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Abstract

We study gradient models on the lattice Z¢ with non-convex interactions.
These Gibbs fields (lattice models with continuous spin) emerge in various branches
of physics and mathematics. In quantum field theory they appear as massless field
theories. Even though our motivation stems from considering vector valued fields
as displacements for atoms of crystal structures and the study of the Cauchy-Born
rule for these models, our attention here is mostly devoted to interfaces, with the
gradient field as an effective interface interaction. In this case we prove the strict
convexity of the surface tension (interface free energy) for low temperatures and
sufficiently small interface tilts using muli-scale (renormalisation group analysis)
techniques following the approach of Brydges and coworkers [Bry09]. This is a
complement to the study of the high temperature regime in [CDMO09| and it is an
extension of Funaki and Spohn’s result [FS97] valid for strictly convex interactions.

2010 Mathematics Subject Classification. Primary 82B28; Secondary 82B41; 60K60; 60K35.
Key words and phrases. Renormalisation group; random field of gradients; surface tension;
multi-scale analysis; loss of regularity.
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CHAPTER 1

Introduction

This paper has two related goals.

First, we seek to identify uniform convexity properties for a class of lattice
gradient models with non-convex microscopic interactions.

Secondly, we extend the rigorous renormalisation group techniques developed
by Brydges and coworkes to models without a discrete rotational symmetry of the
interaction. In the presence of symmetry, the set of relevant terms is strongly
restricted by the symmetry.

Regarding the first goal, we consider gradient random fields {¢(x)}.c» indexed
by a lattice £ with values in R™, p(z) € R™. The term gradient is referring to the
assumption that the distribution depends only on gradients V.p(z) = ¢o(z +€) —
o(x).

These type of fields are used as effective models of crystal deformation or phase
separation. In the former case, where m = 3 and £ C Z3, the value ¢(z) plays the
role of a displacement of an atom labelled by a site x of a crystal under deformation.
Even though the former case is our main motivation, we will restrict our attention
here, for simplicity, to the latter case with m = 1 and £ = Z?. This is a model
describing a phase separation in R+ with (z) € R corresponding to the position
of the (microscopic) phase separation surface. The model is a reasonably effective
approximate description in spite of the fact that it ignores overhangs of separation
surface as well as any correlations inside and between the coexisting phases.

The distribution of the interface is given in terms of a Gibbs distribution with
nearest neighbour interactions of gradient type, that is, the interaction between
neighboring sites x,x + e; depends only on the gradient V;p(z) = o(x + ¢;) —
o(z),i=1,...,d. More precisely, for any finite A C Z? we consider the Hamiltonian
of the form

Hy(p) = Z Z W(Vip(x)),

zeN i=1
where W: R — R is a perturbation of a quadratic functions, i.e.

1

W(n) 5772 +V(n) with some perturbation V: R — R.

For a given boundary condition ¢ € R where OA = {z € Z9\ A: |z — x| =
1 for some x € A}, we consider the Gibbs distribution at inverse temperature 5 > 0
given by

7 4(dg) = m exp (— BHA(2) gdw(x) ng b ooy (dip (),



4 1. INTRODUCTION

where the normalisation constant Zx (3, 1) is the integral of the density and is called
the partition function. One is particularly interested in tilted boundary conditions

Yu(z) = (x,u), for some tilt u € R%

An object of basic relevance in this context is the surface tension or free energy
defined by the limit

. 1
(11) 0'5(114) - A#réld B|A|
The surface tension og(u) can also be seen as the price to pay for tilting a macro-
scopically flat interface. The existence of the above limit follows from a standard
sub-additivity argument.

In the case of a strictly convex potential, Funaki and Spohn show in [FS97]
that og is convex as a function of the tilt. The simplest strictly convex potential
is the quadratic one with V' = 0, which corresponds to a Gaussian model, also
called the gradient free field. The convexity of the surface tension plays a crucial
role in the derivation of the hydrodynamical limit of the Landau-Ginsburg model
in [FS97]. Strict convexity of the surface tension for strictly convex W with 0 <
c1 < W"” < ey < oo, was proved in [DGIO0]. Under the assumption of the bounds
of the second derivative of W, a large deviations principle for the rescaled profile
with rate function given in terms of the integrated surface tension has been derived
in [DGIO00]. Both papers [FS97] and [DGI0Q] use explicitly the conditions on the
second derivative of W in their proof. In particular they rely on the Brascamp-Lieb
inequality and on the random walk representation of Helffer and Sjostrand, which
requires a strictly convex potential W.

In [CDMO09]| Deuschel et al showed the strict convexity of the surface tension
for non-convex potentials in the small 3 (high temperature) regime for potentials
of the form

1Og ZA(ﬂv U)u)

W(t) = Wo(t) +g(t),
where Wy is strictly convex as above and where g € C?(R) has a negative bounded
second derivative such that /B|g" | ri(r) is sufficiently small. These studies have
been applied in [CD12] to large deviations principle for the profile.

In the present paper, we show the strict convexity of the surface tension for
large enough 8 (low temperatures) and sufficiently small tilt, using multi-scale
techniques based on a finite range decomposition of the underlying background
Gaussian measure in [AKM13].

Note also that, due to the gradient interaction, the Hamiltonian has a contin-
uous symmetry. In particular this implies that no Gibbs measures on Z? exist for
dimensions d = 1,2 where the field 'delocalises’, cf. [FP81]. If one considers the
corresponding random field of gradients (discrete gradient image of the height field
) it is clear that its distribution depends on the gradient of the boundary condi-
tion of the height field. One can also introduce gradient Gibbs measures in terms of
conditional distributions satisfying DLR equations, cf. [FS97]. For strictly convex
interaction W with bounds on the second derivative, Funaki and Spohn in [FS97]
proved the existence and uniqueness of an extremal, i.e. ergodic, gradient Gibbs
measure for each tilt u € R? In the case of non-convex W, uniqueness of the
ergodic gradient component can be violated, for tilt w = 0 this has been proved in
[IBKO7]. However in this phase transition situation in [BKO7], the surface tension
is not strictly convex at tilt u = 0.
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The second goal of the present paper is to show in detail how the rigorous
renormalisation approach of Brydges and coworkers (see [BY90] for early work,
for a survey and [BS15al, [BS15bl [BBS15al, BS15c, BS15d, [BBS15b]
for recent developments which go well beyond the gradient models discussed in
this paper) can be extended to accommodate a class of models without a discrete
rotational symmetry of the interaction.

In accordance with the general renormalization group strategy, the resulting
partition function Zx(f,1,) is obtained by a sequence of “partial integrations”
(labelled by an index k). The result of each of them is expressed in terms of two
functions: the “irrelevant” polymers Kj that are decreasing with each subsequent
integration, and the “relevant” ideal Hamiltonians Hjp—homogeneous quadratic
functions of gradients Vi parametrized by a fixed finite number of parameters. To
fine-tune the procedure so that the final integration yields a result with a straight-
forward bound we need to assure the smoothness of the procedure with respect
to the parameters of a suitably chosen “seed Hamiltonian”. However, it turns out
that the derivatives with respect to those parameters lead to a loss of regularity of
functions K and Hj considered as elements in a scale of Banach spaces.

A more detailed summary of the strategy is presented in Chapter Bl where
the reader can get an overview of our methods and techniques of the proof. First,
however, we will summarize the main claims concerning the convexity of the surface
tension og(u) in Chapterl The detailed formulations and proofs are in Chapters@l-
Miscelaneous technical details are deferred to Appendices.

Various extensions and generalisations of our work are possible.

First, Buchholz has very recently developed a new finite range decomposition
for which no loss of regularity occurs in the problem we study [Bucl6]. However,
in the present paper we decided to stick to the usual finite range decomposition
and to explain how the loss for regularity can be overcome by a suitable version of
the chain rule and the implicit function theorem since we believe that these tools
might be useful in other contexts, too.

Secondly, we restrict ourselves to dimensions d = 2 and d = 3 because in that
case there are only two types of linear relevant terms: linear combinations of the
first and second discrete derivatives of the field. Our approach can be extended to
higher dimensions by including linear terms in higher derivatives of the field. This
only requires an extension of the appropriate “homogenisation projection operator”
IT; used in the definition of quadratic functions Hy (see Chapter [L3) to relevant
polynomials and the corresponding discrete Poincaré type inequalities. In fact,
Brydges and Slade [BS15b|] have recently developed a very general theory which
allows one to define the projection onto the relevant polynomials and to prove the
necessary estimates.

Thirdly, we focus on scalar valued field even though most our methods carry
directly over to the vector valued case which is relevant in elasticity. The discussion
of models relevant in elasticity requires, however, also a number of other changes,
e.g. the inclusion of non nearest neighbour interactions and the consideration of
symmetry under the left action of SO(m) (frame indifference). As a result it is
natural to replace our assumption that the microscopic interaction is convex close to
its minimum by a more complicated condition. We will thus address the application
of our ideas to vector valued fields and models relevant in elasticity in future work.
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Fourthly, in this work we focus on the behaviour of the partition function in the
large volume limit. As in the work of Bauerschmidt, Brydges and Slade
it should be possible to study finer properties, e.g., correlation functions. As a first
step in that direction Hilger has recently shown that the scaling limit of the random
field becomes a free Gaussian field on the torus (with the renormalised covariance)
and that suitably averaged correlation functions converge in the infinite volume

limit .



CHAPTER 2

Setting and Results

2.1. Setup

Let L > 0 be a fixed integer. For any integer N we consider the space
Vn ={p: Z¢ = R; p(z+k) = p(z) Yk € (LNZ)%}

that can be identified with the set of functions on the torus Ty = (Z/L" Z)d.
Using |z|, = max;—y, 4|z for any 2 € R? (reserving the notation |z| for the
Euclidean norm /> z?), the torus Tx may be represented by the lattice cube
Ay ={ze€Z: |z| < 3(LN —1)} of side LV, once it is equipped with the metric
plz,y) =inf{|lz —y+k| : k€ (LNZ)?}. We view Vy as a Hilbert space with the
scalar product
(p0) = D wl@)v().
x€TN
By X n we denote the subspace

(2.1) Xy={peVn: ) ¢(x)=0}
x€TN

of height fields whose sum over the torus is zero. We use Ay to denote the (LN9—1)-
dimensional Hausdorf measure on X . We equip the space X y with the o-algebra
Bx, induced by the Borel o-algebra with respect to the product topology and
use My (X n) = M1 (X n,Bx, ) to denote the set of probability measures on Xy,
referring to elements in M; (X y) as to random gradient fields.

In this article we study a class of random gradient fields defined (as Gibbs
measures) in terms of a non-convex perturbation of a Gaussian gradient field. For
a precise definition, we first introduce the discrete derivatives

(2:2) Vip(x) = (x + i) — p(x), Vip(r) =p(x —e) —o(z)
on Vy. Here, e;, i =1,...,d, are unit coordinate vectors in R%. Next, let Ex (p)
be the Dirichlet form

(23) En@) =5 3 Y (Viel)”

z€T N =1

Choosing a function V: R — R (satisfying the conditions to be specified later), we
consider the Gibbs mesure on the torus corresponding to the Hamiltonian

d
(2.4) Hy(p) =En(@)+ D D V(Vip(x)).
zeTn 1=1

To be able to discuss random fields with a tilt u = (u1 ..., us) € RY, we use the
method proposed by Funaki and Spohn [FS97] who enforce the tilt on a measure

7
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defined on the torus space Xy by replacing the gradient V;p(z) in all definitions
above by Vipo(x) —u;, i =1,...,d, x € Tn.
Namely, we define the Gibbs mesure on Ty at inverse temperature 5 as

(2.5) v 5(de) = exp(—BHRN () An (de),

_
Zn,p(u)

where

(2.6) H(p) = En(p) + LNd|u| + > Zv ip(x) — ;)

zeTn 1=1

(in the last equation we used the fact that substituting V;p(x) — Vp(z) — u;
in En, the linear term > Zle u;Vip(x) vanishes as ) . Vip(z) = 0 for
each ¢ € Vy and each i = 1,...,d). Again, Zy g(u) is the normalizing partition
function

(27) Zn p(u) = /X exp(~BHY () A (dg).

Even though the ultimate goal, in general, is to characterize all limiting gradient
Gibbs measures with a fixed mean tilt, and, in particular cases, to prove their
unicity, in this paper we will restrict our attention to the discussion of the strict
convexity, in u, of the surface tension

1
(2.8) o3(w) == = Jim e log Zy 5(u).

2.2. Main result

To state our main result, we need a condition on smallness of the perturbation
V. We will state it in terms of the function Ky s, : R? — R associated with the
perturbation V: R — R determining the Hamiltonian HY in (Z0)) (and with the
(inverse) temperature 3 > 0 and the tilt u € RY). Namely, we take

(2.9) Kv,5.u(z) = exp{— B;U ;B w)} -1
with
(2.10) U(s,t)=V(s—1t)—V(=t)—V'(=t)s.

First, we rewrite the partition function in terms of the function Ky . Consider
the Gaussian measure vg on Xy corresponding to the Dirichlet form SEN (¢):

(2.11) va(di) = — = exp(=BEn () An (dp).
ZN,B

with

(2.12) z{, = /X exp(—BEn () An (dp).
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To avoid overloading of the notation, here and in future, we often skip the index
referring to N (as above in the case of measure vg). Now, the partition function

@) is
(2.13)

Znp(u) = Z s exp(= 5 LN ul?) /X exp(-8 Y ZV Vigp(w) — u;))vp(de) =

zeTn 1=1

20 exp(-AL V) [ exp(-8 Y S U (Vi) u))otde)
XN z€Tn i=1

where, denoting v(dy) = vg= 1(dgp) and Z(O) Z](V)B 1» the last equality was ob-

tained by rescaling the field by — Wk invoking the definition ([2I0]) and using that

> wery Vir(r) = 0. Expanding the integrand

(2.14) H (1 + exp{—f Z U(ﬁvi@(fﬂ), ui)} — 1)

zeT N

above and introducing (with a slight abuse of notation), the function

(2.15) Kvpu(X,0) = [] Kvisu(Ve(2)
reX

for any subset X C Ty, we get

(2:16) Z(u) = 23 exp(~ALY Gl + V@) [ 3 KvpulX.oh(de)

XN XCTn

It will be useful to generalize our formulation slightly and, instead of a particu-
lar Ky 5., above, to consider for each u a general function K, : R¢ — R and define

(2.17) /X (X, )u(dy)
N X

with
zeX
Our main claim is that, under appropriate conditions on the function u +— K, the
perturbative component of the surface tension,
) 1

(2.19) ¢(u) := —A}E}noomlogZN(u)
is sufficiently smooth for small u.

Before formulating it in detail, we observe that whenever the claim applies to

the case K, = Ky, 3,4, the uniform smoothness of ¢(u) implies that, for sufficiently
large 8 and small |ul, the surface tension o(u) is strictly convex, since, in view of

&0, we get
(2.20) op(u) = %|u|2 +V(u)+ % - hm ﬁLdN

The last term is a constant that does not depend on u.

logZ()
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Given any ¢ > 0, consider the Banach space E of functions K : R? — R with
the norm

(2.21) Ikl = sup > ¢lelaerc(z)|e¢ 1=
z€R4
|a|<ro
Here, the sum is over nonnegative integer multiindices a = (ay,...,aq), @; €

N,i=1,...,d with |a| = Zle a; <rg €N, and 0% = H?:l 0. We also use

Bs(0) € R? to denote the ball Bs(0) = {u | |u| < 6}.

THEOREM 2.1 (Strict convexity of the surface tension). Letrg > 9. There
exist constants &g > 0, po > 0, My > 0, and (o > 0 such that if the map R? D
Bs(0) > uw K,, € E is C3, satisfies the bounds

(2.22) IKulle < p
and
d 6 d 82 d 83
2 Slgrl 2 e+ 2 g el <

J»

with ¢ > o, p < po, 0 < &y, M < My, and u € Bs(0), then the surface tension
s(u) emists with bounds on s(u), Ds(u), D*s(u), and D3c(u) depending only on p
and M uniformly in v € Bs(0).

The proof employs a multi-scale analysis based on ideas going back to the work
[BY90]. Even though we follow quite closely the approach outlined by Brydges
in [Bry09], a fair amount of various deviations and generalisations is needed. We
believe that this fact and the demands on clarity warrant an independent treatment
and the presentation of the proof in full detail.

The reader familiar with may, however, find various shortcuts. To
facilitate a selective reading, we devote the next Chapter B] to a presentation of
the strategy of the proof, formulating then accurately all main steps of the proof
and spelling out all needed extensions of in Chapter @l The proof is then
executed in full detail in the remaining chapters.

Before passing to the outline of the proof, we discuss two particular classes of
perturbative potentials for which the above theorem applies.

First we verify the assumptions of Theorem 2] for a class of perturbations of
the form ([29). This yields a very simple example of a possibly non-convex potential
at low temperatures.

PROPOSITION 2.2. Let rg € N, ¢ € (0,00), My > 1, and suppose that

(2.24) V e C™(R),

(2.25) V(0)=V'(0)=V"(0) =0,
(2.26) DV ||, < My for 2<Fk<ry+5,
and

(2.27) V(s) > —2("%s® for each s € R.
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Th6n7 fOT any p € (07 1/2)) there exists [30 - ﬂo(<7p7 MOJ"O), 5 = 5(<5p5M07T0)7
and M (¢, My, ro) such that, for any B > Bo, the map R D Bs(0) > u Kvgu€E
is C* and, for any u € Bs(0),

(2.28) IKv.ulle < p

and

229 zua’w zuzigs;c z ouaegl. <

Moreover, if ro > 9, there exists 3(My) and 5(M0) such that for all § > Bo, the
function o5 : B5(0) — R given in @20) is C* and uniformly strictly convez.

The proof will be given in Section

REMARK 2.3. (i) Notice that there is no loss of generality in the assumption
@ZF). Indeed, the absolute term is just a shift by a constant, the linear term
vanishes in view of the condition »_ . Vip(z) = 0, and the quadratic term may
be absorbed into the a priori quadratic part (23)).

(ii) The only smallness assumption on V' is (Z27)). In terms of the full macroscopic
potential W(s) = %|s|2 + V(s) it reads

(2.30) W(s) > (Aw"(0) — 1(7?)s?

Of course, the factor % can be replaced by any 6 < 1. If we could (almost) achieve
the optimal value for ¢, (72 = %, the condition (Z30) would simply say that W is
bounded from below by a nondegenerate quadratic function. Due to a number of

technical points, however, we need to choose ¢ ~2 rather small to assure the validity
of Theorem 2.1 o

Another example is the non-convex potential considered in [BKO7]. The im-
portance of this case lies in the fact that it is a non-convex potential for which the
non-uniqueness of a Gibbs state for a particular temperature and with a particu-
lar tilt is actually proven. For the sake of simplicity, the potential considered in
[BK07] was chosen in a particular form that corresponds to the replacement of

exp{—BHn(p)} by

@3 ] f[[p exp{ 5 (Vig(@))’} + (1 - p)exp{ 5 (Vig(a))*}]

€T N 1=1
(for parameters ko and kp frorn [BKOT] we choose ko = 1 and kp = k). This
amounts to replacing Ky, g.,(z) = exp{—3 Zl . V( 2 )} —1 by

d

(2.32) Krpulz) = H [p +(1-p) exp{;(l — k) (2 — ul)z}} -1

i=1
Indeed, it is enough to observe that (Z3I)) can be rewritten as

(2.33) exp{—En(y)} H ﬁ {p +(1-p) exp{—%(l —K) (stﬁ(a:))QH

€T N i=1

Notice that temperature g is in ([231) and ([232)) is replaced by the parameter p.
The phase transition (non-unicity of Gibbs state with the tilt v = 0) mentioned
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above happens, for x sufficiently small, for a particular value p = p;(k). However,
this does not prevent the corresponding surface tension to be convex in u (at least
for small |u|) once p is sufficiently close to 1 (and thus bigger than p;). This
corresponds to the condition of sufficiently large 8 in the previous Proposition.

Observing that the map R? 3 u +— K, ., € E is clearly analytic for all p, what
only needs to be proven to apply Theorem [21]is the following claim.

PROPOSITION 2.4. Let k € (0,1) be given. There exist 6 > 0, ¢ = ((0) and M
so that so that for any |u| < one has

(2.34) 1Kx,pulle <

and

(2.35)
d d
0 o2
;Ha_uilcmp,u +ijz_1Hmep)u

for any 1 — p sufficiently small (in dependence on p and C).

<M

d
Tk
> Hauiaujauk mopou|
i,,k=1

The proof is given below in Section

2.3. Proofs of the given examples

We collect the outstanding proofs for our two examples above.
PROOF OF PROPOSITION 2.2
Step 1. Estimate for [|[Kv,g.ul.-

This is the key estimate. The main idea is that for z; small (and also u; small)
we can use the Taylor expansion of U(-ZL 75 u;) in z;, while for large z; we rely on

the weight e~ I#l* combined with the quadratic lower bound (Z2Z7) on V.
First, let us show that

Zi
2.36 —BU(—=,u;) <
(2.36) ( NG )
whenever § < m(”.
Indeed, the Taylor expansion yields

(2.37) ﬁ‘U( :

(227 forany z € R and any |u| <6,

K2

N =

IERIETE

with [s] < |u;| + | 25|. Since V(0) = 0 implies that |V"(s)| < Myls|, the right
hand side is bounded by 1My (8 + |% |)z2 yielding the claim for |%‘ < 39.

On the other hand, for ‘%| > 30 we use ([227) and the observation that
la| > 3]b| implies that (a — b)? < 2a? to get
Zi
VB
Moreover, expanding V'(—u;) around V’(0) = 0 up to the order u?, for | = | > 36
we get

(2.38) — BV (T —wi) < 1¢7%4F.

Zi

751<

(2.39) ﬂ’V’(—ui —5z

ﬂ_

VBT
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and, similarly,

(2.40) BIV(~ui)| < 2505 < 052,

yielding the claim since Mo(§ + 1) 13- < -

As a result of (Z36), we are done once |z|* = Zle 22 > 2¢2 log%. Indeed,
under this assumption, we have
(2.41)

‘efﬁU(%,ui) o 1‘67§72|z|2 < max(e*ﬁU(%,ui), 1)67C72\z\2 < ef% —2)2)? < g

Hence, we now focus on the case

2
(2.42) |2|* < 2¢? log;.
For sufficiently small p, set
2.43 0 = in(1 <1
(2.43) 1= g i ’410g2) =

P
and
2¢2log 2
(2.44) B = Tp >1
1

Then, for 8 > 31, the relation ([Z:42) implies that |z|/v/B < |z|/v/B1 < 61 and ([237)
thus for § < 07 yields

d
(2.45) B ]U(%,m)

Since |ef — 1| < 2J¢| for t < 1, we get

S M051|Z|2 < g

(2.46) ’efﬁ Y U us) _ 1| < g'

Together with (Z4I]) this shows that

(247) sup |e*5 Z?:l U(z—\/%,ui) _ 1|e_C—2|z‘2 < B
z€R? 2

as long as |u| < § < 61 and 8 > (1 with §; and B; given by ([243) and (Z44),
respectively.

Step 2. z-derivatives of Ky,g 4.
We will employ Faa di Bruno’s chain rule for higher order derivatives of
a function in the form e/,

!
—foxel — @ Ti )M
T1,T 2501, M2, j

j m;T;=x

Here, the sum is over distinct partitions 71,72, ... of the multiindex o with mul-
tiplicities mq,ma,... (i.e., such that Zj m;T; = a) and 7! = 7!...7y! for any
multiindex 7 = (71,...,74).
In our case, we have f(z) = —f Zle U(%, u;) with
2
(2.49) 0:,f(2) = =VB(V'(5 —uy) = V'(~uy)).

