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Abstract

Scanned-energy mode photoelectron diffraction (PhD) is a well-known method to
determine quantitatively the local structure of adsorbates at surfaces. In this thesis, it has
been employed to determine the adsorption site of a selection of molecules on surfaces.

The adsorption on Cu(110), of methoxy (CH3O), an intermediate in the catalytic de-
composition of methanol (CH3OH), has been studied. O 1s PhD spectra show the strongest
modulation at 30◦ and 40◦ polar emission angles, both in the [1 1 0] azimuth, which is
consistent with a bridge position adsorption site in the [1 1 0] azimuth. The subsequent
analysis, as well as parallel DFT studies, confirms two bridge adsorption sites, with different
bond lengths to the underneath copper atoms. A tilt of the molecules of 37◦ in the [1 1 0]
azimuth is also observed, with the carbon atoms pointing in opposite directions for every
adsorption site. This tilt creates a zig-zag model, which fits with an old STM [1] study.

Formate (HCOO), a surface intermediate of the catalytic decomposition of formic
acid (HCOOH), has been studied on two different faces of copper, Cu(110) and Cu(111).
Although the adsorption sites obtained for both surfaces is similar, namely a short-bridge
site slightly off atop, a significant difference of ≈ 0.1 Å in the copper-oxygen bond lengths
is found, being 1.99 Å for Cu(111) and 1.90 Å for Cu(110).

In this thesis, it is demonstrated that it is possible, though very challenging, to
perform PhD successfully under higher pressures. Methanol oxidation on Cu(110) has been
studied under reaction conditions. At temperatures below ≈ 450 K, the adsorption sites of
methoxy and formate, the most important surface intermediates of this reaction, have been
proved to be similar as in the previous studies performed in ultra high vacuum.

A recent investigation of two different organic molecules, azobenzene (C12H10N2)
and aniline (C6H7N), on rutile TiO2(110) and anatase TiO2(101) surfaces with scanning
tunneling microscopy (STM) [2] indicates that both molecules lead the formation of the
same superstructure, believed to be of a common species, phenyl imide (C6H5N). PhD has
been exploited to determine the local adsorption site of adsorbed species formed by both
molecules on rutile TiO2(110). N 1s photoelectron diffraction data are almost identical for
both molecules, providing further support for a common surface species with the same, or
a closely similar. Additional NEXAFS results support these results, implying that the local
adsorption site of azobenzene and aniline is indeed the same. PhD results, which show the
largest modulation amplitude at normal emission, suggests that the phenyl imide bonds via
the N atoms atop a five-fold coordinated surface Ti atom, with the molecular plane tilted
with respect to the surface normal, with a N-Ti bond length of 1.77 Å.

[1] F. Leibsle, S. Francis, S.Haq, and M. Bowker, Aspects of formaldehyde synthesis
on Cu(110) as studied by STM, Surf. Sci. 318, 46 (1994).

[2] S.-C. Li, and U. Diebold, Reactivity of TiO2 rutile and anatase surfaces toward
nitroaromatics, J. Am. Chem. Soc. 134, 64 (2010).
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Chapter 1

Introduction

Surface science has experienced an enormous boost in the last few decades. This

increasing interest arises from the importance of surface properties for many appli-

cations in ”real life”. One of the reasons for this interest of surface science is its

application in heterogeneous catalysis due to the great amount of chemical reactions

that occur on surfaces. The understanding of how the surfaces behave can enhance

these catalytic processes. Surfaces are a kind of ”defect” of solid state materials,

and breaking the periodicity of a three dimensional solid can lead to changes, for

instance, in the surface and electronic structure.

One of the chemical reactions studied in this thesis is the catalytic decom-

position of methanol to produce formaldehyde, one of the most extended processes

in industry. Approximately 21 million tons of formaldehyde are produced in one

year in the whole world. Many catalytic processes, such as the one just mentioned,

are very sensitive to the local structure of the surface and of the active sites. If the

local geometry of these active sites on the surfaces can be determined, the catalytic

reactions might be performed faster and more easily, thus, reducing the time and

the cost of the catalytic process. The determination of the local geometry of the

reaction intermediates on the surface in a quantitative way is the motivation for the

main part of the work presented in this thesis.

Very important for the field of surface science, was the development of new

experimental techniques. In the 1980s, scanning probe microscopy techniques, such

as the scanning tunneling microscope (STM) [1, 2] or the atomic force microscopy

(AFM) [3], represented a major breakthrough, allowing one to observe the surfaces

at an atomic scale in real space. X-ray photoelectron spectroscopy (XPS) [3–5]

and ultra-violet photoemission spectroscopy (UPS) [3] provide information on the

composition of the sample. Using other spectroscopic techniques, such as reflec-
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tion absorption infra-red spectroscopy (RAIRS) [6] or electron energy loss spec-

troscopy (EELS) [7], the vibrations of molecules on surfaces can be determined.

However, these techniques cannot provide quantitative information on the structure

of the surface. Surface extended X-ray fine structure (SEXAFS) [8] can determine

adsorbate-substrate bond lengths and near edge X-ray absorption fine structure

(NEXAFS) [3, 9–12] provides information on the bond lengths within molecular ad-

sorbates and also on the bond angles. Other techniques, such as low energy electron

diffraction (LEED) [3, 13, 14], or scanned-energy mode photoelectron diffraction

(PhD) [3, 8, 15, 16] provide information on the local geometry of surfaces, and also

the structure of reconstructed surfaces after adsorbing molecules on them. Den-

sity functional theory (DFT) [17–20] calculations have improved in the past years

due to the accessibility to better and faster computers. Many DFT studies have

been published on the determination of surface structures based on calculated mini-

mum energy structures with considerably success, although some of the conclusions

of these studies have been proved to be wrong. The combination of two or more

of these surface sensitive techniques helps to understand the surfaces better. In

this thesis, PhD has been the main technique to investigate the adsorption site of

different molecules adsorbed on surfaces.

Scanned-energy photoelectron diffraction exploits the coherent interference

between the directly emitted wavefield from a core level of an atom adsorbed on the

sample and the components of the same wavefield backscattered by the neighbouring

substrate atoms. By scanning the photon energy, the photoelectron energy changes,

and the backscattered waves switch in and out of phase with the directly-emitted

wave, modulating the intensity. These variations in the intensity depend directly on

the relative positions between the emitter (the adsorbate atom) and the scatterers

(the neighbour atoms). Information on the bond lengths between the adsorbate and

the substrate atoms are also provided. This technique has the advantages that it is

elemental and chemical-state specific. PhD has been proved to be a well-established

technique in determining surface structures under ultra high vacuum (UHV).

The study of adsorbates on surfaces was promoted in the 1960s by the in-

troduction of UHV, and also by stabilising the molecules on the surfaces at low

temperatures (significant lower than under reaction conditions). In UHV, the con-

ditions (P < 10−9 mbar) are almost perfect and experiments can be carried out

without being contaminated by residual gases. On the other hand, these conditions

are far away from ”real life”, as for example, the reaction conditions (high tempera-

tures and pressures) necessary for industrial processes. In the past few years, a few

techniques have tried to close the gap between UHV and realistic conditions. X-ray

2



photoelectron spectroscopy has been applied successfully to characterise surfaces

at higher-pressures, and STM has been able to take images of surface reactions.

However, so far, no quantitative structural method that does not rely on long-range

order has been applied under reaction conditions. In this work, scanned-energy

mode photoelectron diffraction has been applied under ”high” pressures for the first

time in order to determine the local structure of surface intermediates of a chemi-

cal reaction under steady-state conditions, thus closing the gap between UHV and

industrial processes.

1.1 Organisation of the thesis

This thesis is a report of work performed at the Fritz Haber Institute and the

experimental data collected at the synchrotron radiation facility BESSY II, in Berlin,

Germany, in the period of May 2008 to December 2011. The work presented here

covers the study of the adsorption site of the most important surface intermediates

of methanol oxidation, methoxy and formate, on Cu(110) under ultra high vacuum

and under reaction conditions. The adsorption of formate on Cu(111) was also

studied. Finally the adsorption of two other molecules, azobenzene and aniline,

was studied on the (110) face of rutile titanium dioxide. For these investigations,

energy-scanned photoelectron diffraction was the main technique used, but in the

case of aniline and azobenzene on TiO2 near edge X-ray absorption fine structure

was also employed. The organisation of the thesis is the following:

Chapter 2 is concerned with the experimental details related to this thesis.

First, details of the beamline at BESSY are provided. X-ray photoelectron spec-

troscopy is then introduced. A larger section about photoelectron diffraction is then

introduced. This section contains information on the experimental chamber, the

theoretical background of the technique and it describes the data collection and the

procedure used for the structure determination. Finally, two other complementary

techniques are introduced, LEED and NEXAFS.

Chapters 3 to 6 contain the experimental results and associated computa-

tional modelling for the systems studied: methoxy on Cu(110), formate on Cu(110)

and on Cu(111) and azobenzene and aniline on TiO2. These experiments have been

measured under ultra high vacuum. Methanol oxidation on Cu(110) under reac-

tion conditions has also been studied and is presented in chapter 5. Each chapter

explains the cleaning and dosing procedure; the characterisation of the sample by

X-ray spectroscopy; the PhD results are then shown, along with the structural mod-

els found through theoretical calculations and the comparison between the results
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of experiments and theory. Finally, a discussion is included.

Chapter 7 comprises a summary of all the work presented in this thesis and

includes suggestions for future investigations.
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Chapter 2

Experimental details

The goal of this thesis was the determination of the local structure of different ad-

sorbates on metal and oxide surfaces. The main technique used for this purpose

was scanned-energy photoelectron diffraction (PhD), a well-established structural

technique, which provides direct information on the relative positions of the adsor-

bate and surface atoms. PhD is based on X-ray photoelectron spectroscopy (XPS),

and takes advantage of its elemental and chemical specificity. One of the main

advantages of PhD with respect to other structural methods (e.g., LEED) is that

it does not require long range periodicity. However, other experimental methods

were also employed as a support when PhD could not give an answer to the raised

questions. Near edge X-ray absorption fine structure (NEXAFS) was used in the

study of nitroaromatic molecules on titanium dioxide to provide extra information

on the orientation and tilt of the adsorbates on the surface, information that could

not be obtained from PhD. Low energy electron diffraction (LEED) together with

XPS were used to characterise the sample and check its cleanliness.

PhD and NEXAFS require the use of a tunable X-ray source with very intense

light. For that, all the experiments presented here were performed in the synchrotron

radiation facility in Berlin, Germany (BESSY II). XPS can be carried out with

synchrotron radiation (SR) or an external source, but in this thesis all the XP

spectra were taken also with synchrotron radiation.

In this chapter all the experimental details related to this thesis will be

treated. First, a brief explanation of synchrotron radiation and a description of the

experimental beam line will be presented. Then, all the experimental methods will

be explained, with an emphasis on photoelectron diffraction and all the aspects of

the experiments (data collection, experimental equipment, etc...).
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2.1 Synchrotron radiation

The electromagnetic radiation emitted when near relativistic charged particles travel

in curved paths is called synchrotron radiation [21]. This radiation can be gener-

ated over a broad range of wavelengths, from visible light to the hard X-ray of the

electromagnetic spectrum. The importance of synchrotron radiation relies on its

high intensity, its broad spectral range and other properties such as collimation,

polarisation, coherence, etc... These properties make synchrotron radiation a very

useful tool for the study of surface science, and in particular, its tunability makes it

essential for photoelectron diffraction.

A storage ring synchrotron radiation source is a circular particle accelera-

tor that enables a current of electrons to circulate at relativistic velocities for sev-

eral hours. A storage ring consists of a sequence of dipole (bending) magnets and

quadrupole (focusing and defocussing) magnets joined by field-free regions, called

drift spaces. The circular shape of the accelerator allows the electrons to travel in

this closed orbit for several hours. Synchrotron radiation is emitted from all curved

parts of the ring. Currently there are around fifty synchrotron radiation facilities all

over the world, but all the experiments presented in this thesis were carried out in

the Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung (BESSY

II) in Berlin, Germany. BESSY has a circumference of 240 m, with ≈ 50 beam-

lines or experimental stations. The beamline where most of the experiments were

performed was the UE56-2 PGM-2; only the study of the oxidation of methanol at

high-pressures was performed at the beamline ISISS (Innovative Station of In situ

Spectroscopy). BESSY II is one of the so-called third generation storage rings. This

type of synchrotron source is characterised by lower electron beam emittance and

many straight sections for insertion devices, such as wigglers or undulators.

The electron beam is not generated in the storage ring. It is instead gen-

erated by a thermoionic gun ( as is depicted in Figure 2.1), where the electrons

are emitted by a hot cathode and then accelerated and focused with the help of an

anode electrode. The electron beam is then focused into the microtron, which is

a pre-injection device where the beam gains energy to approximately a few MeV.

A microtron is a type of cyclotron, where the electrons pass through an acceler-

ation voltage and due to a magnetic field, they are moving in circular orbits and

re-encounter the acceleration voltage every time. When the electron beam reaches

the desired energy, it is injected into the circular accelerator with the help of a bend-

ing magnet. The electrons are then accelerated to ∼ 1.7 GeV. Finally, the electrons

are inserted into the storage ring.
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Figure 2.1: Diagram of the synchrotron radiation facility in Berlin, BESSY II (taken
from [22]).

There are three modes of operation in the storage ring in Berlin, depending

on how are the electrons injected into it:

1. Mutibunch mode (the one used in this thesis), where around 350 packets

are injected in the beam separated by a few nanoseconds.

2. Single bunch mode, where a single packet is injected in the storage ring

and every packet returns every 800 ns. This mode is typically used for time resolved

experiments.

3. Low-alpha mode. This mode can be operated in single and multibunch

mode. Here, the photon pulses are shortened (2 ps vs 30 ps in the normal mode)

enabling time resolved experiments in the multibunch mode. Furthermore, the

lengths of the electron packets are decreased providing Terahertz radiation.

As mentioned before, one of the characteristic of third generation storage

rings is the insertion of magnetic devices other than bending magnets which enhance

the spectral properties of the radiation [21]. These devices can be wigglers and

undulators. The spontaneous emission (synchrotron radiation) of electrons traveling

close to the speed of light falls into a narrow cone centered around the direction of

electron motion. The opening angle of this cone is of the order of γ−1 ,where γ is

the Lorentz factor (see Figure 2.2).
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Figure 2.2: Schematic diagram of the radiation beam traveling in a curved path
emitting photons from an undulator into a narrow cone of natural emission angle ∼=
γ−1. The energy of the electrons is E=γmc2.

The cone of light produced by a bending magnet [21] is a continuous band

of radiation in the bending plane, with a fan-shaped beam of photons (broad in

the horizontal plane but small in the vertical plane). A wiggler is a succession

of magnetic poles with alternating polarity. Each pole bends the electron beam

through a relative large angle in comparison with mc2/E. These devices are placed

in the straight parts of the ring, but because the alternating deflections counteract

each other, the beam is not bent and the electrons continue traveling in their orbit.

The flux and brightness of the beam are intensified by N (N is the number of poles

of the device). An undulator, which is the device used in the UE56-2 PGM-2 at

BESSY, works in principle as a wiggler (alternating poles) with the difference that

now the bending angle is of the order of mc2/E. In this way, the angle of emission

is comparable with the natural emission angle of the synchrotron radiation, ∼= γ−1

( Figure 2.2) and therefore, the intrinsic brightness of the synchrotron radiation is

preserved in the horizontal and vertical planes. Also, coherent interference takes

place in an undulator resulting in a spectrum enhanced at certain wavelengths,

whereas in a wiggler the radiation adds incoherently resulting in a spectrum that is

smooth and continuous.

The undulator device working at the mentioned beamline used at BESSY

comprises two undulators, one on top of the other. Each of the undulators consists

of a series of dipole magnets of 31 periods (see Figure 2.3) of 56 mm. The coherent

interference of light emitted from different periods provides a photon beam with a

peak intensity much higher than the emission light from a bending magnet. Using

only one of the undulators, linearly polarised light can be achieved, as it is necessary
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Figure 2.3: Design of the UE56-2 PGM-2 beamline at BESSY II in Berlin (not to
scale).

for the photoelectron diffraction experiments.

Figure 2.3 shows a schematic diagram of the UE56-2 PGM-2 beamline at

BESSY II. The photon beam, after passing through the undulator (and the wall

separating the storage ring from the experimental hall) encounters a toroidal mir-

ror which focuses the beam horizontally and collimates the beam in the vertical

direction. After that, the radiation beam passes through the monochromator which

comprises a plane mirror, the plane gratings and a cylindrical mirror. The objective

of the monochromator is to diffract the beam by a grating (400 l/mm or 1200 l/mm)

to select the pertinent energy for the experiment. The plane mirror can rotate in

order to achieve a constant beam position and the cylindrical mirror immediately

after the plane grating focuses the diffracted photon beam vertically into the exit

slit. Finally, the radiation beam travels through a conical mirror, which re-focuses

the beam again. The focus of the beam is 20 - 200 µm vertically, depending on the

settings of the exit slit, and 900 µm horizontally. However, the flux density of the

spot is too high for the photoelectron diffraction experiments, leading to damage

of the sample, so a transfer tube is placed between the last flange of the beamline

and the experimental chamber. This transfer tube is around 1.5 m long, and thus

defocussing of the light allows the experiments to be carried out. The experiments

presented in this thesis require photon energies in the range of 200 to 900 eV. The

desired energy can be selected by controlling the undulator and the monochromator.

Using the third harmonic of the undulator and with the 400 l/mm grating, energies

in the mentioned range were achieved with a high photon flux.

2.2 X-ray photoelectron spectroscopy

X-ray photoelectron spectroscopy (XPS) is a surface analysis technique based on

the photoelectric effect, which was first explained by Einstein [23] in 1905. The idea
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Figure 2.4: Schematic diagram of the photoemission process from a 1s core level. Eb
denotes the binding energy, Ek denotes the kinetic energy and φ the work function.

of this technique is that an incoming photon from an X-ray source impinges in a

surface inducing the emission of an electron. The only condition that the photon

has to fulfill is that its energy (Ephot=h·ν) is greater than the binding energy of the

electron and the work function of the solid (where the work function is the minimum

energy required to remove an electron from the Fermi level to the vacuum level).

XPS is a very useful tool in surface science, mainly due to its surface specificity. This

property is enhanced by the use of the rather low kinetic energies (100 - 900 eV) used

in this work, which decreases the inelastic mean-free-path of the photoelectrons and

therefore its mean escape depth. This ensures that only electrons from the outermost

layers are being detected. Also the choice of the emission angle can determine the

surface specificity (at grazing angles the technique is more surface specific than at

normal emission).

Photoelectron spectroscopy can be performed at photon energies between

approximately 5 and 2000 eV. At energies lower than 100 eV, electrons from the

valence band of the surface are excited and this technique is called ultra-violet pho-

toemission spectroscopy (UPS). However, if photons with energies between 100 and

2000 eV are used, electrons from the core levels from atoms in the surface are also

emitted. XPS performed in the 100-1000 eV range is known as soft X-ray photoelec-

tron spectroscopy (sXPS). In the work presented in this thesis, all measurements

were taken in this range, due to the higher photoionisation cross-sections for low

atomic number elements (such as the ones measured here: O, N, C). Binding energies

of the core electrons in a solid are characteristic of each element and are relatively
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insensitive to changes in the valence electrons due to, for example, chemical bonding

with other atoms in a solid. This property ensures that the technique is element

specific. The process of photoemission from a core level is illustrated in Figure 2.4.

The energy of the emitted electron, Ek, which is detected by the analyser, is

given by:

Ek = hν − Eb − φ (2.1)

where φ is the work function of the sample, and Eb is the binding energy of

a core level with respect to the highest occupied level of the solid, i.e., the Fermi

level in the case of a metal and the top of the valence band for a semiconductor.

Another important characteristic of XPS is the possibility of probing the

chemical environment of the surface species. Due to this characteristic this tech-

nique is also known as ”electron spectroscopy for chemical analysis” (ESCA). The

exact binding energy of a core electron from a surface atom depends on the local

environment of the sample. Changes in the chemical environment will influence the

electronic structure of the atom. Hence, atoms of the same element with different

chemical environments will show slightly different binding energies. These changes

in the energy are called chemical shifts and can be from tenths of an eV to as much

as a few eV. Depending on the bandwidth of the light and the resolution of the

detector, these chemical shifts can be resolved.

XPS can be carried out with synchrotron radiation but also with a normal

lab-based X-ray source, which makes it a very convenient technique. All XP spectra

presented here were taken using synchrotron radiation.

2.3 Photoelectron Diffraction

Photoelectron diffraction is a well-known technique for probing the local atomic

environment of adsorbate atoms. One of the main advantages of this technique in

comparison with the well-established LEED technique (see section 2.4) is that it

provides structural information without the need of long range periodicity. The

purpose of this thesis is to determine the adsorption site of different adsorbates on

different surfaces. In this section, it will be explained how photoelectron diffraction

can solve the local structure problem.

This technique can be operated in two different modes, angle scan and

scanned-energy photoelectron diffraction. All the results presented in this work

have been carried out using scanned-energy photoelectron diffraction (PhD), but

differences between these two techniques will also be explained in this chapter.
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Figure 2.5: Schematic diagram representing the photoelectron diffraction technique,
in the scanned-energy mode. Blue atoms depict surface atoms (scatterers) and the
red atom is the adsorbate (emitter) atom. The component of the wavefield from
the emitter interferes with the components of the same wavefield scattered by the
surrounding atoms. The directly emitted wave is represented in red, in black are
the singly-scattered waves and in blue the doubly-scattered waves.

