin test has on the significance of

the risk factors. While the specificity of the test is generally

accepted to be close to 100% (i.e. there are very few false positive

test results), previous work has demonstrated that the sensitivity of

the test is likely to lie somewhere between 50% to 100% with large

variation depending on the estimation method used (Monaghan

et al. (1994) [18] suggested a range of 68% to 95%, de la Rua-

Domenech (2006) [19] a range between 75% and 95.5%, Clegg

et al. (2011) [20] a range between 53% and 61% and Alvarez et al.

(2012) [21] suggested a median sensitivity of 66–69% with high

variability). The stage of infection of the animal tested and

previous exposure to the SICCT have been shown to reduce the

sensitivity of the test [22]. The consequences of the imperfect

sensitivity of the SICCT test are not straightforward to assess due

to the modality of the test which includes possible repeated testing

of same individuals depending on the results of previous tests.

In this paper we propose a new methodology that can be used to

incorporate imperfect test sensitivity into a discrete time survival

modelling framework. We describe methods for conversion of the

complex testing regime that exists for bTB in GB into an

underlying discrete time (annual) response pattern of HBD

responses for each herd. We then show the impact of the

imperfect test on identified risk factors under a range of possible

values for the sensitivity of the SICCT test.

Materials and Methods

Rationale
The aim of this paper was to investigate the impact of sensitivity

of the single intra-dermal comparative cervical tuberculin (SICCT)

test on the determination of risk factors associated with a positive

bTB test result. As such, we did not attempt to infer or model the

true disease or infection status of a cattle herd, but instead

modelled the effect of having uncertain test results, irrespective of

the underlying unknown infection status.

Data Background
Since the discovery of a badger infected with bovine tubercu-

losis (bTB) in 1971, which raised questions on the role of badgers

as a vector and reservoir of the pathogen, culling badgers became

one possible measure to control the spread of the disease in

addition to the control of cattle. The combination of the 1992

Badger Protection Act and the conflicting evidence regarding the

efficacy of badger culling as a control measure for bTB, prompted

a comprehensive review of the subject [23]. This resulted in 1998

in the design of a large scale clinical trial, the Randomised Badger

Culling Trial (RBCT) [5]to evaluate the efficiency of two methods

for culling badgers in altering the incidence of cattle herd

breakdowns (HBDs) due to bTB. The RBCT ran from 1998 to

2005 (with the last surveys occurring in March 2006) and targeted

regions of the UK with a high reported incidence of bTB. Ten

‘triplet’ areas were defined and following an initial survey of both

farms and badgers’ social territories, each study area (triplet) was

separated into a control trial area where no badger culling

occurred and two treatment areas differing in the way badger

culling was implemented. In the reactive treatment area, culling of

badgers was performed on neighbouring farms where a bTB herd

breakdown occurred. In the proactive treatment area, culling

occurred over the whole area on an annual basis. For this paper,

we restricted the analysis to one of the ten proactive culling trial

areas (area B2). The area was chosen as it covers the full duration

of the RBCT trial from 1998 to 2005. The B2 culling area

comprised 174 herds corresponding to 167 distinct County Parish

Holdings (or farms) registered to 164 registered land owners as per

the RBCT database.

Multiple data sources were used to construct the response

variable and the different predictors. Data related to herd bTB

status and test results (including number of animals tested, number

of reactors) were extracted from the Vetnet database. Animal

movement data related to the farms present in the area were

extracted from the British Cattle Movement Service (BCMS)

Cattle Tracing System, and the number of animals moved

aggregated by farm of origin and destination, and by calendar

month. This was used to construct cattle movement predictors.

From the data collected during the RBCT itself, we extracted

information mostly relating to badgers. The RBCT database

contained records of badger setts identified on different parcels of

lands across the trial area. The badger data are also organised at a

spatial level of badger social groups. The badger information can

thus be related to the farm data using an association table relating

badger social group, badger sett and registered land owner, these

three variables forming a unique searching key between the

badger trapping and survey data, and the farms. The final data

source used was GIS information, which enabled building maps of

both badger social groups and farmland, to define the neighbour-

hood structure for each farm (i.e. how many neighbours, each

farm had) and to calculate distances between the centroid of each

farm and the centre of the trial area. The GIS information was

also used to identify farms with multiple parcels of land across the
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study area and to link each of these parcels to possible overlapping

badger social groups.

Response Variable – Relationship between Cattle Herd
Breakdowns and Test Results

We chose as our response variable, a binary indicator of a cattle

herd breakdown (HBD), considering both confirmed and uncon-

firmed HBD together as both have an impact on testing regime.

By a HBD, we mean a herd being placed under restriction (unable

to move animals off the farm) following a positive bTB test (which

is the case for both confirmed and unconfirmed HBDs). Thus we

modelled the risk of the herd being put under restriction and not

the risk of becoming infected which is not known.

During the trial period, all cattle herds in area B2 were

supposed to undergo a whole herd test on an annual basis.

However, herds were not always tested each year with a total of

219 out of 1302 annual tests missing and 30 occurrences where a

herd was not tested for two or more consecutive years. The reasons

for the absence of a test were not always obvious from the data,

and we considered such tests as ‘‘true missing tests’’, i.e. a test was

due and was not performed. This ‘‘missing test’’ could be due to

the absence of eligible cattle in the herd, which could still leave a

residual risk of bTB in the herd [15], or it may be an artefact of

our time-interval selection, i.e. there may be just over 12 months

between two consecutive tests.