VB
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As for the higher derivatives, only the “diagonal” ones, 8fj f(2), are non-vanishing,

(2.50) ok f(z) = —va% —uy)

For |u;| <, we get

(2.51) 102 f(2)] = \V”(% — )| gMOmin(1,5+\%\)
and thus, using that 9., f(0) = 0, also

(2.52) 0,12 < Momin(1,5-+ | ]Izl
Moreover, in view of (2.50), we have

(2:53) suplol, ()] < g Mo

for k > 2. Combining (248)) with Z53) and with the particular implication of
@52),

(2.54) |02, f(2)| < Moz],

observing that |2|” < 1+ |2|" whenever r < rq, and using that My > 1 and 8 > 1,

we get

(2.55) ‘a“e*"Zfﬂ U] < Crg)e ™ Eim VT4 ppro (1 4 ||

with a suitable constant C(rg). Using, further, (2:36]) and ([2.55)), we get (note that
¢=1)

(2.56) (lel]gee? T Um0 o6l < g o A6
with
(2.57) € = £(ro, h, My) = 20 (ro) ¢ ME° (%)™,

Here, the factor ¢ is a bound on the term C/(ro)¢m0 Mo~ 127 (14 |2|™) obtained
with help of the identity max;~g e~ 45 = g%e~5¢% with ¢t = |z|2 As a result, the
right hand side of ([Z350) is bounded by p/2 whenever |z|* > 4¢%log 2—5.

For

2
(2.58) |2]* < 4¢? logf
we take
5 P
2.59 = min (6, ———
(2:59) ? (0 AM, 1og%)
and
4¢%log %
(2.60) Bs = max{pi, 5w =

Then, for 8 > B2 and |u| < § < &, the bound (Z58) implies that ‘\/E‘ < &y, yielding,
in view of ([2.52)), the estimate

(2.61) 10, £(2)] < 2Moda|2]



2.3. PROOFS OF THE GIVEN EXAMPLES 15

and thus

d
(2.62) F(2)] < 2Mods|2)* < 2,
j=1
again in view of (258) and the definition of 5. Hence, similarly as in (2350]), we
get

(2.63) [¢l*lge=f(2) e ¢l < QC(TO)CT°e2(2M0)”’|z|T°e_C72‘Z‘2 max (s, ﬁ) <

< 6(7”0, Mo, h) HlaX(52, ﬁ)
with C(rg, Mo, h) = 2C(T0)C2T°e2(2M0)T°(%")%O. The factor max (s, ﬁ) stems
from the fact that each first and second derivative of f contributes a factor bounded
by 2Myds (cf. (252) and ([2351), while each higher derivative the factor bounded

by % (cf. Z53)). Taking now

(264) 50 = min(52, m)
and
(2.65) Bo = max(fz, (_g(r(,,lz)\z{(,,h)y)’

we get the sought claim
(2.66) 1Kv.s.ulle < p
whenever |u] < § < dg and S > So.

Step 3. u-derivatives of Ky g y.
The estimates for the u-derivatives of Ky g, are similar. Indeed,

(2.67) Ou, Kvpu = D0 f(2),
(2.68) O, 0u,Kv .0 = 7O (f5(2) fi(2) = fii(2)),
etc., where
d
. 7 = - U(l) i7 i)y
(2.69) fi(2) B; (\/Bu)

d
(2.70) fm(z):—ﬁ;U(z)(%,ui), and fi(2) = 0if i # j.

Here, the functions U® have the same structure as U, but with V replaced by
(-1)'V, e.g.,

(2.71) U (s,t) = V(s —t) = V'(—t) = V"(~t)s.
Thus, as in [253) and ([Z54]), we get

kEpre) *io k42
(2.72) Bsuplo; U (\/B,uzﬂ < sup|0"TV| < My
and
(2.73) 810:, U (5wl < suplo?H V| lz] < Moz
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In addition, we have a new estimate
.

2.74 BIUWO (=L,
(2.74) | (\/B
Thus, for |3 € {1,2,3}, |a| € {0,...,r0},
< C(To)ef(z)M(\)al-Hﬁ\(l + |Z|2)|a|+\ﬂ|_

)| < suplo® TV ||zif* < Mozl

(2.75) slocote™” S UG ui)

Estimate ([236) yields |f(2)] < %C‘2|z|2 if Ju| < ﬁg‘” (in particular if |u| < do
defined in (Z64])). Then we easily conclude that

(2.76) ’ PKv.p.

. < M(rg, h, My) for any |8| € {1,2,3},|u| < dp, and 8 > Sy,

with a suitable M (rg, h, My).

Step 4. Uniform convexity of o(u).

To obtain uniform convexity of o(u), we first fix p so small and 79 and ¢ so
large that Theorem 2] applies. Then for § > Sy and |u| < §p we find that ¢(u) is
a C? function and its first three derivatives in Bg,(0) are controlled in terms of p
and M = M(rg, h, Mp). In particular,

(2.77) |D2<(U)I < M'(¢, Mo, p) if u € Bg,(0).
Note that for |s|] < we have V”/(s) > —1. Let

4M ’
_ 1
(2.78) 6(Mo) = min(do(¢, Mo, p, o), L —)
and
_ 1
(279) ﬁ(MO) - maX(BO(C7M07p7 TO), 4M’(<,M0,T0)
Then
(2.80) D?c(u) >1d — 1Id — 11d > 11d

for u € Bs(0) and 8 > 3.
O

PROOF OF PROPOSITION[Z4l  The proof is similar as the proof of Proposition2.21
We will only indicate the main steps. Again, skipping the indices in K, ;. and
rewriting

(2.81) K(z)=]]

i=1

1+ (1 —p)[exp{%(l — k) (2 —ui)z} - IH -1,
we have

d

NCELS

i=1

(2.82) 0<K(z) <27(1 - exp{

N | =

and, with suitable polynomials P (z — u), also

d
(2.83) [VEK(2)| < (1 —p)Palz eXP{ > (= }

i=1
Taking now sufficiently small u and, then, sufficiently large ( we have
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K[, <C(1~p)
with the constant C' depending on ¢. Similar bounds are valid for the remaining

terms in (235). O






CHAPTER 3

The Strategy of the Proof

Here we present, in rather broad brush, the main ideas of the proof. Accurate
definitions of the needed notions then follow in the succeeding chapter.

As mentioned above, to verify the claim of the theorem, we need to prove that
the finite volume perturbative component of the surface tension

(3.1) o (u) == — LdN log Zn (u)

has bounded derivatives uniformly in N € N.

Here, the partition function Zy(u) can be expressed, with a flavour of cluster
expansions, in terms of the functions K(X, ) = K,(X,¢) as shown in 2I7).
However, here comes a difficulty: even though the function K(X,¢) depends only
on (x) with  in the set X and its close neighbourhood and even if for a disjoint
union X = X; U X5 one has K(X, p) = K(X1,9)K(X2,¢), the Gaussian measure
v(dy) with its slowly decaying correlations does not allow to separate the integral
of K(X, ) into a product of integrals with the integrands (X7, ¢) and K(Xa2, ¢).
This is a non-locality that has to be overcome.

The strategy is to perform the integration in steps corresponding to increasing
scales. Before showing what we mean by that, let us make one simple modification.
Its importance will be in providing a parameter that will allow us to fine-tune the
procedure in such a way that the final integration will eventually yield a result with
a straightforward bound.

The parameter in question will be chosen as a symmetric dx d-matrix q €

Multiplying and diViding the integrand in (ZI7) by

(32) exp{-1 > S s Visle) Vo) } = exp{ -4 D (aVelx). Ve(a)) |

z€TN i,j=1 z€TNn
and using the definition of the measure v (by 2I1)) with 8 = 1), we get

(a)
_ 4N _1 (q)
83 2n0) =G [ ew{-1 Y (ave }Z/c )i (dp).

x€TN

dxd
Reym -

Here, ;{9 is the Gaussian measure on X y with the Green function C(9), the inverse
of the operator A(®) = Z” (065 — i) ViV,

exp{—E })\N d<p

@ (o) —
(3.4) p (dep) = Z(q)
N
with
(35)  Eqlp) =2(ADp, o) =1 > Z — i) Vie(2)Vp(x),
zeTN 1,7=1

19
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and

(3.6) 79 = /X exp{—E4(0) }An(dp).

Under a suitable assumption about the smallness of ¢ (so that, in particu-
lar, the matrix 1 — q is positive definite), we will show that the Gaussian mea-

sure (9 can be decomposed into a convolution (9 (dp) = ugq) S Mggzrl(dw)
(q) (q)

where p177, ..., piy7 ; are Gaussian measures with a particular finite range property.
Namely, the covariances C,(Cq) () of the measures u;q), k=1,...,N + 1, vanish for

|x| > %Lk with a fixed parameter L with an additional bound on their derivatives
with respect to g of the order L~ ~1(@=1) " (See next Chapter for careful definitions
and exact formulations; here we concentrate just on the main ideas.)

Now, let us write the integral in (3] symbolically as

(3.7) [ @ o kD)),

XN
Here

d
38)  HOX,0)=1>" 3 q:;Vip@)V,p@) =1 > (qVe(), Vo(a)),
zeX i,j=1 reX
the function (@ is defined as
(3.9) K9(X, ) = exp{ -1 3 (aVe(w), V(@) KX, 9,
rzeX

and o is the circle product notation for the convolutive sum over subsets X C Ty,
(3.10) (e_H(Q) ° ]C(Q))(SD) = Z o~ HP(TN\X9) (2) (X, ),
XCTn
where we set H@ (3, ¢) = K9 (@, ) = 1.
Replacing (9 in ([B7) by the convolution ng) *o -*uggil(dgp), we will proceed
by integrating first over ng)' It turns out that the form of the integral is conserved.

Namely, starting from Héq) = H@ and Kéq) = K@ we can define Hl(q) and K{q)
so that

(3.11) /X (e" o K (p + Ou? (dg) = (71" o KP) ().

Here, the function K £q) (X, p) is defined (nonvanishing) only for sets X consisting of
L?-blocks and H {q) is again a quadratic form like Héq) but with modified coefficients
gi,; and additional linear and constant terms. Recursively, one can define a sequence
of pairs (Hl(q), K{q)), (H2(q) , Kéq)), cee (H](\?), K](\?)) with each H,gq) a quadratic form

in Vi (plus linear and constant terms) and K ,(Cq) (X, ) defined for sets X consisting

of L*4_blocks so that
_rr(a) _gla)
(3.12) /X (e o K()(p + €)u®, (d€) = (7M1 0 K(D))(p).
N

Of course, the difficulty lies in producing correct definitions of consecutive pairs
of functions H ng), K ng) so that not only (BI2) is valid, but also that the form of
the quadratic function Hj, is conserved, the coarse-grained dependence of K ,(Cq) on
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blocks L% is maintained, and, most importantly, the size of the perturbation K ,(Cq)

in a conveniently chosen norm decreases (the variable K ng) is érrelevant in the lan-
guage of the renormalisation group theory). See Propositions[A3H4.0 for an explicit

form and properties of the renormalisation transformation T,(f): (H,gq),K IEQ)) —
(H2h KT
Using now sequentially the formula (312]), we eventually get

_la) _gla)
(3.13) /X (557 o KD (0)u®) (dg) = /X (5 o K@) (0)uld) 1 (dg)
N N

and thus
zZQ

_gla
(3.14) Zn(u) = 205 [ (T o K (@)uf) (de).
VAvY 2%
At this moment we will invoke an additional feature. Namely, the finite range
decomposition can be constructed in such a way that the measures u{®, ..., uX’,)H

depend smoothly on g (JAKM13]). As a result it turns out that, in dependence on
the original perturbation K, (or on V, 8, and w in the explicit choice of K, as in
@3)), one can choose the initial value ¢ = q(K,,) by an implicit function theorem
in such a way that HJ(\/?) =0.

However, here we encounter a difficulty stemming from the fact that the action
of T,i"), considered on a scale of function spaces, depends on g with certain loss of
regularity, see Chapter [6l This leads to a need for employing a suitable version of
implicit function theorem as well as a theorem about chain rule for composed maps
with loss of regularity (see Appendices [D] and [El for the definitions and proofs).

Also, the “starting” Hamiltonian Héq) will in general contain, in addition to
the quadratic term given by ([B.8]), also linear and constant terms, i.e., Héq) (X, ) =
ZzeX IH(xv (P) with

d

(3.15) H(x, ) = A+ > _a;Ve(x) Z ¢i;ViVip(x Z 4, ;Ve(x)Vip(z),

i=1 i,j=1 i,j=1

see (91 and (@IT). Note, however, that the constant and linear terms do not lead
to a change of the measure (9 since by periodicity of ¢ we have Zze'ﬂ‘N ip(x) =0
and ) cr, ViVjp(x) = 0. For the purpose of this broad outline of the proof we

will pretend that we can achieve H ](\?) = 0 with the choice
A=a=c=0.

The general situation will be discussed in Chapter below.

Finally, taking into account that the function KJ(\?) (X,-) is defined only for
X =Ayor X =g, we get

(q)

A

(3.16) Zv) =20 [ (1+ KW (A, 9) il (de),
ZyN Jxn

with g being implicitly dependent on K = K, by the condition that the iteration
described above gives H](\?) = 0. Note that this formula was derived under the

assumption that the constant term A in the initial perturbation is zero. In general,
there is an additional term depending on A, see ([4.95]) or (LI10).
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Now, to get the sought smoothness with respect to u, we have to evaluate the
derivatives with respect to g and show the smooth dependence of implicitly defined
q as function of u. The smoothness with respect to q is quite straightforward as the
factor ZJ(\?) can be explicitly computed by Gaussian integration and the derivatives
of the integral term can easily be bounded as a consequence of the iterative bounds
on K J(\?). The smoothness of g as function of u follows by a careful examination of
the corresponding implicit function yielding g as function of the initial perturbation
K. and by smoothness of K, as function of u assumed in Theorem 2] and proven
for the particular classes of potentials considered in Propositions and [Z4] see
Chapter



CHAPTER 4

Detailed Setting of the Main Steps

4.1. Finite range decomposition.

First, we formulate the needed claim about the finite range decomposition of

the Green function €(9), the inverse of the operator A(@) = Z;’i,jzl (65— ai.;)ViV;
on X . We use ||g| to denote the operator norm of g viewed as operator on R?
equipped with ¢5 metric. Obviously, ||q|| < (Zi)j qzj)1/2.

PROPOSITION 4.1. Let q € RYL! be a symmetric dx d-matriz such that ||q|| < 1.

sym
There exist positive definite operators GI(CQ), k=1,...,N+1, on Xn such that
N+1
(4.1) el =3 e,
k=1

The operators G,(Cq) commute with translations on Ty. In particular, there exists
a function C,(Cq) on Ty such that (G,(Cq)ga) () = 2 ern C,(Cq)(x —y)o(y) for each
p € Xn. Moreover,

1
(4.2) W) =0 if |z|, > 5L

and, for each multiindex o with |a| < 3 and any a € Ny there exists a constant
Ca,a SUch that

(43)  sup [VEDUC (2)(q..... )| < canlFTDEZHD palald) g0
lall<3

forallz € Ty and allk =1,...,N + 1, with

(4.4) n(n,d) = max(3(d+n—1)>,d+n+6) + 10.

Here, V& = Hle Vit and D is the directional derivative in the direction q.

The proof can be found in [AKM13] which is an extension of ideas in [BT06]
and [BGMUO4] applied to families of gradient Gaussian measures including vector
valued functions. In fact there it is shown that Gl(cq) is (real) analytic in g with the

natural estimates for all derivatives with respect to q.

REMARK 4.2. Since the G,(f) are translation invariant they are diagonal in the
Fourier basis given by f,(z) = L™%/2e¥P:?) with

(4.5)

~ N_1\r N_3yr N_1\r
pGTN:{p:(pl,...,pd):piG{—(LLNI) ,—(LLNB) '.'70,.'.7@1171\71) },
ie.,
(4.6) e f, =i )

23
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where the Fourier multiplier (?,(Cq) (p) is just the discrete Fourier transform of the
kernel C,(Cq). Equation (4.62) and Lemma 4.3 in [AKM13] yield

1
A7) xS MDD G) @) < 2l e(n, LD L (D),
pETN\{0}

This estimate implies ([@3]) by the discrete Fourier inversion formula, but it will
also be of independent use later. o

Now, if a random field ¢ is distributed with respect to the Gaussian measure
D = 1o on Xy, where the covariance C9) admits a finite range decomposition

(&), then there exist N 4 1 independent random fields &, k = 1,..., N + 1, such

that each & is distributed according to the Gaussian measure ,u,(cq) = fo@ with
k

the covariance G,(Cq) and, in distribution,

N+1
(4.8) p=> &,
k=1
or,
(4.9) / F(o)u(dg) = Exay -1 F,
XN

where Eg, k= 1,..., N + 1, denote the expectations with respect to the Gaussian

measures u,(f) and F' is taken as a function of Ziv:ll &k

Taking into account that operators G,(f) are of full rank on X, standard Gauss-
ian calculus yields an expression in terms of convolutions,

(4.10) / Fe)p@(dg) = | Flo)ul® s pf (dp) =
XN XN

N+1

N /oX'NX»»»XXN F(/; §k>,u§q)(d§1) .- -Uggll(dgNJrl).

Our preferred formulation is to introduce renormalisation maps R;Cq) on func-
tions on X n by

(4.11) (ROF)(p) = /X Flo+Ou () k=1,....N.

Just to be on a firm ground, we can introduce the spaces M (X y) of all func-
tions measurable with respect to Ay on X' x5 and view R;Cq) as a map R,(Cq): U c
M(XN) — M(XN), where

U={F: Xy — R:rhs of (III) exists and is finite}.

The integration [, F(@)p'? (dgp) can be viewed, for any F € M (X y), as the

consecutive application of maps R;ﬂq) with a final integration with respect to Mg\?ilz

(4.12) Flo)u@ (dg) = / (RO .. ROF)(p)uld), ().
XN XN

Notice that for the operators Gg\?) and Gg\?il (and the measures ug\‘,’) and uggll) the

condition ([@2)) is void. However, the suppression condition (3] still applies.
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4.2. Polymers, polymer functionals, ideal Hamiltonians and norms.

There is a natural hierarchical paving corresponding to the correlation range
[#2) of random fields governed by Gaussian measures fij.

Namely, for k = 0,1,2,..., N, we pave the torus Ay by L(N=59 disjoint cubes
of side length L*. These cubes are all translates (L is odd) of {z € Ay: |z] <
L(L* — 1)} by vectors in L*Z4. We call such cubes k-blocks or blocks of k-th
generation, and use By to denote the set of all k-blocks,

B, = Bix(An) = {B: Bis a k-block}, k=0,1,...,N.

Single vertices of the lattice are 0-blocks, the starting generation for the renor-
malisation group transforms, By = Ay. The only N-block is the torus Ay itself,
By = {An}.

A union of k-blocks is called a k-polymer. We use P, = Pr(Ay) to denote the
set of all k-polymers in Ay and we have @ € Pi. As N is fixed through the major
part of the paper, we often skip Ay from the notation as indicated above. Notice
that certain ambiguity stems from the fact that every k-polymer is also j-polymer
for any j < k. Nevertheless, we abstain from introducing k-polymer as a pair (X, k)
consisting of a set X (union of k-blocks) and a label; the appropriate label will be
always clear from the context.

Any subset X C Ty is said to be connected if for any z,y € X there exist
a path 1 = x,22,...,2, = y such that |z;41 — | =1,i=1,...,n—1. We
use C(X) to denote the set of connected components of X. Two connected sets
X,Y C Ay are said to be strictly disjoint if their union is not connected. Notice
that for any strictly disjoint X,Y € Pg, we have dist(X,Y) > L*.

We use P}, to denote the set of all connected k-polymers and we define that
@ ¢ Pyg. For a polymer X € Py, we use By(X) to denote the set of k-blocks
in X and | X[, = |Br(X)| to denote the number of k-blocks in X and Py(X) to
denote the set of all polymers Y consisting of subsets of blocks from By (X). The
set difference X \'Y € Py, of two polymers X, Y € Py is again a polymer from Py,
X\Y =Upex,pgy B. The closure X of a polymer X € Py, is the smallest polymer
Y € Pjy1 of the next generation such that X C Y.

A polymer X € Pf is called small if | X[, < 2% and we denote S = {X €
Ps: | X|, <29}, For any B € By, we define its small set neighbourhood B* to be
the cube of the side (29! — 1)LF centered at B. Notice that B* is the smallest
cube for which B C Y and Y € S implies Y C B*. For any polymer X € Pj, we
use X* to denote its small set neighbourhood, X* = U{B*: B € By(X)}. Notice
that, strictly speaking, the operation of closure X and small set neighbourhood
X* should be amended by an index k + 1 or k indicating the scale from which the
relevant blocks are taken. Again we will abstain from cumbersome indexing and
avoid ambiguity by clearly stating to which P the considered set X is taken to
belong.

Having fixed the parameter NV and using a shorthand X for X y in the following,
we first introduce the space M (P, X) of all maps F : Py, x X — R such that for
all X € Py one has F(X,-) € M(X), the map F is L*-periodic (F(74(X), 74 (¢)) =
F(X,¢) for any a € (L¥Z)¢, where 7,(B) = B + a and 7,(¢)(z) = ¢(z — a))
and F(X, ) depends only on values of ¢ on X* (p,v € X, cp|X* = 1/1|X* =
F(X,¢) = F(X,v) with @‘X* denoting the restriction of ¢ to X*).
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The sets M (Py, X), M (Sk, X), and M (B, X) are defined in an analogous way.
We also consider the set M*(Bj,, X) D M (B, X) of the maps F': By x X — R with
F (B, ) depending only on values of ¢ on the extended set (B*)*.

For functions from M (Py, X) we introduce the circle product,

(4.13) Fi,Fy € M(Py, X), (Fyo Fy)( =Y R(Y,p)FR(X\Y,p),
YCX
where we defined F(&, ) =: 1. Notice, that the product is defined pointwise in
the variable . We often skip it and write (I o F)(X) = >y -y Fi(Y)Fo(X \Y).
Observe that the circle product is commutative and distributive.
For F € M (B, X) and X € Py, we define

(4.14) FXe)= ][] F®B o).
BeBr(X)
Extending any F' € M (B, X) to M (P, X) by taking
(4.15) F(X,0) = F*(p),
we get
(4.16) (P +F)Y =Y FYEY = (o B)(X)
ycx

directly from the definitions.
For each x € Ay we define the functions

(4.17)
d
H(z,0) =X+ > a;Vep(z) Z i ViV, oz Z d; ;V(x)V;p(x)
1=1 7,7=1 1] 1
with coefficients A € R,a € R?, ¢ € R¥*4 and d € RZ%4,

sym *
A special role will be played by a subspace My(Bk, X) C M(Bg, X) of all
quadratic functions built from ([@IT) of the form

(4.18) H(B,p) = > H(x,0) = \B| + £(¢) + Q)
where -

(4.19) =3 Zaz ip(x Z ¢ij ViVip(@)]
. 2B i=1 ij=1

(1.20) Al =3 % i di; Vi (o) Vo(a).

Sometimes we use the term ideal Hamiltonians for functions in My (B, X).