2.3.1 Description

Photoelectron diffraction exploits the coherent interference of components of the

photoelectron wavefield directly emitted from a core level of an adsorbate atom or

a surface localised atom and components of the same wavefield elastically scattered

by the neighbouring atoms (see Figure 2.5). The scattering interferences produce

variations in the measured photoemission intensity both as a function of emission

direction and photoelectron energy, due to phase differences associated with the

different scattering pathways [8].

As mentioned before, there are two different modes of operation to obtain

structural information: angle scan and scanned-energy photoelectron diffraction.

These two different modes arise from the way the electron scattering cross-section

depends on the scattering angle and photoelectron kinetic energy. Figure 2.6 shows

the modulus of the atomic scattering factor as a function of the scattering angle θ

for a Cu atom for several different photoelectron kinetic energies. At higher kinetic

energies (≥ 500 eV) this quantity is dominated by the peak appearing at θ=0◦,

which corresponds to forward scattering (i.e., scattering occurring in the direction

of movement of the electron). The simplest case of photoelectron diffraction would
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Figure 2.6: Modulus of the elastic scattering factor for electrons by a copper atom
as a function of scattering angle at several different electron energies, as reported in
[8]. All curves are normalised to the scattering factor at zero angle.

be to exploit the forward scattering by choosing a relative high kinetic energy.

For this procedure, the emitter atom has to lie ”below” the scatterer atoms

with respect to the analyser. For emission along the emitter-scatterer direction there

is no pathlength difference between the directly emitted wave and the scattered

one [8, 15, 16]. Therefore, they interfere constructively. However, if there was a

phase shift between the two waves, the interference could be destructive. For this

case, at 0◦ scattering angle and for high energies the phase shifts are very small and

can be neglected. Hence, there is a maximum in intensity along the axis between

emitter and scatterer, as shown in Figure 2.7. This diffraction, known as ”zero-

order”, does not depend on the photoelectron wavelength and energy. When the

scattering angle starts to increase, the pathlength difference is no longer zero leading

to increasing destructive interference and therefore a minimum in the measured

intensity. This mode of operation is known as angle scan photoelectron diffraction,

or also X-ray photoelectron diffraction (XPD). The main advantage of this mode of

operation is the possibility of measuring with a normal X-ray source, Mg or Al Kα

with photon energies of 1253.6 and 1486.6 eV, such as those commonly used in the

laboratory, providing high enough kinetic energy. XPD is also commonly used for

the characterisation of epitaxial thin films.

On the other hand, this method can not provide information on the location

of an atom ”above” the surface. At photolectron kinetic energies lower than 500

eV, the elastic electron scattering cross-sections are reasonably large at scattering

13



Figure 2.7: Schematic diagram showing the forward scattering photoelectron diffrac-
tion phenomenon from an adsorbate atom on a surface, taken from [8]. In the upper
part of the figure, the resulting form of the photoelectron intensity as a function
of the polar emission angle is depicted. The photoelectron intensity shows a peak
along the intramolecular direction.

angles greater than ≈ 90◦ (see Figure 2.6). For this backscattering geometry, the

scattering paths and therefore the phase shift between emitter and scatterers depend

strongly on the photon energy. Backscattering photoelectron diffraction can be

resolved in angle or in energy, but is more common to perform the energy-scan mode.

In this mode of operation, called scanned-energy photoelectron diffraction (PhD),

the intensity of core level photoemission from an adsorbate atom is measured in a

specific direction as a function of photon energy. As mentioned before, the directly-

emitted wave and the backscattered waves interfere coherently. The backscattered

components (by the substrate atoms) of the photoelectron wavefield follow different

scattering paths which switch in and out of phase with the directly emitted wave

(coming from the adsorbate atom), thus modulating the intensity. This interference

behaviour depends directly on the relative position between emitter and scatterer.

In contrast to XPD, this mode of operation requires the use of a tunable

X-ray source, such as synchrotron radiation.

2.3.2 Theoretical background

The simplest approach [8] to explain the scattering interference phenomenon was

based on single scattering simulations. This approach included a few simplifications:

first, to consider only the interference of the directly-emitted wave and the singly-

scattered waves (see Figure 2.5). The second assumption is to consider the emission

from an initial s-state. The final simplification is to treat the photoelectron wavefield
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as incident plane waves.

With these three simple assumptions, the final intensity of the photoelectrons

can be explained as the square of the modulus of the sum of the directly-emitted

and singly-scattered components of the wavefield [8]:

I(k) ∝ |cosθk +
∑
j

cosθr
rj

fj(θj , k)W (θj , k)e(−Lj/λ(k))e(i(krj(1−cosθj)+δj(θj ,k)))|2 (2.2)

The first term, cos θk accounts for the polarisation angular dependence of

the directly-emitted wave. In the same way, cos θr denotes the angular dependence

of the polarisation at the scattering atoms located at rj relative to the emitter.

The summation is over the scattering atoms denoted by the suffix j. The next two

terms account for the atomic scattering factor, fj , as seen before (see Figure 2.6),

and the Debye-Waller factor, which describes the attenuation of the modulations

due to thermal vibrations. Both factors depend on the scattering angle, θj , and on

the energy, through the modulus of wavevector, k. The attenuation of the intensity

due to inelastic scattering is described by exp(-Lj/λ(k)), where Lj denotes the extra

pathlength that the scattered components have to travel through the crystal with

respect to the directly-emitted wave. The last term of the equation accounts for

the phase in the coherent interference. The first part, r j(1 - cos θj), describes the

pathlength difference,and the second part, δj , is the scattering phase shift.

This expression can be simplified for scanned-energy photoelectron diffrac-

tion. An expansion of Equation 2.2 will lead to a series of terms describing the

interference between the directly-emitted wave and every scattered wave and also a

series of terms describing the interference between the scattered waves. These cross-

terms may be assumed to average to zero, resulting in a much simpler expression,

which describes the PhD modulation function, χ:

χ(k) ∝
∑
j

cosθr
rj

fj(θj , k)W (θj , k)e(−Lj/λ(k))cos(krj(1− cosθj) + δj(θj , k)) (2.3)

However, although this approach is good enough for the understanding of

the photoelectron diffraction phenomenology, it has been demonstrated that is not

appropriate for a quantitative analysis of the data and can lead to incorrect inter-

pretations and to the wrong final structural model [8, 24]. Two of the previous

simplifications have to be revised [8]:

1. The photoelectron wavefield has to be treated as incident curved waves.
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The previous plane wave description is a far-field approximation of the outgoing

spherical wave from the emitter, but this is not right for near-neighbour atoms,

where emitter and scatterers are only separated by ∼ 2 Å.

2. Multiple scattering has to be included instead of the single-scattering

approximation. This idea was already used for LEED and analysis of photoelectron

diffraction experiments using this approximation provided much better results than

the previous simplification.

A series of papers by Fritzsche [25–28] describes the basis of the multiple

scattering code used for photoelectron diffraction in this work, based on the final

state wavefunction being a sum over all scattering pathways that the electron can

take from the emitter atom to the detector outside the sample. Each pathway is

calculated using a magnetic quantum number expansion. Due to the large number

of angular momenta necessary for the multiple scattering calculations using a wave

expansion, exact calculations are rather expensive at energies above 30 eV and also

very time-consuming [29]. Therefore, certain approximations have to be considered.

In a first-order perturbation theory, the electron intensity can be described

as:

I(K) =
∑
R0

|ψ(K,R0)|2 ≈
∑
R0

∑
m0

|
∑
l0

ML0(E)BL0(k,R0)|2 (2.4)

where K and k account for the wavevector outside and inside the crystal, re-

spectively. The relation between the two wavevectors is determined by the refraction

at the surface potential step. The summation is over all the emitter positions, R0,

E is the kinetic energy of the emitted electrons and ML0 are the transition matrix

elements from the initial state to the final states. The angular momenta are given

by L0 = ( l0 , m0). The final state wavefunctions within the crystal are described by

the coefficients BL0 . Some approximations need to be performed due to the great

complexity of these coefficients, which include all possible scattering effects of all

the atoms. Thus, BL0(k, R0)can be expanded as:

BL0(k,R0) = e−ik·R0A
(0)
L0

(k,R0) +
∑
R1

e−ik·R1A
(1)
L0

(k,R1,R0)

+
∑
R1

∑
R2

e−ik·R2A
(2)
L0

(k,R2,R1,R0) + .... (2.5)

The first term of equation Equation 2.5 describes the directly-emitted wave,

the second one describes the singly-scattered waves, the third one the doubly-
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scattered waves and so on. All terms with Ri+1 = Ri from Equation 2.5 can

be excluded as they account for scattering from the same atom, which is not physi-

cally possible. The terms corresponding to the final state wavefunctions are further

described in a partial wave expansion as a function of spherical harmonics YL0(k),

where L0 is the angular momentum. These expansions are described in the following

equations:

A
(0)
L0

(k,R0) = i−l0YL0(k) (2.6)

A
(1)
L0

(k,R1,R0) =
∑
L1

i−l1YL1(k)Tl1(R1)GL1L0(R1 −R0) (2.7)

A
(2)
L0

(k,R2,R1,R0) =
∑
L1

∑
L2

i−l2YL2(k)Tl2(R2)

×GL2L1(R2 −R1)Tl1(R1)GL1L0(R1 −R0) (2.8)

The coefficients Tlj (Rj) describe the complex scattering phase shifts, δj , of

the atom located at Rj relative to the emitter. These terms include also the thermal

vibrations [29] and are described as:

Tlj (Rj) = i · sin(δl) · e(iδl) (2.9)

The coefficients GLi+1Li describe the propagation of the spherical wave in an

angular momentum representation:

GLi+1Li(R) = 4π
∑
L2

il0−l1−l2hl2(kR)Y ∗
L2

(R)

∫
dΩY ∗

L1
YLYL2 (2.10)

where R is the vector between two scattering paths, and hl(x) are the spher-

ical Hankel functions [30].

With these approximations, the electron intensity described in Equation 2.4

becomes:

I(K) =
∑
R0

|ψ(K,R0)|2 ≈
∑
R0

∑
m0

|
∑
l0

ML0(E)BL0(k,R0)|2 =

∑
R0

∑
m0

|
∑
l0

ML0(E)
s∑
i=0

e−ik·RiA
(i)
L0

(k,Rs, ...R1,R0)|2 (2.11)
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where the directly-emitted wave corresponds to i= 0, singly-scattered to i=

1, and the maximum scattering order to i= s. In this equation, the phase of the

outgoing wave is described by the term e−ik·ri . The final modulation function is

then calculated by normalising the intensity by the non-diffractive intensity.

Vibrations

Thermal vibrations attenuate the amplitude of photoelectron diffraction modula-

tions. This effect is caused by a ”phase smearing” due to small changes in the

scattering path lengths. In order to include this effect of vibrations, a Debye-Waller

factor is included in the electron wavefunction, as for the case of extended X-ray

absorption fine structure (EXAFS) [31]. The temperature-dependent Debye-Waller

factor assumes that the individual atomic motions are uncorrelated and isotropic.

It can be described as [32]:

Wj = exp[−k2(1− cosθj)〈σ2j 〉] (2.12)

where k is the wavenumber, θj is the scattering angle and 〈σj2〉 describes

the temperature-dependent mean-square relative displacement. This latter term is

defined by [31]:

〈σ2j 〉 = 〈(u0 · r0j )2〉+ 〈(uj · r0j )2〉 − 2〈(u0 · r0j )(uj · r0j )〉 (2.13)

where u0 and uj are the displacements of the emitter atom, and the j th

atoms, respectively, and rj denotes the position of the atoms. The vibrational

effects show its maximum at 180◦ backscattering and zero for forward scattering.

The modulation attenuation due to thermal vibrations increases exponentially with

the kinetic energy of the electrons [32].

2.3.3 Experimental setup

The experimental equipment used for all the experiments, except for the high-

pressure methanol oxidation study (see chapter 5), consists of two different cham-

bers, one on top of the other, separated by a gate valve, and a manipulator on top

of the top chamber. A schematic diagram of the vacuum system is shown in Fig-

ure 2.8. Both chambers are connected to turbo molecular pumps backed by a rotary

pump. They are also fitted with titanium sublimation pumps (TSPs). With this

pumping system, it is easy to go from atmospheric pressure to ultra high vacuum.

The final UHV pressure is achieved by baking the whole chamber to temperatures
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Figure 2.8: Front view of the experimental equipment. The chamber consists of two
chambers on top of each other separated by a gate valve. The sample can me moved
in x, y, and z, and in the polar (θ) and azimuthal angle (φ).
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above 100 ◦C (120 - 180 ◦C). The baking takes about 20 hours, and is followed by

degassing of all the filaments present (e.g., LEED, TSPs, sample holder, etc). After

this, the base pressure in the chamber is about 10−10 mbar. The chamber is made

of Mu-metal, a nickel-iron alloy with high magnetic permeability. This material is

commonly used to screen the experiment from the ambient magnetic fields.

The manipulator can rotate the sample in the polar (θ) and the azimuth

angle (φ), and move the sample in x, y and z directions. The manipulator has a

liquid nitrogen reservoir which is connected to the sample holder through a copper

braid, thereby cooling the sample via thermal conduction.

Figure 2.9 shows a top view of the top and the bottom chamber. The top

chamber is used for the preparation of the sample. It is supplied with an ion sputter

gun, used to clean the sample via ion bombardment, an ion gauge, a mass spec-

trometer, a few ports where evaporators can be connected and a LEED optic. The

top chamber is also connected to a gas line, separated by a gate valve. In this

line different gases and liquids can be attached, e.g., argon, oxygen, methanol or

formic acid. All these chemicals are attached to the gas line via leak valves. Also

an ion gauge is attached to the gas line to measure the partial pressure. The bot-

tom chamber is the actual experimental chamber and therefore it is attached to the

beamline. This chamber was attached to the beamline UE56-2 PGM2, at BESSY

II. An external X-ray source is also attached to the bottom chamber, which makes

it possible to perform some preparatory experiments when there is no access to the

synchrotron radiation. An ion gauge, the pumping system and the detector, which is

a commercial Omicron EA-125HR 125 mm mean radius hemispherical electrostatic

analyser [33], are also attached to the bottom chamber. A schematic diagram of the

analyser can be seen in Figure 2.10. The beamline and the analyser are mounted

at a fixed angle of 60◦. By rotating the manipulator in θ, the sample can be moved

from normal incidence to normal emission (grazing incidence).

The analyser [33] consists of two concentric hemispheres with a potential

difference between them. The retarding optics, shown in Figure 2.10, collect the

electrons coming from the sample and focus them onto the entrance slit of the

analyser. At the same time, these lenses also select the angular acceptance of the

analyser and the spot size, i.e., the area of the sample that is being analysed. Finally,

the electrons are retarded to match the pass energy of the analyser. This operational

mode, where the pass energy is kept constant and the retarding energy is varied

is called constant analyser energy (CAE). The electrostatic field created between

the two hemispheres allows only electrons with the right kinetic energy (the pass

energy) to enter into the detector. Electrons with higher (lower) kinetic energy
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Figure 2.9: Top view of the top and the bottom chamber. The top chamber is
basically used for preparation of the sample and LEED experiments, and the bottom
chamber is employed for XPS (either with synchrotron radiation or with the external
X-ray source), NEXAFS and PhD experiments.
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Figure 2.10: Diagram illustrating the operation of an Omicron EA-125HR 125 mm
mean radius hemispherical electrostatic analyser. θ denotes the angle between the
beamline and the entrance slit of the analyser.

will hit the outer (inner) hemisphere and will not contribute to the measured signal.

Electrons with the right energy will reach the detector, where seven channel electron

multipliers (channeltrons) are placed. Each channeltron is shifted from the position

of the central channeltron and they measure spectra which are offset in energy from

the true spectra by an amount proportional to the pass energy. In this way, every

channeltron is getting extra information and they provide an intensity multiplied

by a factor of seven. Then, the channeltrons also amplify the electron flux a factor

of 108.

The sample is mounted on a molybdenum backplate, where it is fixed with

tantalum clips. To prepare the samples it was necessary to heat them to high

temperatures. Therefore, an electrical filament was placed behind the backplate,

with which it was possible to reach ∼ 700 K via thermal radiation. In other cases,

it was necessary to reach higher temperatures. For that, a high voltage was applied

to the sample and this was heated by electron bombardment. The temperature was

measured using an K-type thermocouple attached to the sample. This was also used

to ground the sample.
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Figure 2.11: Photoelectron diffraction spectrum of an O 1s core level from HCOO
on a Cu(111) surface. The photoemission intensity of O 1s is measured as a func-
tion of kinetic energy at a fixed geometry. The inset shows an individual X-ray
photoelectron spectrum.

2.3.4 Data collection

One energy photoelectron diffraction scan consists of a sequence of (typically around

70) individual X-ray photoelectron spectra from a core level of an atom at a fixed ge-

ometry, with fixed energy steps of 4 eV. A typical PhD scan is shown in Figure 2.11.

Each scan takes between 1.5 and 2 hours, so to verify that there is no damage, XP

spectra are taken right before and after every PhD scan at the same photon energy.

This process is repeated for different geometries, varying the polar angle and the

azimuth angle. The more geometries are measured, the more accurate is the struc-

ture determination. The procedure to obtain the final modulation function (χ(E ))

from the raw data begins by normalising the measured intensities of the peaks to

the beamline current, I 0, which changes with time. The next step is to create a

smooth background along the whole range of energy. This is performed by taking

an average value of the high kinetic energy tails of two neighbouring peaks. The

high energy is chosen over the low energy tail because it is less noisy. The difference

between the two values is then subtracted from the second in order to normalise it

to the first one. This process is repeated along the whole range of energy of the

PhD spectrum.

The next step is to fit each individual peak with a Gaussian peak, a linear

background and a step with a slope. The integrated areas of these peaks provide
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Figure 2.12: In the upper panel, the photoemission intensity is shown as a function
of photoelectron kinetic energy. The red line represents the intensity, I(E), and the
black dashed line represents the spline, I0(E), to which the intensity is normalised
to obtain the modulation function, χ(E ) (brown line, lower panel). This data is
obtained from the raw data shown in Figure 2.11.

the intensities as a function of photoelectron kinetic energy, I(E), as shown in the

upper part of Figure 2.12. In order to extract the non-diffractive effects (e.g., varia-

tions of the photoionisation cross-sections with the energy, variations of the analyser

transmission and variations of the monochromator) from I(E), a spline function is

created, I0(E). This spline is depicted also in the upper part of Figure 2.12. The

final modulation function, χ, shown in the lower part of Figure 2.12, is then calcu-

lated by subtracting this spline function from I(E) and normalising it with it. It is

given by:

χ(E) =
I(E)− I0(E)

I0(E)
(2.14)

Since XPS is elemental and chemical-state specific, so is PhD. If the in-

dividual XP spectra show chemical shifts (that can be resolved), the modulation

functions for these different surface species of the same element can be analysed

independently and structural information can be extracted from each of them. If,

on the other hand, the chemical shifts can not be resolved, the χ function will be a

combination of the signal of these different species on the sample and no independent
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structural information can be obtained.

2.3.5 Structure determination

The next step is to compare the experimental modulation function with multiple

scattering simulations, in a way very similar to that used for quantitative low en-

ergy electron diffraction. The method is based on trial-and-error, i.e., the idea is

to simulate different possible structures and compare them with the experimental

data, adjusting the structure until the agreement is good. In order to quantify this

comparison, we use a reliability-factor or R-factor based on that used for LEED [34].

The R-factor for scanned-energy mode photoelectron diffraction is based on

the calculation of the location and size of the modulations in intensity due to the

diffraction, and these are the values that are compared [35]. The R-factor is calcu-

lated from the experimental modulation function, χex, and the modulation function

obtained from multiple scattering theory, χth, as follows [8]:

R =

∑
(χth − χex)2∑
(χ2
th + χ2

ex)
(2.15)

For R = 0 the agreement between theory and experiment is perfect, whereas

R = 1 corresponds to uncorrelated data. An R-factor lower than 0.3 is typically

considered to be a good result for the PhD technique, although a larger value may be

acceptable in some cases. Many parameters can be varied to improve the agreement

between experimental data and simulations, namely the location of the adsorbate,

relaxations of the surface, interatomic and intramolecular distances, vibrational am-

plitudes, inner potentials and scattering parameters. A visual inspection of the sim-

ulated data is very important and can also give extra information. For example,

if the periodicity and the phase of experimental and simulated data are right, but

the relative intensities not, the atom maybe located in the right position but the

vibrational amplitudes or the inner potential will be probably wrong. This could

lead to a poor R-factor.