Discrete Time Survival Models
In discrete time survival modelling, we model the risk (or hazard)

of an event happening, considering time as a succession of discrete

time intervals during which the individual may or may not be at risk

of the event occurring [4]. In our case, the event of interest was a

bTB HBD. The unit of study was the herd, organised within farms

within registered land owners; herds are uniquely identified with a

County-Parish-Holding-Herd (CPHH) number. Observations were

considered on an annual (i.e. 12 months) time interval to reflect the

fact that herds followed an annual testing regime. Any shorter time

step would result in a large amount of missing data because herds

testing negative for bTB were rarely retested in the same year. Our

annual time step (test-year) ran from the 1st of February of each year

to the 31st of January of the following year, in what we called a

‘‘badger-year’’. This choice was motivated by the trapping

methodology used in the RBCT which was restricted to the 1st of

May through to the 31st of January the following year to reduce the

chance of trapping lactating badger sows with dependent cubs. By

choosing to use a badger-year, we thus ensured (1) that any cub

caught in a specific year was born in that year and (2) that two

trapping seasons would not be considered within the same year. The

change in temporal unit from calendar year to badger-year had no

influence on the bTB testing regime in place for cattle.

Since some herds may have experienced multiple HBD events

(on average a herd experienced 2.5 HBD during the study period),

we included in the model a random effect at the individual

occupier level assuming multiple herds associated with the same

land owner will share the same random variation (there were only

10 more herds than owners). Based on results from previous work

(Szmaragd et al. in preparation), we did not include a conditional

autoregressive (CAR) spatial random effect as any spatial effects

were assumed to be captured by the predictor variables. This

resulted in a hierarchical structure with time periods nested within

herds nested within owners but only owner level random effects:

log it hijk tð Þ
� �

~X T
ijk tð Þbzuk

uk*N 0,s2
u

� �

hijk(t) is the hazard of an event occurring in time interval t during

episode i for individual herd j for occupier k.

Xijk(t) are the predictor variables which might be time-varying or

defined at the episode, individual herd, farm or occupier level. It

also includes a polynomial function of the time at risk (see Table 1),

which represents the baseline hazard of the event occurring based

on the time since the previous event.

uk is a random effect representing unobserved characteristics

common to all episodes experienced by all herds sharing the same

land owner k. We follow the common assumption that the uk are

normally distributed with mean 0 and variance su
2.

Constructing the Response Variable in the Presence of
Missing Test Results and Imperfect Test Sensitivity

When working with discrete time survival models (or event

history data), the presence of missing outcomes for any individual

impacts on the whole sequence of events/observations for that

individual. Indeed, assuming the missing observation is an event

(or respectively a non-event), this will alter (i) the probability of the

following observation being an event and (ii) the time when the

next episode starts.

Before fitting the discrete time survival model described above,

we transformed the observed responses based on the results of the

tuberculin test into a set of patterns of HBD events which are the

response variables used in the model and represent the underlying

true disease status. The process used to create the pattern of HBD

events is described in figure 1.

For each herd, our procedure starts with a list of test results

grouped per badger-year. In the example of figure 1, this example

herd had not been tested for years 3, 7 and 8. This list of test

results is then transformed into a list (or vector) containing HBD

states. We defined four states, which represents the restriction

status of the herd based on the bTB test results:

0 being defined as at least one bTB test occurred and all tests were

negative, i.e. herd was not under-restriction.

1 being defined as at least one HBD occurred and the herd was

not unrestricted by the end of the period (2 consecutive negative

tests in the period) by the end of the period, i.e. herd was still

under-restriction at the period end.

2 being defined as a HBD occurred but the herd was unrestricted

by the end of the period (last 2 tests were negative in the period),

i.e. herd was under-restriction for part of the period but the

restrictions were lifted by the end of the period.

M no test occurred in this period and so the annual (test results)

state is unknown.

The next step consists in accounting for the imperfect sensitivity

of the test in defining the sequence of HBD. The imperfect

sensitivity means that for each recorded 0 or 2 in the list of HBD

based on the test results, there is a probability that in reality this

state should actually be a 1 (i.e. the corresponding tuberculin test is

truly positive). Thus for each 0 or 2 state in the list of HBD states

for a particular herd, two possibilities arise: either the true state is

actually a 1 (and the test was a false negative) with probability p or

the test was a true negative and the true state is the same as the

observed state with probability 1–p. This is propagated through

the full sequence of HBD states for that herd leading to a set of

possible patterns with associated prior probabilities depending on p

Impact of Imperfect Test on Risk Factors
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(following a binomial probability distribution) as illustrated in

figure 1.

The probability p is related to the test sensitivity but is actually

closer to the negative predictive value and so will depend on the

underlying prevalence of bTB in the population as explained

below.

Some herds contained missing HBD states for certain years

which are found through the set of patterns. We dealt with missing

tests via a rule based approach so that some missing tests were

filled in deterministically whilst others were uncertain and hence

this resulted in additional possible response patterns being created

for each herd. Our approach to filling in missing values is

presented in Table 2 based on the herd states before and after the

period with missing test(s). If the HBD states are identical before

and after the period with missing test(s) and the before state is not a

2, then the missing HBD state take the same value. If the before

state is either a 0 or 2 and the after state a 1 or 2, then the missing

state can be either a 0 or 1, with equal probability. Finally if the

before state is a 1 and the after state a 0, the missing state can be

either 0, 1 or 2 with equal probability.

When the missing test values had been filled in and the patterns

were fully defined (i.e. there are no longer any missing value), we

transformed the resulting set of state vectors into response vectors

indicating whether the herd was ‘‘at risk of HBD but had not

broken down’’ ( = 0) or ‘‘was not at risk’’ because an event ( = 1)

had occurred. If the herd was not at risk for two or more

consecutive time steps (consecutive 1s or a 2 following a 1), the

second and consecutive 1s were discarded from the data. We

summarised in Table 1 the list of 12 patterns of HBD states

represented in figure 1, with the corresponding response and time

at risk vectors and the prior probability of each pattern being

determined by the value of p.