Our next aim is to introduce norms |||, . and |||, , on M(Pg, X) (with
r=1,...,r0, where 1o is a fixed integer to be chosen later) and a norm ||-[|, , on
My(By, X). We begin by introducing, for each k € {0,1,..., N} and X € Py, two
distinct (semi)norms |- [, y and |- |, , y on X. For any ¢ € X we define

1 S S
(4.21) Il x = max, sup hL k(T2 ’V ‘

B pex
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and

(4.22) [Plicyx = i, sup Lk (45245) | gg(a|,
where

(4.23) IVip@))* = > [V¥e(a)]”.

|a|=s

Next, for any s-linear function S on X X --- x X, we define

(4.24) ISP = sup |Su(@,....9)], =k k+1,
‘lbljyxgl
and, for any F € C"(X), also
X s L s X
(4.25) |F ()" = Z;|D F(p)[".

s=0 "’
Here, for s = 0 we take
X
(4.26) ID°F ()" = |F(¢)].
In particular, considering for any F' € M (P, X) and any X € Py (and similarly
also for any F' € M (Bj, X)) the map F(X) : X — R defined by FI(X)(¢) = F(X, ¢)
and its sth derivative D*F(X, ¢)(¢, ..., ¢), we get

T

) T 1 s . . .
427)  |[FX, " =>"5 sup [DF(X,9)(@,..,9)], =k k+1.
s=0 S |¢|j,xg1

Now, we are ready to introduce the weighted strong norm |[[F(X)|[|, x as well
as weighted weak norm ||F(X)|, y,, 7 = 1,...,ro depending on parameters h
and w that will be used for tuning; their properties. Introducing the strong weight
functions

(4.28) Wi(e) = exp{ 3 Gralp)}
rzeX
with
(429)  Grelp) = 2 (IVp(@)? + L¥V%(@) + LH¥Vp(@)?),

we define the weighted strong norm

(4.30) IFCON, x = sup |F(X, )| “ WX ()
@

with W, () = (W,;X(cp))_l. For F' € M(By, X), the norm [|F'(B)||, 5 actually
does not depend on B in view of periodicity of F', and we use the shorthand ||| F||,.
Further, let B, € By be the k-block containing = and let 0X denote the bounda-

ry
(4.31)
0X ={y ¢ X | 3z € X such that |y—z| = 1}U{y € X | 3z € X such that |y—z| =1}

(recall that |-| is the Euclidean norm). Introducing the weak weight functions

(4.32) wi () = eXp{ > (2 (0) + Gralp)) + L > Gk,z(w)}

zeX r€dX
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with G »(¢) as above and

4
1 S— S
(4.33) Ira(p) = 33 > LEDF sup [Voo(y)[*,
s=2 yeB;
we define the weighted weak norm by
(439 P, = s [ 0)[M w0 ¥ (0), r =10 o,
©
In addition we also introduce the norm [|-||;.,., ; x . that can be viewed as being
“halfway between” |||, . and |||, 7, with U = X € Piy1. Namely, we define
k+1,X,r —
(435) ”F(X)Hk:kJrl,X,r :Sl:;p|F(X, (p)l +1 wk:?—l—l(@)v r= 1,...,7“0.
with
(4.36)
Wiskt1(p) = exp{ Z ((de = Dgrikt1,0(9) + wGra(p)) + 3Lk Z Gk,m(<ﬂ)}7
reX z€0X
where
18
(4.37) Irikt1,2(P) = 72 ZLQS_QW@H) suEE) Vo),
s=2 yeb;

Notice that for the functions gx.x11,. entering the norm |[|-[|,..  ; x ., we still take
sup, ¢ p» with k-block B,. The prefactors L(2s=2)(k+1) fowever, involve the power

k + 1. Also, the norm |F(X,¢)|[*"™%" is used, involving Pk+1,x in its definition.
For any r < rg, clearly,

(4.38) IEX) e < MECOMg x-
Inspecting the definitions, it is also easy to show that
(4.39) IE O kerr1.x.r < TEXO g x

once w > 297! (assuring that 2%w(L? — 1) > L?), and, for any U € Py, 1 C Py and
F e M(Pyy1,X) C M(Py, X), also

(4.40) IE (O lsr,0,0 < IFO)llgapgr,o0 < IEO) 0,0
Next, for any F' € M(Py, X) and a parameter A € Ry we introduce
(4.41) IFIE = sup IF(X) ] x, Tra(X), r =10,
XePe
where
AXTif X e PE\ S
(1.42) Fea(X) = LXCEPiA Sk
’ 1 if X € 8.

Similarly we define also ||F' ||§€A,2 41~ Note that this norm is only defined via func-
tional on connected polymers. Whenever we estimate functionals on arbitrary poly-
mers we simply consider the product over the connected components. Occasionally,
when the parameter A is clear from the context, we skip it and write just [ F[,, .
and || F|[,. 41, For F' € M(By, X) we also define

b
(4.43) IFIS) = |IF(B) .-
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Notice that the right hand side does not depend on B in view of L¥-periodicity of
F. Any F € M(Py, X) can be restricted to M (B, X) with HFH,(cbz < |[|F|[-

Finally, on the subspace Mo(Bk, X) we define an additional norm |||, , by
taking

d d d
ak (d-2)k h?
(140) Bl = P+ LERY il + 50 Y Jeal+ 5 3 ldi
i=1 i,j=1 i,j=1
for any H € My(By, X) of the form ([@IJ).
Also, let us stress that the above norms depend on parameters like L, h, and
A that are often skipped from the notation. Finally we use the notation

(4.45) My, = {K € M(Pg, X) : | K|\ < oo}

Sometimes we write M, = M, ;. for brevity. Note that the norms || K H,(CAT) < oo for

different A > 0 are equivalent (since there are only finitely many polymers). Thus
the definition of M}, ;. does not depend on A.

4.3. Definition of the renormalisation transformation
Ty : (Hi, Ki) = (Hgg1, Kig1)

Here, we introduce the renormalisation step at a scale k, £k = 0,..., N — 1.
At each scale k, the interaction will be split between functions Hy and Kj. (Here
and in the following we suppress the notation indicating the dependence on g,
reinstating it only when it will play a crucial role.) The “ideal local Hamiltonian”
part Hy, is collecting all relevant (or marginal) directions under the renormalisation
transformation, with all irrelevant ones delegated to the coordinate Kj. There is
only limited number of parameters in the relevant coordinate Hy. Being given a pair
(Hk,Kk), Hy € Mo(Bk,X) and K € M(Pk,X), we define a pair (HkJrl,KkJrl),
HkJrl S M0(3k+1, X) and Kk+1 S M(PkJrl, X), so that

(4.46) Rip1(e”™ o Ki)(An, ) = (6751 0 Ky 1) (AN, )

with (Rp1F)(X, ) = [ F(X, ¢ + & pr+1(dE).
As the scale k is fixed in the rest of this chapter, we will skip it and write
(H',K') for (Hg41, Kgy1), with (£46]) becoming

(4.47) Re"oK)=e " oK'

To define the Hamiltonian H’ on the next scale, we first introduce the projection

(4.48) I, : M*(B, X) — My(B, X)

as a “homogenization” of the second order Taylor expansion 75 around zero. Namely,
for any F' € M*(B, X) with

(4.49) TyF(B,¢) = F(B,0) + DF(B,0)(¢) + $D*F(B,0)(¢, ¢),
we define
(4.50) ILF(B,¢) = F(B,0) + £($) + Q& ¢)

so that £ is a (unique) linear function of the form (£I9) that agrees with DF(B,0)
on all quadratic functions ¢ on (B*)* and @ is a (unique) quadratic function of
the form (Z20) that agrees with D?F(B,0) on all affine functions ¢ on (B*)*.
Strictly speaking, we have in mind functions ¢ € X such that they are quadratic
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or affine when restricted to (B*)*. Since, for B € By, k < N — 1, the set (B*)*
is not wrapped around the torus (as soon as 2972 < L), we do not need to be
concerned with a possibility of a contradiction in the assumption of ¢ € X having
a quadratic or affine restriction to (B*)*. Clearly, II,F' € My(B,X) C M(B,X)
whenever F' € M*(B,X) and II,F = F for F' € My(B,X). In particular, we will
consider the projection Iy on functions F' € M*(B, X) of the form

(4.51) => |X|

Xes
XDB

for any F' € M(S, X).

Now we are ready to define the iteration H’. Recalling that R = Ry is the
mapping defined by convolution with py11 and starting from H € My(B, X) and
K € M(P,X), we define

@5 W)= Y W(RDB.e) ~ Y (RE)X.0).
i3

To define K', we first replace the original variable H (B, ¢) (or rather H(B, ¢ +
€) in anticipation of the integration R) by H (B, ¢), the term in the right hand side
sum above,

(4.53) H(B,¢) = ((RH)(B,) = >

Xes
XDOB

e (RE)(X.0)).

Writing I(B, ¢) = exp{—fl(B, ¢)} instead of the original
I(B,(p + 5) = exp{—H(B,cp—i—{)},

and denoting J = 1 — I, we introduce
(4.54) K=Jo (I-1)oK.

Notice that we are considering here the extension of I,J,and I to M (P, X), resp.
M(P,X x X), according to [@IH). Let us stress that the equation above (and
in similar circumstances later) is to be interpreted as an algebraic definition valid

pointwise in the variables ¢ and £. It means that K is actually a function on
P x X x X defined explicitly by

(4.55) KX, 0,6)= > T2 (I(p+¢) 1) K(Z ¢ +¢€).

Y, ZePr(X)
YNZ=o

Occasionally, we are skipping the polymer variable X but wish to keep the field
variables and write, slightly misusing the notation, say, (gp,f) for the mapping

K(p,€) : P — R defined by K(p,&)(X) = K(X,¢,£). Then the above algebraic
equation reads

(4.56) K(p, &) = J(p)o (Il +&) —1) o K(p+).

It is useful to observe that I — I = (I — 1)+ .J yields I — I=Jo(I—1) and thus
K = (I — ) o K suggesting the interpretation of K(p, &) as K(p + ) combined
with the perturbation I(p + &) — I(g).
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Now, using I(¢+&) = I(¢) + J(¢) + (I(p + &) — 1), we immediately infer that
(4.57) Ip+&) =1I(p)oJ(p) o (I(p+&) —1)
and thus
(4.58) I(p+&)oK(p+8) = I(p)oJ(p)o (I-1)(p+E&) o K(p+E) = I() o K(p,£).

As a result,

(4.59) R(Io K)(An,¢) = (Io (RK))(Ay, ),

or, explicitly,

@ RICK)Avp) = Y PV [ R Omn o).
XeP(AN)

Here we kept the index k + 1 at pg41 to avoid a confusion with the measure p =
[ % -k N1

The function K’ on the next scale satisfying (47 will be defined by sorting the
X-terms according to the next level closure U. While for any X € P(An) \ S(An)
we attribute the contribution to K'(U) with U = X € P(Ay)/, for X € S(Ay),
we (potentially) split the contribution] between several U’s. Namely, introducing

the factor x(X,U) = I{BEB(‘)‘() lB* Yl for any X € S(Ay) and x(X,U) = 1, %
for X € P(An) \ S(An) (including the case of X consisting of several disjoint

components from S(Ay)), we have

(461)  (ToRK)(Aw,p.8) = 3 '™V [x(x,0) 3 "N (@)K(X,9,6)].
Uuep’ XCcU

Here we used the observation that, for any X € S(Ay) contributing to several U’s,
we get > ep X(X,U) = 1 and, also, that X C B* and thus X C B*.
Defining now

@) K9 = X O [ RO e

XcuU x
for any connected U € P’, and extending the definition by taking the corresponding
product over connected components for a non-connected U, we get

(4.63) R(Io K)(An, ) = (I'o K')(An, ¢)
in view of ({LG0U) and (ALGI).

Notice that if K is L*-periodic, then K’ is obviously L**!-periodic. Also, the
transform conserves the factorisation property of the coordinate K: if K factors on
the scale k,

(464) X, Y €P, and XNY =@, then K(X UY,p) = K(X,0)K(Y, ),

1As will become clear later, the reason for doing so is a need to deal with relevant quadratic
terms stemming from K’s with X € S. In anticipation, those terms are already included as the
second term in H’ (cf. (E52)) and the particular way of splitting them among U’s leads to the
exact cancelations of the corresponding linearized terms. In particular, the linearization of the
map K — K’ contains only terms starting with the third order in the Taylor expansion of K (X, ¢)
for X small (cf. (£R3))). Using the fact that only the terms linear in K (X) with X € S are relevant
in this context, it suffices to introduce a nontrivial x only for such terms. Our definition is thus a
slight simplification of the trick introduced by Brydges [Bry09]. We thank Felix Otto and Georg
Menz for discussions about this point.
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then K’ factors on the scale k + 1.

Indeed, let Xy, X5 € P be such that their closures in P’ are disjoint. Then
(assuming that L > 29%2) the range %Lk"’l of the covariance of pg11 plus twice
the possible reach of up to 2¢LF of X;* and X5* out of the closures of X; and Xo,
respectively, does not surpass the minimal distance L1 of the closure of X from
the closure of X5, and thus

(4.65) (RK)(X1U Xa,¢) = (RK)(X1,¢)(RK)(X2, ),

inheriting the property from K, I, and I. Now it is easy to observe that this
fact actually means that K’ factors, as the pairs of sets contributing, according
to [@62), to K'(U1,p) and K'(Us, @) with disjoint U; and U, are necessarily as
discussed above.

Let us summarise, reinstating the index k, what we have got.

PROPOSITION 4.3. Let k € {0,...,N — 1}, H, € My(By, X), and
Ky € M(Py, X) be such that it factors. Let Hyy1 € Mo(Bit1,X) be defined by

(4.66) H/H-l(Blv p) = Z ﬁk(Bv ®);
BeB,(B’)
where
~ 1
(467)  Hi(B.o) = s ((Rusr H)(Bogp) — S W(Rmm(x,w))-
XeSy k
XDOB

Using Ky (p, &) = (1—e=He@))o (e Hrle+8) —1)o K (0+€), let Kyp1 € M(Pry1, X)
be defined by
(4.68)

KenWp)= 3 xX0ep{- ¥ BBo)} [ KXo (@)

XGPk(U) BEBk(U\X)
for any connected U € P’ with
B . B*= .
HDEBLOB=UN i X € Sy (Aw),
HU:X ZfX (S 'Pk(AN) \ Sk(AN),

and by the corresponding product over connected components for any non-connected
U. Then Kiy1 € M(Py11,X), it factors, and

(4.69) Y(X,U) = {

(4.70) Ryi1(e™™ o Ki)(An, ) = (e 0 Kjp1)(An, ).
As a result, introducing
(4.71) Ty(Hi, K, q) = (Hg+1, Kiy1)

with Hyy1 and K1 defined by equations (£66]-[£6]), we get the renormalization
map

(4.72) Ty Mo(Bi, X) x M(Pp, X) x R 5 Mo(Bjy1, X) X M(Pyyq, X),

sym

k=0,1,...,N—1.
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4.4. Key properties of the renormalisation transformation

Of course, defining the renormalisation map Ty satisfying (@70Q) is only half
of our task of the definition of the renormalisation transform. Another part lies in
the verification that the choice of coordinates Hy and K} together with the map
(Hi, Ki) — (Hpq1, Kiy1) indeed isolates relevant and irrelevant variables with
correct estimates. Notice that in the definition of T, we explicitly included the
dependence on the matrix q. It stems from the dependence of the starting Gaussian

measure (1 = fie(q) (and of the corresponding generalised Laplacian .A(q)) on q and it

transfers into such a dependence also for the operators GE,?)) obtained from the finite

range decomposition, for the corresponding Green functions C,(C?g and the measures
1k, and, eventually, for the operators T'x. Even though this dependence often does
not appear in our notation, in the following two Propositions, where we state its
key properties, we explicitly address this dependence and make it thus explicit also
in the notation. For variables H and K we again skip the subscript k£ and replace
k + 1 by a prime.

It is easy to verify that, for any g, the origin (H, K) = (0,0) is a fixed point of
the transformation T'y. Further, the H-coordinate of the operator T’y has actually
a linear dependence; we can write

(4.73) Tw(H,K.q) = (A{"H + BV K, Sp(H, K, q))

with appropriate linear operators A,(cq) and B,(f). While delegating the discussion of
the explicit form and the properties of these operators (as well as the linearization
of the map Si) to Proposition 77l we begin with the smoothness of the nonlinear
part Sj.

The map Sj, is given as a composition of several maps and its smoothness will be
a consequence of the smoothness of the composing maps. To verify its smoothness
we find it useful to introduce a notion differentiability that is rather easy to verify.

DEFINITION 4.4. Let X and Y be normed linear spaces and &/ C X be open.
We use C7"(U,Y) to denote the set of functions G : Y — Y such that for each
7 <m and & € X, the directional derivative

(4.74) DI f(x,d7) = ;—;G(m + ti)

=0
at any z € U exists and the map (z,7) € U x X — DIG(z,4’) € Y is continuous.

The technical reasons for this definition will be apparent later and are explained
in great detail in Appendix [Dl It turns out that this notion is weak only apparently.
In particular, for m > 0 the space O™ (U,Y) is contained in the usual space
C™U,Y) of Fréchet differentiable functions (with operator norms on multilinear
forms from L,,(X,Y)), see Proposition [D.17}

Exploring the smoothness of the nonlinear part Sy of the operator T, we run
into problems stemming from a loss of regularity when deriving Sj with respect to
the parameter q. For example, it turns out that

-/ -1 DY . 77 . A . -/ . A =11 . é
(4.75) 1D D} DiSk(H, K, q) (117 K7 q I o < CILEIR (LRI lal,
where the norm H-H,(Ci)lw_w in the target space is weaker than the norm ||||§€AT) in

the domain space. As a result we are compelled to consider the map Sy with a
suitable sequence of normed spaces M = M,, — M,,_o — ... = M, _om,
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ro > 2m, defined as the spaces M, (P, X) endowed with the norms |- ||,”, r =
ro, 70 — 2,...,79 — 2m, respectively, and the space M defined as M (B, X) with
the norm |-, ,. Similarly, M’ = M’ = M, _,—...— M, are defined

as M(Pj,,,X) with the norms |- ||

ro—2m

k1 T =T0,T0 = 2,...,T9 — 2m. Further, we

— —/
will use M, to denote the closure of M in M, and similarly for M.
Considering now open subsets i C Mg x M and ¥V C R%? we will introduce

Sym ?
the class of functions that can be described as those G: U x V — M’ for which the
derivative DY DI D4G is a continuous map U x V x MJ x M. x (REXE — M.y,

More formally, we introduce the set Cm(bl x V,M') of maps G : U xV — M’ as
follows (see Definition [D.24] in a more general setting):

DEFINITION 4.5. Let rg,m € N, r9 > 2m. We define ém(u x V, M') as the
set of all maps G : U x V — M’ such that
(a) GEC’”(Z/{XV M, o)

(b) For each 0 < j' + j” + ¢ < m, the function
(HaquaHb"'7Hj'aK17"'aKj”7QI7"'7aQK)—>
_)D{ D% DgG((Haqu)vqlvquvKlvaj”aHlvaJ')a
(which is by an implication of the claim (a) (see Theorem [D.I0) defined as
amap U x V x M} x M (Rdxd)’Z - M

sym ) has an extension to a

This

ro—2m
continuous mapping U x V x MJ X MT0 omaoe X (REXE — M

sym ro—2m"-
extension is also denoted DJ DI DXG.
(¢c) Foreach0 < j'+j5"+¢<mandr=rg,r90—2,...,79 —2m+ 2/, the restriction

of DI DI DG to Ux V x M3 x M X (REX)E (notice that it has been already
extended by (b)) has values in M, _,, and is continuous as a mapping between

these spaces.

Again, see Appendix [Dl for further context and properties of the notion of
smoothness introduced in this way. Contrary to Definition we abstain from
invoking the relevant sequences of normed spaces in the notation as here they are
fixed from the context.

In the following we will consider the constants d, w, and 7 to be fixed (assuming
d=2,3,w > 2(d*2?*1 +-1) and we will not mention possible dependence of various
constants (like Lo, ho, and Ag below) on it. For the proof of the results in Chapter[2]
ro = 9 is sufficient, see comment in Remark [.g)).

For fixed values of the parameters L, h, and A in the definition of the norms
in Chapter @2} let U, C My x M,, and V C RZ%4 he the neighbourhoods of the

sym
origin,

(4.76) Uy, = {(H,K) € Mo x My,: [Hl,o < p,|K]}), < p}
and
— dxd .

PROPOSITION 4.6 (Smoothness of the nonlinear part Si). There ezists a con-
stant Lo and, for any L > Lg, constants ho(L) and Ag(L), and for any A > Ag a



4.4. KEY PROPERTIES OF THE RENORMALISATION TRANSFORMATION 35

constant p = p(A) such that, for any k =0,...,N —1, any L > Lo, h > hg, and
A > Ag we have

(4.78) S e C™U, x V, M),
and there is a constant C = C(L, h,A) > 0 such that

. .11 e A . ./ . INN 2T
(4.79) ||D{ D3 DS (H. K, q) (7, K" a2, , o < CLAIG (1K) "
forany (H,K)eU,,qeV,0<j+j"+0<m, andr =rog,ro—2,...,170—2m+2L.

The proof will be deferred to Chapter [6 where we will split Sy into a com-
position of several partial maps and deal with their smoothness separately, iso-
lating in detail the needed restrictions on various constants. Here, instead, we
offer a heuristic explanation of the role of the principal constants. The restrictions
on L are purely geometric (see Lemma [5.1] Lemma [l Lemma [[2] Lemma [7.3]
Lemma [Z). In particular, by assuming that L > Ly we have L > 29+ imply-
ing, for example, that if B € By, then the cube B* has the side at most LF*!
and thus B* € Sk+1. The restrictions on the constant h are more subtle (see
Lemma B Lemma [Tl Lemma [[2] Lemma [73)). Its role is to suppress large
fields in the norms [[F(X)l|, x, and [[F(X)|, x by employing the h-dependent
weight factors WX and w;\, respectively. When evaluating the norms of the maps
(H,K) — H (see @B7) and K — Ry1(K), a major part of the coarse grained
increase is absorbed into the growth LF — LK1 of the corresponding factors in
the functions Gy, and gi ., entering the weight factors. However, some surplus
remains stemming essentially from the term LM% in the fluctuation bound @3
of the finite range decomposition. A suppression of the relevant term is obtained
by assuming that h > ho(L) = hlLéﬁd“G with h; depending only on d and w.
Finally, the constant A is responsible for combining the norms ||-, y . into a single

norm HH,(CAQ (see Lemma [0 and Lemma [T2]). However, it turns out that the map
K — Ry41(K) leads to acquiring a factor 2/%|x in the norm |-, y ., yielding an

inevitable loss in A in the norm ||- ||,(€AT) Nevertheless, the loss can be recovered when
combining the terms in ([ALG8]) while passing to the next scale. Namely, using in the
resulting sum stemming from evaluating the norm of (£G8) the geometric bound
X[, > (1 + a(d)[ X1 — (1 + «(d))29T|C(X)| with a constant o(d) > 0, we
get the original A once we suppose that the map is restricted to sufficiently small
domain, e.g. assuming that HRkJrl(K)H/(ﬁ;ZH,T < p(A) = (2A2""")~1 and taking A
sufficiently large depending on L (and d).

The next claim deals with the linearisation of the map T’y at the fixed point
(H,K) = (0,0). For a linear operator L between Banach spaces, we consider
here the standard norm ||L|| = sup{||L(f)||: ||f|| < 1}, with appropriate norms
on the corresponding spaces. Usually we indicate the corresponding norms in an
appropriate way, e.g., || Ll .1 o and || Ll ,.p. 11 . or simply [|L|],., and || L||,., for
a linear mapping L : M, — My and L : M, — M., respectively.