2.3.6 Error determination

Once we have obtained a good R-factor, the final step is to determine if this is the

global minimum and to establish the precision of the structural parameters that

provided the best fit. The methodology used in photoelectron diffraction [36] is

based on the method described by Pendry [34] for estimating errors. The first step

is to simulate different structures, and for each structure i an R-factor Ri (R1,

R2, R3,...., RN ) is obtained. The minimum of these values is called Rmin and its
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associated structure is assumed to be the right one. The next step is to calculate

the variance of Rmin. All the structures with associated R-factors that fulfill the

condition R ≤ Rmin +var(Rmin) are accepted and therefore their parameter values

associated with this fit will be accepted as good. The variance of this minimum

R-factor is defined as:

var(Rmin) = Rmin ·
√

2

N
(2.16)

where N is the number of independent pieces of structural information con-

tained in the experimental data. Pendry defines N as the maximum number of

peaks that could appear in the whole energy range, δE, of the LEED intensity

spectra. This number is limited by the natural linewidth, which is assumed to be

4|V0i|, where V 0i is the inner potential. So, instead of counting the individual peaks,

Pendry’s approach is to divide the entire energy range by the linewidth of the peaks:

N =
δE

4|V0i|
(2.17)

In photoelectron diffraction, the intrinsic width of the peaks is limited by the

inelastic mean-free-path and also by the finite angular and energy resolution of the

experiment. The multiple scattering simulations [36] include some energy broaden-

ing, so the effective peak width in PhD spectra is obtained from the quadrature of

the sum of the imaginary part of the inner potential (V 0i) and the energy broadening

factor E b, and so N is defined as:

N =
δE

4
√

(V 2
0i + E2

b )
(2.18)

In order to estimate the errors of any parameter, a so-called line scan is

performed. This line scans consist of a series of calculations where the value of the

parameter is changed in fixed steps around the value which provides the best fit.

By plotting the R-factor as a function of the values of the parameter whose error is

being calculated, the result is usually a parabola where the vertex of the parabola

is the value providing the best fit. Next, the variance is plotted on the same graph

and the points where the variance intersects the parabola give the value of the error.

For example, Figure 2.13 shows the estimation of the error of the height of a formate

species on a Cu(110) surface. Here, the parameter whose error was estimated is the

height of the oxygen atom over the surface. The best-fit is obtained for 1.86 Å, and

the error in this case is symmetric and would be ± 0.03 Å.

It is important to note that sometimes the structural parameters are corre-
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Figure 2.13: Schematic diagram of the estimation of the error of a certain parameter,
in this case, the height of formate on a Cu(110) surface. The red line represents the
line scan around the best-fit value. The blue line depicts the sum of Rmin and the
variance, and the black dots represent the intersection between the parabola of the
line scan and the variance. The distance between the vertex of the parabola and the
intersection gives the error of the parameter. In this case, the error is symmetric
and is ∼ 0.03 Å (1.86 Å ± 0.03 Å).

lated and this methodology of error estimation could then fail; in these cases, it is

necessary to change those parameters in a correlated way to compensate the varia-

tions in one of them. This can be done by determining the Hessian matrix, as it is

further explained in [37].

2.4 Low energy electron diffraction

Low energy electron diffraction [13, 14] is the oldest technique for the determination

of surface structures and the one with the largest number of structures resolved

[38, 39]. This technique is based on elastic backscattering electron diffraction. LEED

uses an external electron gun (see Figure 2.14), so unlike photoelectron diffraction,

the electrons originate outside the sample and not in the sample itself. The electron

beam current is typically ∼ 1 µA and the electron energy -VE is in the range

of 20-500 eV. Electrons in this energy range have a wavelength comparable with

the interatomic distances between adsorbates and surface and therefore diffraction

is possible. Thus, the electron beam is directed onto a sample that has to be

electrically conducting, and is connected to earth to prevent charging. The electrons

are then backscattered from the surface. These backscattered electrons have to cross

a series of hemispherical grids before they reach the fluorescent screen, which is the
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electron gun

�uorescent screenretarding voltage

Figure 2.14: Representation of the LEED setup. The electron gun provide a current
beam of ∼ 1 µA and kinetic energy range 20-500 eV. The fluorescent screen is usually
set at 6 kV. The retarding voltage grids are set at -VE + ∆.

detector. The first grid is connected to earth to provide a field-free region for the

electrons to travel in. The ”retarding voltage” grids ensure that only the elastically

backscattered electrons reach the sample. These grids are biased to a slightly lower

voltage than the initial voltage (Vgrid = -VE + ∆). Finally, those electrons which

have crossed the grids (only the elastically scattered ones) are accelerated to the

fluorescent screen by setting its potential at high positive voltage (∼ 6 kV). This is

necessary to provide the electron with enough kinetic energy to cause light emission

from the detector.

The diffraction pattern observed on the detector consists of a series of spots

which are the reciprocal of the unit cell of the surface with a magnification deter-

mined by the incident electron energy. The analysis of the spot positions yields

information on the size, symmetry and rotational alignment of the adsorbate unit

cell with respect to the substrate unit cell. LEED can be measured in a qualitative

or a quantitative way. In a qualitative way, the spots are just analysed via visual

inspection of the screen. This is the mode used in this work, and it was useful in or-

der to check the periodicity of the clean surface (to estimate the presence of possible

contaminants) and also of the dosed surface (to determine the new unit cell formed

by the reconstruction of the adsorbates). If the objective of the experiment is to

extract structural information (e.g. interatomic bond lengths and/or the location

of an adsorbate on the sample), quantitative LEED is necessary. In this case, the
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intensities of the various diffracted beams are recorded as a function of the incident

electron beam energy to generate the so-called I-V curves which, by comparison

with theoretical curves, may provide accurate information on atomic positions.

Like photoelectron diffraction, this technique is surface sensitive. The low

energy of the incident electrons ensures that they will only travel a few Å into the

sample (the mean free path for these energies is ∼ 5 - 10 Å), and therefore all the

information will come from the first atomic layers. Another characteristic of this

technique, and a disadvantage in comparison to photoelectron diffraction, is the

necessity of an ordered surface. This means that if the surface has no long range

periodicity, no diffraction spots will be observed.

2.5 Near edge X-ray absorption fine structure

Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorp-

tion near edge structure (XANES), is the third complementary technique used in

this thesis. This technique exploits the absorption of electromagnetic radiation by

excitation of core level electrons into unoccupied bound or continuum states [12].

The energy region studied with this technique ranges from slightly below to a few

eV ( ≈ 50 eV) above the absorption edge. The use of the near edge region is appro-

priate for the study of molecular adsorbate species, and in particular, information

on the intramolecular bond lengths or bond angles can be obtained. As the photon

source for NEXAFS has to be intense, monochromatic, linearly polarised, and tun-

able, synchrotron radiation is an ideal light source for NEXAFS. All the NEXAFS

experiments presented in this thesis have been carried out in BESSY.

If a photon impinges on the surface with energy greater than the binding

energy of a core level [10], this photon can be absorbed, resulting in the excitation of

a photoelectron from the core level and the creation of a core hole. The annihilation

of the core hole created can be filled in two different ways. The first possibility is

that the core hole is filled by an electron from another energy level, causing the

emission of an Auger electron, as depicted in Figure 2.15b. The second way is by

filling the core hole with an electron of a different energy level, and emission of a

fluorescent photon. The probability of these two events to occur depends on the

type of atom that is probed. For atoms with atomic number ≤ 31, Auger electron

yields are large for the K edges [10]. In this work, only light elements are probed

(C, N), so the NEXAFS experiment shown here has been performed by measuring

the Auger emission. A NEXAFS spectrum shows the (photon) energy dependence

of the photoabsorption cross-section by measuring the Auger intensity [12].
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Figure 2.15: On the top, a, schematic diagram of the effective potential (left) and the
corresponding NEXAFS K-shell spectrum (right) of a diatomic molecule adapted
from [12]. On the bottom, b, example of the Auger process, where a photon of
energy hν impinges into a core level of an adsorbate atom and creates a hole. This
hole can be annihilated via Auger emission. One electron of an outer shell can fill
the hole, and in this process the electron loses energy. This energy appears as kinetic
energy given to another electron from the outer shell.
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Figure 2.16: Example of O 1s NEXAFS spectra of formate on Cu(110), taken from
[40]. The spectra in the left are taken in the [1 1 0] azimuth, and the ones in the
right in the [0 0 1] azimuth. The full lines represents the spectra taken at normal
incidence, and the dashed lines taken at grazing incidence.The features appearing
at lower kinetic energy correspond to the π features and at higher kinetic energy
appear the σ features.

In a molecule, the occupied and unoccupied electronic states are discrete;

therefore, if the sample is irradiated with X-rays with energy slightly less than the

photoionisation energy, discrete excitations to unoccupied bound states will occur

[3, 9–12]. The probability for these transitions to occur depends on the incoming

photon energy. If this energy is exactly the energy difference between the initial

state and an unoccupied molecular state, the transition will occur. This process

and the origin of the NEXAFS peaks are depicted in Figure 2.15a for a diatomic

molecule. At energies below the ionisation threshold transitions to π∗ (i.e., lowest

unoccupied molecular orbital) can occur, whilst at higher energies transitions into

the σ∗-orbitals can be observed. The σ∗-orbitals can be found at energies slightly

above the ionisation potential (quasi-bound state) whereas the π∗-orbitals are pulled

to lower energies by the electron-hole Coulomb interaction [12]. Only molecules with

a π-bonding (double and triple bonds) can exhibit π-transitions. Thus, NEXAFS

is very useful to obtain information on the electronic structure of an adsorbate

on a surface, e.g., it is useful to check whether a double bond is still intact (see

subsection 6.2.1).The width of the features depends on the lifetime of the resonances.

The lifetime for the σ-resonances (transitions into σ∗-orbitals) is very small due to

the large overlap of these states with the continuum. Therefore, the σ features are

much broader than the π features, as can be seen in Figure 2.16. Figure 2.15a also
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Figure 2.17: Diagram of near edge X-ray absorption fine structure based on an
example of [12] for a π-bonded diatomic molecule. The molecular axis is normal
to the surface. E denotes the polarisation vector of the incident light, Ephot=h·ν,
and O denotes the direction of the final state orbital. In this case, the π-resonance
is maximised at normal incidence (left) while at grazing incidence (right) the σ-
resonance is maximised.

depicts the Rydberg orbitals. These are generally located between the ionisation

potential and the highest occupied molecular orbital, π∗. The Rydberg orbitals

result in sharp resonances at energies slightly below the σ-resonances, but they are

usually too weak to be observed [12].

Not only electronic information can be extracted from NEXAFS, but also

spatial information about the molecules can be obtained. The fact that bonds and

molecular orbitals are highly directional is exploited to determine the orientation of

a molecule on a surface (see Figure 2.17). The transition intensities in a NEXAFS

spectrum depend on the orientation of the electric field vector E with respect to the

orientation of the molecule [12]. For the case of linearly polarised light and for an

initial 1s state, the intensity of the transition is proportional to the cosine squared

of δ, where δ is the angle between E and the direction of the final state orbital, O :

I ∝ |E ·O|2 ∝ cos2δ (2.19)

From this equation, is easy to see that the intensity of a resonance is largest

when the electric field vector is parallel to the direction of the final state molec-

ular orbital and zero when they are perpendicular. It is important to note that

the σ∗-orbitals have their maximum molecular orbital amplitude along the bonding

direction and the π∗-orbitals have the maximum amplitude in the direction perpen-

dicular to the bond axis. Therefore, by measuring two or more different geometries,

for example, grazing and normal incidence, it is possible to determine the spatial
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orientation of a molecule on a surface.

One problem in the NEXAFS experiment is the possibility that a photoemis-

sion peak appears in the window at the same energy as the Auger peaks, hiding any

of the NEXAFS features. This can complicate the analysis of the NEXAFS spectra.
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Chapter 3

The methoxy species on

Cu(110)

3.1 Introduction

The objective of this experiment was to unravel the local structure of the methoxy

species on Cu(110). This system was studied under ultra high vacuum conditions

and, in order to get closer to more realistic conditions, it was also studied under

higher pressures (see chapter 5). The importance of the methoxy species relies on

its role as the main intermediate product in the synthesis of formaldehyde from the

oxidation of methanol.

Methanol (CH3OH, also abbreviated as MeOH) is the simplest alcohol and

is produced naturally in the anaerobic metabolism of a few varieties of bacteria.

The name methanol is the short version of methyl alcohol, and methyl comes from

the Greek word ”methy”, meaning wine. It was isolated for the first time in the

XVII century, although it had been used, mixed with other substances, already by

the ancient Egyptians. It was in the 1920s when it was commercially synthesized

for the first time by BASF, Germany, from synthesis gas (syngas, a gas comprising

carbon monoxide, carbon dioxide and hydrogen). Methoxy refers to a methyl group

bound to an oxygen atom. It forms from the dehydrogenation of methanol (CH3O
−)

(Figure 3.1).

Methanol has many industrial applications. The most important one is per-

haps the synthesis of other chemicals. 40% of the total methanol production is used,

for instance, to produce formaldehyde, which is the main component of many chem-

ical products, as paints, plastics, disinfectants, biocides, etc... Another important

application is using MeOH as fuel.

34



Figure 3.1: Scheme of the methanol (left) and methoxy (right) molecules. The red
balls correspond to the oxygen, the grey to the carbon and the white to the hydrogen
atoms.

There are several studies on methanol oxidation over copper surfaces [41–

63]. The first studies of methanol oxidation on Cu(110) were reported at the end

of the 1970s. The first study, done by Wachs and Madix [41], is the base for all the

following works on this topic.

In 1978, Wachs and Madix [41] reported for the first time on the oxidation of

methanol, CH3OH and also CH3OD, to formaldehyde (CH2O) on a copper surface,

specifically on Cu(110) by ”flash decomposition spectroscopy”. The goal of this

work was to investigate the mechanism and kinetics of the oxidation of methanol to

formaldehyde on a molecular level and to determine the function of oxygen in this

catalytic reaction. The scheme suggested here for the basic steps of the formation

of formaldehyde from methanol has been accepted since then:

CH3OH(g) −→ CH3OH(a)

CH3OH(a) + O(a) −→ CH3O(a) + OH(a)

CH3OH(a) + OH(a) −→ CH3O(a) + H2O(g)

CH3O(a) −→ H2CO(g) + H(a)

2H(a) −→ H2(g)

The first conclusion obtained by this work was that the sticking probability

of methanol, dosed at 180 K, on the clean surface was almost zero. The partial

oxidation of the surface enhanced the adsorption of methanol on it. The maximum

formaldehyde yield was obtained for an oxygen pre-covered surface with a coverage

of 0.25 ML. The second conclusion was the formation of a surface methoxy species

by the interaction between deuterated methanol and surface oxygen through the

hydroxyl end of the molecule; the methoxy decomposes at about 365 K, desorbing

as formaldehyde and hydrogen. The methoxy species was probably formed at 180 K,

when water already started to desorb. This species was the most abundant surface

intermediate. Another surface intermediate was also present, although in a much
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smaller amount. This intermediate, formate (HCOO), was the most stable one and

decomposed above 400 K, leading to desorption of CO2, H2O, and H2 at 470 K.

In 1980, Bowker and Madix [42] published the first spectroscopic study of

methanol on Cu(110) using different techniques, namely ultra-violet photoemission

spectroscopy and X-ray photoemission spectroscopy, and also temperature pro-

grammed reaction spectroscopy (TPRS). In this publication, it was claimed that

at low temperatures the intact methanol molecule adsorbed on the clean copper

sample, and dissociated at 270 K, forming the methoxy species. On the oxygen pre-

covered surface, this work reproduced the results obtained by Wachs and Madix,

except that in these experiments formate production was not observed.

The first vibrational-spectroscopy study was performed by Sexton et al. [43],

using EELS, and also temperature programmed desorption (TPD) and UPS. As in

the previous work, Sexton and coworkers found the Cu(110) surface to be relatively

unreactive. They observed the formation of methoxy on the surface pre-adsorbed

with oxygen at 240 K.

The first structural study of methoxy on Cu(110) was done in 1985 by

Holub-Krappe et al. [44] using low energy electron diffraction and angle-resolved X-

ray photoelectron diffraction (XPD). This technique, in contrast to scanned-energy

photoelectron diffraction, is much more sensitive to forward scattering, leading to

a broader understanding of the intramolecular structure, for instance, the bond

lengths in the molecule and its orientation. In this work, methoxy was formed fol-

lowing the steps given by Wachs and Madix and they observed that the molecular

axis of the methoxy species was not perpendicular to the surface. Due to the large

difference in the data for the two azimuthal directions they claimed that the tilt of

the molecule was not azimuthally isotropic. The tilt in the [1 1 0] direction reported

in this work was about 18 ± 3◦, and 40 ± 5◦ in the [001] azimuth. Based on this

result and on the (4x2) LEED pattern observed, they proposed a model to explain

the methoxy data, which involved two different 3-fold coordinated adsorption sites.

This proposed model can be seen in Figure 3.2.

In 1994, Bowker and coworkers published a series of investigations of methoxy

on Cu(110) based on scanning tuneling microscopy (STM), combined with many

other techniques, namely molecular beam reaction measurements, TPD and LEED [48–

50]. In the first publication [48] they found three different temperature regimes: at

temperatures below 330 K the methoxy species was stable on the surface and the

stoichiometry of the reaction of methanol and the pre-adsorbed oxygen was 2:1.

Between 330 K and 450 K the stoichiometry was the same, but the methoxy was

unstable, decomposing to formaldehyde and hydrogen. At temperatures higher than
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Figure 3.2: Structure model proposed by Holub-Krappe et al. [44]. The close-packed
direction is the [1 1 0] and the perpendicular one is the [001] direction. This (4x2)
model involves two different low-symmetry three-fold coordinated adsorption sites,
A and B. Large circles represent copper atoms and the small circles represent the
methoxy molecules. The molecules in A correspond to the species tilted 18◦ in the
[1 1 0] direction and the molecule in B is tilted by 40◦ in the [001] direction.

450 K there is a change in the stoichiometry of the reaction. The ratio is 1:1 and

there was no more hydrogen production. The second important result of this work

was the observation of a (5x2) ordered phase formed by methoxy, which was seen

both with STM and with LEED. In the second publication [49], the (5x2) methoxy-

induced reconstruction was further explored. Sequential STM images showing the

methoxy formation were taken. In these images, the reaction of methanol with the

ends of the O-Cu-O-Cu added rows was observed, resulting in the formation of the

(5x2) methoxy reconstruction, which incorporated Cu adatoms from the (2x1)-O

reconstruction. The last paper of this series [50] pursued the study of the (5x2)

methoxy reconstruction. The important report of this publication was the proposal

of four different models, which would be consistent with the LEED and the STM

data. These four models combined different low-symmetry adsorption sites and all

of them included Cu adatoms.

Another study done by Carley et al. [51] revealed for the first time large

amounts of formate on the surface at 295 K and above, coming from a different

reaction pathway. This study was carried out with X-ray and electron energy loss

spectroscopies, combined with many other techniques. This formate species origi-

nated from a mixed CH3O(a)/O(a) adlayer, which was left overnight in UHV. The

mechanism of formate production from further oxidation of methoxy to its final

combustion to carbon dioxide and hydrogen follows this path:

CH3O(a) + O(a) −→ HCOO(a) + H(a)
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HCOO(a) −→ CO2(g) + H(a)

However, they were not able to distinguish between methoxy and formate in

STM. The decrease of methoxy concentration at 295 K and the production of formate

leveled off at a initial coverage of methoxy of 10 %. Not all the methoxy molecules

reacted to produce formate, and the remaining methoxy molecules desorbed at 350

K. The fact that these molecules do not desorb at 295 K led them speculate that

there were two different adsorption sites for methoxy, as was already proposed in

previous works. A second work performed by the same group [52] also reported the

production of formate at room temperature studied by TPD. In this other paper,

they remarked that the formation of formate depended strongly on the reaction

conditions. For example, a slow heating rate allowed the methoxy to further oxidise

to formate, whilst if the heating rate was faster, the methoxy desorbed before it

could be further oxidised.

Further STM work by the Bowker group studied the formation of formate

via methanol oxidation [53–55]. The main difference of this study from the previous

ones was the method of dosing. In this case, methanol and oxygen were co-dosed

on Cu(110) at room temperature instead of a sequential dosing. The key to formate

formation was the ratio between methanol and oxygen. A methanol-rich gas-phase

mixture generated formate production, whilst an oxygen-rich mixture suppressed

it. This happened because the excess of oxygen triggered the growth of (2x1)-O

islands in the [001] direction, which were very unreactive. On the other hand, if the

concentration of oxygen was lower, (highly reactive) oxygen adatoms were adsorbed

on the sample, enhancing the formate production. Different ordered phases were

identified on the sample: oxygen was ordered in (2x1) islands, methoxy in (5x2)

islands and finally formate was identified in (2x2) islands. This last assignment was

the starting point for a new series of publications of the Leibsle group [56–59]. Leib-

sle and coworkers disagreed with the assignment of the (2x2) islands to formate and

proposed a new interpretation, namely that corresponded to a different methoxy

phase. The main arguments of this work was that the formate molecules created by

sequential dosing experiments were too mobile on the surface to be imaged by the

STM, and also that codosing experiments of methanol and oxygen, while simulta-

neously using the STM, could damage the topography of the sample, resulting in

an unrepresentative surface.

Sakong and Groß published a density functional theory study of the total

oxidation of methanol on Cu(110) [63]. In this paper the dependence of the selectiv-

ity on the mixing ratio between methanol and oxygen is also mentioned. The most

relevant part of this work to the present study is the search for the minimum-energy
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Figure 3.3: Summary of all the possible adsorption sites on a Cu(110) surface in-
cluding Cu adatoms.

structure of the different (5x2) models proposed by Leibsle et al. [50], which also

incorporated copper adatoms from the Cu-O chains. They found the energetically

most favourable structure to be a p(5x2) model with the methoxy species (4 methoxy

species per unit mesh) located at low-symmetry sites, namely, at a three-fold hollow

site, at an edge site and at two long bridge sites. These adsorption sites, together

with all other possible adsorption sites, are illustrated in Figure 3.3.