Based on the fact that the test is designed with high specificity to

avoid true negative herds being placed under restriction, we

assumed for simplicity that the number of false positives was

minimal and could be ignored. We expressed p as the ratio

between the number of false negatives (FN) over the number of

herds tested negative (FN + TN, TN being the number of true

negative tests):

p~
FN

FNzTN

By introducing the number of true positive tests (TP) into the

ratio, p was related to the sensitivity of the test:

p~
FN

FNzTN
~

FN

TP

� �
|

TP

FNzTN

� �

~
1{Se

Se

� �
|

NHr

NHt{NHr

� �

with Se being the sensitivity of the test and NHr and NHt being

respectively the number of herds restricted (i.e. tested positive) and

the number of herds tested. NHr and NHt were obtained from the

Defra national statistics for TB for each year from 1998–2005 and

for each county in the UK. As we are interested in areas within the

RBCT, we compiled NHr and NHt as an overall average for the

RBCT counties over the RBCT period. In addition to the perfect

case of Se = 1 or p = 0, we tested a range of sensitivities from 0.5

(50%) to 0.95 (95%) and these corresponded to values of p ranging

from 0.008 to 0.153 (Table 3 provides the corresponding values of

p for the sensitivities tested).

We considered the value for the sensitivity of the test to be a

constant rather than a parameter in the model and populated the

list of possible response patterns with associated prior probability

distribution for each herd before running any statistical models,

thus reducing the computation time required for estimating the

model parameters. An extension that allows this parameter to be

estimated is potentially feasible but would require a strong prior to

ensure the model is identifiable and would require the pattern

prior probabilities to be recalculated at each iteration (thus

considerably increasing the computation time).

The true patterns (one of the set of the different possible patterns

of true disease status for each herd) are treated as parameters to be

updated as part of the Markov Chain Monte Carlo (MCMC)

Table 1. List of the 12 possible patterns resulting from a 6-year pattern of herd status.

Pattern No Pattern Prior Probability Response
No years since last event
(years at risk)

1 100210 K (1–p)3 100110 112311

2 101210 K (1–p)3 101.10 112.11

3 100211 K p(1–p)2 10011. 11231.

4 101211 K p(1–p)2 101.1. 112.1.

5 100110 K p(1–p)2 1001.0 1123.1

6 101110 K p(1–p)2 101.0 112.1

7 100111 K p2(1–p) 1001. 1123.

8 101111 K p2(1–p) 101… 112…

9 111210 p(1–p)2 1…10 1…11

10 111211 p2(1–p) 1…1. 1…1.

11 111110 p2(1–p) 1….0 1….1

12 111111 p3 1…. 1….

The ‘‘.’’ indicates years where the herd was not at risk of a herd breakdown because it was already under restrictions. Those years are virtually ignored by the model
fitting algorithm (Appendix S1).
doi:10.1371/journal.pone.0043116.t001
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Figure 1. Diagram of the data preparation process. Example based on a hypothetical herd. *The herd might not exist for the whole duration of
the study period. Missing year at the start and/or end of the study period are ignored, as the dataset does not to be balanced.
doi:10.1371/journal.pone.0043116.g001
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algorithm that we used to fit the model (see Appendix S1 for

details).

MCMC algorithms are iterative simulation-based procedures,

where parameters are grouped and updated in separate steps

within each iteration. A pattern is therefore selected in one step of

the algorithm in each iteration using the associated prior

probability as a proposal distribution, and that pattern is then

considered as known for the other steps in the iteration and the

other model parameters (fixed effects estimates and variances) can

be updated conditional on this fixed data.

We developed a general MCMC algorithm to fit discrete time

survival models with potential multiple patterns for each herd, in

the general case of assuming a 2-level random intercept model. We

implemented our algorithm in special purpose computer code

written in C++ (see Appendix S1 for the full description of the

algorithm) and tested the code by comparing the results obtained

by our algorithm with the ones given by the WinBUGS software

package [24] for the cases with no missing tests.

Using the model fitting process described below, we estimated

the best fitting models for each value of test sensitivity. We also

considered the best fitting model found under the assumption of a

perfect test (Se = 1 or p = 0), and looked at the effect on its

parameter estimates of decreasing test sensitivity.

Predictor Variables Considered
All the predictors were defined in relation to the response

variable which was the risk of a HBD (binary variable) for a herd j

in badger-year y. Some predictors were constant for the same herd

across the different years, whilst some varied. Some predictors

were also constructed by introducing a lag component, i.e. looking

at the value of a predictor at a specific number of years prior to the

year of the response (for simplicity the reference year will be

termed ‘‘test-year’’ or badger-year).

We constructed nine badger variables: the number of badgers

trapped in the test year and the previous year, the number of bTB

positive badgers trapped in the test year and the previous year, the

number of badgers estimated alive in the test year and the previous

test year (constructed deterministically from dental records), the

percentage of badgers infected in the test year and the previous test

year and the cumulative number of badgers trapped from the start

of culling to the test year. None of these predictors were significant

when area B2 was considered in isolation so we omit further

details.

The herd-level variables were herd enterprise (dairy-only, beef-

only, mixed), mean herd size in test year and the previous year,

number of calves born in the previous two years, new stock from

homebred calves only (binary), whether the herd was depopulated

in the 1–5 years or ever, before the test-year, number of cattle

tested, number of reactors in the previous 1 to 5 years, cumulative

number of reactors, missing test (in the test year or previous year),

number of months since last test.