PROPOSITION 4.7 (Linearisation of T'). The first derivative at H = 0 and
K =0 have a triangular form,

. o Al(cq) B;;I) H
(4.80) DTk(0,07q)(H,K)—< o c@)\k)
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with

(481)  (ADIB.o) = 3 [HBe+Y Z di;ViV;e?, (0)],
BeB(B/) z€Bi,j=1

(4.82) (B@WK)(B' -y m Yy / K(X,p+¢ u;ﬁcﬁfl(dﬁ)),
BeB(B') XeS

and

/ K(X, o+ &ul (d6).

XeP“\S

Further, let 6 € (1/4,3/4) and let Ly and ho = ho(L) be as in Proposition [{.0
There exists a constant M = M(d) and, for any L > Lo, a constant Ag = Ao(L),
such that for any h > ho(L) and any A > Ag(L), the following bounds on the

norms of operators A;Cq), B,(Cq), and C’,(Cq) hold independently of N and k and for
1.
any [lql < 3:

-1 1
(@88 O, < ONAL Ny < o and |B{V g < ML,

r >3, and for all A > Aqg (note that for the contraction bound for C'® the choice
h > hyg is sufficient).

REMARK 4.8. () Notice that as a consequence of Proposition[d.@] the operators

A,(Cq , , and C are m-times differentiable with respect to g, ||q|] < 5 , and
there ex1sts a ﬁnlte constant C' = C(h, L) > 0 such that
(4.85)

105APH ||y < ClH g, 105BO K]y < CllK]|gpyer 105CPK|, oy < CK],,

forany £=1,2,...,m and any r > 2/ + 3 and A > A,.
(ii) For the results in Chapter [ we need m = 3. Thus o = 9 is sufficient. o

PROOF OF PROPOSITION [£7] Here, we will only show the validity of the ex-
plicit formulas for the operators A,(Cq), B,(Cq), and C;ﬂq). The bounds needed for the
remaining claims will be proven in Chapter [7

Starting from ([@66]) and ([A67), let us expand the linear and quadratic terms in
H(B, p+¢) into the sum of the terms depending on ¢, &, and the term proportinal
to Q(,€). Observing that the integral with respect to pux41(€) of the terms linear
in ¢ vanishes and that Hg(H(B,cp)) H(B, ¢), we get the expression [XI) for
A(q once we notice that [, Q(&, &) prr1(dE) =3, cp Zlii,jzl d.i)jViv;C](Ji)l (0).

The formula [@82]) follows directly from the second term on the right hand side

of ([AGT).
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When computing C’,(Cq) we first observe that only linear terms in K can con-
tribute. Taking H = 0 and using thus m with

(4.86) H(B, —My Y |X| (RK)(X, )

Xes
XDB

and IN((gp,{) = (1 - e*H(“")) o K(p+¢&), we get

@87 CLOR)Up) = 3 x(00) [ DROE)Y: 0. mn @)+
Yes

/ DK 3 9075)/'Lk+1(d€)

XGPC\S

Writing x(Y,U) =5 Bgy m and observing that
B~

(4.8%)  DK(0)(K)(B ,m K(B, ¢ +€) — De” 1O (K)(B, ) for Y = B,

(4.89) DK (0)(K)(Y, &) = K(Y,p+¢) for Y # B,
and
(190) DeHOR)(Bp) =T Y- i (RE)(Y: ),
vSB
we get ([AL83). O

4.5. Fine tuning of the initial conditions

Our next task is to implement in detail the idea of fine tuning outlined in
Chapter Bl More specifically we will choose an initial ideal Hamiltonian (as used in

BI3) and defined in (£I7)),
(4.91)
H(z, —A+ZW@ ZCuV Vje(x quvw je(x)
i=1 i,j=1 1] 1

such that the final ideal Hamiltonian vanishes (note that in Chapter Bl we
considered only the simplified case A = a = ¢ =0).
Given an initial L we want to evaluate the integral

—/XN 11 (0 + Kz, 0)) H(d@)_LN(loK)(A7¢)N(d¢)'

zEA

Analogously to the calculation in Chapter Bl cf. (8I6) we can rewrite this integral
as

Zy(u) = /X M) (e7H 0 e MKC) (A, ) u(dy)

4.92
( ) Zz(\?) LN

= Le e Moe ML) (A, ¢) 1P (dp)
A% /xN ( )

where ZJ(\?) and ZJ(\?) are as in Chapter Bl Here we used that ), Vip(z) = 0 and
> wen ViVip(z) = 0 because ¢ is periodic.
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We will now show that for sufficiently small K there exists an H = H(K) such
that the second integral in ([£.92)) deviates from 1 only by an exponential small term
and such that the derivatives of this term with respect to K are also controlled.

To do so we proceed in two steps. We first show that given sufficiently small
K and H there exists an ideal Hamiltonian F7(KC, H) € My and a small irrelevant’
term Fon (K, H) € My, such that

(4.93) /X (1M 0 M) (A, @) @ (dgp) = /X (1+ Fan (K, 1)) 141 (o).

N
As a byproduct of this construction we will see that for £ = 0 we have F1(0,H) =0
and Faon(0,H) = 0 for all sufficiently small H. Together with smoothness results
for F; this implies Dy F1(0,0) = 0 and the implicit function will guarantee that
there exists a unique map H mapping a neighbourhood of the origin in E to M
such that

(4.94) Fi(K, H(K)) = H(K).
Combining this with (£33) and ([£92) we get
(@)
A
(495) ~log 2y (u) =~ log o5 ALY ~log / (1+Fon (K. H(K))) ui) (dep),
N XN
where
(4.96) A =mo(H(K)) and q = m(H(K))

denote the constant term in H () and the coefficient matrix of the quadratic term,
respectively.

We now first explain how to construct the maps F; and Fon. We rewrite the
entire cascade of maps T, in terms of a single map on a suitably defined Banach
space. First, we introduce the Banach spaces

(497) Y, = {y = (Ho,Hl,Kl,...,HNfl,KNfl,KN)S Hy € Mk,O,Kk S Mk,r}

with the norms

1 «
4.98 = a —||H \Y, a —|| K
@98) Myl =, x| lHilp v, max K,
forr=1,...,r¢ and with parameters n € (0,1) and o > 1 to be chosen later. Here,

to avoid ambiguity, we reinstated index k also in the notation for normed spaces;
we write My o and My, instead of My and M, used previously. Notice that the
terms Ky and Hpy are not present in y € Y,; while the latter is put to be 0, the
former is singled out as an initial condition for a separate treatment. Also, notice
that [[y[ly, < |ylly,,, and thus Y41 < ¥;.

Taking into account the dependence of T on ¢ (the matrix in the quadratic
term of H) and on the initial perturbation K € E (see (2Z21)) we define the map

(4.99) T:Y. xExM,—Y,
by
(4.100) Ty, L, H)=1.

Here, vy is given by recursive equations,

(4.101) Hy, = A" (Hpqr — BiKy),
' K1 = Sk(Hy, Kk, q) = Cy Ky, + Sk(Hy, Ky, q) — D25k ((0,0, q), Ky,)
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for £ = 0,...,N — 1. Here CkKk = DQSk((O,O,q),Kk) and Sk(Hk,Kk,q) -
D5 Sk((0,0, q), K) is the nonlinear part of the map Si. In addition, we set Hy = 0
and define Ko € M(Py, X) by Ko = e ™K, i.e., by

(4.102) Ko(X,¢) = [] (exp(~H(z, 9))K(Vp(a))
reX
with £ € E and H € M,.
Observe now that, for a given K and H, the 2N-tuple y is a fixed point of T,
ie, T(y,K,H) =y if and only if

(4103) Tk(HkuKkaq) = (Hk+17Kk+1)7k = 07 o '7N - 17

with Ko = e K and Hy = 0. Our task thus is to find a map F from a neigh-
bourhood of origin in E x My to Y, so that

(4.104) T(FKH), L H)=F(K,H).

This can be done with help of the Implicit Function Theorem [E 1] using the
bounds from Propositions [£.7] and to verify its hypothesis. In Proposition [R.1],
we will summarize the smoothness properties of the obtained fixed point map F.
Note that for K = 0 the vector y = 0 is a fixed point for every H. Thus

(4.105) F(0,H) =0.
Taking now for F; and Fopn the first and last component of F, corresponding
to Hy and K, the equality [{93]) readily follows from the definition of F.

Now we can easily construct the map H. The condition ([I05]) and the differ-
entiability of F (see Proposition Bl imply that

(4.106) D3, F1(0,0) = 0.

Thus we can apply the implicit function theorem in the space C7* to get the fol-
lowing result.

THEOREM 4.9. Let 2m + 3 < ro. There exist constants pi1,p2 > 0, and a
parameter ¢ > 0 in the definition of the norm on the space E introduced in (2Z21))
such that there exists a CI"-map H: Bg(p1) — B, (p2) satisfying the fixed point
equations

(4.107) F1(IK, H(K))) = H(K)
and
(4.108) T(FK,H(K)), K, H(K)) = F(K,H(K))

for all K € Bg(p1). Moreover, the CI*- norm of the map H is bounded uniformly
in N. We may choose po < $h?. Then in view of @A) the matriz q = w2 0 H(K)
of the quadratic part of H(K) satisfies |q| < %.

4.6. Proof of strict convexity—Theorem [2.7]

We are following the strategy outlined in Chapter [l but we now consider the
full ideal Hamiltonian #H in (£91)) and not just the quadratic part. To prove the
strict convexity of the surface tension og(u), we need to prove that its perturbative
component ¢(u) is smooth in the tilt w. This amounts to obtaining a uniform bound
(in N € N) on the approximation

(4.109) on(u) = _LdLN log Zn (1)
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with Zy(u) defined in ZI7). In view of the equality [@95), applied with K = Ky,

we have

1 Z(q)
o) =~ pheton(29) -
(4.110)

+owor ([ (1 Fa (K 50 A )i (0

where, as in (£96),
(4.111) A=m(H(Ky)) and g = me(H(Ky))

denote the constant term in H(/C,,) and the coefficient matrix of the qudratic term,
respectively.

The proof of strict convexity thus consists of the following three steps.

Step 1: Choose all needed constants according to Propositions and 7 In
particular, we choose (with a fixed d) the constants L, h, A, p = p(A), and a
constant C, so that the claims from Propositions and (7] (i.e., differentiability
and uniform smoothness of the renormalization maps T', as well as the contractivity
of the linearisation) are valid for any (H, K,q) € U, (in particular, [|q|| < 1).
Step 2: Apply Theorem L9 to get the existence and smoothness properties of the
map H : Bg(p1) = B, (p2).

Step 3: Finally, address the dependence of I, on the tilt u: according to the
assumptions of Theorem Bl we have a C® tilt map 7, u +— 7(u) = K,. Choosing &
sufficiently small, we have 7(Bs(0)) C Bg(p) C E.

Having this in mind, we show that the right hand side of ([@II0) is three times
continuously differentiable in u with bounded derivatives, by analysing each of the
three terms separately.

The first term on the right hand side of [@II0) can easily be computed as

A

(4.112) ~ log (Z—(N)) = Llogdet(A@EY).
N

Consider the dual torus
(4.113)
—~ N_1yr N_gy- N_1yey .
TN:{p:(pla"'vpd) ple{ L 1) 7_(LLN3) 7"'7(LLN1) }71217"'d}5
and the functions f,(r) = ¢'»# . The family {|AN|71/2fp}p€fN\{O} is an orthonor-

mal basis of V. The eigenvalues of A@ are

(4.114) o(p) = (@@, (1 + q)¢™) Z q” (0 +a;)4, peTn
lj=1
with qJ(.P) =e —1,j=1,...,d. Note that ¢ ;p) ~ pip;. The eigenvalues for A

and C are (¢, ¢") ~ ||PH and (¢®,¢™) "' ~ [lp| >, p € Ty, respectively. We
get

. . <q(r’), qq(P)>
(4.115) logdet(A@C™) = Trlog(1+A@C®) = Z log(H— (q®,q) )
peTN\{0}
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Since the sum over the torus has L — 1 terms it follows that
1 7
s ()
is a smooth function of g with derivatives bounded uniformly in N. Thus

1 Z;z(ﬂf(icu))
U — log ( )
AN Z9

is a C2 mapping with uniformly bounded derivatives. Note that the chain rule
initially states that this map is C2, but R? being a finite dimensional vector space
it is actually a C® mapping according to Proposition [D.17

As regards the second term we know from Theorem [£.9] and the chain rule that
u s H(K,) is C2. Thus the map u +— A = mo(H(K,)) is C2 and hence C® because
the map is defined a neighbourhood in the finite dimensional space R?.

Regarding the last term

oz ([ (1 P (0w () (o, ) (4)

we first note that for a positive function G the k-th derivative of log G is a polyno-
mial in é and the first k& derivatives of G. Since uX’,)H is a probability measure, it

suffices to show that

(4.116) Fon (K, H(Cu)) (Ans ) 4 (dep)

XN

<

N =

and to estimate the derivatives of the integral. We thus need to estimate
(4.117)

T(u) = /X Fon (Ko H(C) (An 9) 1,1 (), where g = ma (F(KC)),

and its derivatives with respect to u. The integral in ([LIT7T) is exactly the appli-
cation of the renormalisation map R, defined in (616)), evaluated at zero:

T(u) = (RPP)(An,0) where P = Fon (Ku, H(Ky)) and q = mo(H(Ky)).

Thus we can apply the estimates for R; stated in Lemma and in Lemma [5.]]
(iv). We introduce the notation

Ry(K,H) == (RPK)(Ay,0) = Ry (K, q)(An,0).

It will later be convenient to view R; as a function of K and  even thus it depends
on H only through g = mo(H). We get

T(u) = B (Far (K T, I(K) ).

Now by Lemma [5] (iv) (note that there is only one N-block), Proposition Bl the
definition (L98)) of the norm on F, Theorem and the assumptions on /C,, in
Theorem 2] we get

N N
T @) < [Fon (Kus HEC) | < 22| F (K K v, < O

Thus [@IT4) holds if N is large enough (note that o and C' are independent of N).
To verify the differentiability of T we recall the notation

(FoQ)(x,H)=F(G(z,H),H)
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to rewrite T'(u) as B
T(u) = (Ry o Fon) (Ku, H(Kw))

Now by Proposition B we have Fon € CN"”(BXXM0 (p1,p2),Y) with bounds
on the derivatives which are independent of N. Here Y =Y, — Y, 2 — ... —
Y, ,—2m and in the domain we use the trivial scale X,, =... = Xo = E.

By LemmalG5 we have Ry € C™(Y x B;,,R) (as long as p; < $h?), again with
bounds on the derivatives which are independent of N. Thus the chain rule with
loss of regularity, Theorem [D:29] shows that Ry ¢ Fay € C™(Bx (1, 02), R)
with uniformly bounded derivatives. Since the scale X ,, = ... = X¢ = E is trivial
(and since the target is just R) this implies that RioFon € C™(Bx x My (P1,02), R)
Together with the regularity of H (see Theorem [£9) and the assumptions on I,
in Theorem 2] we get T' € C3(B(dp)) with uniformly bounded derivatives. Since
B(80) C R? by Proposition [D.I7] this is the same as T € C3(B(dp)). O



CHAPTER 5

Properties of the Norms

As a preparation for the proof of Propositions .7 and [£.6 we first address the
factorisation properties of the norms defined in Chapter and prove a bound on
the integration map Ry, defined in {@.I1). Recalling that the norms |||, y, depend
on parameters L, h, and w, we summarise their properties in the follow)irfg lemma.
Using 1(n,d) defined by (&4), we introduce k(d) := 3 (d +n(2[ 42| + 8,d)) with
|t] denoting the integer value of t. Notice that k(d) < d?/2 + 5d + 16.

LEMMA 5.1. Let w > 14+ 182, N € N, N > 1, and L € N odd, L >
3. Gien k € {0,...,N — 1}, let K € M(Py, X) factor (at the scale k), and
let F''€ M(By,X). Then, the norms ||, x> I'llggs1.x07 € {1,---, 70}, and
Il x» X € Py, satisfy the following conditions:

() IK(X) g x,r < Iyecco By, and
KX kg0 < Hyeeo I g1y

.. X
(iia) | FXE )| xove < KOy IFIE as well as
(X1

(iib) HFXK(Y)||k:k+1,XuY,r < HK(Y)Hk:kJrl,Y,rmFlHk Jor X,Y € Py dis-
joint,

(i) || LBy, p = 1 for B € By,

(iv) There exists a constant hy = hq(d,w) depending only on the dimension d
and value of the parameter w, such that for any h > L*®h; and X € Py,
we have ||(Ry1 K)(X)lpsr xr < 25K (Xl x -

Proor.
(1) Notice first that for any Fi, F» € M (P, X) and any (not necessarily disjoint)
X1, X € Py, we have

(5.1) IR (X)) Fa(Xa) ()| 15 < [P (X0) ()| Fa(Xe) ()| 2

Indeed, using the definition of the norm |- |**" and fact that a Taylor expansion

of a product is the product of Taylor expansions, we have
(5.2)
|F2(X1) () Fa (X2) ()75 < |y (X)) () |7 22 | o () (1) | 222

Observing now that for any ¢ € X'y we have [@|; v, < |@]), x,0x, We get

(5.3) sup  |D°Fi(X1)(@)(#,.., @) < sup  [D°Fi(X1)(9) (4., @),
[1h,x,0x, <1 11k, x, <1

implying

(5.4) |FL(X1) ()" < R (X)) ()

and similarly for Fy, yielding thus (5.1I).

43
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Iterating (G.I) we can use it for K(X, @) = [Iyccx) K(Y)(p), yielding

(5.5) KX " < [ 1K@ )"
YeC(X)

and, similarly,
(5.6) |K (X, )" < ] IK@) (@)
Yec(x)
To conclude, it then suffices to observe that
(5.7) = II @@ and wui@) = ] whil
Yee(X) Yee(X)

Here, in both cases, we use the fact that the partition X = Uy¢c(x)Y splits both
X and its boundary 0X into disjoint components: Y7,Ys € C(X), Y1 # Y, implies
that dist(Y7, Y2) > LF and thus Y1NYs = @, Y1 NOYs = @, and X = Uy ¢ (x)0Y.

(iia) Using (iterated) B.I) for [[pep, (x) F(B)(@)K(Y)(cp) we have

(58  (FXEM)@I" T < T IFEB@IFPIEE) @)
BeB(X)

Bounding the right hand side by
(5.9) H |||F(B)|||kB||K(Y)HkYr H sz(w)wky(w),
BeBL(X) BeB,(X)
we get (ii) once we verify that
(5.10) [T Wl@w (e) <wi (e
BeBi(X)

Inserting the definitions of the strong and weak weight functions, (5I0]) is satisfied
once

(5.11)
LF N Gralp) <> (2%woka(0) + (@ = 1DGra(p) + LF > Grale).

x€dY reX z€d(XUY)

To verify this, it suffices to notice that each y € 9Y \ 9(X UY) is necessarily
contained in OB for some B € Bi(X) (a block on the boundary of X touching Y').
Thus, it suffices to show that for each such B one has

(5.12) L* Y Gralp) <) (2%gka(9) + (w = 1)Gra()).
z€0B reB
Indeed, applying Proposition [B.3] (a), we have

(5.13) h2LF Z Gralp
r€OB

(X TP+ I Y Fla?) I Y S L) <

zeB zeUy(B) r€EOB s=2

< h%2¢ Z Grx(p) + h*2cL” Z G, (
x€EB z€0B
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where z is any point z € B. Observing that the size of the set OB is at most
(LF +2)? — (LF — 2)¢ < 2¢L(@=DF once 2 < L, we get the seeked bound once
(5.14) 2e<w—1.

Observing that ¢ < 3\/5, this condition is satisfied with our choice of w.
(iib) The proof is similar, with (&I1]) replaced by

3LF Z Gra(p) < Z ((de — Dgrkr1,2(9) + (w—1)Gra(p))

r€JY rzeX

+3LF > Graly)

z€(XUY)

(5.15)

that, in its turn, needs ([B12]) in a slightly stronger version,
(5.16) 3L D Grale) <) (2% = Dgrkr1a(9) + (0 — 1)Gra()).
r€0B reB

This is satisfied once
(5.17) 6c <w—1.

(iil) follows immediately from the definition.
(iv) Since convolution commutes with differentiation we have

(5.18) D / Ko+ O (d€) = / DK (i + €)paisn (d).

For a vector (Ag, A1, ..., A,) consisting of Ag € R and multilinear symmetric maps
Ay X% 5 R, s € N, we consider the norm

T

1
(5.19) (Ao, Ap)] 1= D [ As Y

s=0
with [A,|*T1X defined by @24). Then
K (0). DK ()., D"K ()| = |K ()|

Now fix ¢ and apply Jensen’s inequality to map £ — (K(p+&),...,D"K(¢+&)).
This yields

k+1,X,r kil X.r
G200 | [KerOma@o] = [1KGe+ OF (),
Since

, _d, .,

(5.21) |90|k,X <L > |<p|k+1)X’
we also have
(5.22) [K(X, 0+ " < |K(X 0+ €)M
As a result,
(5.23) (R4 1 K) (X goprr xr < Sup/ |K(X, ¢+ 1" 1 (d€)wiiny , (10).

2]

k,X,r

Estimating the integrand |K (X, ¢ + )]
(X x i (2 + ),

from above by
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the proof of the needed bound amounts to showing that

(5.21) |l (o+ Omn@9) < 20 0)
XN
As this result will be used also later in different circumstances, we state it as a

separate Lemma.

LEMMA 5.2. Let w > 14 6v/2. There exists a constant hy = hy(d,w) such that
for any N > 1, L odd, L > 5, h > L"Dhy, k€ {0,... . N -1}, K € M(P, X),
and any X € Py, we have

(5.25) /X W (o + E) i (dE) < 2XBw (o).

PrROOF.  We will prove the bound (.25]) in three steps:

Step 1. Expanding the terms (Vo (z) + VE(2))? in 3, . Gra(p + &) and using
the Cauchy’s inequality (a + b)? < 2a? + 2b? for the remaining terms (those that
are preceded by a power in L that allows to absorb the resulting prefactors while
passing to the next scale), we have

(5.26) B2 Grale+8) <D (IVe(@)? + |VE@)) + 2 Ve(a

reX reX rzeX
+2 37 (L V2p(@) | + L V2(@)) + LV p(x) 2 + L4k|v3s<x>|2).
reX

For the remaining terms occurring in wiX (p+¢), we simply write (again by Cauchy’s
inequality)

(5.27) Iha (0 + &) < 29k.2(0) + 29k,2(§)
and
(5.28) LFGra(p + &) < 2LFGrn(p) + 2LF Gy 0 (€).

Step 2. In view of Proposition[B.6, we bound the mixed term 2|3 _ v Vo(2)VE(z)|
by

(5.29)
Y @ Y Ve S e Y (Ve

zeXUO—X z€e0— X reXUO— X rxeX

The sum over X in the first term above will be estimated by the regulator gi:x+1..(¢)
of the next generation. Namely, combining, for any = € X, its terms with the cor-
responding ¢-terms on the second line in ([.26]), we have

(5.30) 3L*|V2p(z)|? + 2L*|V3p(x)|* <
S 3L—2L2(k+1) |v2g0(x)|2 _|_ 2L—4L4(k}+1) |V3@(I)|2 S 3L—2h2gk:k+l,z(@)7
where we are assuming that

(5.31) 2072 < 3.
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The remaining sum over 9~ X \ X, together with the second term in (5:29), will be
absorbed into the sum ) 5+ G« (p). Collecting now all the o-terms in log wy, (¢+
&) with expanded mixed term, we get the bound

(5.32)
Z 2 g o (9) + Z wGho(p) + 3wL™? Z kekt1,.2(p) + 3L Z G ().
zeX zeX zeX re0X

This is bounded by

(5.33) log wé{lﬁ-l(‘%’) = Z ((2dw =D grit1,2() +WGk,m(90)) +3LF Z Gra(p)
zeX r€0X

once

(5.34) (3+ 29w < (2% — 1)L2

This condition, including also (531]), are satisfied once L > 5.
Turning now to the &-terms in k2 log wy, (¢ + €) with expanded mixed term, we
get the bound

(5.35)

D2 wge (O + D w((L+40)|VE@) | +2L%F V24 (2)[* + 2L V3¢ () ) +
rzeX xeX

+w(l +cd) L7k Z E(x)? +2LF Z h?Gro ().
rEXUI~X r€0X

Bounding the last term with the help of Proposition [B.5] we get
(5.36)
Z h229 g . (€) + Z (w(1 + ed) L™ ¢(2)? + (w(l +¢) + 40)|VE(z) >+

reX zeUr(X)
+ (2w + 8¢)L*|V2¢(2)* + (2w + 8¢) L*|V3¢ () |* + 4cLO*|V4e(z)]?).