As can be seen in this introduction, there are many studies which tried to

understand the reaction mechanism. The reaction pathway is well understood and

accepted, however, there is still not a clear picture of the local structure of the reac-

tion intermediate methoxy on Cu(110). The only attempts to unravel the adsorption

site of this molecule on the surface experimentally were the XPD study [44] and the

STM study [50] already mentioned here.

In the work reported here, the local structure of methoxy on Cu(110) has

been experimentally studied using scanned-energy photoelectron diffraction. The

use of this technique, in contrast to other techniques mentioned before such as

STM and XPD, permits the determination of the surface structure in a quantitative

fashion. Also the bond length between adsorbate and substrate can be determined

quantitatively. STM does not provide quantitative information and XPD is mainly

sensitive to the intramolecular orientations. Thus, this is the first quantitative

structural study of the adsorption of methoxy on Cu(110).
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Figure 3.4: a) C 1s and b) O 1s XP spectrum of the ”bad” preparation, which led
to large amounts of formate.

3.2 The adsorption site of the methoxy species on Cu(110)

These experiments were carried out at the beamline UE56-2 PGM-2 (see section 2.1)

at BESSY II in July and in December of 2008 and in January 2009.

The Cu(110) crystal was cleaned in situ by several cycles of argon sputtering

and annealing. The sample was sputtered for 30 minutes in a background pressure of

1x10−4 mbar Ar. The acceleration voltage was 5 keV, resulting in a sample current

density of ≈ 11 µA/cm2. These ion bombardments were followed by brief annealings

to ≈ 840 K. The cleanliness of the sample was checked by sXPS and LEED (see

section 2.2 and section 2.4, respectively). LEED showed the (1x1) pattern char-

acteristic for a clean crystal, and no contamination was observed with XPS. The

azimuthal directions of the crystal were determined with the help of LEED.

The standard procedure to prepare Cu(110) with a high coverage of methoxy

is, as learned from the literature, to pre-dose the sample with molecular oxygen at

room temperature to a coverage of 0.25 ML. An excess of oxygen decreases the reac-

tivity of the sample, until, at a coverage of 0.5 ML, the surface is completely covered

with a (2x1)-O ”added-row” reconstruction, which leads to a quite unreactive sur-

face [41]. STM studies showed that methanol reacts with the ends of the (2x1)-O

islands, specifically at the ends of the Cu-O-Cu added rows [49, 50]. After dosing

oxygen, the second step is to dose methanol to react with the oxygen to produce

methoxy.

However, the first attempts to prepare the surface methoxy species following
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C 1s ∆BE (eV) CH3O - HCOO ∆BE (eV) CH3O - CHx

This work 2.1 1.7

Carley [51] 2.5

Günther [62] 2.3 1.2 - 2.5

Table 3.1: Summary of the chemical shifts between carbon-containing species on
the Cu(110) surface.

this procedure failed, and resulted in significant amounts of co-adsorbed formate

species. Also another carbonaceous species was found on the sample, CHx (following

the nomenclature used by Günther et al. [62]). The sXPS data from this ”bad”

preparation can be seen in Figure 3.4.

In the C 1s XP spectrum, three different features can be seen in Figure 3.4a

(methoxy, formate, and a carbonaceous species), whereas Figure 3.4b shows two

different features in the O 1s spectrum (pre-adsorbed oxygen, and a combination of

the methoxy and the formate species). The peak at 285.5 eV was assigned to the

methoxy species. At higher binding energies, shifted by 2.1 eV, the formate species

was identified, and at lower binding energies, 1.7 eV shifted from the methoxy

peak was the CHx species. A summary of the chemical shifts between different

carbon-containing species can be seen in Table 3.1. In order to be sure that the

carbon-containing species at higher binding energies was formate, formic acid was

dosed on the clean sample. Figure 3.5 shows the C 1s XP spectrum of formic acid

dosed on a clean Cu(110) surface, which results in the adsorption of formate, and

the spectrum corresponding to a ”good” preparation where formate was almost

completely removed from the sample. These spectra were shifted ≈ 1.9 eV from

each other, which is similar to the chemical shift observed in the ”bad” preparation

between the formate and the methoxy species. The peaks in these spectra were

identified following the labeling of several previous studies [42, 51, 62]. These studies

agreed in the assignments of the peaks; only one other study seemed to disagree with

this result, and gave quite different assignments, but it failed to explain why all the

other authors’ assignments were believed to be incorrect [64].

From the C 1s XP spectrum, the relative concentrations of formate and

methoxy could be established. This was very helpful to constrain the fit of these two

species, methoxy and formate, in the O 1s spectrum. The chemical shift between

these two O 1s components was ≈ 0.45 eV (see Table 3.2). Extra confirmation

that the peak at higher binding energies in the O 1s XP spectrum corresponded to

formate was to compare the normal emission O 1s PhD spectra measured from this
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Figure 3.5: Comparison of a C 1s XP spectrum taken from a good preparation
of methoxy-covered Cu(110) surface, as a result of the exposure to methanol and
oxygen, and the spectrum from a formate-covered Cu(110) surface, as a result of a
formic acid dosing. The red line depicts the methanol experiment and the blue line
depicts the formic acid experiment. The peak corresponding to methoxy and the
one corresponding to formate are separated ≈ 1.9 eV, a characteristic chemical shift
for these two species.
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Figure 3.6: Fit of the a) C 1s and the b) O 1s XP spectra of the ”good” formate-free
preparation.

component with the PhD modulations found for the formate species on Cu(110) [65,

66]. This comparison showed the same PhD modulations for both experiments. It

is important to mention that, due to the difficulties to identify the exact location of

the Fermi level in photoemission spectra recorded at the high photon energies used

here, the binding energy scales shown in Figure 3.4 and in Figure 3.6 were fixed by

setting the value for the O 1s peak of atomic oxygen to be 529.6 eV, and that for

the C 1s peak of adsorbed methoxy to be 285.5 eV. These values are taken from the

earlier publication mentioned above [62].

As noted in Figure 3.4, the concentration of formate on the sample was

very significant. This fact was surprising, since the ”recipe” followed to adsorb

methoxy on Cu(110) was well-proven, and only small amounts of formate had been

reported previously. Further test experiments demonstrated that beam damage

from the incident synchrotron radiation, combined with the temperature at which

beam exposure was used, were the source of the production of formate. The tests

showed that at room temperature, the incident beam induced the dissociation and

desorption of methoxy. The dissociated products were CHx and co-adsorbed atomic

oxygen. This latter one reacted with the adsorbed methoxy and created formate.

In order to avoid this problem, the preparation methodology was slightly modified.

The oxygen procedure was carried out as mentioned before, but now the methanol

dosing was done at low temperatures, taking a special care not to expose the sample

to the incident beam at room temperature. Since this kind of photoinduced surface
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O 1s ∆BE Oa - CH3O ∆BE Oa - HCOO ∆BE CH3O - HCOO

This work 1.2 1.7 0.5

Bowker [42] 0.8

Carley [51] 1.1 1.8 0.7

Günther [62] 0.6 1.4 0.8

Table 3.2: Summary of the chemical shifts between oxygen-containing species on
the Cu(110) surface. The chemical shifts are given in eV.

reaction can be strongly suppressed at low temperatures, the sample was exposed

to methanol at ≈ 140 K, heated to ≈ 240 K to help the reaction to occur and cooled

back again to ≈ 140 K, before exposing it to the beam. The exact dosing procedure,

that led to a formate-free preparation was as follows: the surface was first exposed to

1x10−8mbar·150s of oxygen at room temperature, followed by a dosing of methanol

of 5x10−8mbar·100s at 140 K. Afterwards, the sample was heated to ≈ 240 K to

remove the excess physisorbed methanol and initialize the methanol-oxygen surface

reaction.

As a result of holding the sample at low temperatures during the experiments,

a small amount of contamination of water from the ambient vacuum (background

pressure ≈ 5x10−10 mbar) was always observed on the sample. In order to reduce

the effect of this water contamination, the sample was briefly heated after every

PhD scan to ≈ 240 K to desorb the water.

XP spectra of the formate-free preparation can be seen in Figure 3.6. In

contrast to the bad preparation, now only two features can be seen in the C 1s XP

spectrum. These peaks correspond to methoxy and a small amount of formate. In

the O 1s XP spectrum, three different peaks can be seen: a methoxy peak at 530.8

eV, at 529.6 eV a peak corresponding to the pre-adsorbed oxygen which has not

reacted with methanol, and finally at 532.2 eV a peak corresponding to a contam-

ination of water. Table 3.2 shows a summary of the chemical shifts between the

different species containing oxygen that are present on the sample.

LEED patterns from the methoxy-covered Cu(110) surface were recorded

only after PhD spectra were taken, due to the problems associated to beam damage.

However, no LEED pattern was then observed. This could be caused by the rapid

destruction of a possible ordered structure by the LEED beam, as reported in [44,

49, 50].
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Figure 3.7: Summary of all the experimental data taken in the two different az-
imuths, [110] and [001]. The spectra taken at 30◦ and 40◦ in the [110] show the
largest modulations, up to ± 20%.

3.2.1 PhD Results

Experimental O 1s PhD spectra were taken at different polar angles and in two

different azimuthal directions. In the [110] direction spectra were taken at 0◦, 20◦,

30◦, 40◦ and 60◦, and in the [001] azimuth they were taken at 0◦, 20◦, 40◦ and

60◦. A summary of these spectra is shown in Figure 3.7. A preliminary qualitative

analysis of the data showed that the largest modulations occur in the spectra of 30◦,

40◦ in the [110] azimuth; all other directions, especially the ones taken in the [001]

azimuth showed very weak modulations. This implies that the oxygen atom of the

methoxy molecule probably occupies a bridge adsorption site along the close-packed

[110] direction on the Cu(110) surface. Three data sets were chosen to pursue the

analysis: the two showing the largest modulations, and also the high-symmetry

normal emission direction, 0◦, also recorded in the [110] azimuth.

Multiple scattering simulations were performed for five different geometries

on the unreconstructed Cu(110) surface to be compared with the experimental data.

The five different geometries are: an atop site (R = 0.98); a short bridge site (R

= 0.24), where the oxygen atom of the molecule is bridging two Cu atoms along

[110]; a long bridge site (R = 0.31), with the oxygen atom binding two copper

atoms along the [001] direction; a three-fold hollow site (R = 1.36), next to the

[110] atomic ”troughs”; and the most-symmetric four-fold hollow site (R = 0.96),
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Figure 3.8: Comparison of experimental O 1s PhD spectra with theoretical simula-
tions for five different local adsorption sites on an unreconstructed Cu(110) surface.
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which is equivalent to an atop site on the second layer (see Figure 3.3). The fits to

the experimental data shown in Figure 3.8 were obtained by optimising the height of

the oxygen atom above the Cu surface independently for each geometry. As shown

in the figure, the best fit was obtained for a short bridge site, as expected from the

qualitative analysis. The R-factor for this geometry is 0.24, far better than for almost

all other models. This can also be seen in the fit, where the hollow sites and the atop

site failed to reproduce the experimental data. However, the R-factor obtained for a

long bridge (R= 0.31) is unexpectedly low, and this corresponds to quite a good fit as

can be seen in the figure. However, this good result is obtained for a structure with

a very short Cu-O bond length, 1.82 Å, which is unrealistic for such a bonding (e.g.

the Cu-O bonding of methoxy on Cu(111) and formate on Cu(100) and Cu(110) is

≈1.97 Å [67]). Using a more realistic value (1.97 Å) for the theoretical simulations,

a much worse R-factor was obtained (R = 0.71); therefore, this adsorption site could

also be excluded. The fact that the theoretical modulations (see Figure 3.8) of the

long bridge site with the short bond length are so similar to the modulations for

the short bridge is due to one weakness of the photoelectron diffraction technique.

It is important to note that the long bridge site presented here is also a short

bridge site on the second copper layer. As PhD modulations are dominated by

the scattering of nearest-neighbour atoms lying behind the emitter relative to the

detection direction, for angles close to the normal, the near-neighbour atoms that

are close to coplanar with the emitter are almost ”invisible” and contribute very

little to the PhD modulations.

Therefore, in the case of the molecule in the long bridge site, the scattering

coming from the copper atoms of the second layer would be stronger than the

scattering from the outermost copper atoms. If the height of the molecule above the

second layer in the long bridge site was similar to the height of the molecule in the

short bridge above the outermost copper layer, the resulting modulation functions

would be very similar. This is indeed the case for the long bridge site geometry

with the short bond length. Thus the oxygen atom of the methoxy molecule in the

short bridge site was found to be 1.49 Å above the outermost layer of the surface,

resulting in a Cu-O bond length of 1.97 Å, and for the case of the long bridge site,

the oxygen atoms are placed 1.48 Å above the second layer, resulting in a Cu-O

bond length of 1.96 Å. However, this oxygen atom was only 0.20 Å above the copper

atoms of the first layer, resulting in the unreasonable short nearest-neighbour bond

length discussed before (1.82 Å).

One surprising fact is the poor agreement between experimental data and

theoretical modulations for the three-fold hollow site. This site had been proposed
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[001]

[110]

Figure 3.9: Representation of a two-site model of a methoxy-covered Cu(110) with
an added row reconstruction. The yellow balls depict the Cu surface, the green
ones depict the Cu added row atoms, the red ones are the oxygen atoms of the
methoxy molecule and the grey balls are the carbon atoms from methoxy. One
methoxy molecule is occupying a short bridge site on the added row, and the second
methoxy molecule is occupying a short bridge on the underlying unreconstructed
surface beside the added row. The hydrogen atoms of the methoxy molecule are not
represented here, since PhD is not sensitive to them.

in previous publications as one of the possible adsorption sites, but the agreement is

so poor that it can be discarded. It is also very unlikely that the methoxy molecule

occupies this 3-fold hollow site, even in a model with multiple site occupation.

At this point, it was fairly clear that the methoxy molecule preferred to oc-

cupy a short bridge site. However, the agreement between experiments and theory

was not yet good enough. In order to improve the fit, models with multiple site occu-

pation were simulated, since multiple occupation was indicated in previous studies.

For the two-sites models consistent also Cu adatoms, and Cu added rows have been

taken into account. Cu adatoms arise from the initial (2x1)-O structure formed by

the previous adsorption of atomic oxygen. According to STM studies, most of these

Cu adatoms are accommodated into the methoxy surface phase instead of diffusing

to surface steps [50]. First of all, new calculations for models with single sites that

include these extra copper atoms were performed. The best fits were again obtained

for a short bridge site on a Cu added row reconstructed surface (R = 0.23), and for

a short bridge site beside a Cu added row on the first layer (R = 0.25). The added

rows in these two structures were lying along the [110] direction. The next step was

to simulate two-site models, and the best fit was indeed found for a combination of

the short bridge sites mentioned before (see Figure 3.9). In both cases the methoxy

molecule is slightly tilted in the [110] direction. However, as the scattering from
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Figure 3.10: Comparison of the experimental (black) and simulated (green) PhD
spectra of the best fit for methoxy on Cu(110) surface. The model simulated here
is a two short bridge site, on the Cu added row reconstructed surface, as shown in
Figure 3.9.

the carbon atoms is very weak, no conclusion about the exact tilt of the molecule

could be obtained. The R-factor for the two short bridge site model of Figure 3.9

was 0.15. The comparison between experimental data and theoretical simulations

is depicted in Figure 3.10. The individual R-factors for each angle were 0.35 for 0◦,

0.13 for 30◦, and 0.08 for 40◦. The agreement between experiments and theory for

30◦ and 40◦ is very good, however it is still poor for the normal emission. The Cu-O

bond length for the methoxy binding to the added row is 1.92 Å and the height of

the oxygen atom above the copper atoms is 1.47 Å. The methoxy binding to the

unreconstructed surface is 1.49 Å above the underlying copper atoms, which results

in a Cu-O bond length of 1.98 Å to the atoms underneath, but a bond length of 1.82

Å to the adjacent added-row Cu atoms. Following the discussion above regarding

acceptable values of the Cu-O bond lengths, this adsorption site should also be re-

jected. In order to get a better understanding about this, and also to try to reconcile

this work with previous studies suggesting a (5x2) model, DFT calculations were

performed by Matt Bradley [68, 69].

Density functional theory (DFT) calculations were performed using the Cam-

bridge Serial Total Energy Package (CASTEP) pseudopotential plane wave code

[70]. The Revised Perdew-Burke-Ernzerhof edition of the Generalized Gradient Ap-
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Figure 3.11: Comparison of the (5x2) model proposed in the literature with PhD
simulations. The black lines are the experiments, the yellow ones are the theoretical
simulations. The overall R-factor is 0.97.

proximation (GGA-RPBE) exchange-correlation functional was used, with ultrasoft

pseudopotentials. A plane wave cutoff energy of 380 eV was found to provide ade-

quate convergence. Seven-layer slabs were used to represent the Cu(110) substrate

with a lateral periodicity defined by the calculated bulk Cu fcc lattice constant with

a supercell height of 20 Å, sufficient to leave a vacuum gap of at least 7.5 Å in all

the adsorbate phases. Initial calculations were conducted using a (2 x 2) mesh with

5 x 7 Monkhorst-Pack k -point sampling (18 inequivalent points). For structures

involving a single methoxy species on an unreconstructed surface in this (2 x 2)

mesh, the lowest-energy configuration corresponded to adsorption in short bridge

sites with an O-C tilt in [001] of 36◦. This conclusion, and the associated adsorbate

geometry, are essentially identical to those of previous DFT calculations [63, 71].

Also consistent with this previous work is the result that increasing the coverage to

two methoxy species per (2 x 2) mesh [in a c(2 x 2) structure] leads to a slightly

more strongly-bound methoxy (by 41 meV) in the short bridge sites. One further

result from the DFT study was that the [110] pairs of nearest-neighbours adatoms

are likely to be favoured over more isolated adatoms in any model of the (5x2)

structure that includes Cu adatoms. Calculations for two different (5x2) models

were performed. The first model was the one previously favoured in the literature
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Figure 3.12: (5x2) model structure proposed by DFT. The box delimits the unit
mesh, which contains 4 Cu adatoms and 4 methoxy species. The green balls are the
copper adatoms, the yellow balls correspond to the underlying unreconstructed Cu
surface, the red balls are the oxygen atoms, the grey ones are the carbon atoms and
the white ones are the hydrogen atoms.

([50, 54, 63]), which combines 6 Cu adatoms and 4 methoxy species per unit mesh,

with two methoxy species in long bridge sites, one in a three-fold hollow adjacent to

the adatoms, and one in an edge bridge site. The adsorption energy per methoxy

species including the adatom reconstruction was much less favourable than the short

bridge site on the unreconstructed surface. PhD simulations were also performed

for this model, obtaining very bad agreement with experiment (Figure 3.11).

The other models tested were a combination of short bridge sites, and short

bridge sites adjacent to copper adatoms, as suggested by PhD. The most ener-

getically favourable model was a (5x2) unit mesh containing 4 Cu adatoms and 4

methoxy molecules (Figure 3.12), two methoxys on the Cu adatoms and the other

two methoxys binding to the underlying unreconstructed surface. The methoxy

species are tilted in the [001] direction, in such a way that the molecules bonding to

the Cu adatoms are pointing in one direction and the other two methoxy species are

tilted in the opposite direction. This alternated tilt of the methoxy species creates

a ”zig-zag” pattern. This model structure was strongly favoured energetically over

the previously proposed model. Comparisons of simulations for this ”zig-zag” struc-

ture with the PhD experimental data were also performed and the structure was

optimised to obtain the best fit. The best fit is shown in Figure 3.13. The resulting

structure from the PhD analysis was very similar to the DFT model. The Cu-O

bond length found by DFT was 1.98 Å for both adsorption sites, the same value

(1.98 ± 0.03 Å) as that found for the Cu-O bond length for the methoxy species on
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Figure 3.13: Comparison of the experimental data (black) and the theoretical simu-
lations (red) of a methoxy-covered surface. The model simulated here is the so-called
”zig-zag” structure, a (5x2) reconstruction including Cu adatoms. This model was
optimised by DFT and afterwards reoptimised by PhD to find the best fit. The
overall R-factor is 0.14. The individual R-factors are 0.28 for normal emission, 0.11
for 30◦ and 0.09 for 40◦.

the copper adatoms. However, the Cu-O bond length for the methoxy species on

the underlying unreconstructed surface by PhD was found to be 1.90 ± 0.03 Å. In

the case of the tilt of the molecule, the value found by DFT was 36-37◦, differing

only slightly from the result obtained by PhD, which also favoured a tilt in the [001]

direction of 33 ± 14◦. This error value is relatively large due to the insensitivity of

photoelectron diffraction to the rather distant carbon atom.

The overall R-factor for this structure is only slightly better than the R-factor

for the two short bridge site model (0.14 vs 0.15) described before (see Figure 3.9),

but by contrast to this previous model, the new (5x2) model does not involve any

unreasonably short bond length. Moreover, the partial R-factor for normal emission

was reduced from 0.35 to 0.28, which can be very clearly appreciated in Figure 3.13.