CPH/occupier level variables were the number of land parcels

associated with the farm owner, average field size (ha); total farm

area, stocking density, distance between the centroid of the farm

and the centre of the trial area (m), number and average herd sizes

of neighbouring herds, categorised by whether they were not

tested, tested positive or negative for bTB.

Continuous variables were computed for each herd over a

badger-year. If the herd tested negative in that year, the value of

the variable was the average of the variable over the badger-year,

while if the herd had a HBD, the value of the variable was

obtained by averaging over the period from the start of the badger-

year to the date of the first positive test or in the case of variables

related to the number of reactors we used the sum over the whole

badger-year.

The herd enterprise type was obtained from data records from

both the RBCT database and historical records from VetNet for

2000 and 2002, allowing for some changes in herd enterprise type

during the course of the trial.

There was a foot and mouth disease (FMD) epidemic in 2001

during which time some herds were depopulated. Herds were

marked as depopulated if they decreased in size (through

slaughter) by more than half in a month.

The set of predictors constructed from cattle movements were

the number of cattle moved to a farm either directly or through

market, categorised by year, test status of source farm (untested,

positive, negative) in the previous and following year(s) and the

testing frequency of the source farm. The number of cattle sold in

the 12 or 12–24 months prior to the first unrestricted bTB test in

any year were also considered as predictors. Rare movements (i.e.

variables corresponding to types of movement where in total fewer

than ten cattle were observed performing the type of movement in

the whole dataset) were removed from the list of possible

predictors prior to modelling.

Model Fitting Process
The model fitting process considered is similar to one given in

Cox and Wermuth (1996) [25], and was performed in three main

steps within an iterative loop (figure 2). The first step consisted of

fitting univariable models where each predictor was added on its

own to a base model containing random effects, the baseline

hazard function and an intercept. When all predictors have been

tested, they are ordered according to their ‘‘z-score’’ defined as

the absolute value of the ratio of the posterior mean for the

predictor to its posterior standard deviation. Predictors with a z-

score larger than 1.96 are considered significant. In the second

step, all the significant variables were included in a single model

except for highly correlated variables (Spearman correlation

coefficient more than 0.7). If two variables were strongly

Table 2. The deterministic rules used for filling in missing test
values.

After 0 1 2

Before

0 0 0 or 1 0 or 1

1 0 or 1 or 2 1 1

2 0 0 or 1 0 or 1

The ‘‘Before’’ rows and ‘‘After’’ columns give the states of the herd in the years
prior and after the missing test.
doi:10.1371/journal.pone.0043116.t002

Table 3. Values of p used as prior probability of each pattern,
for a range of possible sensitivity values.

Se 0.5 0.60 0.75 0.8 0.85 0.95

Prior probability
value (p)*

0.153 0.102 0.0508 0.038 0.027 0.008

*Probability p = (NHr/(NHt-NHr))*((1–Se)/Se), with NHr and NHt being
respectively the number of herds classified as reactors and the total number of
herds. These numbers are overall averages computing from the statistics
available from Defra for the British counties in the RBCT area between 1998 and
2005.
doi:10.1371/journal.pone.0043116.t003
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correlated then the variable with the higher z-score was

preferentially included. The model including all these predictors

was fitted and we then proceeded by removing no longer

significant variables one at a time, refitting models as we went.

This process continued until we reached a model where all the

predictors were significant. In the third step, the optimum model

for this round was used as the starting point for the next round.

Step one was then repeated using this model as the base model.

Once the remaining predictors had been tested in a univariable

fashion, we checked for any new significant variable, which was

not correlated with any predictor already in the model. We then

repeated the second step, followed again by the third step (if

necessary) until no more significant predictor could be added to

the model.

Each model was run twice (to check for convergence to a unique

mode) for 50,000 iterations following 5,000 burnin iterations. The

initial values for the first chain were set to 0 for each predictor and

to 0.1 for the variance of the random effects. The second chain

was initialised using the opposite signed value of the coefficient

values obtained for each predictor from the first chain, and using 1

for the variance of the random effects. Except for the choice of the

pattern corresponding to the true disease status where we used the

prior distribution derived from the test sensitivity, we did not have

any prior information for the other parameters of the model. We,

Figure 2. Diagram of the model fitting process. *cubic function of the time at risk variable was initially used. At the end of the first univariable
iteration, the significance of each term will be assessed as part of the predictor selection step. None of the three terms were found significant and the
time at risk variable was thus removed from the model 1A predictor is considered to be significant if its z-score (|posterior mean|/(posterior standard
deviation)) is larger than 1.96 {The models are fitted using the MCMC algorithm detailed in Appendix S1.
doi:10.1371/journal.pone.0043116.g002
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thus, used non-informative priors: uniform priors for fixed effects

and a C{1 0:001,0:001ð Þ prior for the variance parameter.

Results

Using data collected in one area of the Randomised Badger

Control Trial (RBCT) where proactive culling of badgers

occurred, we tested the effect of varying the bovine tuberculosis

(bTB) test sensitivity from 50 to 100% on the identification of risk

factors for bTB herd breakdown (HBD).

Effect of Reduced Test Sensitivity on the Identification of
bTB HBD Risk Factors

The best fitting model obtained under the assumption of perfect

test sensitivity contained several predictors (see Table 4 for their

full description), half of which were related to farm or herd

demographic characteristics (including farm neighbourhood and

the effect of the 2001 FMD epidemic); with the other half being

related to cattle movements onto the farm (Table 5). This model

highlighted that selling animals a year before being tested for bTB

significantly reduced the risk of a HBD; this protective effect

persisted across the range of sensitivity values. Perhaps not

surprisingly, herds with larger number of animals tested and more

calves born the year before the test had a significantly higher risk

of a HBD. This increasing risk of HBD with larger herd size was

also consistently found across the range of sensitivity albeit through

different but highly correlated predictor variables such as the log of

the mean herd size and number of calves born two years before

the test (see Table S1 for the full correlation table). Previous HBD

history as represented by the number of reactors two years before

the test was also a significant risk factor which persisted across the

range of sensitivities except when the test sensitivity dropped to

50% where it was replaced by the cumulative number of reactors

in the previous four years (Spearman’s correlation coefficient of

0.58). The 2001-FMD outbreak appeared to mark an increase in

the risk of HBD which persisted across the range of sensitivity

values, however this could also be linked to a general increase in

bTB prevalence with calendar time as has been reported across

Great Britain.