Finally, the term gy ,(§) containing ls-norm of V¢, s = 2,3,4, is bounded
with the help of the Sobolev inequality from Proposition [ALJl Taking B* for the
B, with n = (291 — 1)LF, we get

s¢)2 s
(5.37) IVE ey < €@~ 12 ZL”’“ > IVIVeEP (),
reB*
where M = | 42| is the integer value of 22 and in computing the pre-factor we
took into account that 2L%J —d < 2. Notice that the constant € depends (also

through M ) only on the dimension d. As a result, we are getting

(5.38) Y h*2lwgy () <
reX
4 1 M
S 2d+1w Z ZL(2S—2)k€2(2d+1 _ 1)2W L2l/€ Z |vlvsg|2(aj) S
zeX s=2 =0 yeB
M+4
< 2d+1w2d+1€2(2d+1 d+23L 2k Z L2lk Z |v §|
yeXx*
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where in the last inequality we took into account that each point y € X* may accur
in B for at most (2¢+1 — 1)?L9 points z € X.
Summarising, under the conditions (5.31]), (E.34]), we have

Vel M+4
5, C
(5:39)  wfle+o <ulin(@es (b2 YN LHVE@)?)
zeX* =0

with the constant
(5.40) C =max{w(l + cd),w(l + ¢) + 4¢, 2(w + 8¢) + 327 we? (29 — 1)7+2)
that depends, afters w is chosen, only on the dimension d.

Step 3. We first bound the term in § in ([3.39) by a smooth Gaussian and then
bound the remaining integral. Let nx« be a smooth cut-off function such that
suppnx- C (X*)*, nx» =1 on X*, and

(5.41) [Vinx-| < oL
Then the bound in (5.39) implies taht
1
: W\ S W4 (P) eXP (5 2(DkS,8) )
(5.42) Ko+ 6) < wilip () exp (54816, 6))
where s = 2Ch~? and
1 M+4 )
(5.43) (Br&.) =73 D D L nx-@)(V'O )]
zeAN =0
Explicitly,
M+4
(5.44) Bp =B + > BY
=1
with
1 ~ 1
(545) BVE = — (V)% Vi, 1=1,...,M +4, and B¢ = — I (n%.€),

1,2k 1,2k
where IT: Vy — X is the projection (ITp)(z) = ¢(x) — ﬁ > yeny Ply) (for
[ > 1 the projection is not needed since (1, Vip) = (V;1,¢) = 0).
It remains only to show that

| e (B ) (@) < 2
XN

A formal Gaussian calculation with respect to the measure px11 with the covariance
operator Cp4; yields

det((‘f,;il — x%By) ) -3

1
/XN exp (5%(3165’5))/“6*1@5) - ( det(el;il)

(5.46)

_1
2

1 L
— det (l - %e;HBke,gH)
1 1
To justify this calculation we will derive a bound on the spectrum o (Cz,  BxCZ )
in the following lemma.

LEMMA 5.3. Using the shorthand n(d) := n(2| 2] + 8,d) = 2x(d) — d, we
have:
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1 1
(i) The operators Cri1BrC | are symmetric and positive definite.

There exist constants My and My that depend only on the dimension d such that
for any N and any k=1,..., N,

(i) SupU(CEJrlBkG%JFI) < ML) gnd
1 1
(iii) Tr((‘f,iﬂﬁk@;“) < My | X | L@,

Postponing momentarily the proof of the Lemma, we first observe that » <

m with b > L*@4CM,, and thus the eigenvalues Ny g=1,.. L LN
1

1 1
of €2 | BxC;,, lie between 0 and % The formal Gaussian calculation is then
justified and

5.47
( ) 1 1 1 1
logdet (1€, BiC., ) = D log(1-A) = 3 =2\ = —2Tr (€7, Be€i,, )

> —2M LD | X |, = —4C M LV DR 72| X,

Hence
1 1\ T X1y pn 2OM X p—d
(5.48) det (1= €7, BeCi,, )~ e "
and the Lemma follows with
(5.49) hi(d,w)? > 4C max(Mo, zr3145)-

PrOOF oF LEMMA 53]
The claim (i) follows from definitions.
The estimate (ii) follows from the estimate

(5.50) |BrCri1€]ly, < MoLH D g], for all € € X .

For B}, we first observe that

(5.51) LPMB¢ly = I (nx-)%€lly < [1(nx)*€lly < 1€l
In view of Proposition 1] the operator Cj41 acts by convolution with respect to the

function Cx11. With the bounds (E51)), (@2), (3), and ciax = MaX|q|<2(M+4) Ca,05
we have (recall that 1(0,d) < n(2| &2 +8,d) =n(d)))
(5.52)

1B Chriélly < L2 IChraélly < L7 D7 [Chsa (€]l < conax LD €]

zEAN

For B;c” we use the discrete product rule

(5.53) Vi(fg) = VifSig +SifVig,

where

(5.54) (Sif)(x) = %f(x)—k %f(x—kei).

The operations S; commute with all discrete derivatives. Using multiindex notation
d d

(5.55) Vo= ][]V and S* =[S,

i=1 =1
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we get the Leibniz rule
(5.56) Vi(fg)= Y Cap(S*VE[)(S7V79),
a+pB=vy
with suitable constants Cq, g. Thus
(5:57) BPChm& L8 Y % CapSH(VY) (nx-)*SP (V) V7€
|v|=l a+B=

Notice that ||S”|| = 1 (with the operator norm induced by I2 norms on Vy). Further,

using (B41), [@23)), and again (E50), we have

(5.58) [(VP)* (nx+)?] < O*Crnax LA
with
(559) Cmax = Z COM,B'
o,B
la+B|<M+4

As a result we get, recalling that [ < M+ 4, where M = \_%J, and that

n(2(M +4),d) =n(d),

(5.60) [|B} Crpall <
< L(2l72)k Z Z Cl, ﬂ@QOmaXLkoﬂL(k+1)dcmaXL7k(d72+\a|+l)Ln(d) <
[v|=l at+B=v
< O%C2 Cmax LD,

This completes the proof of (ii) with My = 6%C2,, . Cmax-

To prove the estimate (iii), we first observe that Cxllp,, = 0. Hence B;Cj can be
viewed as an operator from Vy (instead of X ) to Vy with the same trace. To
compute the trace of B;Cri1 we now use the orthonormal basis given by the unit
coordinate vectors

(5.61) ew(z):{ éj;i

According to (B57), for I > 1 we get

(5.62) |(e2, By Crr1€s)| =0 whenever z ¢ (X*)*.
For x € (X*)* we use (B.57) and the bound

(5.63) sup ’(V"‘)*V'YC;CH(Z)’ < Cmax L FA= 2t et D) pn(d)
to conclude that

(5.64) [(ex, BYCrires)| < O2C cmax LN

and

(5.65) TrBYCr1 = Y (e, BY Cryre,) < O2C2

max

Cnax 242 LN | X |
TeEAN
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For B;ﬂo), we explicitly express the projection, ITe, = e, — la,, IAl—NI’ yielding
(5.66) L2k(em,B§€°)Gk+1em) = (Mey,n%Crires) =

1
- (e;m 77%(* ek—i—lem) - (]]-AN—u 77%(* ek—i—lem)
|An|

1
= 0% (2)Crs1(0) — m(ﬂ/\w?ﬁ(*ekﬂem).

Therefore
(5.67) TrB Chi1= Y (ea B Cryres) =

TEAN

1
:‘L72k( j{: Wﬁ*(x))ck+1(0)_'—___(HANaW§*6k+1ﬂAN> <
AN
TEAN
<L epax LTHEDLND N1 < 0 2P LD X
ze(X*)*
Thus
Tr(gkekH) < C|(X)7|, < (M +5)0C2 a2 P2LND X,

We get the claim (iii) with My = (M + 5)02C2,,_ cmax2?*2. 0

REMARK 5.4. Notice that, with the particular values of My and M; given
above, we can choose h; fulfilling (2.49) by taking

(5.68) h2 = C(M + 5) M.






CHAPTER 6

Smoothness

We prove Proposition [£.6 asserting the smoothness of the renormalisation map
(6.1) S:U x By C (My(B,X) x M(P°, X)) x Ry = M((P)°, X)

sym
on a suitable scale of functions spaces. Here, B = B, P = P, and P’ = Pri1
with k fixed. (Later, when the dependence of the map S on k will be crucial, we
will use the notation Sj instead of S.) Let us recall the explicit formula ([@.68]) for
Ki1 = K'= S(H7 K, Q),

02) KU = > XU [ (To)o Plo+O) (Xl
XeP(U) x

with=e# J=1-I, P=(I—-1)oK,and [ =e

It will be useful to split the map S into a composition of a series of maps
and to deal with them one by one. To this end, we first recall the notation
for relevant normed spaces. In Section 4] we have already introduced the se-
quence of normed spaces M = M,, — M,,_o — ... — M, _2n,, defined as
M, = {K € M(P,X) : HKHX\ < oo} and equipped with the norm |- ||,”,
T = 10,70 — 2,...,70 — 2m, the space Mo = (M(By, X), || ), and the se-
quence of spaces M' = M, < M, _, < ... <= M, with M = {K €
M(Pgiq, &), ||K||7‘k+1 < oo} equipped with the norm |- ||k+1r’ r o= 19,10 —
2,...,7m0 — 2m. We also introduce the space My = {F € M (B, X), [|F||, < oo}.

One difficulty is that convolution with the measure px1 does not preserve the
factorization in connected k—polymersﬂ More precisely, if

= ] &

Yec(X)

ro—22m

and if
RK(XaSD) ::AK(X7@+§)Nk+1(d§)7

then in general

RK(X,9)# [] RE(Y.9)

Yec(x)
because the support of the covariance €4 ; has range bounded by L**! /2 but not by

Lk /2. Thus we cannot only consider functionals defined for connected k-polymers
but we need to consider functionals which involve all k-polymers and we define

(6.3) M, = {K € M(Py, X), | K|M® < oo},

IWe are grateful to S. Buchholz for pointing this out and for suggesting the use of the norm
A,B)
1155

53
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~ A.B

(6.4) M., = {KeMPyX),|K|N,, < oo},
where
(6.5) IK[5P = sup Ta(X)BICOIN K (X)

’ XeP\&
with
(6.6) = ] Ta() forXeP\o

YeC(X)

and where ||- ||k k+1 , is defined in the same way using || K (X)||x:k+1,x,r- Note that
the definition of the spaces does not depend on the weights A > 0 and B > 0 since
there are only finitely many polymers.

The map S will be rewritten as a composition of several partial maps:
The exponential map,

(67) E: MO — Mm defined by

(6.8) E(H)=exp{—H}=1,

three polynomial maps,

(6.9) Py Mm X Mm X M;)TO — M;O defined by

(6.10) Pu(I,J,P)(Up) = > X(X1U X, U)IVNEX2) () ] (0) P(Xs, ),

X1,X0€P(U)
X1NXo=0

(6.11) Py: My x M, — M, defined by

(6.12) Py(I,K)=(I—1)oK,

(6.13) P3: M, — ]\/ZIT,

(6.14) (BK)(X,9)= ][ E(Y.9)
Yec(X)

and, finally, two linear renormalisation maps that are the source of loss of regularity,
(615) Ry: My, x By — M., defined by

(6.16) Br(Pa)(Xop) = (ROP)X.0) = [ P(Xo+Ouilhiae), X P,
(6.17) Ro: My x M,, x By — M defined by

(6.18) Ro(H,K,q)(B.¢) = ((RVH)(B,¢) - Y h(RVK)(X,9)),

[X]
XeS
XOB
where we write By = {gaeRLE: gl < 3}
In terms of these maps we have
(6.19)

S(Hvaq) = PI(E(R2(H7K7q))7 1 _E(RQ(Hvaq))7 RI(PS(P2(E(H)7K))7(]))

Notice that the norms on the corresponding spaces are chosen in a natural way,
with the exception of the space M(P,X) in the role of the domain space of the
map P; as well as the target space of the map R, that comes equipped with the
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norm H||§€Aki)l +o- This is driven by the bound (iv) from Lemma[5.]]that makes the
norm ||K(X,-)||;.xq1, natural for the map R;. The additional weight BICCOI in

the norms of M » and M .» Plays an important role in the estimates for the map
P, and is a substitute for the fact that we no longer deal with maps which factor in
connected k-polymers. More precisely if K factors we can use the bound (i) from
Lemma [5.1] to conclude that

[c(X)]

— A

1K e, =TT KOy, <TaGO IKIR]
yec(X)

This provides additional smallness if || K H;CAT) is small and the number of connected
components |C(X)| is large. If K does not factor we can use the bound

1K (X) |5, x.» < Ta(X) 1B IO K| (AP

instead to get a good decay for a large number of components.
The dependence on the parameters A and B in the definition of the weak norms
(#A41) and in the norm (63 plays an important role here, we thus incorporate it

explicitly into the notation and write, e.g., H||,(€AT) Note that for a fixed N (where

LY is the system size) the norms ||H1(CAT) and H-||,(:,LB) are equivalent for all A > 0

and B > 0 (because there are only finitely many polymers), but the constant in
the equivalences depend strongly on N. Since we are interested in bounds on the
derivatives which are independent of N a careful choice of the parameters A and B
is crucial.

In the following sections we will show that all maps introduced above belong to
the class ém(X X By, Y), introduced in Appendix [D] for suitable scales of spaces
X=X,,—>...-XgandY =Y,, — ... = Y. Finally we will use the chain
rule in the C™ spaces to show that the same regularity for the composed map S,
see Section In fact the maps above actually possess arbitrarily many Fréchet
derivatives (or are even real-analytic) but the setting of the cm spaces is setting
which naturally goes with the estimates that are independent of N (where L is
the system size).

Let us first discuss the partial maps one by one, starting from the most interior
one in the composition ([G19).

6.1. Immersion £: Mo — M|,

While the norm || H ||, , is expressed directly in terms of the co-ordinates A, a, ¢, d

of the ideal Hamiltonian H € My, the terms involving E(H)(B,¢) = e H(B:¥)
will be evaluated with the help of the norm [||-||[,. Considering thus the map
E: Mo — M, we have:

LEMMA 6.1. We have [|H|||, < 5||H]|, o for any H € M. Moreover, there
exist constants 6 = §(ro) and C = C(rg) so that E is smooth on Bs = {H €
My: |H||, o < 0} with uniformly bounded derivatives,

(6.20) IDPEH)(H, ..., H)ll, < ClHlo  §<m.
In particular we have

(6.21) IECH) = 1, < CllH 1 0-
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REMARK 6.2. The definition of norm |[|-|||, involves the parameter 7o (see
(#30)) but the statement does not depend on ry. o

Proor. Let H € My and B € B. First, we estimate ||H (B, )|,z by [[H|| -
In view of the definitions (Z30) and (@2H), we need to compute the norms

|DPH(B, )", p=0,1,2,

(the higher derivatives vanish as H is a quadratic function).
Starting with p = 0 and recalling the definitions (ZI8)-@20), we get

k,B 1 2
(6.22) |D°H(B,)|"" = |H(B ,¢>|<|A|Ldk+f:zz|az| 3 [Ve())Y
reEB
dk d 1/2
HL7 Y el (Y IV2e@)) 7 + Y [Ve()?] Z \di ;.
1,j=1 zeB reB 7,j=1

Here, when evaluating the term )5 Z'Z:l la;||Vip(x)], we first apply the Cauchy-
Schwarz inequality in R? and using the bound |a| = (Z?:l |CL1'|2)1/2 < Z?:l la;| =
lal1, we then employ the Cauchy-Schwarz inequality for the second time on the
sum Y g1 |Ve(z)| with |ch( )P = Zf 1|Vigo(:v)|2. Similarly we treat the
next term with |V290(:v)|2 = Z” ViVj(z)®. In the last term we just use
the bound [§ 37 _ 1deZg0( )WVip(x)| < 1)d||Ve(z)]* and then evaluate the
operator norm, ||d| < (3¢ ;i1 d; )1/? < E” 1ldi gl
Hence,

(6.23) |H(B, )|<

< 8o (14 7 (S 190@P) Y + 21 (X IV26@)) 4 5 3 1Vel@)?)

zeB zeB rzeB
<2 H (1455 3 (IVel@)? +L%19%6()P) ) < 2 H]y o (1410875 (5)),
zeB

where we took into account the definition ([E28) of the weight function W (p) =
W ().
Similarly, taking into account that DH (B, ¢)(¢) = £(¢) + 2Q(p, ¢), we get

(6.24) |DH(B,@)|"" = sup [6(g) +2Q(p,¢)| <

1y p<1
< sup{[€(@)|[+12Q(w, ¢)] : sup IV(a)] <hL™% and sup IV2p(x)| < RL=F 0}
reB*
< hL” Q{Lkdzm |+ LAL™ kZ|Cu|+Z|d,J|Z|V<P )} <
4,j=1 i,j=1 zeB

1/2

< [ H |0 1+ Z |Vl ) < 2|[H||, (1 +1logWE ()

reB
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and
. d
(6.25) ID2H (B, )" <2021 N |dy | < 2|[H ],
ij—1
Recalling that D3H (B, ¢)(4,¥,1) = 0, we finally get
(6.26)

Il = WH (B, 5 < 5sup Wi (@)1 H]| o(1 +log W () < 5[ H]lj -
@

To get [|E(H)|,, we need to compute the norms |DPE(H) (B, ¢)|"5, p =
0,...,79. Using again Faa di Bruno’s chain rule for higher order derivatives and

the bounds (623), [©24), and ([E23), we get
p
(627)  |DE(H)(B.@)” < Byye 19 (142 H], (1 + 1og W ()

with the constant B,, < r(° bounding the number of partitions of the set {1,...,p}.
Hence,

(6.28)

70
IEE) ) < Brysupe™ " PAW =B (0) Y (1 4 2||Hl|y (1 + log WF()))" <
¥ p=0

)
< B, Zsupe2|\HHk,0<1+logWB<sa>>WfB(w)ezpllHHk,oUHogWB<sa>> <
p=0 ¥
< (ro + 1) By, €20l o gyp 21 H 1k 0 (1470) log WB(*")W_B(@) < e(rg +1)By,
©
once ||H||, , is sufficiently small to assure that 2||H]||, ,(1 4+ ro) < 1 (we took into

account that W5 (p) > 1).

Computing the derivative of the exponent E(H) as a composed function, we get
DE(H)(H)(B,¢) = E(H)(B,¢)H(B, ). Using, similarly as when proving (G.)),
the fact that a Taylor expansion of a product is the product of Taylor expansions,
we get

. k?,B,T‘() TO| T k?,B,T‘()
(6.29) IDE(H)(H)(B, )| < |EH)(B, )" |HB, ).
Applying now ([6.27) and (6.23)—(G.25]), we get
. k,B,ro
(6.30) |DE(H)(H)(B, )| <

< e B (g + 1) (1 + 2[|Hl|j o (1 +1og W ()™ 5 [ Hl|j. (1 + log WP ()
yielding
(6.31) || DE(H)(H)I,

<supe HBR) (rg + )W B(p)e2rollHllo(1Hos W2 () 1 HHHk,Oe% log W7 ()
©

<10e(ro + 1)||H||k,0

if 4ro||H||, , < 1. Similarly, we get the bounds for higher derivatives. Formally the
estimate ([G.21)) follows from (6.20) and the identity

1
E(H)—1= /0 DE(tH)(H)dt.
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6.2. The map P

LEMMA 6.3. Consider the map Po: My x M, — M, defined in [€I2), re-
stricted to By, (1) x B,, C My x M, with the balls By, (1) = {I: [|[I —1]||,, < p1}

and B,, = {K: ||KH,(€AT) < p2} and the target space M, equipped with the norm

H-H,(CAT/2). For any A > 2 and p1, p2 such that

(6.32) p1 < (2A)7Y, and py < (2A2")71,

the map Py restricted to B, x B,, is smooth and satisfies the bound

(6.3 | (D DEPIL K £

. d 1 . A 5
< (2A) (2A2 )”IIIIIIIJ(HKIILZ)”
for any j1,j2 € N. In particular,
(6.34) 1Ps(1, K| < 24|11 — 1], + 282" || 5| )

PrROOF. Recall that

(6.35) (I-1oK)(X)= > (I-1)XVK(Y), X eP",
YeP(X)

with (1= 1"\ =T px\y) ([(B) = 1) and K(Y) = [T ey K(Z), where C(Y)
denotes the set of components of Y € P.

Hence,
1 o . .o .
(6.36) T (DI'DP((I-1) o K)(X)(,...,LK,...,K) =
- Z (I — 1)K\ 0 H K(Z) H K(Z)
YEP(X) Y1€P(X\Y),|Y1]=j1 ZeC(Y)\ zeJg

JCC(Y),|T|=J2
Further, recall that, by definition of the norm || K ||,(€AT), we have

1K (Z) ]y 5, <Ta(Z2)K|\2) for any Z € Pg.
Notice also that
(6.37) AIZ1=2" < max(1,AlZ172") <5 (2) < A7

for any A > 1 and any Z € P°. Using the bounds (iia) and (i) from Lemma [(.1]
assumptions ([6.32]), as well as the lower bound on I'a(Z) above and the fact that
the number of terms in the sum is bounded by 2X1, we get

(6.38) (1P, K)(X)g x,r <

X\Y IC(Y)| 27 - - =X
< Z I — 1H|I \ I(HKH(A)) AZICOA-IYT < A= XX - (%) ,
YEP(X)
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cf. Lemma 6.3]. Similarly, using that ( ) <2, we get the claim
(6.39)

(DY DE P (1L KN (X)), LK, K
X\Y|—j

S (KNI = 2 A (e

YEP(X)
AN ICY)[=i (A d

x (B[ () A O A

D 2PV A) W 910l o)~ () )
YeP(X)
« A2TCON AV —

Z 271 A—(IX\Y |- J1)|||I|||J12J2AJ22 (”KH(A )JzA Y|
YEP(X)

d A
< 2X1 @A) | 7|17 (2A%")2 (| K[| )72 A IXT.

J1lj2!

IN

IN

Finally, ([634]) follows from the fact that P2(1,0) = 0 and

d

6.10) SR I = 1),tK) = Dy Py(1+ (1 = 1), tK)(I ~ 1)

+ DoPo(1+t(I —1),tK)K.

6.3. The map P;
LEMMA 6.4. Let A> 1, B> 1. Consider the map Ps: M, — J/\Z’T defined by

(6.41) (P3 = ][] K&

Yec(X)

restricted to B, = {K € M, ||KH < p} and the target space M equipped with

the norm ||-H§£T’B). For any
(6.42) p<(2B)7*
the map P3 restricted to B, is smooth and satisfies the bound

1 ; . -\ 11(A,B) 1 (A)YJ
(6.43) SO, BOILEY < (2BIKI)
for any 71,72 € N.