In particular, the fine structure between 150 and 200 eV is much better reproduced

than in the previous models.
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Figure 3.14: Comparison of the simulated STM image of the (5x2) methoxy-covered
Cu(110) surface (left) obtained from the DFT calculations based on the (5x2) model
corresponding to the ”zig-zag” structure found here, with an experimental image
(right, [49]). The rectangle superimposed in the image depicts a (5x2) unit mesh.

3.3 Discussion

One important issue to discuss is the possible influence of the co-adsorbed water

and atomic oxygen on the copper surface, identified in the O 1s XP spectra. As

mentioned above, the chemical shift between these two species and methoxy species

allows us to resolve the different components, and so the O 1s component of the PhD

spectra associated to the methoxy species has been analysed independently without

any influence of the other two species. Nevertheless, this leaves open the possibility

that the coexistence of these two species on the sample influences the adsorption

site of the methoxy species. However, as is known from STM [49, 50], the unreacted

co-adsorbed oxygen remains in (2x1) islands, spatially separated from the methoxy.

This indicates that any remaining atomic oxygen on the sample would not influence

the adsorption of the methoxy species. In the case of water, this species is easily

removed by a short annealing, indicating that it is weakly adsorbed to the sample.

Since the methoxy species is strongly bound to the Cu surface, it is unlikely that

water influences its adsorption site. However, it is possible that the weak methoxy-

water interactions influence the orientation of the methoxy species, but the O 1s

PhD spectra are very insensitive to this tilt.

Another important issue is whether the structure obtained in this work is

consistent with previous structural studies, by XPD and STM. Figure 3.14 com-

pares a simulated STM image of the (5x2) phase obtained from the preferred DFT

53



structure and based on the Tersoff/Hamman description of STM (calculations of

Matt Bradley) to an experimental image obtained from reference [49]. It is obvious

that the DFT image reproduces the main features of the experimental image, in

particular, the ”zig-zag” row of bright protrusions coming from the methyl groups

of the methoxy species on the Cu adatoms, and the darker ”zig-zag” row of weaker

protrusions.

Regarding the XPD study [44], two different tilts of the methoxy species

were observed, as mentioned in section 3.1, and from this result a model structure

involving two different O-C bond orientations was proposed. These different bond

orientations implied two different adsorption sites, although another model involving

a single species, tilted in the [110] azimuthal direction was also considered. In this

work, a tilt of 33 ± 14◦ in the opposite directions of the [001] direction is found.

This value is consistent with the value obtained by XPD of 40 ± 5◦. The apparent

tilt in the other direction can be explained on first order diffraction, as explained in

[69].

3.3.1 Conclusions

The local structure of the methoxy species on Cu(110) has been determined us-

ing energy-scan photoelectron diffraction and density functional theory calculations

(these latter ones performed by Matt Bradley). PhD found the short bridge on the

unreconstructed surface and also on Cu adatoms to be the most preferred adsorption

sites. DFT proposed a model based in the short bridge occupation which was a (5x2)

reconstruction containing 4 Cu adatoms and 4 methoxy species. This reconstruc-

tion involved two different short bridge sites: one bonding to the Cu adatoms and

one bonding to the underlying unreconstructed surface. This model structure was

further fitted by photoelectron diffraction to obtain the best fit between experiment

and theory. The copper-oxygen bond lengths are consistent with those of different

systems. A tilt of the carbon atoms in the [001] direction was also observed . This

tilt created a ”zig-zag” structure, which fits with the previous STM [50] images and

also with the XPD [44] study mentioned before.
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Chapter 4

The formate species on Cu(110)

and Cu(111)

4.1 Introduction

The goal of this experiment was to understand the dependence of the bond length

between a molecule and a metal surface on the structure of the underlying metal

surface. Previous studies imply that the presence of the many neighbouring metal

atoms in the solid surface does not influence the bonding, and therefore that the

molecular bonding is similar to organometallic bonding [72] (i.e. the bonding be-

tween a metal atom within an organic molecule in the gas phase). In order to

investigate this, the chemisorption bond length of a molecule in the same local ad-

sorption site on two different surface terminations was studied. The molecule chosen

for this purpose was formate and the substrates were Cu(110) and Cu(111).

Formate (HCOO−) is the simplest carboxylate anion and it is formed by

the deprotonation of formic acid over copper surfaces. The importance of formate

stems from its participation in many chemical reactions. It is, for example, the

most stable and abundant surface intermediate product in methanol synthesis and

it is also involved in the oxidative dehydrogenation of methanol [73]. Formic acid

(HCOOH) is the simplest carboxylic acid. It occurs naturally and it can be found

in the venom of a bee or in ant stings. Its name is due to this latter property, since

formic comes from the Latin word for ant, formica. Figure 4.1 shows the molecular

structure of formic acid and formate.

The structure of the surface formate species on copper has been studied

since the 1980s [40, 65, 74–76]. However, although these studies seem to agree on

the local adsorption site of formate, which is a bridge site along the close-packed
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Figure 4.1: Scheme of the formic acid (left) and formate (right) molecules, where
red corresponds to oxygen, grey to carbon and white to hydrogen

direction with the oxygen atoms in identical off-atop adsorption sites, there are some

differences in the measured bond length between copper and oxygen.

One of the first studies was done by Stöhr et al. in 1985 [74]. Here the

chemisorption of formate on Cu(100) was studied using SEXAFS, complemented by

the use of NEXAFS. In this work it was claimed that the formate chemisorbs via

the two oxygen atoms in adjacent fourfold hollow sites, as is shown in Figure 4.2a,

with an average O-Cu nearest neighbour bond length of 2.38 ± 0.03 Å. This value

is surprising if it is compared with the bond length value, for instance, of atomic

oxygen on Cu(100) [77] or of O and Cu in a bulk compound [78], which are normally

≈ 0.4 Å shorter. This unusual bonding was attributed to a steric effect involving

the carbon atom in a bridge position between two copper surface atoms. The non-

bonding C-Cu interaction counteracts the O-Cu bond and pushes the molecule away

from the surface. This leads to the unusually long O-Cu distance.

Puschmann et al., also in 1985, studied the local structure of the formate

species on Cu(110) also using x-ray-absorption fine-structure techniques [40]. In this

study the analysis is separated in two steps. The first one exploited the dependence

of the NEXAFS intensities on the direction of the polarization vector of the incident

radiation to determine the orientation of the formate species on the surface. In

the second step the periodicity of the SEXAFS oscillations was used to determine

the nearest-neighbour Cu-O bond length, whereas the dependence of the SEXAFS

amplitude on both polar and azimuthal angles of the polarization vector allows

the directions of these neighbours to be determined. The results showed that the

formate species lies with its molecular plane perpendicular to the surface, aligned

along the [1 1 0] azimuth direction. The adsorption of the molecule was concluded

to occupy an atop site on the copper atoms of the outermost layer, with the oxygen

atoms close to bridge sites, as is shown in Figure 4.2b. For this adsorption site the

bond length between oxygen and copper was found to be 1.98 ± 0.07 Å, a value
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Substrate Adsorbate Technique Cu - O bond length (Å)

Cu(100) Formate SEXAFS 1.99 ± 0.10 [74, 75]

Formate PhD* 1.98 ± 0.04 [65]

Cu(110) Formate SEXAFS 1.94 ± 0.10 [40, 75]

Formate PhD* 1.98 ± 0.04 [65]

Acetate PhD 1.91 ± 0.04 [79]

Benzoate PhD 1.91 ± 0.02 [80]

Cu(111) Formate NIXSW 1.92 ± 0.04** [76]

Acetate NIXSW 1.86 ± 0.04** [81]

Table 4.1: Summary of previous determinations of the Cu-O bond length for car-
boxylate species on Cu surfaces. PhD* indicates that these studies used a simplified
theoretical modeling that may involve some systematic error. NIXSW does not
measure the bond length directly and these ** values rely on certain assumptions
about the surface relaxation.

almost identical to that in bulk copper formate [78]. This adsorption site differs

significantly from the one proposed by Stöhr.

One year later Crapper et al. [75] did a reanalysis of the previous SEXAFS

studies using a multishell simulation procedure on Cu(100) and also on Cu(110).

The results obtained in this report led to the interpretation that the previous results

were incorrect. They found for both surfaces an adsorption site with the formate

atop a copper atom, although the orientation was different for both surfaces. For

Cu(110) the best fit was obtained for the molecule oriented along the [1 1 0] azimuth

Cu (111)

d
b

Cu (110)

d

Cu (100)

d

a

c

Figure 4.2: Summary of all the proposed adsorption sites for formate on the three
low-index copper surfaces, where ”a” represents a bridge site with the oxygen atoms
in four-fold hollow sites, ”b” represent an atop site with the oxygen atoms in bridge
sites, ”c” represents an atop diagonal site and ”d” represents a short bridge site.
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direction, as reported in [40] (Figure 4.2b) , with a Cu-O bond length of 1.94 ± 0.10

Å. On the other hand, the formate molecule was concluded to be bound on the

Cu(100) in the so-called ”diagonal atop” site, as is shown in Figure 4.2c. The Cu-

O bond length for this surface was 1.99 ± 0.10 Å. The differences between this

work and the previous studies were explained as a consequence of the mismatch of

the Cu-Cu nearest neighbour distance (2.55 Å) and also the mismatch of the O-O

distance in formate which is ∼ 2.20 Å. It was shown that in the O K-edge SEXAFS,

when the measurements were taken at normal incidence, the modulations coming

from the backscattering by Cu substrate atoms were very similar in amplitude and

periodicity to the modulations coming from the backscattering O atoms. This would

lead to misleading interpretations of the adsorption sites and the bond lengths.

Nevertheless, in 1988, a new publication for formate on Cu(100) and Cu(110)

proved all the previous results to be wrong [65]. Woodruff et al. used photoelectron

diffraction in energy-scan mode to obtain a quantitative analysis of the adsorption

site and near-neighbour distances. The PhD modulations of formate on Cu(100) and

Cu(110) were very similar, indicating the same adsorption site for formate on both

surfaces. This result is inconsistent with the two different sites proposed before.

PhD data revealed the adsorption site of the formate to be a bridge site along the

close-packed direction, with the oxygen atoms lying in identical off-atop sites (see

Figure 4.2d). The calculations showed that the Cu-O nearest neighbour distance

was 1.98 ± 0.04 Å, similar to the value obtained by Puschmann. One of the reasons

given to explain the disagreement with the other publications was the sensitivity

of the techniques. While SEXAFS is more sensitive to the nearest-neighbour bond

length, PhD is sensitive to both the bond length and the adsorption site. These

two have to be determined simultaneously. For this reason the PhD technique is

expected to be more incisive than SEXAFS in this case. Another complication is

the similarity between the O-O distance and the Cu-Cu, already explained above.

The first structural study of formate on Cu(111) was done more than ten

years later, in 2000, by Satiropoulos and coworkers [76]. The local structure of for-

mate on this surface was determined using normal incidence X-ray standing wavefield

absorption (NIXSW). The goal of this work was to use this technique to determine

the local registry of simple organic molecules. This method had been used tra-

ditionally to study the adsorption of heavier elements. The disadvantage of the

technique is the high energy of X-rays that comprise the standing wavefields, which

are typically between 2 and 3 keV for transition metals. At these energies, the

cross-sections for photoemission from light elements are very small. Using a second-

generation storage ring this problem could be solved. The results showed that the
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adsorption site of formate on Cu(111) is identical to that found on both Cu(100)

and Cu(110) (see Figure 4.2d), the formate binding in a bridge site along the close-

packed direction with the oxygen atoms almost in atop sites. This similarity with

the previous published results implies that this technique using a second-generation

storage ring succeeds in determining the local registry of oxygen. However, it was

not possible to collect data from the carbon, in order to get further insight into

the intramolecular distances. The oxygen-(111) plane separation determined in this

work was 1.89 Å. It was found that the oxygen atoms could be statically displaced

from exact atop sites by up to 0.33 Å in the direction parallel to the surface, leading

to a Cu-O bond length of up to 1.92 Å.

Although there are many studies of formate on copper surfaces and all seem

to agree about the local adsorption site (see Table 4.1), it is difficult to extract any

meaningful information about the dependence of the bond lengths on the underly-

ing metal substrate. In all cases the Cu-O bond length is found to be in the range

between 1.91 Å and 1.99 Å, very similar to the values in Cu2 formate complexes

in which formate species bridge the two Cu atoms (e.g. 1.98 Å [82] and 1.96

Å [83]). However, these different surface measurements were carried out with dif-

ferent experimental methods and under different conditions. Hence, it is impossible

to derive a reliable conclusion regarding any possible face-dependence of these bond

lengths. In order to obtain a better understanding of the behaviour of this metal-

atom/molecule bonding, a new study of two of the low-symmetry copper surfaces is

presented here. In this work, both systems were measured with the same technique

and under almost identical conditions.

4.2 Formate on Cu(110)

This experiment was carried out at the beamline UE56-2 PGM-2 (see section 2.1)

at BESSY II in 2009 and in 2010.

The copper sample was cleaned by carrying out a few argon sputtering and

annealing cycles. The Cu(110) surface was sputtered for 30 minutes in a background

pressure of 1x10−4 mbar Ar. The acceleration voltage was 5 keV, resulting in a

sample current density of ≈ 5 µA/cm2 . The sample was then heated to ≈ 900

K for 2 - 3 minutes. To check the cleanliness of the sample XPS and LEED were

performed. After the cleaning cycles a sharp (1x1) LEED pattern was observed, and

no contaminants were observed with XPS. The azimuthal directions of the crystal

were determined with the help of LEED.

Prior to the dosing, the sample was cooled down to ≈ 140 K. Previous dosings
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Figure 4.3: O 1s a) and C 1s b) XP spectra of the dosed sample (red), after PhD
scan (black) and after annealing (grey). This spectra are taken at 140 K. An extra
feature shifted 1.2 eV from the main peak towards higher binding energies appears
after the PhD scan. This new peak corresponds to a small contamination of water
and formic acid. These spectra are taken at 20◦ of polar angle.

at room temperature (carried out in February 2009) had been performed, but the

PhD data obtained from these measurements showed very weak modulations. To

overcome this problem, in January of 2010 the measurements were repeated at

low temperatures. All the data shown here were taken during this last beamtime.

The sample was not only held at ≈ 140 K during the dosing, but also during the

measurements. Formate was dosed by filling the chamber with a pressure of 5x10−8

mbar of formic acid for 100 seconds, corresponding to a dose of 5L. Formic acid was

obtained from FLUKA (purity of 98%). It was prepared by freeze-pump-thaw cycles

to improve its purity. In contact with copper surfaces formic acid dehydrogenates

and adsorbs on the sample as formate. No LEED pattern was observed after the

dosing, indicating that the formate did not arrange with long-range periodicity.

XPS measurements were also taken after the dosing to characterise the sam-

ple. Figure 4.3 shows the O 1s (a) and the C 1s (b) spectra. These spectra were

taken at a polar emission angle of 20◦ in the [1 1 0] azimuth direction. The photon

energy used to take the O 1s spectrum was hν = 650 eV . The photon energy used

to take the C 1s spectrum was hν = 400 eV . In both graphs there are three XP

spectra depicted, corresponding to the spectrum immediately after the dosing and

before the PhD scan (red), a spectrum taken after the PhD scan (black), and finally

a spectrum taken after heating the sample to room temperature (grey) after the
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Figure 4.4: Fit of the O 1s XP spectrum taken immediately after the PhD scan. The
peak at 116.4 eV corresponds to formate, whereas the peak at 115.2 eV is associated
with a contamination by water and formic acid.

PhD scan.

One of the problems of dosing formate at low temperatures was the risk of

adsorbing the intact formic acid molecule on the copper sample instead of creating

formate. To avoid this problem, the sample was briefly heated to room temperature

after every dosing. A second problem was the adsorption of background water on

the sample, as we could see in the XP spectrum (Figure 4.4). Also to get rid of

this water contamination a brief heating to room temperature was performed after

every PhD scan. During these short annealings an increase of the water background

pressure in the chamber was observed with the mass spectrometer, attributed to

desorption of water from the sample and the sample holder.

In the O 1s spectrum taken before the PhD scan only one oxygen-containing

species can be observed. The fact that there is no chemical shift between the two

oxygen atoms of the formate molecule implies that both oxygen atoms have the

same or very similar chemical environments, suggesting that they occupy equivalent

adsorption sites. In the spectrum taken after the PhD scan, however, there is an

extra peak shifted 1.2 eV towards lower kinetic energies. In Figure 4.4 the fit of

these two peaks is shown. This second peak was increased gradually with time.
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A similar effect was observed in the C 1s spectrum. The main peak (Ek = 116.4

eV in the O 1s spectrum and Ek = 109.4 eV in the C 1s spectrum) was assigned

to formate. The adsorption of water on the sample due to the low temperatures

would explain the peak at lower kinetic energy in the O 1s XP spectrum. However

it can not explain the feature observed at lower kinetic energy in the C 1s spectrum.

Adsorption of intact formic acid from the background or the sample holder could

create an overlayer and would explain the C 1s peak at 109.4 eV. Annealing the

sample briefly to room temperature was necessary to remove the excess of formic

acid and water, as is shown in the spectra. This process was performed regularly.

These two peaks in the O 1s spectrum can easily be resolved, and therefore,

the PhD modulation spectrum corresponding to the formate species alone can easily

be extracted.

4.2.1 PhD Results

Experimental O 1s PhD spectra were obtained at polar angles of 0◦ (normal emis-

sion), 10◦, 20◦ and 60◦ in the [110] azimuthal direction and 0◦, 10◦ and 20◦ in the

[001] direction. Most of those spectra were repeated for different preparations. Also

a few scans were taken at room temperature. As mentioned before, the modulations

were significant weaker than at low temperature. In particular, the PhD scan taken

at grazing angle, 60◦, showed no modulation at all. This and the fact that the scans

taken at normal emission, 0◦, showed the largest modulations, suggest that the oxy-

gen atoms of the formate sit atop the copper atoms, or very close to atop, so many

other local adsorption sites could already be rejected. Only three of the PhD scans

were chosen to pursue the analysis, 0◦, 10◦ and 20◦ in the [1 1 0]. These three scans

were chosen because they showed the largest modulations. Also, the choice of only

three spectra reduces the computational time required for the analysis. These data

sets were processed following our general PhD methodology, as described in sub-

section 2.3.4. PhD spectra were simulated for different local structures, namely the

atop site, the short bridge site (along the [1 1 0] azimuthal direction) and the long

bridge site (bridge along the [001] azimuthal direction), and these were compared

with the experimental data.

Figure 4.5 shows the comparison between the experimental spectra and mul-

tiple scattering simulations for a short bridge site. The χ(E) functions observed

in the figure show modulations weaker than 20%. These rather small modulations

made the analysis of the PhD data difficult, since it is difficult to distinguish be-

tween noise and real structure. Also, differences in the relative intensities between

the experimental curves and the simulated curves for these weak modulations can
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Figure 4.5: Comparison of the experimental (black) and simulated (red) PhD spectra
of the best fit for formate on Cu(110). The simulation curves are for a short bridge
site along the [1 1 0] with the oxygen atoms sitting off-atop the copper atoms.

lead to a poor R-factor, even if the simulations reproduce all the main features of

the χ functions. The best agreement was obtained for the formate molecule sitting

on a short bridge site along the [1 1 0] direction with the oxygen atoms slightly

off atop the copper atoms. The partial R-factors for individual spectra are 0.21

for normal emission, 0.16 for 10◦ and 0.34 for 20◦, as shown in Figure 4.5. The

overall R-factor is 0.23. The variance of this value is 0.05, therefore all structures

with R-factor greater than 0.28 (0.23+0.05) can be dismissed. This fit was obtained

for a copper-oxygen bond length of 1.90 ± 0.03 Å. The oxygen atoms are sitting

in equivalent symmetrical sites. The oxygen carbon bond length obtained was 1.44

(-0.9/+1.4) Å and the bond length between oxygens was 2.35 (-0.16/+0.11) Å. This

structure is shown in Figure 4.6. In this figure the hydrogen atom of the formate

molecule is not represented, as PhD is not sensitive to its position. The molecule is

standing up, with the molecular plane perpendicular to the surface.

Figure 4.7 shows the comparison between the experimental spectra and the

result of the multiple-scattering simulations for atop position and long bridge sites.

On the left side, the simulations are for formate on top of a copper atom with the

oxygen atoms occupying short bridge sites (blue lines). The experimental curves

are represented in black. There are a few similarities between experiments and
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Figure 4.6: Representation of a formate molecule bonding to the Cu(110) surface
in a short bridge site along the [1 1 0] direction. The orange balls represent the
copper atoms, the red ones represent the oxygens and the grey one represents the
carbon atom. The hydrogen atom of the molecule is not represented since the PhD
technique is not sensitive to it.
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Figure 4.7: Comparison of the experimental and theoretical curves for two different
adsorption sites. The black dotted curves lines are experimental curves. In the left
the blue curves are the simulations for an atop site with the oxygen atoms in short
bridge sites. On the right, a long bridge adsorption site is simulated (green). Here
the molecular plane is parallel to the [001] azimuthal direction.
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simulations for 0◦ and 20◦, but the relative intensities are completely wrong. This

poor agreement seen in the figure is confirmed by the high R-factor value obtained

(1.0). For this geometry, the oxygen atoms were located 1.53 Å above the copper

atoms, and the bond length between copper and oxygen atoms was 2.0 Å. The

separation of the oxygen atoms was 2.55 Å, and between oxygen and carbon was 1.50

Å. For the long bridge adsorption site the same distance between oxygen atoms, and

between the carbon and oxygen atoms, were obtained. The height of the molecule

above the copper surface was 1.90 Å resulting in a bond length of 1.98 Å. As

shown in the figure, the agreement for this adsorption site between experiment and

simulation for 0◦ is quite poor, but it is much better for 10◦ and 20◦, albeit the R-

factor is 0.67 which is still quite bad. Of course, a better R-factor can be achieved

by increasing the O-O distance. If the O-O distance of the formate is increased

from its expected value of 2.33 Å to a value closer to the Cu-Cu distance in the

[001] direction of 3.61 Å , the R-factor can be reduced to ≈0.3. However, this would

lead to a physically very improbable long bridge adsorption site, because of the

unreasonably long O-O distance.