With regard the effect of neighbouring cattle herds, herds with

more neighbouring herds testing positive in the same year had a

higher risk of HBD; while having larger neighbouring herds testing

negative in the same year was protective against the risk of HBD;

both effects probably reflect the testing regime. The increasing risk

of HBD with more neighbouring herds testing positive persisted

across the range of sensitivity values whereas the protective effect

of being surrounded by large herds testing negative was replaced

by the protective effect of having more neighbouring herds (or

larger neighbouring) herds testing negative the previous year.

While these different predictor variables are not highly correlated

(supplementary Table S1), they represent a similar relationship

between neighbouring herds and the probability of a HBD. When

the sensitivity of the test dropped to 50%, two additional predictor

variables became significant with opposite effects: the more

neighbours a herd has in the previous year the higher the risk of

a HBD (through higher probability of exposure and/or larger

susceptible population) but the more neighbouring herds testing

positive in the previous year the less the risk (possibly due to

effective removal of the source of infection).

The type of herd enterprise (beef or mixed versus dairy) was a

significant risk factor only under the assumption of perfect

sensitivity or very high sensitivity (95%).

A number of variables related to purchase patterns were

significant predictors for the risk of HBD in a given year but only

two movements variables found under the assumption of perfect

test sensitivity were consistent across the range of sensitivity values.

These were the log of the number of animals bought the year

before the test directly, from a farm which had tested positive at

some point in the 12 months preceding the purchase, which was

consistently associated with a decreased risk of HBD while the log

number of animals bought the previous year from a farm which

never tested positive before the move but after the 1st of July 1996

when cattle passports were first implemented led to an increase in

risk of HBD for all sensitivity values except for the best fiting

model with 75% test sensitivity where it was replaced with the

highly correlated indicator of depopulated herd. Two additional

risk factors (including highly correlated factors), namely the

number of animal bought through market from a farm testing

positive in the year following the move and from a farm in a 3- or

4-yearly testing area which tested positive two years before the

move, were found in the best fitting models for sensitivity value

above 60%. The other movement predictor variables (a mixture of

risk and protective factors) identified in the best fitting model in the

case of the perfect sensitivity tended to disappear either partially

(persisted for some sensitivity values but not others) or completely,

while new movement predictors appeared.

Effect of Reduced Test Sensitivity on the Parameter
Estimates for bTB HBD Risk Factors

As the variables identified in the best fitting models for different

values of test sensitivity varied, we investigated the effect of

reducing test sensitivity on the parameter estimates obtained for

the predictors of the best fitting model found under the assumption

of perfect test sensitivity while keeping the model fixed. The

rationale here was that epidemiological studies aiming at

identifying risk factors from field data generally assume a perfect

test (100% sensitivity). It is, however unclear what effect on the

parameter estimates would be observed if this assumption was not

met.

Our model fitting showed that while the size and the sign of the

parameter estimates generally remained similar across the different

sensitivity values, there was a consistent increase in the standard

errors around these estimates with a decrease in sensitivity

(Table 6). Some parameters ceased to be significant as sensitivity

was reduced, mainly once this dropped below 60%, with the

exception of one of the FMD indicators which lost significance as

soon as the sensitivity of the test dropped below 95%. When the

test sensitivity was less than 60%, the MCMC algorithm had

convergence problems for the second chains with diffuse starting

values. In our modelling approach, decreased test sensitivity led to

more uncertainty in the actual pattern for each herd and the

posterior distribution potentially became multi-modal. Here

different patterns with similar prior probability of being correct

will result in different predictors being significant. This also led to

patterns with lower prior probability being more likely to be

selected by the model than they were for higher sensitivity values.

Discussion

In this paper, we have presented a new approach for fitting

discrete time survival models where the response variable contains

missing values and at the same time where the known values of the

response variable are surrounded by a certain amount of

uncertainty. This type of data is especially found in epidemiology

where the response variable relates to disease status, which itself is

dependent on a (possibly imperfect) diagnostic test. The presence

of missing values alone leads to a response variable which is not

uniquely defined but instead takes the form of a set of multiple
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Table 4. List of predictor variables appearing in the models.

Abbreviation Full Variable name - Description Statistics

LSoldPY Loge(#animals sold, previous year) 1.71;1.84

LCalfPY Loge(#Calves born, previous year) 2.61;1.86

LCalfPY2 Loge(#Calves born, two years previously) 2.30;1.94

LAT Loge(#animals tested) 3.57;2.00

LAvHSY Loge(mean herd size, in that year) 4.35;1.24

ReactPY2 #reactors found two years previously 0.56;2.74

CumReacPY4 Cumulative #of reactors found in the previous four years 2.00;5.63

NeighPosY #neighbour herds tested positive, same year 0.71;0.90

NeighPY #neighbour herds, in the previous year 4.93;3.50

NeighNegPY #neighbour herds tested negative, in the previous year 3.03;3.03

NeighPosPY #neighbour herds tested positive, in the previous year 0.63;0.89

AvLHSNeighNegY Mean loge(herd size of neighbour herds tested negative, same year) 0.61;1.14