ProOOF.  The proof is similar to, but simpler than, the proof of Lemma .3l We
have

(6.44) %Dng(K)(X)(K,...,K): > II 5@ ][] k2

JCC(X),|T|=j ZeC(X)\T zeJ
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Thus using the estimate (IC(JX)) < 2/€(X) and the identity Ta(X) = [zeccx) Ta(Z2)

and arguing as in the proof of Lemma we get
(6.45)

1 . : AN €)=
BICOTA(X) 107 P(K)(X) (K Kl <(28)°C0 (1KLY x
Y
< (KUY
Since 2B|| K[} < 2Bp < 1 it follows that
1. . o (AB INRY
(6.46) SIDBE)OE, . K)IED < (2BIKE)
and this finishes the proof. O

6.4. The map R;

LEMMA 6.5. Let m € N, 2m < rg, and for anyn =0,1,...,m, let X,, denote

the space HTO_QWJ,_Q" equipped with the norm [|-[| x = H-||,(:7LE)72m+2n and Y, the
— od

space M. ro—omt2n equipped with the norm |-y, = ||||,(€A,€/J2r187/0372)m+2n Further, let

By = {g e RYY: |lqll < 5}. Consider the map Ry: X x By =Y defined in ©19)

with X = X,,, = J/\}m andY =Y, = J/\Z;m. There exists a constant C' = C(rg, d)
such that for any h > L¥®hy with hy = hy(d,w) and «(d) as in Lemma B (iv)
(see B6Y)), A>2, and anyr =1,...,19, we have

(6.47) Ry € C™(X x B1,Y).

Moreover the constants in the estimates of the relevant derivatives are independent
of k and N. More precisely for 0 < ¢ < m,0 <n <m—{, there are C(n,d) > 0
such that

. A4

(6.48) IDSR(P,q,4") |y, < Cn,d)IPlx,  Nal

L . YA

(6.49) |ID1DSR1(P,q,P,q" )y < Cn,d)IPlx,  Nal
(6.50) DIDLR(P,q, P%,¢") = 0.

REMARK 6.6. (i) Note that (649) follows from (6.4]) since R; is linear in the
first argument, whereas (G.50) is trivial.
(ii) The proof below actually shows that

. L0
(6.51) HDgRl(Pvqvqé)(X)Hk:kJrl,X,n < C("vd)Q‘XI||P(X)||k,x,n+z||qn

The estimate ([G48) then follows by the choice of weights A/2 and B/22d on the
target space, see Step 2 of the proof.
(iv) Tt follows from Step 1 in the proof, the bound

[RYP(X) g1 x.r < 2|X‘k||P(X)||k,X,T

in Step 2 of the proof and the linearity of R; in the first argument that R; is
actually a real-analytic map from X, x B 1 to Y, without any loss of regularity.
The bounds on the corresponding derivatives depend, however, on the system size
N and the level k, while the bounds stated in Lemma [6.5] do not. o
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PROOF.  Recall from (G.I6]) that

Ri(P,q)(X,p) = (RP)(X,¢p) = /X P(X, 0+ &) ), (d).

The fact that Ry maps M, x B 1 to Y,, follows from Lemma [BIiv). Note that
R is linear in P. Thus by Lemma [D.31] it suffices to show that
(i) Foreach P € X,, and 0 < ¢ < m the map ¢ — R‘“Pisin Cf(B%;Ym_g).
(ii) For each g, € By there exist 4, C' > 0 such that

. .l
IDLR(P.q),d")ly, < CIIPlx. Nl

for any 0 < ¢ <m,0<n<m—¥ and for all (P,q,q) € X,, X Bs(q,) X
RdXd.
sym

We split the proof of (i) and (ii) into seven steps below. Note that the required
constant C' will be given as the maximum of all constants in (648) and (E49). We
first show (i) in step 1 below. Indeed we even show that g — R'Y P is real-analytic
with valuesin Y,, CY,,_4.

n-+~0

Step 1: Assume that P € M, = (M,(Ps, X), ||H;€A)T) for some r € {rg,...,ro —
2m}. Then the map

q— Ry(P,q)
is real-analytic from By to M., = (M (P, X), ||||§€A§:fr”) First it suffices to show
the result for r = 0, since differentiation with respect to ¢ commutes with R®.

Secondly it suffices to consider a fixed polymer X, since there are only finitely many
polymers. Thus we need to show the following: If

P(X,
1PNy x0 = Sep lw(;fi(;))l

< 00,

then the map
Bi > qH/ P(X, -+ &) pe@ (d§)
X k+1

is real-analytic with values in the space of continuous functions F' of the field with
the weighted norm
[F(p)]

T Ip—— i)
k:k+1,X,0 v wﬁkJrl (90)
This follows from Gaussian calculus (see Lemmal[CT]), Lemmal5.3land the properties
of the finite range decomposition, see Proposition Il To see this recall (5.42), i.e.,
1,
Wik (4 &) < Wiy (p)ezBRES),
where 3 = 2Ch~2 and By, is given by (G43). If h; and k(d) are chosen as in
Lemma B and h > L*@h; then it follows from Lemma that for q € B% and

Crt1 = G;qurl we have
1
(6.52) 0 < €/ #8050 < 51d and hence €1}, > By,

i.e.,
B% > q — Uy,
where we define
Up = {€ € Sym™(X): €71 > »B,}.
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By Lemma the map
e [ Plrpe(as)

is real-analytic from Uy, to the desired space. Finally, by Proposition 1] and ([6.52))
the map q — G;;’_il is real-analytic from B% to Uy.
Hence q — Ry (P, q) is real-analytic from B% to the space M. ,, and thus (i)

is proven.

In the remaining steps we are going to prove (ii). In step 2 we show the bounds
for £ = 0 followed by the bound for £ = 1 in step 3 to step 6. The bounds for higher
derivatives are then finally settled in step 7.

Step 2: Bounds on R”. By Lemma[.I|iv) we have for all ¢ € B, the following
estimate

IR P |agegr,x < 25PN x0
For connected polymers Y we have

(6.53) 21T )5 (Y) < 22 Ta(Y).
Thus for general polymer X we get
(6.54) 21XIT, 5 (X) < 221€0IT, (X).
and thus
(6.55) 9l X| (B/22")IC(X)| Ta2(X) < BT, (X).
Therefore
IROPIREE < PP,
and hence with » = ro — 2m + 2n we obtain
656 [R(Pa)ly, = [RVPly, <|Plx, forallgeB,.

Step 3: Bounds for D>R:1(P,q,q). Let g € By and ||g|| =1 and write y(t) =
q + tq in the following. By Lemma and ([C23) we have

[ PO+ € ey (@6

. d
D2R1(Paqaq)(Xa 90) = a

t=0
= [ Aoy PXpt Onegn (49) = (RV 4, P)(X.)

with

@ _ i (v()
ML =0 k1

and where the functional Aék+1 is defined as

LN 1
Aék+1 (X 5 Z D2 X 576176])(67%1-1) 4,59
3,7=1
where {ej}] 1 ~! is any orthonormal basis of X and (C'kﬂ)m- = (ékHei,ej), By

Step 2 we obtain the following bound for the derivative with respect to q, for
0<n<m-—1,

(6.57) |D2R1 (P, q, Q)”Y < [JA¢ PHXn'

Crt1
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Step 4: Estimate for ||Aék+1P||. We now express and estimate the functional
Ag, P using the orthonormal Fourier basis {fp} ez, of the (complexified space)
X given by

ei(p,)

»(x) = TanTs pETN,xEAN.

(6.58)

We denote by C/kz (p) the Fourier multiplier of Cry1. Now 6554)-1 and hence €y iq
are diagonal in the Fourier basis and

ek-ﬁ-lfp = C/k-:(p)fp with C/k:(p) eR.
Thus by (CI3)
Ag,, P(X,6) = " D*P(X,&Cri1fp. )

PGﬁN
S D2P(X.€, fy. Tp)Cria (D).
PEfN

We claim that
(6.59)

|A¢

Crt1

D*P(X,€)Cuy)|" 72 <o(r = DIPX, O Y7 1fyli xIChstl(p).
peTN\{0}

whenever ék+1 is diagonal in the Fourier basis. In particular we now show that
there exists a C'(n,d) > 0 such that for 0 < n < m —1 the following estimate holds,

(6.60) 14¢, . Plix, < COIPIx,,, > 1fol*Crri(p).

PGﬁN

Indeed, using the fact that (ZJ: (p) is real and the definition of the trace we
have

G(X,€) :==Tr(D*P(X,£)Chi1)) = Ag, , P(X, &)
= > (£ D*P(X,6)f,)Chi1(p)
peTN\{0}
(6:61) = Y (Re(f,), D*P(X.&)Re (£,))Crr1(p)
peTN\{0}
+ 3" (Im(f,), D*P(X, )Im (£,))Crsa (p)-
peTn\{0}
By a standard symmetrisation argument we have
662 D7 PO 00)l < T D PO [T iy
' =1
Set
(6.63) M= S (£ xCrl () -

pETN\{0}
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Then for all ¢ with @]z, x < 1 we have
|ID*G(X,&)(¢,....9)| <
< Y IDTPPXE)(4.. . 45 Re (), Re (£))]ICran| ()

peTN\{0}
(6.64) o . . —
+ Y IDTPEP(X (@, i Im (), Tm (£,))][Crr1|(p)
pETN\{0}
(s +2)°t> 1o B X,
<2———~ ___|D*"*P(X o8 M
< (s +2)! | (X, )| |80|k,x

Hence |D*G (X OIFX < Org)M|D*2P(X, €, X)|"X, for all s < rg — 2 and
C(ro) = 2 . This yields

(6.65) |G(X, 5>|kvX**2 <

< MZ |D*H2P(X, )X <r(r—1)C(ro MZ D5+2P(X oI <

< 7“(7" - 1)C(T0)M|P(X, &+
and hence the assertion ([G.60). Note that in the proof we only used the fact that

G,(;(f is diagonal in the Fourier basis. Hence the same computation yields the

corresponding result for the higher derivatives

(6.66) |Tr(D*P(X, g)dtjczitlﬂk,x,rizg

<r(r = 1)C(ro) | P(X, FT > |fp|kxydtj o )’.

peTN\{0}

Step 5: Estimate for the term (G.G3) involving the Fourier multiplier.
Let

¥(t) =q+tq with g € By and [|g|| = 1.
We claim that, with our choice of h, there exists C' = C(n,d) > 0 such that

(6.67) > k|| <o
pETN\{0}
To see this note first that by the definition of the | - |5, x norm
1
(6.68) | folx < hLNd/QL’“d/Q max(|p|, L*[p|*, L**|p|*) .

The estimate (@1 in Remark .2 can be rewritten as

(6.69) > ol
peTN\{0}
where 1(n,d) = max(§(d +n —1)%,d + n + 6) + 10. Applying this estimate with
n = 2,4 and 6 and using the monotonicity of n(n,d) in n, we need a bound on
Nn(6,d) + 4 + d. Tt turns out that n(6,d) + 4 + d < 2k(d) whenever d > 2. Indeed,

@Ck‘-yi-(f (p )‘ < 02]’]-!Ln(n,d)+n+d—2L—k(n+d—2)LdN,
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this amounts to showing that n(6,d) + 4 < n(12,d) (with 2| 42| + 8 = 12 for
d = 2). Using this and assuming that hy > 1, we can conclude that

(670) h_2Ln(n’d)+n+d_2 S 1
for n = 2,4, 6, implying thus (6.67).

Step 6: Estimate for D2R;(P,q,q). It follows from Step 3, (6.60) with
Cry1 = % ‘tzo(‘f;’ff), and Step 5 with j = 1 for any 0 < n < m — 1 that there exists

C(n,d) > 0 such that
(6.71) D21 (P, q, @)y, < [l4¢, ., Pllx, < Cn,d)|Plx

Cri1 nt1’

Step 7: Bounds for the higher derivatives D{R (P, q,(']l). These bounds
follow from Gaussian calculus in Lemma [C4] the chain rule and the estimates for
%Gglﬁtf) (see step 5). We consider first the case £ = 2. As in (C.J)) in appendix
we set

H(e)() = /X P(X, + &) e (de),
respectively,
HO) = [ PO+ ey (46)

By Lemma and (C:24) we obtain

2

. d . .
D%Rl(P,q,q,q)(X, 90) = @’tZORl(Pa’Y(t))(Xa 90) = D2H(ek+1a ek+1a ek+1)

+DH(C,Cup1) = Ri(AZ | P.q)(X,9) + Ri(As, P.a)(X, )

where we use that
2

dar?

(v(#))

(v(®)
C oGk

. d ;
Crr1 = EL:O ) and Cryy =

By step 2 we have the estimate

103 (Pa.a.a)lx, < (143, Plx, + |4, Pllx,)-

Crt1

Now step 4 and step 5 yield the following bound, for 0 <n <m — 2,
14¢,, Pllx, <C0)Plx,., <C0)Plx,_,-

Applying now the steps 4 and 5 twice we get that

143, Pllx, < Cl4e,,, Plx,,, < COIPlx,,,

Cp Crt1 ntl —

and thus the required estimate for the second derivative D3R;. For general £ > 2
it follows from Lemma and the chain rule that

DéRl (P7 q, qf)
is a linear combination of terms of the form
Ri(Ap, -+ Ap P.q)

where
: & (v(#)) : ~
Ci:= 35|, Geri  with > Gi=t.
i=1
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Thus the desired estimate follows from step 2 and a k-fold application of ([G.60) and
step 5. 1

6.5. The map R,

LEMMA 6.7. Let m € N, 2m + 2 < ro. Forn = 0,,...,m let Z, denote
. . A
the space My, —2mt2n equipped with the norm |||, = ||~||](€1T)072m+2n. Let X,, =

Mo x Zn, Yn = My (for alln) and By = {q € RIXd: ||lq|| < &}. Consider the

Sym

map Ro: My x X X B% =Y, defined in [@I8) with X = X,, = Mo x M,, and
Y =Y,, = M. There exists a constant C = C(d) such that for any h > Le@p,
with hy = hi(d,w) and k(d) as in Lemma[521 (iv), A > 1, we have

(6.72) Ry € C™(X x B1,Y).
Moreover for any q and q with |q| < % and || <1, and any € < m, we have

|‘D{D3D§R2(H7K7Q)(‘H7K7qu "7(.I)Hk70

<C ”H”k,o if j=1,n=0,
1Kl 2, if j=0,n=1
and
(6.74) DIDPDiRy(H, K, q) =0 if j+m > 2.

REMARK 6.8. It follows from Remark and Lemma below that the map
R5 is actually a real analytic map from My x My to M. o

First, we estimate the main component of Rg, namely the map Ils.
LEMMA 6.9. Let B € By, X € S with X D B, and let K € M (Py, X). Then
(6.75) 2K (X, )0 < 2902 + d) + d2] (X, 0)2,

Note that since X € Sj we have X C B* and thus the maps ¢ — K(X, ¢) can
be viewed as an element of M*(B, X) on which the projection Iy was defined.
PRrROOF. Let H = [IK(X,-). By definition we have H(B,¢) = L¥*X\ + £(¢) +
Q(#, ), where

d

(6.76) L) = Z Z a;Vip + ¢ ;ViVip(x)

z€B i=1

1 d
(6.77) Q@) =52 D dijVip(@)V;(x)

wE€Bij=1

and
(6.78) L%\ = K(X,0)
(6.79) (p) = DK(X,0)(¢) V¢ quadratic + affine in (B*)*

680  Qe¢) = gDK(X,0)(p,¢) ¥ affne in (B*)’
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To estimate d; ; and a; we consider functions ¢ which are linear on ((B*)*)*

d
(6.81) p=> mim;,
i=1

where 7 = (1;)i=1...a € R% and m; is the co-ordinate projection m;(z) = w; for

r € Z%. Then for z € (B*)* we have V;¢(x) = n; and 0%p(z) = 0 if |a| = 2 or
|a| = 3. Hence,

(6.82)
1< 1 1 kX
. . X2
LS ol = 1Q(9)] = | 502K (X.0)(0. )| < SID*K X0l
ij=1
LD ROy
2 bl Pt 3 N
This yields max|,,—1|3 E?,j:l d; jnin;| < $h 2| D?*K(X, 0)|** and thus

(6.83)

[N

d d
d, | <d dil? | <dt O (@) < Lath2 DR (X, 0) .
3J 5] 2

i,j=1 i,j=1

Similarly, we have
(6.84)

d d 2
. . _ dk
LY g = 0($) = DE(X,0)(¢) < | DE(X,0)[**h 1<Zlml2> L=
i=1 i=1

The choice n; = a; yields

1
d d 2
(6.85) 3 o] < d <Z |az-|2> < dzh 'L~ T|DE(X,0)["".
i=1 i=1

For the evaluation of the second derivative we use a test function which satisfies

d
(6.86) ple) =5 > mijle =2l —7); Yoe(B)),
ij=1
where T = ﬁ > wep and n;; = n;,;. Then, for any x € (B*)*,

d
Vig(@) =Y mij(z =T,
i=1

ViV;¢(x) =i, and
Ve(z) =0 for |a| = 3.

(6.87)
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Now [(z — )| < %Lk < 29LF for any z € (B*)* and thus |V;¢(x)| <
3 (X0, i gl?)¥2LF which yields

d d
) 1 1 kd 1 d 1
(6.88) |¢lpp < E(2dd2LkL (> nigl) 7 +ILFE) (S niP)7 <
ij—1 ij—1

d
< (2% + DRI LFEEI N )8
i,j=1

Note that ) .5 7i,;(2 — T);a; vanishes in view of the definition of Z. Hence

d
(689) Z Ldkni7jci7j =

i,j=1

d
= U(¢) < |DE(X,0)["¥|¢l,, x < 2T +1)A LFEED (N |n i 2)2 | DK (X, 0)]F

ij=1
Taking n; ; = ¢;; we get
d d 2 )
6.90) > leijl<d| D leisl?] < (@%d® +d)h LG VM DR (X, 0)[M Y.
i,j=1 i,j=1
This yields the assertion with
(6.91) C(d) = max(1,d? +2%(d? +d),d?) = d? +2%(d? + d).

(]
PROOF OF LEMMA BTl We first note that Ry(H, K, q) = RY) H + RYY) K where
Ré?g and Ré?g are linear maps. Thus (6.74) is obvious. To prove the remaining

?)H and K +— Ré?gK separately. We

statements we can consider the maps H Ré a
will establish the relevant estimates for the directional derivatives ¢ — R(Q‘f;“’) and

t— Ré"b*“’). The assertion on the existence and continuity of the total derivatives
then follows as in the proof of Lemma[6.5 using in particular the continuity of the
map q — R'Y. We first consider the map

(6.92) RYH :=IL,RYH

a

which acts on ideal Hamiltonians. The integral of an odd functions against ,u,(gzl is

zero and

1 *
(6.9 [ Q0 u = 175 Y 4, 9ivie, 0
4,3

(cf. @RT)). Thus R'YH is again an ideal Hamiltonian and the action of Réa) in
the coordinates (A, a, ¢, d) for H is simply

(6.94) (Aa.e d) = A+ dijViVie? (0),a,c,d)
]
By (@3) we have [V;ViC\?, (0)] < O(d)L">D L% and thus
(6.95) IRSLH| < (1+C(ah > L") H], o < Cd)[| ]|y o,
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where we used the lower bound on h in the assumption of the lemma. The estimates
for DgRé?gH follow in the same way from (3] since B2 > Lk > [n(8.d)
Now let X € S : k with X D B and let K € M (P, X). We will estimate

(6.96) ILRYK(X,)

and its derivatives with respect to q. The operator Réqg is obtained by taking a

sum over all such X (for a fixed block B) with weight ﬁ Since there are at most

(3¢ — 1)2" such polymers X is suffices to estimate (G06).
By Lemma [6.9] and Lemma 5.1 (iv) we have

1
(6.97) %HH2R(‘1)K(X7')”I¢,O < |RWK(X,0)]

k, R d
< /X KX 1D, (d€) < 2X MK (Xl x < 22 1K (X) [ x0

k,X,2

d A
< 22| K.
The derivatives with respect to g are estimated using Gaussian calculus and

the estimates used in the proof of Lemma 65l Let |lg| < 4 and ||g| = 1, and

consider the curve y(t) = g + tg on a sufficiently small interval (—a,a). Let
(6.98) G(X,p) ==Tr[D’K(X,0)C].
Then (see Appendic [C)

4
dtli=o0
Now by (6.66) and (G.67)) as well as the assumption on h we have

IG(X,9)|"? < CIK(X, @)1

(6.99) (RYE)(X,¢) = (RYG) (X, ¢)

Using again Lemma and Lemma 1] (iv) we get

1

(6100) & DI ROK (X, ) (@) 0 =

HQR(’Y(t))K(X7 D
t=0

1 )d
C(d) ||t ro

lk,X

,2 d d d A
< |(R9G)(X,0) < 22 G(X)x 2 < C2 K (X)y, x4 < C2 KLY

The higher derivatives with respect to ¢ are estimated in a similar way using
the functions

(6.101) Go(X, )

Tr[D*K (X, 0)C, ], G3(X,¢) = Tr[D*G(X,9)C,],
(6.102) Gu(X,p) :=Tr[D*K(X,9)C21], Gs5(X,p):=Tr[D*G(X,0)C,],
(6.103) Gg(X,¢) = Tr[D*G5(X, )€ ].

and the estimates (see (6.60) and (661))

(6.104)  [G2(X,€)%? +]Ga(X, 9| < CIE(X, )™,

(6.105) | G3(X, "2 + G5 (X, €)% < CIG(X, " < CIK (X, -+,
(6.106) |Gs(X, €)% < C1Gs (X, )[F 5 < CIK (X, )5,

)
)

O
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6.6. The map P,
LEMMA 6.10. Consider the map
P1: Mm X Mm X J/\Z:m —>M;q

defined in ([GI0), restricted to B, (1) x B, x ]\/Z;,T C My x M x J/\Z;W with the
balls By, (1) and By, defined in terms of respective norms [||-||,., i.e., By, (1) = {Ie
M 17— 1|l < p1} and Bp2 ={Je My |HJH|k < p2}, and the target space
M. equipped with the norm ||- ||k+1,r' There exists Ag = Ag(L,d) such that for any
A > Ay and p1,p2, and B such that

(6.107) p1 < 1/2, po < A2 gnd B > A2

the map Py is smooth and, for any ji,j2 € N, satisfies the bounds

(6.108) =L|[D{' D Pi(I, ], P)(, .. )Hk—i-l L <
= dt2 5 A/4,B)
< Il (A2 1111, mae (1P 1)
(6.109) -4 |DJ' D3 D3Py (1, ], P)( T, J P)H,H“ <
= d+2 A/4,B)
< I, (A2 L)) PS8,
(6.110) DI'DPDEP =0 for jz > 2.