4.3 Formate on Cu(111)

This system was measured at the same beamline as that used for experiments on

formate on Cu(110) in January of 2010, and the same procedure was carried out

to clean and prepare the sample. The surface was cleaned by argon sputtering and

annealing cycles, using the same sputtering cycles as for the previous system. The

cleanliness of the sample was checked using XPS, which showed no contaminants. A

sharp (1x1) LEED pattern was observed after the cleaning. The sample was exposed

to 5L of formic acid were dosed with the sample maintained at ≈ 140 K. As for the

previous system, neither the (1x1) nor any other LEED pattern were observed after

the dosing. The XP spectra of the O 1s and C 1s from the dosed sample are shown

in Figure 4.8. These spectra were taken at 0◦ of polar emission angle in the [1 1 0]

azimuthal direction. The photon energies used were hν = 650 eV for O 1s and hν

= 400 eV for C 1s. Three different spectra are shown, one immediately after the

dosing (red), one after a PhD scan (black), approximately 2 hours after the dosing,

and one after a short annealing to room temperature following the PhD scan (grey).

The same effect as for formate on Cu(110) in the XP spectrum was observed

for this system. In the spectrum taken after a PhD scan, the peak appears to shift

to lower kinetic energy. This shift, as in the previous case, was assigned to increased

intensity at higher binding energy due to contamination of water and formic acid.
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Figure 4.8: a) O 1s and b) C 1s XP spectra of the dosed sample immediately before
the PhD scan (red), after the PhD scan (black), and after a short annealing to RT
(grey), taken at normal emission. The same effect as for formate on Cu(110) was
observed: increased intensity at higher binding energy can be seen, but this vanishes
after a short annealing to room temperature.

Hence, this system was also briefly heated to room temperature after dosing and

at the end of every PhD scan. These short annealings were performed to avoid the

accumulation of these two contaminant species on the sample. A fit of the O 1s

spectrum from the contaminated surface in terms of two components is shown in

Figure 4.9.

4.3.1 PhD Results

In this case, many O 1s PhD data sets were taken, namely at polar angle of 0◦,

5◦, 10◦, 15◦, 20◦, 40◦ and 60◦ in [1 1 0], and 0◦, 5◦, 10◦, 20◦, 40◦ and 60◦ in [2 1

1]. Figure 4.10 shows a summary of all these data. Many of them were repeated

to check the reproducibility, as was the case. A qualitative analysis of these data

shows that the χ functions with the largest modulations correspond to those closer

to normal emission. The χ functions for angles beyond 20 degrees show very little

modulation. Since the largest contribution to the PhD comes from atoms in a 180◦

backscattering geometry with respect to our emitter (in this case oxygen) and here

the largest modulations appear at normal emission, this implies that the adsorption

site of the oxygen atoms is probably on top of copper atoms. This means that the

formate again occupies a short bridge adsorption site. Three of these PhD spectra

were chosen to pursue the quantitative analysis. The method of selection of these
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Figure 4.9: Fit of the O 1s XP spectrum taken after the PhD scan. The peak
at 115.8 eV corresponds to formate, whilst the peak at 114.6 eV is assigned to a
contamination of water and a multilayer of formic acid, as in the case of formate on
Cu(110).

three spectra was the same as mentioned in subsection 4.2.1.

The best fit was obtained, as expected, for a formate in a bridge site along the

close-packed direction, [1 1 0]. As on Cu(111) there are three equivalent domains,

three formate molecules along the symmetrically equivalent azimuthal directions

were simulated in the unit cell. The comparison between the multiple scattering

simulations and the χ functions can be seen in Figure 4.11, where the black curves

are experimental and the red curves are the result of the simulations. For this best

fit structure, the molecule is situated 1.99 Å above the copper surface, resulting in

a bond length between oxygen and copper atoms of 1.99 ± 0.04 Å. The bond length

between carbon and oxygen atoms for the best fit was 1.44 (-0.50/+1.30) Å and

the separation of the two oxygen atoms was 2.32 (-0.41/+0.59) Å. This geometry

is shown in Figure 4.12. The individual R-factors for the three different data sets

are shown in Figure 4.11. As it is obvious from the graph the agreement is quite

good, though the R-factor for the spectrum at 15◦ polar angle looks far from perfect.

However, in this spectrum the modulations are less than 15%; poor R-factors often

arise for spectra with such weak modulations. The global R-factor obtained for this

geometry was 0.26. The variance found for this structure was 0.056, so all geometries
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Figure 4.11: Comparison between the multiple scattering simulations and the χ
functions at three different angles, all of them in the [2 1 1]. The black lines corre-
spond to experiments and the red ones to the theoretical curves.

with an R-factor larger than 0.316 can be rejected.

Another high symmetry adsorption site was also simulated in order to confirm

the bridge site as the correct local structure of this system. This adsorption site was

an atop position with the oxygen atoms in bridge sites. The comparison between the

χ functions and the theoretical simulations of this geometry is shown in Figure 4.13.

The parameters obtained for this fit were an oxygen-oxygen distance of 2.33 Å, 1.44

Å between oxygen and carbon atoms and 2.11 Å between the oxygen emitter and

the copper atom underneath the molecule. For this geometry the global R-factor

obtained was 0.67. As can be seen in the figure, the agreement is not as bad as one

might expect. However, this fit was obtained for a relatively large oxygen-copper

bond length (2.11 Å). The bond length between the oxygen atom and the second

nearest neighbour is even larger, 2.25 Å. These large values are physically unlikely,

so this adsorption geometry could probably have been excluded even if the R-factor

had been much smaller. A more realistic bond length, for example 2.0 Å, gives a

much higher R-factor (≈ 1.0).
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Figure 4.12: Representation of a formate molecule bonding to the Cu(111) surface
in a bridge site along the [1 1 0]. The orange balls represent the copper atoms, the
red ones represent the oxygens and the grey one represents the carbon atom. The
hydrogen atom of the molecule is not represented since the PhD technique is not
sensitive to it.
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Figure 4.13: Comparison between the χ functions (dotted black) and the theoretical
curves (purple) for a formate on an atop position with the oxygen atoms in bridge
sites. The R-factor for this geometry is 0.67.
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4.4 General discussion and conclusions

As mentioned in the introduction of this chapter, the purpose of this experiment was

to establish how surface-atom/molecule bonding depends on the underlying solid.

Many studies had already reported on the local structure of this molecule on the

three low-symmetry copper surfaces. However, all these measurements were carried

out under different conditions. In order to minimize a possible systematical error

and to get almost identical conditions these two systems were studied here with the

same technique.

Exactly the same adsorption site was found for two different crystallographic

orientations of the same metal, namely a short bridge site with the oxygen atoms in

slightly off-atop sites (distance between the oxygen atoms is 2.33 Å and between the

copper atoms is 2.55 Å). This adsorption site is in agreement with the one reported

in other work [65, 76]. There are however some differences between the bond lengths

found in this work and in previous reports (listed inTable 4.1).

For Cu(110) the copper-oxygen bond length obtained in this work is within

the error of the values listed in the table. Only the value obtained by the PhD

study [65] differs a little bit more. It is important to remark that the simulations

in the analysis of this PhD were done with a different code, not using multiple

scattering.

For the Cu(111) surface the values of the Cu-O bond length showed in Ta-

ble 4.1 are smaller than the value obtained in this work. The two values shown

in the table were calculated with NIXSW, so the inconsistency between the bond

lengths could be attributed to any systematic error in the method.

While there are obviously potential problems in establishing the exact ab-

solute bond length values using these different techniques, the primary interest of

this work is in the difference in bond lengths for the Cu(110) and Cu(111) surfaces.

The use of a single technique means that the measured difference of 0.09 ± 0.05

Å between the oxygen-copper bond length in Cu(110) and in Cu(111) reported

here is significant, and implies that the underlying metal solid does indeed influence

the bonding.

Two related differences between Cu(110) and Cu(111) surfaces are proposed

to explain this chemisorption bond length difference. The first one is the differ-

ence in the coordination number of the surface atoms. For the case of Cu(111)

the surface atoms are 9-fold coordinated, whereas for Cu(110) they are only 6-fold

coordinated. The second difference between these two surfaces would be the Smolu-

chowski smoothing of the metal valence electron density at the surface of the more
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atomically-corrugated Cu(110) surface that leaves surface Cu atoms depleted of va-

lence charge, relative to those on the atomically smooth Cu(111) surface. This

depletion of charge consequential reduces the screening of the copper nuclear charge

and would lead to a shorter bond length.

Photoelectron diffraction has proved to be very effective to determine the

distance between a substrate and a molecule (O-Cu bond length). However, the

significant error values for the O-O distance, and in particular, the much larger

error values for the C-O bond length reveal an insensitivity to the direction parallel

to the surface and to the atoms ”far away” from the surface.

Density functional theory calculations were performed also on these two sys-

tems by M. Bradley to get extra information. The CASTEP 5.0 pseudopotential

plane-wave [70] code was used with the following parameters: 5-layer slabs to rep-

resent the Cu substrates, one formate species per (3x2) mesh, ultrasoft pseudopo-

tentials, 6x6 ((110)) and 6x8 ((111)) Monkhorst-Pack k-point sampling, and 420

eV energy cut-off. These DFT calculations reproduce qualitatively the effect shown

in the experiments: both RPBE and PBE (Perdew-Burke-Ernzerhof) functionals

yielded Cu-O bond lengths that are 0.04 Å longer on the (111) surface than on

(110). However the absolute values of the bond lengths in DFT are larger than

the experimental values (e.g. for (111) the RBPE and PBE values are 2.04 Å and

2.01 Å , to be compared with the experimental value of 1.99 Å), but discrepancies

between experiment and theory of up to 0.1 Å are common in molecular adsorption

systems. Checks using doublesided slabs showed that these calculated bond lengths

are not influenced by surface dipole-derived fields in the supercell. DFT-D calcula-

tions showed no influence of dispersion forces, also thus confirming that the bond

length difference can be attributed entirely to changes in the metallic and covalent

bonding at the two surfaces. A difference in adsorption energy, with the value being

≈ 0.4 eV/molecule larger on Cu(110), was also observed.

4.4.1 Conclusions

The structure of a molecular species (formate, HCOO) has been determined on two

different crystallographic surface orientations of the same metal (Cu) that differ

in their atomic corrugation, namely the more open-packed Cu(110) and the close-

packed Cu(111). The local molecular bonding geometry is found to be the same

for both terminations, namely a bridge site with the oxygen atoms in off-atop po-

sitions. To compare the values of the bond lengths it was important to minimize

the influences of systematic error in the measurements. This was achieved by using

the same technique for both surfaces of energy-scanned photoelectron diffraction.
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A small chemisorption bond length difference on the two different crystal faces was

indeed observed. This result was qualitatively reproduced by density functional

theory calculations, which also show a significant difference in adsorption energy on

the two surfaces. this appears to be the first clear and quantitative evidence that

the surface-atom/molecule bond is influenced by the underlying bulk metal, and

therefore, that this bonding is not entirely equivalent to organometallic bonding.
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Chapter 5

Reaction intermediates of

methanol oxidation under

steady-state conditions

5.1 Introduction

The local structure of the two main intermediate products of methanol oxidation in

ultra high vacuum have been presented in chapter 3 and chapter 4. However, the

interest in the oxidation of methanol to formaldehyde relies on its applications in

heterogeneous catalysis, usually performed at much higher pressures than in surface

science. In the last few years, it has been shown that many surface reactions be-

have differently at UHV and at higher pressures. XPS under ”high pressures” (up

to a few millibar) has been studied successfully since the 1970s [84, 85]. Methanol

oxidation over copper is one of the most studied systems under these more re-

alistic conditions using XPS, but also using other techniques such as LEED and

temperature-programmed reaction spectroscopy [60–62, 86, 87].

In two papers published by Zhou, Günther and Imbihl [60] and [61], steady-

state methanol oxidation in the pressure range between 10−7 mbar and 10−3 mbar

was studied by TPRS, LEED, Auger electron spectroscopy, photoelectron emission

spectroscopy, and reaction rate measurements. In the first paper [60], a high selec-

tivity for the product formaldehyde was found at lower pressures. The reactivity

of the surface at low and intermediate oxygen coverage was high, whereas a high

oxygen coverage inhibited the reaction. The reactivity showed two different maxima

at low pressures, one at 400-520 K, which vanished at higher pressures, and a sec-

ond one at 900 K, which persisted at higher pressures. A hysteresis in the reaction
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kinetics depending on whether the temperature is increased or decreased to reach

the reaction conditions was also observed. The low-temperature reactivity peak

shifted by ≈ 20 K to a higher temperature for each order of magnitude difference

in pressure. In the second paper [61], two different surface structures were found

with LEED. The first one was a (5x2) reconstruction, which was assigned to the

intermediate product methoxy. This structure was observed after sequential dosing

of oxygen and methanol with a ratio of 1:0.6. The base pressure was 1x10−7 mbar.

Also a c(2x2) pattern was observed, which was related to the formate species. This

structure was found after co-dosing at 300 K with the partial pressures increased by

two orders of magnitude. These two structures were only stable up to ≈ 380 K, the

surface being unreactive. Longer exposures led to the formation of a (2x1) pattern,

which coexisted with the (5x2) and the c(2x2) structures.

Bluhm et al. [87] also reported on this system, but under different reaction

conditions. At pressures as high as 0.6 mbar and 400◦C they did not observe any

surface intermediates of the reaction and found that the copper surface was only

active when oxygen was coadsorbed. The presence of a subsurface oxygen species

embedded on the copper substrate was also reported, and the abundance of this

species was correlated with the amount of formaldehyde that was created.

The fourth publication that is relevant for MeOH oxidation under high-

pressures is the one by Günther et al. [62]. In this work, XPS and rate measurements

were used for the study of the adsorbate coverages and surface reactivity of methanol

oxidation over Cu(110). The system was studied in the 10−5 mbar range and the

two reaction intermediates, formate and methoxy, were observed on the sample.

The first one dominated on the inactive surface (300 K - 350 K), forming a c(2x2)

structure, as observed by LEED. Methoxy was almost absent in this range. The cov-

erage of methoxy was always small, but it was present up to ≈ 600 K. Two different

oxygen states were also found: one chemisorbed species, and another unidentified

species, which dominated at high temperatures.

However, despite the numerous publications on high-pressure surface science,

there is no quantitative structural study of this system under high-pressures, and

in general, there are no structural methods that can be used under high-pressures

for surfaces with no long range order. The objective of the present work was to

establish whether it is possible to use photoelectron diffraction to determine the

local structure of the intermediate species of a reaction (methanol oxidation) under

steady-state conditions. In this thesis, the study of methanol oxidation over Cu(110)

in a pressure range from 1x10−5 to 1x10−3 mbar at different temperatures using

photoelectron diffraction is reported.
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X-rays entrance at 55°
 incidence through
 a SiNx window

hemispherical 
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gas inlet
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         cell

di�erential
 pumping sections

Figure 5.1: Sketch of the experimental chamber at the ISISS beamline at BESSY
II taken from [88]. The setup consists of an experimental cell connected to the
beamline through a SiNx window and a hemispherical analyser attached to the cell
through a system of differential pumping stages. The experimental cell can be filled
with gases up to the mbar range.

5.2 Results

This experiment was carried out in November 2008 at the beamline Innovative

Station for In Situ Spectroscopy (ISISS) at BESSY II.

The ISISS beamline exploits the synchrotron radiation from a bending mag-

net, with photon energy from 80 eV to 2000 eV. Although the flux of the SR from a

bending magnet is lower than the radiation of an undulator, it was still possible to

perform photoelectron diffraction. The experimental station (see Figure 5.1) placed

at the ISISS beamline consists of a preparation chamber, and the experimental cell

connected to a mass spectrometer, an infrared laser to heat up the sample, and

a hemispherical electron analyser. The X-ray beam enters the chamber through a

SiNx window at an incidence angle of 55◦. In these high-pressure chambers, the

light from the X-ray source usually passes through a window (e.g., Al, Si, Be) in

order to protect the beamline. Unlike the experimental chamber used for the study

of PhD under ultra high vacuum, in this chamber the sample could not be rotated,

neither in the polar nor in the azimuthal angle. Therefore, all the PhD scans were

measured at or close to normal emission. In order to avoid the strong scattering of
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a)

b)

Figure 5.2: Schematic diagram taken from [88] showing the electron trajectories
inside a differentially pumped aperture system a) without electrostatic lenses, b)
with electrostatic focusing lenses included. In this diagram, the electron are traveling
from the left to the right.

the photoelectrons in the gas phase, which reduces the signal at high-pressures, the

sample is located very close (≤ 1 mm) to an aperture which leads to a differential

pumping system. In this way, the distance that the photoelectrons need to pass un-

der high-pressure is minimised. This pumping system consists of three differential

pumping stages (from 1x10−4 to 1x10−8 mbar) connected to the electron analyser

(P ≈ 1x10−9 mbar). In each of those pumping stages, the photoelectrons are fo-

cused through an electrostatic lens system, thus increasing the acceptance and the

electron collection [88]. This lens system is depicted in Figure 5.2.

The Cu(110) sample was cleaned in situ by several cycles of argon sputter-

ing and annealing, as described in section 3.2. The sample was sputtered for 30

minutes in a background pressure of 1x10−4 mbar Ar. The acceleration voltage was

5 keV, resulting in a sample current density of ≈ 3 µA/cm2. The sample was then

annealed to ≈ 800 K. XPS revealed a small amount of carbon contamination that

only disappeared by annealing the sample in a background pressure of 1x10−6 mbar

O2 to 800 K, switching off the gas after turning down the temperature to 300 K.

The chamber was filled with a mixture of methanol and oxygen with a ra-

tio of 3:2, varying the total pressure from 1x10−5 to 1x10−3 mbar. The different

preparations led to significant variations of the surface coverage. A large number of

scans taken with different temperatures and pressures were measured. Since Zhou

and coworkers [60] had seen a hysteresis in the formaldehyde production depending

on whether the temperature was increased or decreased to reach the reaction con-

ditions, different dosing procedures were performed to identify the temperature at

which formaldehyde production was initiated. As PhD spectra show larger modula-

tions at lower temperatures, it was more interesting to reach the reaction conditions
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by decreasing the temperature. Figure 5.3 shows the most interesting data sets,

when formaldehyde production was observed, measured with XPS at different tem-

peratures and pressures. The procedure followed for these data sets to reach the

reaction conditions was to dose the gases initially at 770 K, and then to decrease

the temperature to ≈ 500 K. On the left, the C 1s spectra of the different data sets,

measured with a photon energy of 400 eV, are shown. On the right, the O 1s spec-

tra, measured with hν = 650 eV, are shown. The first data set, (Figure 5.3 a1,a2 ),

was measured at 510 K at a total pressure of 1x10−3 mbar. Under these conditions,

the production of formaldehyde was observed with the mass spectrometer and the

amount of formaldehyde was stable indicating steady-state conditions. Three differ-

ent carbonaceous and five oxygen-containing species can be distinguished. Correctly

identifying all these peaks in the absence of a reliable absolute binding energy cal-

ibration proved quite difficult, but eventually a consistent scheme was established

to fit all the data obtained under a wide range of conditions. Following the peak

assignment used in section 3.2, the large feature at 116.9 eV in the C 1s spectrum

was assigned to CHx, C1, the methoxy peak, C2, was shifted 1.5 eV towards lower

kinetic energy and the formate peak, C3, appeared at 113.8 eV. These shifts, how-

ever, are slightly smaller than those observed in UHV (see Table 3.1). This was also

one of the difficulties found to establish the nature of the peaks. Differences in the

shifts between different surface species measured in different studies have already

been reported by Günther et al. [62].

In the O 1s spectrum, the adsorbed atomic oxygen, O1, appeared at a kinetic

energy of 121.4 eV. The feature shifted ≈ 1 eV toward higher binding energy was

assigned to methoxy, O2, and the peak shifted ≈ 0.65 eV from the methoxy also

towards higher binding energy was assigned to formate, O3, as in UHV. The O 1s

peaks for methoxy and formate are very difficult to resolve, as shown in section 3.2.

In order to confirm the nature of these oxygen-containing species, the relative con-

centrations of formate and methoxy were established from the C 1s spectrum. Since

formate and methoxy have the same amount of carbon, but formate has two times

more oxygen than methoxy, the ratio obtained from the carbon spectrum allowed

the peaks from these two species in the oxygen spectrum to be fitted. For example,

in Figure 5.3a1, the ratio between the concentration of carbon from methoxy and

the concentration of carbon from formate was 5. Therefore, the ratio for the oxygen

components of these species had to be 2.5, and thus, the fit of the oxygen peaks was

constrained to fulfill this condition. This fitting procedure was performed for every

preparation.