AvHSNeighNotTPY Mean(herd size of neighbour herds not tested, previous year) 14.22;36.45

FMD1 FMD Indicator 1; = 1 post February 2001 NA

FMD2 FMD Indicator 2; = 1 post February 2002 NA

FMD3 FMD Indicator 3; = Year indicator (1–3), before February 2001 NA

FMD4 FMD Indicator 4; = Year indicator (4–8), post February 2001 NA

BeefFarm Beef-only enterprise (baseline category Dairy only) 57.8

MixedFarm Mixed enterprise (baseline Dairy only) 30.7

Dep1 Depopulation indicator = 1 if herd depopulated in the past 51.7

LDirYSNegPast Loge
#animals bought directly in the test-year from a farm, which always tested negative for TB

before the move
0.60;1.12

LDirPYSPosPY Loge
#animals bought directly in the previous test-year from a farm, which tested positive for TB

in the 12 months before the move
0.03;0.23

DirYSNotTYRBCT #animals bought directly in the test-year from a farm in the RBCT, which was not TB tested the
12 months before the move

0.99;7.96

LMarkYSNotTFolY Loge
#animals bought through market in the test-year from a farm, which was not

tested for TB the 12 months following the move
0.31;0.78

LMarkYSNegPYFq12 Loge
#animals bought through market in the test-year from a farm in high TB risk area, which was

tested negative for TB the 24–12 months before the move
0.07;0.33

LMarkYSNotTPYRBCT Loge
#animals bought through market in the test-year from a farm in the RBCT, which was not

tested for TB the 24–12 months before the move
0.16;0.55

LMarkYSPosPY2RBCT Loge
#animals bought through market in the test-year from a farm in the RBCT, which was tested

positive for TB in the 36–24 months before the move
0.17;0.57

LDirPYSNegPast Loge
#animals bought directly in the previous test-year from a farm, which always tested negative

for TB before the move but after the 1st of July 1996 when cattle passports were first implemented
0.08;0.35

LDirYSNegPYRBCT Loge
#animals bought directly in the test-year from a farm in the RBCT, which was tested negative

for TB the 24–12 months before the move
0.18;0.60

LDirYSPosPastRBCT Loge
#animals bought directly in the test-year from a farm in the RBCT, which was tested positive

for TB at some point before the move
0.47;0.99

LDirYSPosPYFq34 Loge
#animals bought directly in the test-year from a farm in low TB risk area, which was tested

positive for TB the 24–12 months before the move
0.04;0.28

MarkYSPosFolY #animals bought through market in the test-year from a farm, which was tested positive for TB the
12 months following the move

2.20;11.97

MarkYSPosPY #animals bought through market in the test-year from a farm, which was tested positive for TB
the 24–12 months before the move

7.23;43.14

MarkYSNegPY2 #animals bought through market in the test-year from a farm, which was tested negative for TB
in the 36–24 months before the move

5.54;28.43

LMarkYSPosFolYFq34 Loge
#animals bought through market in the test-year from a farm in low TB risk area, which was

tested positive for TB the 12 months following the move
0.02;0.18

MarkYSNotTYFq34 #animals bought through market in the test-year from a farm in low TB risk area, which was not
tested for TB the 12 months before the move

0.33;2.55

Table of abbreviations for the predictor variables found in the models, with full description and key statistics, being mean and standard deviation for continuous
variables (expressed as per herd/per year) and frequencies for categorical variables over the number of herds present in the study area.
doi:10.1371/journal.pone.0043116.t004
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possible outcomes. This set of potential outcomes is further

increased by the uncertainty relating to the imperfect nature of the

test used, which affects the prior probability of each response

pattern.

We developed a Bayesian model to deal with such cases and

applied it to historical data on herd breakdown (HBD) with bovine

tuberculosis (bTB). We found that accounting for the imperfect

sensitivity of the diagnostic test affects which risk factors are

significantly associated with a bTB herd breakdown and in

particular that a decreased test sensitivity leads to larger

confidence intervals around the parameter estimates of each risk

factors.

A small set of predictors (mostly non cattle-purchase variables)

were consistently significant across the best fitting models for each

different value of test sensitivity. The cattle-purchase variables

were the most affected by decreasing sensitivity values with only

Table 5. Best fit models obtained for each sensitivity value tested.

Se = 1 Se = 0.95 Se = 0.85 Se = 0.80 Se = 0.75 Se = 0.60 Se = 0.50

Parameters Est (sd) Est (sd) Est (sd) Est (sd) Est (sd) Est (sd) Est (sd)

Intercept 25.13 (0.61) 26.06 (0.60) 24.83 (0.57) 26.20 (0.66) 26.56 (0.78) 24.65 (0.65) 25.26 (0.65)

LSoldPY 20.97 (0.08) 20.94 (0.07) 20.92 (0.08) 21.01 (0.08) 21.04 (0.10) 21.17 (0.11) 21.20 (0.14)

LCalfPY 0.58 (0.09) 0.79 (0.11)

LCalfPY2 0.35 (0.07) 0.38 (0.07) 0.41 (0.08) 0.43 (0.09) 0.75 (0.14)

LAT 0.81 (0.12) 1.06 (0.13) 0.77 (0.14) 0.90 (0.15)

LAvHSY 1.12 (0.12) 1.25 (0.16) 1.31 (0.18)

ReactPY2 0.12 (0.04) 0.10 (0.04) 0.09 (0.05) 0.10 (0.05) 0.11 (0.05) 0.15 (0.06)

CumReacPY4 0.11(0.05)

NeighPosY 0.29 (0.11) 0.44 (0.10) 0.37 (0.12) 0.57 (0.12) 0.62 (0.13) 0.39 (0.15) 0.56 (0.19)

NeighPY 0.41 (0.11)