PROOF.  Since P; is affine in the last argument, (G.II0) is obvious and (G.I09)
follows from (6.I08). Indeed since P(&) = 1 the map P; can be written as

(6.111) P(I,J,P)=P)1,J)+ PNI,J,P)
with
(6.112) PULIHU) = > x(X, U5,
X,€P(U)
6.113 PNI,J,P)= (X1 U Xo, U)IVNKUX2) X0 P X,
1

X1,X9€P(U)
X1NXo=0,XoAD

Since P} is linear in P we have
(6.114) DsPy(I,J,P)(P) = PNI,J,P) = Jim 3Py (I,J,\P)

and an analogous identity holds for T—DJ 'DJ DsP,. Thus [@109) follows from

(6.108).
To prove (6.I08) we first consider the case j; = jo = 0. Pick U € Py ;. Taking

into account that
HF(U)HIC-‘,-].,U,’I‘ < HF(U)”k:k-i-l,U,r’
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and applying Lemma [5T] (iib) we get
(6.115) [|P{ (L, J, P)(U)ljs1,07, <

=TIPAN(
< > X (X1 U Xo, U)|I1][[},

X1,X2€P(U)
X1NXo=0,Xo#D

< Z Y(X1UX5, U) 2|U\(X1UX2)‘A_(1+2d+2)‘xl‘||13||;(£k/jEZFA/4(X2)_1B_‘C(XQ)I

X1UXo |X1|

Ny 5 >
M P2 k1, %

X1,X2€P(U)
X1NXo=0

Now
Xa|—2?|C(X.
and using that B > A2 and 2943 — 24 > 9d+2 e get
(6.117) |P{ (1, J, P)(U)|lyr.00 <

< 4lul 3 V(X1 U Xy, U)A-(F25 )X =X =2421e(Xa)]) | | (A/4:B)

k:k+1,r"
X1,X0€P(U)
X1NXo=9,Xo#2
Now, we will rely on the combinatorial Lemma 6.16 from stated in
(E2) in Lemma [E]

(6:118) X1, > (1+et(d)) Ky~ (1+ ()2 C(X)] with () = g

Applying this inequality with X = X7 U X» and using the trivial estimate C(X; U
XQ) < |X1| —I—C(XQ), we get

(6.119) (14292 X1 |, + [ Xal, +29721C(X2)| > (1 + «(d))| X1 U X2l 4
and thus
||‘P11 (fv jv ﬁ)(U)HkJrl,U,r

(6.120) < 4Vl Z (X1 U X, U)A~ At d)FK0Xal 4 ||]5||§€/§k/_‘if‘z,

X1,X2€P(U)
X1NX0=0,Xo#D

Similarly we obtain for P

= = [O\X1] o> [ X
(6.121) PPN D lr v < D XX O T
X,eP(U)
< 2\U| Z X(Xl,U)A7(1+2d+2)‘X1\
X,1€P(U)

Since a(d) < 1 < 29%2 and since | X1 | > [X1|rs1 it is easy to combine the estimates
for P} and P{. To prove (GI0R) for j; = jo = 0 it thus suffices to show that

(6.122) PA(U) 4V 3™ (X1 U X, U)A- (e @)Fi0Raln <

X1,X€P(U)
X1NXo=9

for any U € Py, once

(6.123) A > A(L,d) = (12)Ld(1+2d)(1+6d)'
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If |U],,, <27 then TA(U) = 1 and we use |U]x = L%|U|r41 as well as the fact
that the sum in (GI22) has at most 3!Vl < 322" terms, each contributing at most
A-1 < A=2"®(d) {5 bound the left hand side of [EI12Z) by

d

2
(6.124) 4ED13C0 AT < ((12)LdA_°‘(d)> <1

For |U|, ., > 2¢_there is no B € Py, such that U = B* and as a result X; U X»

is not small and U = X7 U X (cf. definition (Z69) of x (X1 UX2,U)). Hence, using
again that the number of terms in the sum is bounded by 3!V, we can bound the
left hand side of ([6122) by

(6.125) Al gL Wl A= (@)Ul §™ 5 (X U X, U)

X1,X2€P(U)
X1NXo=0

< (12)Ld\U|k+1A*¢x(d)|U\k+1 <1

once (12)L° A=) < 1.
For the derivatives

(6.126) 4 -LD{'DEPNI, T, P)U)I,....1,J,...,J)
= Y XX U) Y TSR N P(Xy)
X1,X2€P(U) Yle'P(U\(Xlqu)),‘Yl‘:jl

X1NXo=0,Xo#0 Yo €P(X1),|Ya|=jo

we proceed as above in ([G.IT5) and ([GEI17) to get

(6.127) L L ||D3 DI PN, T, YUY, ... T, T,

T 72 )||k+1,U,r <
= [UN(X1UX2)| =51
< Y (X UX, U)(INEEN T, (%) x
X1,X0€P(U)
X1NXo=2,Xo#D
~ |X1|—j2 LoJ1 o J2
X[l Ille 1P (X2) kb1, N1 M <

IN

Z X(Xl U X, U)2|U\(X1UX2)\Q\U\(X1UX2)|—j1 9lXal

X1,X2€P(U)
X1NX0=0,Xo#D

(A7) X5z (8) a2 CCa A2 G B AR T 1T <

~ (A/4.B O 2~ :
< 1PISLED NI, (A2 T01,) 7 <
<AlUl N (X0 U Xy, U)A- 2T X 2T,

X1,X0€P(U)
X1NXo=0,Xo#0
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Similarly we get

(6.128) 4L 1D} DY PYI, NI, ..., T T, Dl e <
i d+2. R S
<Y (X, U)X (AL X e | 7 )L
X1€P(U)
L,jl d+2 i . B dre
< M (AT 470 0 x(n, D)Am i

X,1€P(U)

Now (G.I08) follows as in the case ji = j» = 0 by using (GIT9) and ([E.122)) as well
as the obvious estimates «(d) <1 <2942 and | X[, > | X1|pt1-
(]

6.7. Proof of Proposition [4.6]

Proposition now follows from the estimates on the maps F, P;, R1, Ro, P>
and P53 and the chain rule, Theorem [D.29] in connection with Remark which
provides uniform control of the relevant derivatives. For the convenience of the
reader we spell out the details. We first write S as a composition of five maps
F,,...,F5 and describe the scales of Banach spaces X’ i = 1,...,5, on which
these maps are defined. Then we recursively identify neighbourhoods U™ ¢ X
such that

F, e C™(UY x By), i=1,...,5,
and verify that F;(U" x By) C U""" for i > 2 and that each map F; satisfies the

assumptions of the chain rule Theorem D20 Recall the definitions in Appendix
and denote by ¢ the composition defined by

(6.129) (FoG)(x,p) := F(G(z,p),p).
Define
(6.130) B=A2"  B=22B.

In the following we will always assume

(6.131) ro > 2m + 2.

We also assume that

(6.132) A>Ay(L,d)

where Ag(L,d) is the quantity in Lemma [6.T0] and

(6.133) h>L*Dh;  with hy = hi(d,w)

and k(d) as in Lemma 5] (iv) (see (BGS)).
Note that

(6134) S:F10F2<>F3<>F4<>F5,
where the maps F;,i = 1,...,5, and the scales of Banach spaces are given by

(6.135) Fi: X" x By - XY, Fi(Ki,Ks, K3,q) = Pi(K1, K3, K3),
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with
= A/4.B
Xizl) = Mﬁ| X (M:,ro—2m+2nv H'||l(c:k/+1,)rg—2m+2n)
A
(6.136) X = (M ami2n H'||I(c+)1,rof2m+2n)7
1
By ={g e R llall < 5k
and
(6.137)
Fy: X® x By - X, Fy(H,K,q):= (E(H),1 - E(H), Ri(K, q)),
with
= A/2,B
(6.138) X® = (Mo, ||'l0) X (M ro—2mszas I8 on);
and
(6.139) F3: X® - X®, F3(H,K) = (H,P;(K)),
with
: A/2
(6.140) X = (Mo, | ll0) X (Mry—2mr2n, 11 510 s0)

(6.141) Fy: X x By = X @, Fy(H,K,K,q) = (R:(H,K,q), P,(K,K)),
with

A

. @ = (Mo, ||ll0) X My (Myo—am2n, [[li)
(6.142) X!
and
(6.143) F5: X" xBi — X", Fs(H,K):=(H E(H),K),
with

5 A
(6.144) X9 = (Mo, | ll0) X (Mry—2mt2n, [0, _mson)-
Let
U =B, (1) x By, x M.,, C X with

(6.145)

1 _
< g pe < (AT
Then by Lemma we have
(6.146) FieC™(U™ x By, X),

and the derivatives of F'; satisfy the assumptions of the chain rule, Theorem [D.29
Let (Jgq denote the constant in (6.21)) in Lemmal[6.1] (we may assume that (g1 > 1)
and let

(6.147) ps = %min{pl,m} =

Then H € B, implies that E(H) —1€ B,, N B,, C Mﬁ|. Thus the choice

U® :=B,, x M,,
yields
(6.148) Fy(U® x By) cU™.
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Moreover by Lemma [6] and Lemma [65 the map Fo: U® x By — X satisfies
the assumptions of the chain rule, Theorem [D.29

Let
= (28)_1a U® = By, x B,
Then
(6.149) F3(U® x B%) cu®

and by Lemma[6.4] the map F3 is a smooth map on U® and on U™ satisfies the as-
sumptions of the chain rule Theorem [D.291 Note that we are applying Lemma [D.32]
for those maps which do not depend on q like F}, F5 and F5.

We have pgs < 1. Let qb:ﬂ be the constant in Lemma [6.7] and let

P3 P4 }
26153 4A 20 A7

Then it follows from (634) in Lemma [6.3 and Lemma [67 (with 7, = r¢) that
(6.151) F4(By; x By(1) x By, x B1) C By, x By, =U®.

Set U™ := By, X Byg(1) x By,. Then F: U™ x By — X/ satisfies the assump-

tions of the chain rule.
Finally set

(6.152)

(6.150) ps =

y P6 = y P7T = mln{

ps = s pPo = p7
%1

Then F5(U® x By) CU" and F5: U™ x By — X, satisfies the assumptions

of the chain rule. Now an application of the chain rule, Theorem [D.29 shows that

the conclusions of Proposition [.6 hold with p = min{ps, pg}.

and U® = B, x B,,

P8

O






CHAPTER 7

Linearization of the Renormalization Map

Here we prove Proposition [£.7] summarizing the properties of the linearization
@30) of the maps Ty, at the fixed point (Hy, Kj) = (0,0) guaranteeing that Hj
and K}, are the relevant and irrelevant variables, respectively. First, we prove the
contraction property of the operator C@ in Section We finish the proof of

—1
Proposition IZ7 in Section [722 with the bounds on the operators A4~ and B?.

7.1. Contractivity of operator c9

LEMMA 7.1. Let 0 € (1,2) andw > 2(d?22?t1+1). Consider the constant hy =
hi(d,w) and k(d) chosen from Lemma 51 and let L > 24 + 1, h > LDh,(d,w).

There exists Ag = Ag(d, L) such that

(7.1) ICOIN = sup  |CDK|L

o k+1,r S 9
K1) <1

for any ||q||§%, any k=1,...,N,r=1,...,r9, and any A > Ay.

PRrROOF.  Let us begin by evaluating the large set term: the last term on the right
hand side of ([£.83)).

LEMMA 7.2. Let L > 2%+ 1 and w > 18y2 + 1. Whenever h > L<®p,,
2x

and A such that 2A” T2% < 18(d, L) with « from Lemma [EQl and 8(d, L) from
LemmalE 3, then

A A
(7.2) IFIE < SIKTE
for any K € M(Py, X). Here, the function F € M(Pyy1,X) is defined by
(7.3) FUp)= > [ KX, 0+&mi(dS).
XeP\S, Y X
X=U

PrOOF.  Considering, for any X C U, the function (Ry11K)(X, ) and its norm
|(Ris1K)(X, o) "Y' as defined by [@25), we have

(74)  sup| (R 1 K) (X, )" w ) < sup [(Ris 1 K)(X, )[4 w ¥,
® @

To see it, we just notice that, as in (5.4]) in the proof of Lemma 5.1 one has

(7.5) [(Ri1 K)(X, )00 < (R K) (X, )| 05
and that
(7.6) wl;rUl () < wl;:i(-i-l'

T
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The last inequality amounts to

(7.7) > (2% = Dgrns1.(0) + wGra(p)) +3LF D Gralp) <

zeX r€0X
< Z (2%9k11,2(0) + Grs1,2(0)) + LFH Z Grt1,2(9).
zeU redU
This is clearly valid since gr:k+1,2(9) < gk+1,2(¢)s Gro(®) < Gr+1,2(p), and any
x € 0X \ OU is necessarily contained in 9B for some B € B(U \ X) and, in view
of (&I4), for each such B one has

(7.8) 3Lk Z Grz(p) < Z w(2%gk11,0(#) + Grt1,0(0))
r€OB zeB

once w > 6¢+ 1.
Combining now (Z4) with the bound from Lemma 5.1 (iv), we get

(7.9) Thrr a(O)FO) srpp <AV ST 2X K (X)), <
XGPE\S;C
X=U
A _ A __2x A
< E(P) AT ST (A <A ST AR )X < gk
XePp\Sk XePp\Sk
X=U X=U

Here, in the last two mequahtles we first used | X[, > (14 2a(d))[X],, , for any X
contributing to the sum (see [Bry09, Lemma 6.15]; (EI)) in Lemma [F.1]) and then
applied Lemma [[.2] assuming that A THRE < %S(d, L). O

Turning to the first term on the right hand side of ([@83]), we have:

LEMMA 7.3. Let L > 7, w > 2(d?22¥*1 4+ 1), h > L*Dhy, and K € M(Py, X)
with G € M(Piy1,X) defined by

(7.10) GUg = Y (1-1) > |X| (Ri1 K) (X, ).

BEeBy, (U) XeSsy,
B —U XDB
Then
(7.11) IGIE,, < 29+ (30 = 1)2" (507 + 213082 4 oL~ 1) | k||
for any A > 1.

REMARK 7.4. Notice that ([CI1]) is used later only for d < 3. Our method can
be extended also to include higher dimension when employing additional higher
order terms to estimate the projection of the second Taylor polynomial. o

Proor. Notice first that the sum vanishes unless U € Si1 and, necessarily, for
any contributing X, one has X C U and X* C U*. As a result, the norms in (.11
contain only the contributions of small sets and do not depend on A according to the
definition of the factor I'; o(X), j = k,k + 1. Considering R € M* (B, X) defined
by R(B,y) = Z)){(%séc ﬁ(RkHK)(X, ¢) and replacing the operator 1 — IIy by

(1 =Ts) + (Ty — IIy), we split G(U, v) into two terms,
(7.12) Gi(U,p)= > (1-To)R(B,y)

BEBL W)
B*=U
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and

(7.13) Go(U,0) = Y (Ta—TL)R(B,p),
BeB (U)
B*=U

and evaluate them separately in Lemma and Lemma [.7]
First, however, considering the norm |F(X, cp)|]’X’T, j =k, k+1, as defined in
(@20) for any F € M(Py, X) with X € Pj, and ¢ € X, we prove the following.

LEMMA 7.5. Let F € M(P,X), X € Pp, r = 1,...,19, and j = k, k + 1.
Then

j, X, —~ 1, X
(7.14) |F(X,p) - ToF(X,@)|""" < (1+|90|j,x)3t8(%p1)Z;lD F(X, to)|".
€0,1) 5=3

Proor. Cf. Lemma 6.8]. Introducing the shorthands
fle) =1 =T)F(X, )

and
fs(@) = DSF(Xa @)(@a?‘/))

for any s > 1, we express the terms contributing to the left hand side of (14l with
the help of the integral form of the Taylor polynomial remainder,

(7.15) o) = [ C5EDF o) dr

1
(716) DF(9)(@) = filp) — f1(0) — DA (0)(p) = / (1= D21 () (o ) dt =

1

(f2() — f2(0)) =

N =

(117) 3D f($)(%, ) =

= %/O sz(tsﬁ)(%’)dtZ/O D3F(X,t) (¢, ¢, ) dt,

and, for s > 3,

(718) SDU@)B 0 8) = D E(X )0 )

Summing all the right hand sides above and using the bound

s+m . . s+m 1, X | .18 m
(7.19) DT E(X 1)@y 0,05+ )| < DT E(X 1) 2] 1l xe
as well as the fact that

s [P(—1)? 5 ! 1 11 5
(7.20) |<P|j,x o 2 dt+|80|j,x o (1_t)dt+§|@|j,x+§:§(1+|Sﬁ|j,x) ’

we get the seeked result. 0
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LEMMA 7.6. Let K € M(S,,X), X € S, B € Bi(X), and U = B*, and
assume that L > 7, w > 2(d?2%4*t1 +- 1), and h > L*Dh,. Then
(7.21)

sup [(Rp4+1K)(X, p) —Tz(Rk+1K)(X7<P)|k+1’Xka+1( ) < 5L™F 2l k|| K (X M, x -
%)

For Gy defined in (L12)) we have

d A _d A
(7.22) IGO0 < 5273 = )P L2 K
PrOOF. Lemma [ZHl yields

(7.23)  [(Res1 K)(X, @) — To(Rps1 K)(X, @|’“+1;er <

§(1+|<P|k+1,x)3 Szlpnz |D*(Ri1 K) (X, to )|k+17x
s=3

for any ¢ € X. Interchanging differentiation and integration, we get

T

1
(724) Y 1P (Ber1 K)(X, t)| Y <

s=3

DSKX,t F (... ¢

_Z—sup/ukﬂ ag) | ZELL O 08|
— 35 P |<P|k+1,X

T

1 DK (X, tp+&)(¢, .., ¢) |l x
_| sup / Hk+1 (dg) ‘ NE NG ‘ S
St p#£0 Jx |80|k,x |90|k+1,x

<1 ¥ /X i (A€) | K (X, o+ €)] P

s=3

In the last inequality we used the bound (B.21]). Next, we apply

|K (Xt + &) < K (X)) xrwh (tp +€)

and (E29)), to get
(7.25)
X
k+1,X _3d W41 ()
Z |D (R 1 K) (X, to) M0 < 2P L5 | K(X) |y x. — i (49)-
5= 3 wk-l,-l(@)

Here we also used the fact that wy,,  (fp) is monotone in ¢.
Bounding (1 + [¢],,, x)® with the help of

(7.26) (1+u)® < 5e*’
w2
(proven by showing that min,>q (1i-u)3 > 1), we would like to show that
(¥)
(7.27) lelpr x < logL

Wi k+1(90).
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Notice, first, that
(7.28)

wi'p1 ()
)?L 2 Z ((2dw = Dgrr1,2(0) + WGkJrl,m(@)) + Z Grek+1,2(0)+
W1 () z€U\X zeU

+IML=3) Y Grria(p) =3LF Y Gralp) >
z€dU z€dX\oU

> Y (2% = Dgrira(p) + LHIL=3) Y Gryra(e).
zeU\X xedU

log

To verify the last inequality, we show that
(7.29) 3LF Z Gra(p) < Z Grkt1,2(p) + Z wWGt1,2()
z€dX\OU zeU zeU\X

in analogy with (BI5). Indeed, arguing that any x € 9X \ 9U is contained in OB
for B € B (U \ X), and applying again Proposition [B.5] (a), we have

(7.30) B2LF > Gralp) <

x€0dB
3
<2e(YIVe@)P + L% Y [Vie(e)P) + L8 Y0 D LETIRVp) <
zEB zeU,(B) r€IB s=2
<h?2 ) Gralp) + h*2cLF Y L2grri1.(9),
z€B r€dB

where z is any point z € B. Using |0B| < 2L~ D% we get the seeked bound once
w>18y2and L >5 (when 6¢ < w and 6¢L2 < 1).

In view of (Z2]) and using that |<,0|iJrl v < |<,0|iJrl u» it suffices to show that

: lepro < (27w — Dgrr12(9) + LFL = 3) Y Grrrale).
(731 el
zeU\X xedU
Clearly,
(732) h2|g0|i+11[j S Z L(k+1)(d—2+25) ma)$|vss0($)|2
155<3 zeU
Applying Lemma [B.7, we get
(7.33)
) 4 5 2L(k+l)d 5 f J
LD max| V()| < T > [Ve(@)[*+2LE D (diam™)* max
redU
Using that |0U| > 2dL( D=1 the first term above is covered by the second term
on the right hand side of (Z31]) once L > 7,
o[, (k+1)d o[, (k+1)d 1 .
_ LrkH k(r _
(7.34) ST < saree — gH S 2 (L —3).
Taking into account that diamU* < d2¢L*+1 (here we use the fact that U is nec-
essarily contained in a block of the side 2L¥*1), the second term is bounded by
d2224+1 [, (- 1)(d+2) max 1. [V2p(z)]* and will be treated together with the re-
Vio(z)?, s = 2,3, contained in |g0|i+17U.

Vi (a)|”.

maining terms max;cy+
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Using the fact that the number of (k + 1)-blocks in U is at most 2%, we get

s 2 d s 2

(7.35) max|Vop(z)] <20 Y7 max|Vop()[.
BeBr1(U)

This yields
(736) (d222d+1L(k7+1)(d+2) + L(k+1)(d+2)) Inéa'U)i V2(/7($)|2 S

S 2d(d222d+1 4 1)L(k+1)(d+2) Z maB)E V2<p($)|2

BeBr1(U) e
and
(k+1)(d+4) 3 2 < gdg (k+1)(d+4) 3 2
(7.37) L ;ré?}gv p(x)|” <2°L Z max Vip(x)|”.
BGB;C+1(U)

Each of the terms on the right hand sides will be bounded by the corresponding
term in
(7.38)

4
Ry QW= Dgrra(p) = Q4w —1) > Y LETAE sup [Vop(y)|,
z€B\X rEB\X s=2 yeB;

Indeed, observing that gi+1,,(¢) is constant over each (k + 1)-block B C U, and
the volume of B\ X is at least L*¥ (L4 —2) = L(k+Dd(1 — (2)4) gince the number
of k-blocks in X is at most 2¢, while B consists of L? of them, we need

(7.39) 27(292HH1 4 1) [HD2) < (9, — )L (EHDI(] — (2)d) 204D
and
(7.40) 9d  (k+1)(d+4) < (de _ 1)L(k+1)d(1 _ (%)d)L4(k+l)'

These conditions are satisfied once w > 2(d?22¢+1 +1).

In summary, combining (25)), (726), and (Z.27), we have
T

1 s
(T41) (Ul x)® D 1D (R K) (X, )1 <
s=3 "’

_zd
<5L7 = 2‘X|k||K(X)||k,X,r wllc]+1(80)-

for any ¢ € X and any ¢ € (0, 1), finishing thus the proof of the inequality (Z2T]).
To prove the bound (Z.22)), we use that |Bx(U)| < (2L)? and the obvious bound
{X €8, | X DB} < (37— 1), to get
_sd 1
(7.42) G1W)llgsrpe <5L7F D0 Y e 2K (X ., <

ol Xl
K (U) XESy
B -y XDB

<5L¥(20)2(3¢ - 1)K N2 < 52042 (37 - 1)L | K| ).

O
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LEMMA 7.7. Let K € M(Sk, X), U = B*, and assume that L > T and w >
2(d?224+1 +1). For Go defined in (T13) we have

(743) NG2(U)llgsr,u,r <
< 92 dH(gd _1)2% (2442 _1)L52 4 (8L + 2L72)) | K|,
Recall that G2(U, @) = > ses,w) (Tz — o) R(B, @) with R € M*(By, X) de-

B*=U
fined by R(B,¢) = > xes; ﬁ(RkHK)(X, ¢). The polynomial [IoR(B, ) =
XDB
A Bl+£4() + Q(p, ) is characterised by taking a unique linear function £(¢) of the
form @I9), £(p) = > e(p)- [Zle a; Vip(x) +E;’i,j:1 ci,j ViVjp(z)], that agrees
with DR(B,0)(¢) on all quadratic functions ¢ on (B*)* and a unique quadratic
function Q (¢, ¢) of the form @20, Q(¢, @) = 3¢ (pe)- ot jo1 dij Vie(@) V()
that agrees with $D?R(B,0)(,¢) on all affine functions ¢ on (B*)*.
In view of the definition of the map Ry we can write

R(B, ) = /X k1 (d€) Re(B, )
with
Re(B,p)= 3 ﬁmmw»

Xesy,
XOB

Observing that
D(Ri41 K)(X,0)(p) = /X i1 (d€) D (X, €)(),

DRy K)(X,0)(, ) = /X i1 (4€) DK (X, €)(, ),

and introducing, similarly as above, IIoRe (B, @) = A¢|B| 4 Le(¢) + Qe(p, @), the

unicity implies that £(¢) = [ r11(dS) £e () and Q(p, @) = [ pi11(dS) Qe (0, )-
Given that G2(B, @) = (To — II2)R(B, ¢) is a polynomial of second order, we

have |G (B, )" ™" = |Ga(B, @)%, In a preparation for the evaluation of
this norm, we first evaluate separately the absolute value of the linear and quadratic
terms P;(p) and Pa(p) in Ga2(B, p).