Two other oxygen-containing species appeared at lower kinetic energies, O4
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Figure 5.3: XP spectra of five different methanol and oxygen on Cu(110) data sets,
recorded at different temperatures. On the left, the C 1s spectra measured at hν =
400 eV are represented, and on the right, the O 1s spectra measured at hν = 650
eV. The different temperatures and pressures are also shown.
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and O5, significantly shifted with respect to the adsorbed oxygen. In the study

of Bluhm et al. [87] the O 1s XP spectra showed additional peaks related to gas-

phase species in front of the sample, that were also irradiated by the synchrotron

light. Some of these peaks appear at kinetic energies shifted from the adsorbed

oxygen by similar chemical shifts as in the spectra shown in this thesis. Following

their assignment, O4 would be attributed to methanol in the gas phase, and O5

to water in the gas phase. However, the results presented by Bluhm and coworkers

were measured at a pressure of 0.6 mbar, three order of magnitude higher than the

results presented in this thesis, so their presence in our spectra is surprising.

In order to check how stable the preparation method was, the experiment was

repeated. The corresponding XP spectra are shown in Figure 5.3 b. At this tempera-

ture, formaldehyde production was observed. The amount of adsorbed oxygen (O1 )

was larger than in the other data sets. The goal in this experiment was to achieve

steady-state conditions under the lowest temperature possible. As mentioned be-

fore, it is preferable to perform PhD experiments at lower temperatures, due to the

large vibrational amplitudes at high temperatures. As the reaction was still not at

steady-state conditions, and the oxygen peak was still higher than the methoxy and

formate peak, indicating that it had not completely reacted yet with methanol, we

waited for 10 minutes. After this time, the height of the oxygen peak was reduced

and methanol and formate had increased. Formaldehyde production was not yet

stable. After that, the temperature was reduced to 485 K, where formaldehyde

production was still observed. After 15 minutes, XPS scans were taken, showing

how the oxygen peak was decreased and the amount of the other intermediate prod-

ucts was increased (Figure 5.3 c). The production of formaldehyde was then stable,

indicating that the reaction had reached the steady-state.

The last two data sets, (Figure 5.3d, e), were taken at different background

pressures and at lower temperatures, but the number of species on the sample was

the same as for higher temperatures and pressures. However, at temperatures lower

than ≈ 440 K, the formaldehyde production was significantly reduced, until finally

the formaldehyde masses were no longer observed in the mass spectrometer. Note

that there were oscillations in the partial pressures of both gases, methanol and

oxygen. This could be the reason to variations in the relative coverage of the different

surface species. The conditions under which formaldehyde production was observed

are in agreement with references [60, 61].

Note also that Figure 5.3 shows how all the peaks in the O 1s and in the C 1s

spectra shift towards lower binding energy with increasing temperature. The shift

between a scan of the same species taken at 340 K and another one taken at 820 eV
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was of 2 eV. This effect was more noticeable at temperatures higher than 550 K and

it was observed also during other experiments in that chamber. The origin of this

shift remains unknown but has been seen by other users of this instrument. This

shift does not affect the PhD measurements, but the whole modulation function will

be shifted a few tenths of eV to higher kinetic energies with respect to the UHV

scans taken at ≈ 140 K.

5.2.1 PhD results

PhD scans were measured at normal emission in the [1 1 0] azimuth at different

temperatures and pressures. Figure 5.4 shows a comparison of the PhD scans for

formate and methoxy under different conditions at the same geometry. Specifically,

there are two UHV measurements (shown in subsection 3.2.1 and subsection 4.2.1),

four taken at 1x10−5 mbar at 310 K and 450 K, and two scans taken at 1x10−3

mbar at 510 K. The spectra assigned to formate at 310 and 450 K look very similar

to the data from formate in UHV. Although the modulations are weaker and not

all the fine structure can be resolved, the main features are present in both scans

(blue and red) with their maxima appearing at the same energies, implying that

the adsorption site is the same in UHV and at higher pressures. In particular, this

is also true for the data recorded at 450 K under conditions corresponding to a

steady-state reaction producing formaldehyde. The methoxy data are much noisier

than those from formate. Note that in UHV, the modulations are weaker at normal

emission than for larger angles close to 30◦, due to the methoxy binding to copper

in a bridge site. However, as mentioned before, it was not possible to rotate the

sample to this more favourable geometry. Although noisier, the PhD scans at 310

K and 450 K show large enough modulations to be compared with the UHV data,

revealing strong similarities amongst the experiments. Only the one peak at kinetic

energies lower than 100 eV is missing from the scans measured at higher pressures.

The PhD scan in the upper part of Figure 5.4 (yellow) shows very weak mod-

ulations, comparable with the noise amplitude. The most important factor for these

weak modulations was the temperature rather than the pressure. At temperatures

higher than ≈ 470 K, none of the PhD scans showed significant modulations. In part,

this effect can be attributed to the Debye-Waller factor at the higher vibrational

amplitudes [32].
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K.
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5.3 Conclusions

Photoelectron diffraction was used to investigate the local structure of intermediates

of a chemical reaction under steady-state conditions. Steady-state reaction condi-

tions were achieved with enough stability to perform photoelectron diffraction scans.

A high yield of formaldehyde production via methanol oxidation was observed for

temperatures ≈ 500 K, although at temperatures lower than this, it was still pos-

sible to observe the reaction. PhD scans taken at the highest temperatures failed

to show significant modulations. At lower temperatures, at which PhD works well,

the PhD scans reproduce the results obtained for ultra high vacuum measurements.

Therefore, it can be concluded that methoxy and formate bonds to the Cu(110)

surface with the same adsorption site as under UHV conditions, as reported in

subsection 3.2.1 and subsection 4.2.1.

PhD modulations at temperatures higher than ≈ 450 K were almost negli-

gible. Of course, at high temperatures, the vibrational amplitudes are larger and

the Debye-Waller factor smooths out slightly the modulations. This would show,

however, a smaller effect than the one seen in the experiments. One possible reason

is that, at these high temperatures, the mobility of the adsorbates also increases. It

could be that the lifetime of the surface intermediates was shorter at these temper-

atures and thus, the adsorbates could hop from one site to the next one. This could

reduce significantly the amplitude of the modulations. At temperatures higher than

≈ 570 K, the amount of the surface intermediates on the sample is much smaller.

This can result on much worse signal-to-noise ratio, hindering the observation of the

true modulations.

The XPS measurements revealed the presence of methoxy and oxygen, the

main intermediate products in formaldehyde production, and also the presence of

formate. This latter species usually poisons the reaction. In the experiment pre-

sented here, however, the rate of methoxy, and thus formaldehyde production, is

higher than the formate production rate, hindering the contamination of the sam-

ple.

In this chapter, it has been proved that it is possible to perform scanned-

energy photoelectron diffraction to determine the local structure of adsorbates on a

sample under reaction conditions, but is particularly challenging at high tempera-

tures.
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Chapter 6

The local structure of the

reaction intermediate phenyl

imide on TiO2

6.1 Introduction

The (110) face of the rutile phase of titanium dioxide, TiO2, is the most studied

metal-oxide surface [89]. In particular, its applications in heterogeneous cataly-

sis (e.g., as a photocatalyst, as a gas sensor, as an optical coating, in solar cells

for the production of hydrogen and electric energy, as white pigment, etc...) are

the motivation for many investigations. The discovery of the properties of TiO2-

supported Au nanoparticles (Au/TiO2) as a catalyst for the oxidation of CO at

low temperature [90] gave rise to many new investigations to understand the role of

these Au nanoparticles and the interaction between them and the surface [91–94].

Two publications by Corma and coworkers [95, 96] show the use of Au/TiO2 as a

high-yield catalyst for the synthesis of aromatic compounds. In the first one, they

show the reduction of nitroaromatics to aniline and in the second one the synthe-

sis of azobenzene by oxidation of aniline. In this latter work it is also shown that

the same process is observed using TiO2 without gold particles, but with a lower

conversion efficiency. One of the advantages of Au/TiO2 as a catalyst over other

transition metal catalysts is that it is more ”environmentally friendly”.

A recent STM study performed by the Diebold group [97], based on the work

reported in references [95, 96], claims that TiO2 indeed shows a similar catalytic

activity to Au doped titanium dioxide. In order to prove this, they studied the

adsorption of two different aromatic molecules, aniline (C6H7N) and azobenzene
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Figure 6.1: Reaction model of aniline and azobenzene proposed by Li and
Diebold [97]. By dosing aniline on TiO2, an intermediate phenyl imide species
adsorbs on the sample via dehydrogenation and this species can further recombine
to form azobenzene. In the same way, by dosing azobenzene on the TiO2 surface,
the same intermediate species is adsorbed on the sample, and via hydrogenation
aniline is formed.

(C12H10N2), on two different TiO2 surfaces. The adsorption of aniline resulted

in the formation of a superstructure believed to be composed of a phenyl imide

intermediate product. The adsorption of azobenzene resulted in the formation of

the same superstructure, which would imply the cleavage of the N=N bond of the

molecule in order to form the same reaction intermediate product (C6H5N). The

reaction model proposed by Li and Diebold is shown in Figure 6.1.

The interest of the study presented in this thesis arose from this latter pub-

lication [97]. The goals of this experiment are:

1. to establish by other methods whether aniline and azobenzene do result

on the same adsorbed species on TiO2 and

2. to obtain quantitative structural information on the adsorbed species.

The adsorption of the two molecules, aniline and azobenzene, has been stud-

ied with photoelectron diffraction, and also with NEXAFS, as a support technique.

Aniline, also known as phenylamine, is composed of a phenyl ring attached to an

amino group. The importance of aniline relies on its applications in industry as

important intermediates for pharmaceuticals, polymers, herbicides, etc [95]. The

azobenzene molecule is composed of two phenyl rings bound to a N=N double bond.

Azobenzene can be found in two different conformers: trans (the most stable one)

and cis. The transition between these two isomers using ultra-violet light (photoi-

somerization) is one of the properties of this compound most studied. The aromatic

azo compounds are also widely used in the industry, for example as dyes, pigments,

food additives and drugs [96]. Both molecules are shown in Figure 6.2.
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Figure 6.2: Representation of the azobenzene (left) and aniline (right) molecules,
where the blue atoms correspond to nitrogen, the grey atoms correspond to carbon
and the white atoms correspond to hydrogen.

6.1.1 The rutile TiO2(110) surface

As mentioned before, titanium dioxide is the metal oxide most investigated [89, 98].

TiO2 can be found in nature in different forms. The most known titanium dioxide

minerals are rutile and anatase. Rutile TiO2 is the most common form and is also

the equilibrium phase at all temperatures [99]. In this work, a rutile TiO2(110)

crystal has been used, which is the most stable crystal face. An illustration of the

clean surface structure is shown in Figure 6.3. The bulk-terminated surface consists

of rows of oxygen atoms bridging six-fold coordinated titanium atoms (Ti4+) below,

rows of undercoordinated titanium atoms and rows of in-plane oxygen atoms, which

are three-fold coordinated as in the bulk. The bridging atoms are undercoordinated

(two-fold) and it is believed that due to this characteristic, they can be partially

removed by high thermal annealing [89]. The unit cell is superimposed on the surface

in Figure 6.3. The distance between neighbouring 5-fold coordinated Ti atoms in the

[0 0 1] azimuth in the bulk-terminated surface is 2.96 Å , and the spacing between the

bridging oxygen atoms in the [1 1 0] azimuth is 6.50 Å [100]. As at many surfaces,

TiO2(110) undergoes some relaxations, especially in the direction perpendicular to

the surface [89, 101, 102]. The structure of the clean surface has been studied

with surface X-ray diffraction (SXRD) [103–105], LEED [106], medium energy ion

scattering (MEIS) [107] and more recently with PhD by Kröger et al. [101]. In this

latter publication, a table summarizing all the relaxations proposed in the literature

is shown.

In order to use this surface for electron scattering and spectroscopic experi-

ments it is necessary that it is conducting. High conductivity is achieved by creating

defects in the bulk via reduction, achieved by heating. The change in the conduc-

tivity is accompanied by a change of the colour of the crystal, which can be easily
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Figure 6.3: An illustration of a rutile TiO2(110) (1x1) bulk-terminated surface.
The blue atoms represent titanium and the red atoms represent oxygen. The light
red atoms represent the bridging atoms characteristic of this surface. Following the
usual chemical convention for oxides, the oxygen atoms are represented as the larger
spheres. The unit mesh is represented by the white box.

observed. The initial colour corresponding to a non-conducting surface is trans-

parent, changing to light and finally to dark blue [89]. There are various types

of defects, but the most common ones are thought to be oxygen vacancies. Other

defects in the surface are, for example, steps, vacancies produced by thermal an-

nealing or electron bombardment, or impurities (e.g., Ca or H). The vacancies lead

to undercoordinated Ti atoms (Ti3+), which appear as a shoulder in the Ti 2p XP

spectrum. Their concentration is usually a few percent and they are very important

for the surface properties of TiO2.

The procedure performed to prepare the sample was the following: sputtering

the sample at a pressure of Ar of 1x10−4 mbar for 30 minutes, with the same

parameters as used in section 3.2, followed by an annealing in ultra high vacuum

( P ≈ 1x10−9 mbar) to ≈ 800 K for 10 minutes. The next step was to anneal the

sample in an oxygen atmosphere of 2x10−7 mbar to ≈ 700 K for 10 minutes and

finally a flash to ≈ 1000 K was performed. LEED and XPS were performed to

check the cleanliness and periodicity of the surface. A LEED pattern of the clean

TiO2(110) (1x1) surface is shown in Figure 6.4.

No contaminants were observed in XPS and no extra shoulder was observed

in the Ti 2p spectrum (see Figure 6.5), which implies that there were only a few

oxygen vacancies in the surface. However, the colour of the sample after the prepa-

ration turned to dark blue, revealing the presence of a few percent of bulk defects,
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Figure 6.4: LEED pattern showing the (1x1) unit cell of a TiO2(110) surface, taken
at a kinetic energy of 100 eV.
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Figure 6.5: XP spectra for Ti 2p, O 1s, N 1s and C 1s. The grey lines represent
the spectra taken on the clean surface, prior to the dosing. The red lines represent
the sample after dosing azobenzene, and the blue lines correspond to the aniline
spectra.
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Figure 6.6: XPS for Ti 2p, O 1s, N 1s and C 1s of an azobenzene-dosed sample at
room temperature and at 140 K. The red lines represent the spectra taken at room
temperature, shown in Figure 6.5, and the yellow lines represent the spectra taken
after a dose at 140 K. The cold spectra show the presence of nitrogen and carbon
on the sample, but no titanium or oxygen can be seen anymore. This implies the
presence of a multilayer on the sample. The C and N peaks are shifted towards
higher binding energy with respect to the room temperature dose, characteristic of
a multilayer.

characteristic of a conducting sample.

6.2 Results

This experiment was carried out at the beamline UE56-2 PGM-2 (see section 2.1) at

BESSY II in November of 2010 and July of 2011. Aniline and azobenzene (Sigma-

Aldrich, 99.5 % and 99 % purity, respectively) were dosed at different temperatures,

in a range from 150 K to 300 K, to characterise the sample. All the PhD scans were

taken at room temperature.

Figure 6.5 shows XP spectra corresponding to Ti 2p, O 1s, N 1s and C 1s,

taken before and after the dosing of aniline and azobenzene. In both cases, the

procedure for dosing was to open the gas line to the preparation chamber while

controlling the mass spectrometer until the desirable masses appeared. It was nec-

essary to heat the azobenzene to ≈ 370 K to evaporate it. Then the sample was

placed in front of the gas line for 1 to 2 minutes. Freeze-thaw cycles of aniline and
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azobenzene were performed prior to the dosing on both molecules in order to remove

any possible contaminants. During the first experimental run in November 2010, it

was difficult to adsorb azobenzene on the sample, and thus, the coverage was signif-

icantly smaller than desired. This problem was solved in the second experimental

run by performing more freeze-thaw cycles on the azobenzene. The spectra shown

in the figure were taken at normal emission and at room temperature. The O 1s and

Ti 2p spectra did not show any impurity and no Ti3+ shoulder was observed after

dosing the molecules, the same as in reference [97]. The only change seen in the

substrate spectrum after the dosing of both molecules was that the Ti 2p and O 1s

were slightly attenuated, due to the presence of the adsorbates on the sample. No

N or C contaminants were observed on the clean surface. There was only one peak

in the N 1s spectrum and it appeared at similar energies for aniline and azoben-

zene. However, all the XPS peaks for aniline were shifted by ∼ 0.1 eV to higher

binding energies. This effect was also observed by Li and Diebold in [97]. They

explain the nature of this effect as a downward band-bending in the presence of

aniline rather than a chemical shift due to different chemical surface species. There

was no chemical shift between the two N atoms in the azobenzene. There are three

possible explanations for this: first, the chemical shift between the two N atoms was

so small that it was not resolved, second, there was no chemical shift if the chemical

environment for both atoms was the same or the third possibility is that the N=N

double bond was broken and therefore, only one N atom is bonded to the substrate.

This would explain why the spectra for aniline and azobenzene look similar. Also

in the C 1s spectrum there was a peak at the same energy for both molecules, but

this peak was slightly broader than the N 1s peak.The reason could be that the six

carbon atoms of the aromatic ring are all contributing to the C 1s spectrum, and not

all of them have the same chemical environment. However, as the chemical shifts

between the different C atoms can not be resolved, the C 1s peak is broadened.

6.2.1 NEXAFS results

In order to characterise the sample further, an annealing cycle on a sample dosed

with azobenzene was performed and NEXAFS scans were taken at different tem-

peratures. The idea was to use N K-edge NEXAFS to check if the nitrogen double

bond was intact on the sample, (and if so, at which temperature it would break),

and to use C K-edge NEXAFS to gain information on the orientation of the phenyl

ring. As mentioned in section 2.5, the π-resonance is observed only if there is a

double or a triple bond. Nitrogen K-edge spectra were taken at normal and grazing

incidence (80◦) in both azimuths ([1 1 0] and [0 0 1]). This was done by measuring
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Figure 6.7: N K-edge NEXAFS spectrum of the TiO2 sample dosed with azobenzene
at 140 K (black), resulting in a multilayer. These spectra were taken at normal
incidence in the [1 1 0] azimuth. The sample was then sequentially heated up.
Spectra taken at 200 K (yellow), 270 K (blue), and at 510 K (red) are shown
here. A π-resonance appeared at 398 eV. This feature decreased with increasing
temperature.

in the Auger electron mode by setting the detector energy to 377 eV. In Figure 6.7,

the scans taken at normal incidence in the [1 1 0] azimuth are shown. Azobenzene

was dosed at 140 K. The XP spectra for N 1s and C 1s showed large peaks, and no

Ti and O peaks could be observed (see Figure 6.6). The XPS results implied, as

expected, that there was a multilayer on the sample. In the multilayer, the spectra

taken at different geometries looked the same, since it is likely that the molecules

will not be oriented in any preferential direction but rather be randomly oriented.

A huge π feature dominates the 140 K spectrum, implying the presence of the in-

tact azobenzene molecules. On heating to increasing temperatures, the π-resonance

decreased, but it never disappeared, even at temperatures as high as 510 K.

The result of dosing azobenzene at room temperatures was very different.

Figure 6.8 shows the N K-edge NEXAFS spectra of a sample dosed with azobenzene

at normal and grazing incidence in the two azimuths mentioned before. Comparing

the graph on the left with Figure 6.7, the most remarkable feature was that the

π-resonance at 398 eV had vanished. This indicates that the N=N double bond was

broken, and the azobenzene molecule was not anymore intact on the sample. Notice

that the large peak at an energy ∼ 400.5 eV is not a true NEXAFS feature, but is

due to photoemission from a valence state which happens to appear at an energy

similar to that at which the σ-resonance should occur. The photoelectron nature

of the peak was proved by taking spectra at slightly different detector energies (the
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Figure 6.8: N K-edge NEXAFS spectra of azobenzene (full lines) and aniline (dashed
line) on TiO2 at normal (left) and grazing (right) incidence in the [1 1 0] (blue) and
[0 0 1] (red) azimuths. No π-resonance is observed at 398 eV, and at higher energies
a photoelectron peak is hindering the observation of the σ-resonance.

scans at the left were taken with the energy of the analyser set to 377 eV and for

the scans at the right to 379 eV). Since this feature depends on the detected kinetic

energy set up in the analyser, it was clear that it was a photoemission peak. On the

right, the spectra taken at grazing incidence in both azimuths are shown. Also here,

the π-resonance at 398 eV has also disappeared. However, a sharper absorption edge

can be seen at 398 eV, consistent with the nitrogen double bond being broken in

the great majority of the surface species, although a few intact molecules may still

be present on the sample. On the left, the N K-edge spectrum for aniline on TiO2

at normal incidence in the [0 0 1] azimuth is also shown. Note that this spectrum

looks similar to the spectrum for the azobenzene-dosed sample.