NeighNegPY 20.10 (0.05) 20.12 (0.05) 20.52 (0.13)

NeighPosPY 20.66 (0.25)

AvLHSNeighNegY 20.21 (0.08) 20.19 (0.08) 20.21 (0.10)

AvHSNeighNotTPY 20.01 (0.003) 20.01 (0.003) 20.012 (0.003) 20.013 (0.005)

FMD1 1.19 (0.28)

FMD2 1.68 (0.29) 1.18 (0.25) 0.96 (0.24) 1.13 (0.27) 1.38 (0.28) 0.08 (0.01)

FMD3 0.26 (0.12)

FMD4 0.16 (0.05)

BeefFarm 0.26 (0.30) 0.15 (0.30)

MixedFarm 0.66 (0.30) 0.64 (0.31)

Dep1 1.34 (0.38)

LDirYSNegPast 20.26 (0.11) 20.32 (0.10) 20.30 (0.12) 20.39 (0.13)

LDirPYSPosPY 21.80 (0.79) 21.73 (0.79) 21.79 (0.79) 21.88 (0.86) 22.39 (0.94) 22.16 (0.92) 22.93 (1.18)

DirYSNotTYRBCT 20.10 (0.05) 20.10 (0.05) 20.14 (0.07)

LMarkYSNotTFolY 21.10 (0.30) 20.90 (0.33)

LMarkYSNegPYFq12 20.91 (0.37) 21.00 (0.38)

LMarkYSNotTPYRBCT 20.64 (0.28) 20.66 (0.31) 20.72 (0.31)

LMarkYSPosPY2RBCT 20.76 (0.37)

LDirPYSNegPast 0.81 (0.28) 0.80 (0.27) 0.90 (0.30) 0.92 (0.31) 0.99 (0.37) 1.33 (0.44)

LDirYSNegPYRBCT 0.40 (0.17)

LDirYSPosPastRBCT 0.42 (0.15)

LDirYSPosPYFq34 1.76 (0.60) 1.49 (0.46) 1.87 (0.61) 1.60 (0.50) 1.39 (0.55)

MarkYSPosFolY 0.09 (0.02) 0.10 (0.02) 0.11 (0.03) 0.11 (0.02)

MarkYSPosPY 0.06 (0.01)

MarkYSNegPY2 0.04 (0.01)

LMarkYSPosFolYFq34 1.49 (0.65)

MarkYSNotTYFq34 0.38 (0.13)

Sigma2u 0.05 (0.08) 0.11 (0.13) 0.06 (0.10) 0.15 (0.17) 0.28 (0.36) 0.07 (0.11) 0.08 (0.16)

The values are given as posterior mean estimate plus posterior standard deviation (sd). The different predictors are grouped according to the type of predictor. The
predictors in italic indicate protective factors and the predictors in bold indicate non-significant differences for categorical predictors.
doi:10.1371/journal.pone.0043116.t005
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two out of the nine predictors identified for the perfect sensitivity

best fitting model being significant across the whole range of

sensitivity values. Whatever the true sensitivity of the test, larger

herds (as represented by higher number of calves born, larger herd

sizes, or greater number of animals tested) and herds with a history

of bTB and larger number reactors found at a HBD 2 years

previous to the current test had an increased risk of HBD while

selling an animal before the test was protective. The marked

increase in HBD after the 2001-FMD outbreak was also

unaffected by decreased sensitivity. Our analyses also confirmed

similarity in the pattern of HBD between neighbouring herds,

which held through the range of sensitivity values with some

variations in the predictors. As predictor variables we only

considered the number of neighbouring herds that tested positive

or negative rather than the number of neighbouring herds that

were actually positive or negative. A possible extension of our

modelling approach, when assuming less than perfect test

sensitivity, would be to recalculate numbers of neighbours that

are truly positive/negative for a given herd, at each iteration of the

algorithm, for use as predictors but we will consider this extension

elsewhere.

The data we analysed were collected as part of a large scale

clinical trial/field experiment designed to detect gross overall

effects between different treatments (culling and survey) in an area.

It was therefore, as such, not intended for the fine grain analyses

we have performed. We included cattle movement predictors

alongside badger and herd-demographic predictors. This resulted

in a large number of predictors to be considered as possible risk

factors, which can lead to the usual problems of multiple

comparisons and might explain why some of the effects found

were perhaps counter intuitive. However, the aim of this paper

was to investigate the effect of decreased test sensitivity on the risk

factors determined rather than identify these risk factors per-se

Under decreasing values of sensitivity, slightly different sets of

predictors appeared in the best fitting model, but with some of the

predictors considered across models being strongly correlated with

one another (see Table S1). Our statistical modelling approach

identifies associations between predictor variables and HBD rather

than causations and so care has to be taken in acting upon the

findings, especially given the large number of predictors consid-

ered.

Our analysis of the effect of reduced bTB test sensitivity

highlighted an increase in the uncertainty surrounding the

parameter estimates identified by the models, with some

predictors losing significance altogether. This has important

consequences for epidemiological field studies aiming at identi-

fying risk factors for infectious disease, as they are based on the

assumption of perfect test sensitivity. Given that the published

estimates of sensitivity are around 60%–75%, our analysis

suggests this could explain the difficulty in finding a consistent

and reliable set of risk factors for bTB. It is therefore essential that

estimates of bTB test sensitivity (at individual and herd level) be

confirmed in the field, possibly by using complementary test

diagnostics and analyses adjusted for the lack of sensitivity

[20,21]. Increasing sample sizes to account for imperfect test

sensitivity is already advised when designing cross-sectional

Table 6. Parameter estimates by test sensitivities (Se), based on the best fit model under the assumption of a perfect test.