Figure 6.9 shows the C K-edge NEXAFS spectra for the sample dosed with

azobenzene at room temperature at both incidence angles in both azimuths. As in

the case of nitrogen, a photoelectron peak, larger than the Auger signal, appeared

in the C K-edge spectra at higher photon energies, hindering the observation of the

σ-resonance. For a clearer picture of the π-resonance, a ”zoom” into the region

around the π-resonance is shown. Note that the π feature appears as a multiple

peak. The splitting into two components, separated by ≈ 4 eV is characteristic for

the benzene ring, and is seen in pure benzene in which it is attributed to different

transitions into π∗-orbitals [108]. For the case of aniline, where the carbon atoms of

the ring are not equivalent, there is a further splitting of the peak at 285 eV. This

new peak is due to possible transitions for the different carbon atoms and appears

at photon energy of 286.3 eV . The presence of the split peak is evidence that the
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Figure 6.9: C K-edge NEXAFS spectra of azobenzene on TiO2, at room temper-
ature, at grazing and normal incidence in the two preferential azimuths. Here it
is also obvious that the π features look very similar in every geometry, revealing
a tilt of the molecule with respect to the surface normal and with no preferential
azimuthal direction.

aromatic ring was still intact on the sample.

The fact that the spectra look very similar in both azimuths indicates that

the aromatic ring is clearly not aligned along the low-index azimuths. The C K-edge

spectrum can give information on the tilt of the molecule: if the spectrum at normal

incidence shows the maximum amplitude for the π feature and minimum amplitude

for the σ-resonance, the aromatic ring will have its molecular plane perpendicular

to the plane of the surface, and vice versa. However, in the work presented here,

the spectra show similar amplitudes of the π-resonance for normal and grazing

incidence, implying that the molecular plane is neither parallel nor perpendicular

to the surface, but tilted with respect to the surface normal. Another possibility

is that not all the molecules adsorb on the sample with the same tilt: a molecule

with the molecular plane parallel to the surface and other with the molecular plane

perpendicular to the surface would result in similar NEXAFS spectra as for the

tilted species. However, STM [97] shows only one identical molecule per c(2x2) unit

mesh.

For comparison between the adsorbed species from azobenzene and aniline,

the C K-edge spectra of aniline on titanium dioxide taken at room temperature is

shown in Figure 6.10. The strong similarity between the C and N K-edge spectra

at every geometry between the two adsorbed species, as in the XP spectra, is an

indication of the adsorption of the same intermediate surface species with a similar
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Figure 6.10: C K-edge NEXAFS spectra of aniline on TiO2 taken at room temper-
ature at normal and grazing incidence. The similarities of these spectra and also
if compared with the azobenzene data confirm the adsorption of the same surface
species, this being a phenyl imide with the molecular plane tilted with respect to
the surface normal.

orientation on the surface.

6.2.2 PhD results

Experimental N 1s photoelectron diffraction scans for aniline and azobenzene were

taken at room temperature at different polar and azimuth angles. Figure 6.11 shows

comparisons of the modulation function, χ(E ), for azobenzene and aniline at three

different geometries, 0◦ in the [0 0 1] azimuth and 10◦ and 20◦ in the [1 1 0] azimuth.

All the PhD spectra shown here were taken during the first experimental run at

BESSY in November 2010. The signal for azobenzene was always much noisier than

for aniline, as shown in the figure, due to the lower coverage of azobenzene observed

during the first experimental run. Nevertheless, it is evident that the adsorption

site of both species is the same, since all the main features are reproduced by both

surface species. This result along with the results obtained from NEXAFS and XPS

corroborates the conclusions of the previous STM publication [97], that the same

superstructure at a phenyl imide surface species was formed.

Since the aniline data were less noisy than the azobenzene, five aniline mod-

ulation functions were chosen to pursue the analysis: 0◦ in the [0 0 1] azimuth, 10◦

in the same azimuth, 20◦ in the [1 1 0] azimuth and 30◦ in both azimuths. For the

first three angles, two different data sets were taken for each geometry. In order not

to lose any piece of information and also to smooth the noise, averages of the two
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Figure 6.11: Comparison of the N 1s χ function for aniline (blue lines) and azoben-
zene (red lines) on TiO2 at three different geometries. The main peaks are repro-
duced by both adsorbates although the modulations for azobenzene are noisier.
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Figure 6.12: Comparison of the experimental χ functions (black) with the theoretical
simulations (red) of a phenyl imide binding in a bridge site to two Ti atoms. The
overall R-factor is 0.48. The adsorption site is shown on the right. The bond length
between N and Ti is 2.14 Å and the phenyl ring is oriented along the [0 0 1] azimuth
with a tilt of 11◦ from the surface normal.

scans were used in the analysis for these three angles.

All previous experiments showed clearly that the N=N bond is broken and

that the aromatic ring is intact and tilted with respect to the surface normal, imply-

ing that the adsorbed species had to be a phenyl imide. However, various simulations

of different adsorption sites, including the intact azobenzene molecule or a phenyl

imide flat on the sample were performed. The lower R-factors were obtained for two

different models: a phenyl imide species binding on a bridge site to two five-fold co-

ordinated titanium atoms (see Figure 6.12) and for an atop site on top of the 5-fold

coordinated Ti atoms (see Figure 6.15). For every adsorption site, different param-

eters were fitted, including also relaxations of the outermost layers of the surface.

The overall R-factor for the five different geometries for the bridge site was 0.48.

This number is much greater than 0.30, the value of the R-factor to be considered

as a good fit (subsection 2.3.5), and it is much higher than the R-factor for the atop

site.

The second model, for an atop site, as mentioned before, showed two dif-

ferent R-factor minima, related to different Ti-N bond lengths. For each of these

local minima, the position of the atoms in the outermost layers was reoptimised

using an automated fitting procedure based on a ”particle swarm optimisation” al-

gorithm [109]. Then, for these two new optimised relaxations, the N-Ti bond length
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Figure 6.13: Representation of the dependence of the R-factor on the Ti-N bond
length for the two different reoptimised models: in red, the surface relaxations were
optimised for the longer bond length of 2.27 Å, and in blue the relaxations were
optimised for the bond length between N and Ti of 1.77 Å.

was varied again and the resulting R-factors are shown in Figure 6.13. The first

minimum was obtained for a bond length between N and Ti of 1.77 ± 0.05 Å with

an overall R-factor of 0.36, whereas the second minimum was obtained for a longer

bond length of 2.27 ± 0.04 Å. The R-factor for this second case was 0.31, slightly

lower than for the shorter bond length. However, the variance of the lowest R-factor

is 0.06, thus the model associated to the R-factor of 0.36 is within the error range,

so either solutions are acceptable. Figure 6.13 shows the dependence of the R-factor

on the height of the N atom above the surface (i.e., N-Ti bond length) for the two

reoptimised models, and it shows how the relaxations favour either one or the other

minimum. This multiple coincidence phenomenon is common in LEED and has also

been reported previously on PhD [110]. This problem has been traditionally solved

by measuring a larger data set.

Visual inspection of the modulations (Figure 6.14) reveals that both theo-

retical models show similarities with the experimental data. Structural studies of

compounds containing Ti and N atoms [111–117] found different Ti-N bond length

values, in a range from 1.77 Å to 2.40 Å. According to the literature, the shorter

bond lengths are related to a double bond between the two atoms, whereas the

longer bond lengths are related to a bond with bond order no more than one. In

the present study, the two aromatic rings of the azobenzene molecule are linked to

the N atoms, which are bonded through a double bond. It is then expected that

when the molecule is cleaved by adsorption with the surface, the N atom forms also

a double bond with the Ti atom, if this is bonding on an atop site. In this case, the

bond length between N and Ti will be rather shorter, much closer to 1.77 Å than to
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Figure 6.14: Comparison of the experimental data and theoretical simulations for a
phenyl imide binding on an atop site to 5-fold coordinated Ti atoms for two different
N-Ti bond lengths: on the left, the model corresponds to a N-Ti bond length of 1.77
Å and on the right, the theoretical curves simulate a model with a N-Ti bond length
of 2.27 Å. The black lines represent the experimental data and the green and blue
lines represent the theoretical simulations.

2.27 Å. Therefore, despite the slightly larger R-factor, the short bond length model

seems more likely to be the right adsorption site.

Figure 6.15 shows the short bond length atop site model. In this model, the

best fit was obtained for a tilt of the phenyl ring of 9◦ ± 16◦ with respect to the

surface normal. This value is smaller than the value expected from the NEXAFS

analysis, even considering the high error value. However, PhD is not very sensitive

to the positions of atoms so far away from the surface. Also, a small rotation of

the ring with respect to the [0 0 1] azimuth was obtained for the best fit, but the

changes in the R-factor were very small.

6.3 Conclusions

Using NEXAFS and PhD, it was feasible to answer the two questions posed in the

introduction. First, it was possible to demonstrate that at room temperature TiO2

cleaves the nitrogen double bond of azobenzene, resulting in the same adsorbed

species as for aniline, this being a phenyl imide species (C6H5N). Second, the ad-

sorption site of this surface species was determined: the phenyl imide binds in an

atop site to the five-fold coordinated Ti atoms with a bond length between N and

Ti of 1.77 ± 0.05 Å. The phenyl ring is tilted with respect to the surface normal
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Figure 6.15: Representation of a phenyl imide species binding on an atop site on
a 5-fold coordinated Ti atom, where the blue atoms represent the titanium atoms,
the red ones the oxygens, the green one represents the nitrogen atom, and the grey
atoms represent the carbon atoms of the aromatic ring. The hydrogen atoms are
not represented, since PhD is not sensitive to them.

and is not azimuthally aligned.

An important key to solve the problem was the relaxations of the outermost

layers of the surface. A comparison of the relaxations obtained for the best fit in

this study and those from previous studies of the clean surface is shown in Table 6.1.

Since photoelectron diffraction has an essentially local character, only the positions

of atoms ”close” to the emitter can be determined with precision. Positions of atoms

in the deeper layers of the surface, however, can be determined with poor precision.

Therefore, only relaxations for the outermost layers are shown in Table 6.1. On the

other hand, the error values for the six-fold coordinated titanium atoms and for the

bridging oxygens are huge, despite being rather ”close” to the emitter. This can be

explained by the fact that PhD is sensitive to atoms lying behind the emitter with

respect to the analyser, and therefore, atoms which are almost coplanar with the

emitter do not contribute as much to the PhD signal as atoms in a 180◦ scattering

geometry. The relaxation values of the atoms for this study are within the error of

the values proposed in the literature for the study of the clean surface, as shown in

Table 6.1. Only the value of one parameter, the relaxation of the five-fold coordi-

nated Ti atoms in the [1 1 0] azimuth, lies outside the error. In the case of molecules

adsorbed on a metal, the relaxations are smaller than for the clean surface and the

surface looks similar to the bulk. Since the phenyl imide species is actually bonded

to these Ti atoms, the result is, thus, reasonable. The higher relaxation value for
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Atom LEED MEIS PhD SXRD This work

(1) Ti 6-fold 0.24±0.03 0.19±0.07 0.19±0.12 0.25±0.01 -0.15(-3.00,+2.77)

(2) Ti 5-fold -0.19±0.03 -0.09±0.09 -0.26±0.08 -0.11±0.01 0.01(-0.05/+0.07)

(3) O bridge 0.08±0.05 0.13±0.16 0.17±0.15 0.10±0.04 0.20(-1.96/+1.60)

(4,5) O in-plane 0.19±0.08 0.05 0.00±0.25 0.17±0.03 0.24(-0.13/+0.10)

(4,5) O in-pl. in x -0.17±0.15 0.00 -0.05±0.15 0.01±0.05 -0.09±0.20

(6) O lower bridge 0.07±0.10 0.10±0.13 0.15±0.15 0.07±0.04 0.10(-1.20/+1.90)

(9) O below 5-f.-Ti 0.00±0.08 - -0.03±0.08 0.00±0.03 -0.01±0.10

Table 6.1: Relaxations of the near-surface Ti and O atoms in TiO2 relative
to the ideal bulk-terminated structure for the clean surface, according to the
LEED [105, 106], MEIS [107], SXRD [104, 105] and PhD studies [101]. The fi-
nal column corresponds to the values obtained in this study. The notation of the
atoms follow the notation presented in Figure 6.16. All displacements are perpen-
dicular to the surface except for the O in-plane atoms (4)(5), whose displacements
are given also in the x direction, following the [1 1 0] azimuth. The values are
given in Ångstrom; a negative value in the [1 1 0] azimuth indicates that the atoms
move towards the bulk. The negative value of the relaxation in the [1 1 0] azimuth
indicates that the in-plane oxygen atoms are moving further away from each other.

this surface structure is not in the [1 1 0] azimuth, but in the [1 1 0] azimuth, making

the O-O distance (in-plane atoms) larger than in the bulk.

Figure 6.7 shows an issue that remains unclear. Dosing azobenzene at low

temperatures led to a phase where not all the N=N bond were cleaved by TiO2, even

when the sample reached room temperature or even higher temperatures. When

dosing at room temperatures, on the other hand, there is no hint of the complete

azobenzene molecule. The mechanism of cleavage of the N=N bond occurs then

in contact with the surface at room temperature. In the case of the multilayer at

low temperatures, the molecules lie flat on the surface and a few of them remain

stable on the sample even after heating it, resulting in this new phase. A similar

phase where the azobenzene molecules were not dissociated on the sample was also

observed by Li and Diebold [97] at low coverages.

100



Figure 6.16: Schematic model of the clean TiO2 surface showing atom number labels
used in Table 6.1. The Ti atoms are the small yellow atoms and the blue atoms
correspond to the oxygen atoms. This model is taken from [102] and the notation
is following the convention of [89].
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Chapter 7

Conclusions

In this thesis, the adsorption site of different adsorbates on transition metal surfaces

have been successfully determined. It is known that energy-scanned photoelectron

diffraction is a well-established technique in the determination of the local structure

of molecules on surfaces under ultra high vacuum. Here, it has been demonstrated

that it is also possible to perform structure determination with PhD at conditions

much closer to ”real life”, as in higher-pressures (see chapter 5). However, the use

of other techniques can help to solve some problems that can appear during the

experiments. For example, due to its insensitivity for atoms relative ”far away”

from the surface, the use of NEXAFS was indispensable for the study of the phenyl

imide species on titanium dioxide. DFT calculations have turned out to be very

useful as a complementary tool to determine the exact adsorption site of methoxy

on Cu(110), and also for this system, to reconcile the old STM results [50] with

the PhD measurements. The combination of photoelectron diffraction with the

mentioned techniques, and other techniques such as STM, has proved to be very

successful.

PhD has been used to determine the adsorption site of the two most impor-

tant surface intermediates of methanol oxidation, methoxy and formate, on different

faces of copper. The local structure of methoxy on Cu(110) has been very controver-

sial, and despite numerous studies of this system, no quantitative structural study

had been yet performed. PhD found the adsorption site for this surface species to

be a combination of short bridge sites along the close-packed [1 1 0] azimuthal di-

rection with two different Cu-O bond lengths. This model includes copper adatoms,

which can explain the presence of two different Cu-O bond lengths. However, in-

consistencies between the PhD experimental data and the theoretical simulations

for the normal emission direction led to a DFT study of this system. DFT calcu-
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lations also found the short bridge site to be the most energetically favourable site

and a (5x2) reconstruction model with a combination of two different short bridge

sites was proposed. This (5x2) reconstruction is also in agreement with the STM

study mentioned before [50]. This model was again reoptimised by PhD resulting

in an overall R-factor between experiments and theory of 0.14. The model consists

of a (5x2) reconstruction with 4 copper adatoms per unit cell and with 4 methoxy

species. Two of these methoxy species are binding to the copper adatoms with a

Cu-O bond length of 1.98 ± 0.03 Å , and the other two methoxy species are binding

to the underlying unreconstructed surface with a Cu-O bond length of 1.90 ± 0.03

Å. For the determination of the final structural model, the help of DFT calculations

proved to be essential.

The adsorption sites of formate on two different faces of copper, Cu(110)

and Cu(111), have also been determined. Although the local adsorption site of this

surface species was found to be the same for both surfaces, namely a bridge site with

the oxygen atoms off-atop the copper atoms, it was surprising to find that the bond

lengths between the oxygen and the copper atoms were different. The Cu-O bond

length for formate on Cu(110) was found to be 1.90 ± 0.03 Å, and 1.99 ± 0.04 Å for

formate on Cu(111). Thus, the difference between the two bond lengths is of 0.09 ±
0.05 Å . This significant difference implies that the underlying metal solid influences

the bonding. To explain this bond length difference, two related differences between

Cu(110) and Cu(111) surfaces are proposed in this thesis. First,the coordination

number of the two surfaces is different: surface Cu atoms on Cu(110) are 6-fold

coordinated whereas on Cu(111) they are 9-fold coordinated. The second difference

between these two surfaces would be the Smoluchowski smoothing of the metal

valence electron density at the surface of the more atomically-corrugated Cu(110)

surface. This smoothing of the Cu(110) surface leaves its outermost surface atoms

depleted of valence charge,with respect to those on the Cu(111) surface, which is

atomically smoother. This depletion of charge reduces the screening of the copper

nuclear charge and would be accompanied by a shorter bond length. Although there

is an old study of formate on Cu(100), it would have been valuable to study the

adsorption of formate on a Cu(100) surface with the same conditions as for the other

two copper faces to complete the study. In the same way, it would be interesting

to investigate this effect by measuring a different molecule also on different faces

of a metal. However, it would be necessary that the molecule bonds in the same

adsorption site on at least two different faces.

In order to investigate the possibility to perform PhD under conditions closer

to ”real life”, the adsorption site of the surface intermediates of methanol oxidation
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has been studied under reaction conditions. Whilst formaldehyde production was

observed via methanol oxidation, PhD scans of the two main intermediate products,

methoxy and formate, were taken. At temperatures lower than ≈ 450 K, the PhD

scans looked very similar to those taken under UHV, implying that the adsorption

site of these two surface species was the same, or at least, very similar, to the ones

observed for the studies under UHV. However, at temperatures higher than ≈ 470 K,

the PhD modulations were too weak to extract any information. Of course, at higher

temperatures, the mobility of the atoms on the sample is also higher, such that the

atoms are then able to hop from one site to the next one. This would decrease

the amplitude of the PhD modulations. A suggestion for future investigations of

PhD under reaction conditions would be to perform the experiments in a beamline

equipped with an undulator, instead of a bending magnet. The intensity of the

latter source, is, as mentioned in section 2.1, smaller than for beamlines equipped

with an undulator, and therefore, the resolution that can typically be used is worse.

One problem in measuring this system was that it was not possible to rotate

the sample, neither in the polar angle nor in the azimuthal angle. This is a partic-

ular problem for the study of molecules binding on bridge sites, where the larger

modulations would appear close to polar angles of 40◦. This is indeed the case for

methoxy on Cu(110), as shown in chapter 3. Since the largest modulations for this

system were shown for 30◦ and 40◦ of polar emission angle, tests were performed

with a copper wedge mounted behind the sample in order to increase the polar an-

gle to ≈ 10◦. A few O 1s PhD scans were taken then for this new geometry, but

the PhD scans showed no difference with the scans taken at polar angle of 0◦. A

possibility to improve this experiment in the future would be, therefore, to measure

this system in a chamber with the appropriate capability to rotate the sample in

the polar and azimuth angles. To conclude, it has been demonstrated that it is

possible to perform PhD under reaction conditions, although it is very challenging,

and probably, only a few chemical reactions could be successfully measured.

Finally, the adsorption of two different nitroaromatic molecules, azobenzene

(C12H10N2) and aniline (C6H7N), on titanium dioxide (110) were studied. A STM

study performed by Li and Diebold [97] reported on the formation of the same

superstructure after dosing either azobenzene and aniline. This superstructure was

believed to be composed of a phenyl imide intermediate product. In order for

this result to be possible, the N=N bond of the azobenzene molecule had to be

cleaved by the surface. N 1s PhD scans and N and C K-edge NEXAFS spectra

show that azobenzene and aniline indeed adsorb on rutile TiO2(110) to produce

the same surface species, namely a phenyl imide (C6H5N) binding atop on 5-fold
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coordinated Ti atoms. However, two different R-factor minima, related to different

Ti-N bond lengths were found. The first one is associated to a Ti-N bond length

of 1.77 ± 0.05 Å and the second one of 2.27 ± 0.04 Å. The atop site model with

a larger N-Ti bond length (2.27 ± 0.04 Å) resulted in a better agreement between

experimental data and theoretical simulations, quantified by the R-factor (0.36 vs

0.31). However, the variance of the long bond length model is 0.06 and, therefore,

both models are within the error range. Taking into account that the N atom is

binding another N atom with a double bond, it is expected that the N-Ti bond

length is closer to the value of 1.77 Å. Hence, the final adsorption site of the phenyl

imide species is believed to be an atop site with a Ti-N bond length of 1.77 ± 0.05

Å. The multiple coincidence effect is shown in Figure 6.13. In the future, it would be

interesting to measure a larger data set from this system at different emission angles,

in order to overcome this ambiguity, as reported previously in a PhD investigation

of PF3 on Ni (111) by Dippel et al [110]. C K-edge NEXAFS spectra revealed

information on the orientation of the aromatic ring. However, a photoemission peak

appeared in the same window as the NEXAFS spectra, hindering the possibility of

observing the σ-resonances and, thus, of comparing them with the π-resonances. By

changing the energy of the detector, it may be possible to avoid the appearance of

this photoemission peak.
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[62] S. Günther, L. Zhou, M. Hävecker, A. Knop-Gericke, E. Kleimenov, R. Schlögl,
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