Se = 1 Se = 0.95 Se = 0.85 Se = 0.80 Se = 0.75 Se = 0.60 * Se = 0.50 *

Parameter Est (sd) Est (sd) Est (sd) Est (sd) Est (sd) Est (sd) Est (sd)

Intercept 25.13 (0.61) 25.21 (0.62) 25.35 (0.67) 25.39 (0.68) 25.47 (0.67) 25.40 (0.77) 25.4 (0.79)

LSoldPY 20.97 (0.08) 20.99 (0.08) 21.03 (0.09) 21.05 (0.09) 21.07 (0.09) 21.14 (0.11) 21.21 (0.12)

LCalfPY 0.58 (0.09) 0.59 (0.09) 0.59 (0.1) 0.61 (0.1) 0.61 (0.1) 0.63 (0.11) 0.66 (0.13)

LAT 0.81 (0.12) 0.84 (0.12) 0.87 (0.13) 0.88 (0.14) 0.90 (0.13) 0.93 (0.15) 0.99 (0.16)

ReactPY2 0.12 (0.04) 0.13 (0.05) 0.13 (0.05) 0.13 (0.05) 0.14 (0.05) 0.15 (0.06) 0.17 (0.07)

NeighPosY 0.29 (0.11) 0.31 (0.12) 0.35 (0.13) 0.37 (0.13) 0.39 (0.14) 0.44 (0.16) 0.48 (0.17)

AvLHSNeighNegY -0.21 (0.08) 20.21 (0.09) 20.21 (0.9) 20.21 (0.09) 20.21 (0.09) 20.22 (0.11) 20.23 (0.12)

FMD2 1.68 (0.29) 1.69 (0.29) 1.68 (0.30) 1.66 (0.31) 1.66 (0.31) 1.53 (0.35) 1.36 (0.38)

FMD3 0.26 (0.12) 0.25 (0.13) 0.24 (0.14) 0.23 (0.14) 0.23 (0.15) 0.19 (0.17) 0.13 (0.19)

BeefFarm 0.26 (0.3) 0.25 (0.3) 0.26 (0.32) 0.26 (0.32) 0.26 (0.33) 0.23 (0.36) 0.27 (0.4)

MixedFarm 0.66 (0.3) 0.66 (0.31) 0.66 (0.33) 0.66 (0.33) 0.68 (0.34) 0.67 (0.37) 0.72 (0.41)

LDirYSNegPast –0.26 (0.11) 20.26 (0.12) 20.26 (0.12) 20.26 (0.13) 20.27 (0.13) 20.27 (0.15) 20.27 (0.18)

LDirPYSPosPY –1.8 (0.8) 21.84 (0.82) 21.90 (0.85) 21.94 (0.86) 21.98 (0.89) 22.1 (0.95) 22.24 (1.05)

DirYSNotTYRBCT –0.1 (0.05) 20.1 (0.05) 20.11 (0.05) 20.11 (0.05) 20.12 (0.05) 20.12 (0.06) 20.12 (0.07)

LMarkYSNegPYFq12 20.91 (0.37) 20.98 (0.40) 21.12 (0.48) 21.21 (0.51) 21.27 (0.54) 21.55 (0.68) 21.88 (0.82)

LDirPYSNegPast 0.81 (0.28) 0.83 (0.29) 0.89 (0.3) 0.90 (0.31) 0.93 (0.32) 1.00 (0.36) 1.10 (0.42)

LDirYSNegPYRBCT 0.4 (0.17) 0.41 (0.18) 0.42 (0.19) 0.43 (0.19) 0.45 (0.2) 0.48 (0.23) 0.53 (0.26)

LDirYSPosPYFq34 1.76 (0.6) 1.85 (0.64) 2.02 (0.72) 2.11 (0.77) 2.21 (0.80) 2.33 (0.97) 2.35 (1.23)

MarkYSPosFolY 0.09 (0.02) 0.09 (0.02) 0.1 (0.02) 0.10 (0.02) 0.10 (0.02) 0.11 (0.03) 0.11 (0.03)

LMarkYSPosFolYFq34 1.49 (0.65) 1.64 (0.81) 1.97 (1.04) 2.1 (1.11) 2.41 (2.18) 187 (294) 3.5E8 (5E8)

Sigma2u 0.05 (0.08) 0.05 (0.08) 0.05 (0.08) 0.05 (0.09) 0.05 (0.09) 0.04 (0.08) 0.06 (0.09)

Posterior mean estimates (posterior standard deviations) obtained by running 2 independent MCMC chains of 50,000 iterations after 5,000 burnin. In italic are
highlighted predictors which have a protective effect. Non significant estimates are highlighted in bold.
*Problem with convergence of the two chains encountered.
doi:10.1371/journal.pone.0043116.t006
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studies, but we have shown that the same holds true for

longitudinal data. Future longitudinal field studies would benefit

from being sufficiently large by adjusting for a less than perfect

test sensitivity when calculating the sample sizes, if reliable

conclusions are to be drawn from the data.

The method we presented here is not just limited to the study of

bTB risk factors or to epidemiological data in general. It could be

applied to a wide range of datasets where the response variable

may be surrounded by some level of uncertainty, which could

influence the associated predictors. The deterministic set of rules

used to resolve the case of missing data was specific to this dataset,

being based on the testing regime which produces the response

variables, but could be adapted to other scenarios. The solution we

proposed illustrates how one could implement a similar approach

when confronted with missing data in discrete time survival

analysis, instead of removing the observations corresponding to a

subject with missing responses. In our case, the data only had a

simple non-spatial two level random effects structure but our

method can be extended to include spatial error structure or

higher levels of data structure. The only drawback of such

methods is that they are computationally intensive and therefore

slow to run.
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