Observing that for any affine function 7 and any quadratic function s on
(B*)* we have Pi(¢ — p1 — ¢2) = Pi(p), we get

(7-44) \Pl(so)\ = ’/X Mk+1(d§) (DRﬁ(BaO)(@— Y1 — 902) —fﬁ(@— Y1 — 902))‘ <

1
<etron Y m”K(X)”k,X,TlsD — 01— 2|p p- /Xukﬂ(dﬁ)wkx@ <

Xesy,
X>B

d d
<27 (37 - 1)* 2" —1)||K |y, I — o1 — @2l), p--
Here, we first used the inequalities

(7.45) lle(p)l < (272 —2) Y~

Xesy,
XOB

1

—|K(X, &) .
|X|k| ( 75)' |90|k,B
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and

(7.46) IDR¢(B,0)(9)| < > |X| KX, el
XeSy
XDB

combined with the bounds |K (X&) < K (X))l x ik (&) and |o|, x <
¢l 5> and then the bounds [y i1 (d€)wif (€) < 21Xlkand, as in (T42), {X €
Sy | X o B} < (3% —1)2". To verify (Z4R), we first observe that le(p) =
Z?:l a;(§) si + Zij:l c;j(§)ti; where s; = si(¢) = >, c(pey- Vip(x) and t;; =
tii(p) = ZwE(B*)* V:Vp(z). The same values of “average slopes” s = {s;} and

t = {t;;} are obtained with the quadratic function
(7.47)

ws(z) = L™ (242 _3)~d Z Z i+, 1)IJ)3:Z+L_dk 2d+2_3y~d Z tijTiT;,

where 73 = L=%(2912 — 3)74%" oy, (notice that (B*)* contains (2d+2 —3)d
k-blocks). Further, observe that

dk dk 4 [ 2
(7:48)  hlpsely x = max(L¥ max| Vs ()] L% max|V2pus(@)]) <
<L 3)_dmax(|s| +2l6/LLF(22 —3), Lk|t|> -

= L% (272 = 3)7ds| + LTF TR — 3)= ) < (14272 — 3)hgl, p..

Here, the last inequality, valid for any ¢ such that s;(p) = s; and ¢; ;(¢) = 5,
is implied by obvious bounds max ip(z)] > L~ (24+2 — 3)=d|s;| and
mMaXyec(B*)* JQD(I)| > Lidk(2d+2 — 3)7d|ti1j|.

Now, for the quadratic function ¢g ¢ we have l¢(ps ) = DRe(B,0)(pst). As a
result,

(7.49)  [€e(p )I=|€5(sost)| =

1

k,X,r
= Z |X| |DK(X 5)(30513”— Z |X|k|K(X7§)| |¢S,t|k,X§
Xesy, Xes),
XDOB XDOB
k,X,r
§(2d+2_2) Z |X| |K(X §)| | |k:B*'
Xesy,
XDOB

Here, the last inequality, valid for any ¢ such that s;(p) = s; and ¢; ;(¢) = 5,
is implied by so(z)] > L% (2442 — 3)=d|s;| and
jola)] > Lotk (22 —3)=djg, .

Choosing now, for any fixed ¢, the functions 1 and @9 as an optimal approx-
imation in accordance with the Poincaré inequalities,

. [
(750) <p1larflﬁfne |(p— (p1|k,B* < EL (§+1) wes(ljj_glji)* |V2 ( )| <L~ |(p|k+l B*
and
(7.51)
. 1 a
L nf e —er— el pe < ﬁLk( D sup [Vip(@)| < LTE gl e

@9 quadratic IG(B*)*
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we get
_(d d d
(7.52) |Pi(p)] < L7GF222° (30 — 1) 272 — 1)||K ||, |0l 411 5
Similarly for the quadratic part. First, we prove the bound
d d 2
(7.53) [Pa(p. )| <22 4137 = D> || K|y, |0l p--
While deriving it, the bound (Z43) is replaced by

(7.54) Qe(p, ) < Y

XeSy
XD>B

k,X,r

For its proof we consider the linear function

(7.55) os(2) = L7242 — dZS T

with the slope s; = s;(p) and

(7.56)  hleslp x =

= L' max|Vis(2)| < L7% 2772 = 3) s = L7 (2772 = 3)7ls| < Bl -

yielding

(7.57)  |Qele, 0)| = Qelps, pa)| < Y = |3D*K (X, &) (s, 05)| <

XeSy
XDB

1 kX2 1 kX, 2
< — | K (X o < — o oo
< Y ROl £ 3 SRR ol

XeSy
XDOB XDB

IXI

Validity of (Z53) for all g, implies |[Pa(p, ¢)| < 22235 1) | K ||, . @l p- ¢4 -
for all ¢ and 1. Taking now into account that Ps(¢1,¢1) = 0 for any affine function
p1, we rewrite P2(p, p) = 2P (0,0 — 1) — Pa(p — 1,0 — 1) to get

(7.58) |Palp. )| < 22137 = )P IKI e = el - (el g + 10 = @1li o)
Applying further (Z50), we get

(759)  |Pelp,9)| < (4L 4 L-2) 22 0 30— 1) K| Pl e
Finally, combining (C52]) and (C59), we get

(7.60) [(T2 —TIa) R(B, )| <

< 22d (3d_1)2d ((2d+2_1)L7(g+2)+(8L7(d+1)+2L7(d+2))|<P|k+1)B*)

(A
‘P|k+1,B* KHk,r

For the first and second the derivatives, we first notice that

(7.61) D(Pi(p) + Pa(,9))(¢) = P1(¢) + 2P(p, &)

and

(7.62) D*(Pi(p) + Pa(p, 9)) (¢, 9) = 2Ps(¢,¢)
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yielding with the help of (T52) and (T59)

(7.63) | D(Pi(o) + Palio, o)) |77 <

d d _(d _ _ A
<27 (30 - )2 (212 = LB 4 (6L D AL D)ol ) K

and, using again (Z.59),
(7.64)

|D*(Pi(p) + Pa(p, ¢

k+1,B* d d _ _ A
)| <2237 - 1)2"(8L~(HV) 4 2L~ () i |,

Combining last two inequalities with (Z60), we get

(7.65) |(T> — L) R(B,o)" 7" < 22" (3% — 12" (242 — 1)L~ (3 +2) ¢

+ (8L WD 2Ly (ol 5 )L @lsrpe)

K]
With (1 +u)? < 2% and (T2Z7), we get

(7.66) N1G2(U)llps1,0,r <
S 22d+1(3d _ 1)2d(2L)d((2d+2 o 1)L*(%+2) + (8L7(d+1) + 2L7(d+2))) ||K||§£\2

yielding the sought bound. O
The proof of Lemma [Z.1]is the finished by combining the claims of Lemma [7.2]
and Lemma O

7.2. Bounds on the operators A@7" and B@

The bounds on operators A~ and B are rather straightforward.

LEMMA 7.8. Let 0 € (1,3) and w > 2(d*22¢T! 4+ 1). Consider the constant
hi = hi(d,w), (d), Ag = Ao(d, L) as chosen from Lemma[71l Then there exists
Lo(d) such that

-1 1
(7'67) HA(q) | 0;0 < ﬁ
and there exists M = M (d) such that
a d
(7.68) 1B, < ML

for any |lq| < %, any N ¢ N, k =1,...,N, r =1,...,r9, and any L > Ly,
h > L%hyi, and A > Ag.

PRroor.
When expressed in the coordinates }\, a, ¢, dof H , the linear map A according
to (@RT) keeps a, ¢, and d unchanged and only shifts A by

d
1 : .
3 2= 2 duVivieh o).

z€B i,j=1
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Hence, A" only makes the opposite shift and thus

(7.69) AT H] =

= L%\ + L7 hz |t

)’“hz |cw|+ Z E

i=1 4,j=1 3,j=1
Ldk
Z di.i1| Vi V52, (0)].
7,j=1
Using
1<K . 1 .
(7.70) 3 Z |di ;| < ﬁ”HHk,ov
ij=1
we get

A~ 1H||k0 (1+C20Lnd)h )HHHk+10

using that max{,_,|V;V? Ck+1( )| € e2,0LFLD according to Proposition Bl
Given that h? > L2<(d) = [1(d)+d we can get

(7.71) 14 o oL"Dh™2 <14 cpoL™ 1 < 97Y/2

once L > (fggz ) 1/d

For the second bound, using Lemma [6.9] the first inequality of (£40) and
Lemma B1{iv),

(7.72) ||BK||k+1,0S Z HH2 Z |X| (Ri41K)( )Hk+1,0§

BeB(B) g{e}sg

< Z C Z |X| (Rt 1 K) (X))o, x

BEB(B))  X&Sk

| X
< ¥ 202 1K ()l <

BeBy(B') X<

21Xk A A
< XX g MK < LMK,

BEB(B') XESk:

for any B’ € Byy1. Here the factor L? comes from the number of blocks B € By, (B’)
and we included into M = M (d) the constant C' = C(d) as well as the bound on
the number of short polymers containing a fixed block. 1

Lemma [IT] in conjunction with the estimates above give the estimates ([@84]) in
Proposition 7]
PROOF OF REMARK L8]

The smoothness of the operators with respect to the fine tuning parameter g
follows for B and C'? with the corresponding bounds in Chapter B and for A
from the regularity of the finite range decomposition [@3), i.e., L85 follows with
C =C(d,h,L,w) >0 and r > 2+ 3 and all [|q|| < 1. O






CHAPTER 8

Fine Tuning of the Initial Conditions

Finally, we address the fine tuning Theorem L9 First, in Section Bl we prove
the smoothness of the map F assigning a fixed point of the renormalisation map
T to initial values H and K. Then we can specify the map H that chooses the
initial ideal Hamiltonian H in a self-consistent way so that it is reproduced in the
first component Hy of F. Its properties summarized in Theorem are proven in
Section

8.1. Properties of the map F

Considering the space E with the norm |||, with ¢ > 0 as defined in (Z21])
and the Banach space Y, introduced in (£97) and [@93), we find a map F from a
neighbourhood of origin in E x M (with a shorthand My = My(By, X)) to Y, so
that T(F(K, H), L, H) = F(K,H) with the following smoothness properties.

PROPOSITION 8.1. Let d = 2,3, w > 2(d?224+1 4+ 1), ry > 9, and 2m + 2 < g
be fized and let Lo, ho(L), Ao(L), M > 0 (see [@I])), and § € (1/4,3/4) be the
constants from Propositions[{.0 and[{-7 Then there exist constants o = (M, 0) >
1 and n = n(0) € (0,1) determining the norm of the spaces Yy, r = ro,r9 —
2,...,m0 — 2m and, for any L > Lo, h > ho(L), and A > Ao(L), a constant
¢ = ((h) determining the norm ||, on E and constants p,p1,p> > 0 so that
there exists a unique function F: Bexm,(p1,p2) — By, (p) solving the equation
T(FKH),K,H) =F(K,H) (see @I0)). Moreover,

(81) F e ém(BEXMo(ﬁlvﬁQ)aY)

with bounds on derivatives that are uniform in N, i.e., there is C such that
. . . . Al g

(82) IDED3F(CHY K, K H o H)ly,,,, < CIHIGIKIL,

for all (K,H) € BeExnz,(p1,p2) and all £,7 € Ng with £ + 7 <n < m.

The proof of Proposition is based on Theorem [E.1] applied in conjunction
with Propositions and 7 Here, the map 7 : Y x E x My — Y plays the
role of the map F' and the sequence of spaces Y =Y,, = Y, ;2 — ... = Y, _om,
2m < rg, the role of the sequence X,,, n =m,m—1,...,0. Using O, := By (p),
W, = Bu(p) = {K € E : [Kll, < p}, and V, == {H € Mo : [H], < p}, we
just have to verify the assumptions of Theorem [E] that is we need to prove the
following claim.

LEMMA 8.2. Let L,h, and A be constants as in Proposition [l and let 0 €
(1/4,3/4) and M > 0 be the constants from Proposition [[.7], Then there exist

parameters « and n of the norms in Y, depending only on 6 and M, constants
p >0, and ¢ depending on h and A, so that:

89
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(i) T € ém(Op X W, xV,,Y) with the bounds on corresponding derivatives that
are uniform in N,
(1) T(0,0,) =0 for all L €V,, and

) HDlT(y, O,H)’yzouﬁ(y‘ v <0 forall €V, andr =r9,10—2,...,79—2m.

PRrROOF.  Let us recall the definition of the map 7. The 2NN coordinates of the
image
(8.3) T(y,K,H)=y=(Ho,H1,K1,...,Hn-1,Kn_1,KN)
are defined by
(8.4) Hio= (A7) (His - BIVKL) and
K1 = Si(Hy, Ky, H),

where we set Hy = 0 and
(8.5) Ko(X, ) i=exp{ = > H(w,9)} [ K(Ve(a))
rzeX xeX

with K € E. Notice that A}f, B}, and Sy,(Hy, K}, ") depend on H only through
the coefficient of its quadratic term g = g(H). We will also use a shorthand

(8.6) Ko(X, ) = KX, 0) = [] €557 (2, 9)
reX

with

(8.7) KM (@, 0) = exp{—H(xz, ) }K(Ve(2)).

Here we explicitly invoke the dependence of the map Sy on k in contradistinction
to Chapter [0, where the index k was omitted. Notice that the only two coordinates

of 7 that depend on K (through Kj) are Hy = (AéH))fl(Hl - BéH)KO) and
Kl = SQ(HQ, Ko, H)

(i) The fact that T € 6””((9,) x W, xV,,Y) follows from Propositions .6l and F.71
We will treat separately the coordinates K1, k =1,2,..., N — 1, the coordinates

Hy, k=1,2,...,N —1, and finally, the coordinates Hy and K, that depend on K.
Reinstating the dependence on k, we denote more explicitly the sequence of

normed spaces My, = {M(P;, X) : ||H§CAT) < oo}, 1 =7T0,70 — 2,...,70 — 2m, as
well as My, o = (Mo(Bk, X), ||} 0)- Then the claim of Proposition [L.6]is that the
maping Sk : L{k,p X V1/2 — MkJrl = Mk+17T0 belongs to Om(uk_’p X V1/2,Mk+1)
forall k=1,2,...,N — 1. Here,

A
Unp = {(H,K) € Myox My, |Hlo < p IK[5) < p}

k,To

For the coordinates Hy, k = 1,2,..., N — 1, we first observe that the defining
map Hy = (A,(CH))_l(HkH — B,(CH)K;C) is linear in Hy4q1 and K} and that it does
not depend on K. Consider thus the map

(8.8) G: (y,H) — (AP (Hyp — B KY)

and verify that G € C™(Y x V,, My ).
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First, we will address the smoothness of the term B,(CH)Kk. Comparing the

formula (£382) with ([GI8]), we see that

BeB(B’)

obtaining the needed smoothness relying on the fact that Ry € cm (Up,p xVy, M1, 0)
(see Lemma [6.7]) and the fact that the projection H +— g(H) is a linear mapping.
Denoting H = Hy41 — B,(:{)K;C € M1, and rewriting it in terms of the coor-

dinates A, a, ¢, d we see that the linear operator (A,(:{))_1 only shifts the coordinate
A by

d
1 .
(8.10) —3 2. 2 di Vi),

zE€Bi,j=1

keeping the other coordinates unchanged (cf. the proof of Lemmal[Z.g)). The deriva-
tives of this shift can be estimated by finite range decomposition bound (@3] yield-
ing

(8.11) ”:F_zl \(Deviv;fcgj”))(o)(}k, e ,’H)] < CQ74L*den(2,d)||;qu)
0=2

where we used that
1< 1
(8-12) 5 Z |di,j| < EHHHkH,o
ij=1
according to (E44]). Hence
D)o } ) ) )
ID (AT HY (A ) = D Gy, M)A H)

(8.13) .
< o LDRT2 | H o7,

for |H[l, < 3 and y € Y. Actually, in [AKMI13] it is shown that ViV;C,(gr)l (0) is
analytic in q.

Finally, we consider the coordinates Hy and K. Their derivatives with respect
to K have to be evaluated by composing the derivatives of Hy and K with respect
to Ky with the derivatives of K with respect to IC. We first deal with the coordinate
K which can be viewed as a composition of maps

(814) F:MoyxExMgy— MO)QXMQJ‘O and SQ : (M()XM())TU)XMQ — Ml,ro'
Indeed, with

(8.15) F(Hoy, K, H) = (Ho, K&
we get
(816) Kl = SQ OF, i.e., Fl (Ho,K:,H) = SQ(F(HO, IC,H),H)

Here, KéK’H) is the polymer defined in ([8.8]), where we explicitly denoted the de-
pendence on K and H.
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Now, we apply the Chain Rule according to Theorem jointly with Re-
mark [D.30] providing bounds on derivatives that are uniform in N. The needed con-
dition Sy € C™ (Uo,p x V12, M 1) is just the corresponding claim (T8) from Propo-
sition 4.6l For the map F, there is no grading on the domain space My x E x M,
and we will actually show that F' € CI"(Up,, x W, x V,, My x My ;). Indeed,
choosing a suitable parameter ¢ and p, both depending on &, we will prove that the
derivative D7 DZKé/C’H)(I.Cj ,H') exists and

, K i S
(8.17) |protsgE || < ki
for any j,£ < m + 1 with C; = Cy(h, A, m), and thus also

(8.18) lim "DjDZKéK’H)(ICj, 71%) — DI D KM (KA Hf)’

=0
(K/ 1) = (K, H)

0,r

for any j,¢ < m and any (Ho, KK, H) € Uy, x W, X V,.
Indeed, in view of the product form in ([83]) and ([&8]), we first have
(8.19)

. . 1)40 .
DR )= S iy T (Ao e MoKt
keN : ex
ZmeeX ka=2¢ e
and thus
(8.20)
DD K A = Y Y L H k T (e, ptee?e0))
X . YCcXx xeX -
AN = S =
< [T £Vew) [ K(Vew)
yey yeX\Y

- S () D T e

k |
keNG YcXx €x reX zeY zeX\Y
Zmex ep—e |Y1=7

Here, we use the shorthand IC(()K’H)(QJ, ¢) = exp{—H(z, @)}K(Vw(x)) Observ-
ing that, in the case k = 0, the unit blocks are actually single sites, Bi(Ay) = An,
we can apply the claim (iia) of Lemma Bl to get

s21) [T o) TT K 0|

0,X,r
yey yeX\Y
(M H K H,H Ky
< TTURE ™ Mo iy TT T Mo -
yey yeX\Y
Here we introduced the shorthands
H,H ky . ,
(8.22) Ky 'y, 0) = =H(y, ) K™ (y, )
and
= (H,H ey y L (K,
(8.23) K Ny, 0) = —H(y, ) K (5, 0).

Further, using definitions (£30) and (27,
H,H ey H,H ky
(824) KT 1y = sup KT (4,0 4y 0 XP{=Goy ()}
@
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with the weight function Gy ,(¢) defined in (@29) and
ro

HH Ky, 1 o (HH Ky ) ;
(8.25) K 0o yy0e = > = sup |D Ky @, 0)(@,- -, 9)|.
Ay} ~ 7l 12lo. 1y <1

Using the definition {2I]), we can bound

, 1o, 1. 1.
(8:26)  1@lg gy = [max, sup & Vo (w)] = max(+ V)], +1V*¢w))-
Now
(8.27)

o~ (HH K .
d"Ky Dy, @ + )

r - (H,H by . .
sup  [D"KG (1, 0)(p,. . 0)| < sup -

[6lo, {43 <1 [&lo, (43 <1

t=0|
Defining v = Vi (y), w = VZ¢(y), and z = 3 (|v]? + |w|2)1/2 we notice that

e (H,H by .
4Ky 'y, 0+ t¢)
dtr

is a sum of terms of the form

(8.28)
(A+av+3(qu, v)+éw)™ (av+(qu, 0)+cb) 1 (qo, 1) (ad+(qu, V) +2w)7 (gi, )72
d* (v + to)
dts t=0
such that g + i1 + 42 = ky and i1 + 24 + j1 + 2j2 + s = r. Using the definition of
the norm |||, and the fact that § max(|o], i) < |¥lo, 4y < 1, the absolute value
of the prefactor above can be bounded by

x exp{— (A + av + 3{qu,v) + cw)}

2i1+i2+j1+j2 ||7_'[||él+j2 (1 + Z)2i0+i1+j1
Now assume that
(8:29) 1M, <7 <1
Since k, <m+ 1 and j; < m+ 1 we have

16(m + 1) )2(m+1

(8.30) (14 z)%otitin < (1 4 2)4m+D) < (1+ ) exp{pz*}.

In the last inequality we used that for a > 0, z > 0,
2a.\a ~
(8.31) (1+2)°*<(1+ %L) /2 exp{pz?}

To see this observe that for a > 0 the maximum of the function

(8.32) t > (14 1)%exp{—pt’}

for t > 0 is attained at
_ 1 2a
t:t:— 1 7—1
(it =51

(1+20)"=(1+ ?)

and is bounded by
(1+1)°
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As a result, there exists a constant C(rg) so that for || < 1 and hence |0| < h,
we have
(K H ey .
S R ‘
der t=0

al 16(m+1)\2(m+1) | 1711 ky
< C(ro) (1 + 10Ul [#]lo"

)

— m 2(m—+1 . y ~ « «
< T(ro) (1 + 20ty 20D gy exp (322} 7 hlelogK(w)]

|| <o

0

(8-33) x exp{[ﬂz|2}<z

s=0

d°K(v + tv)
dts

t=0

for any |||, < p, and any r < ro. Finally, choosing
(8.34) ¢=>h

and taking into account that

1 1
(5.35) Gou($) 2 VoW + V2w = 2

and the definition (2.21)) of the norm |||, and using [v[ < hz we get

ik =117 Ry ~ _
(336) KTl gy < CIAG" sup (exp{ (7~ 1)} expf¢ 2 K

with
A O — 16 1) 2(m
537 C=Clwm ) =Tt + D e
The same estimate holds for K™ ) if we replace ||’C||¢ on the right hand side

by ||IK|l ¢~ The exponential term can be controlled if for given h we choose ¢ and p
such that

h?
(8.38) a +p<1
In particular we may take
1
(8.39) p=5 and (= V2h.

Note that [838]) implies (834) and (829).

Summarising, we get,

(M H HHky
(8.40) | [T K™ o) T Ko <
yey yeX\Y o

< CXRSIR NI

Since £ < m + 1 the sum in 820) over k € N§ with >°__ k, = ¢ involves at

most (m + 2)X! terms. The sum over Y involves at most 2/ terms. The counting
terms with the factorial in (820)) are bounded by (m + 1)!. Thus (B20) and (840)

give
DI DEK (X, K, H, Ky K H, )

(8.41) _ I
< (m+ D)1(2(m + 2)) XX ) XKL .
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Thus with ¢ = v/2h we have for all K € Bg(p;) with
(8.42) pr = pr(A) = (2(m +2)(m + 1)!AC)
and all H € Bpg,(p) with p = %,
(8 43) FA(X)HD{D%K()(X, IC) Ha ’Cv cee 7I.Ca 7_.[5 .. 77-.[)”0,7‘
. L ’
< ChIKlENHll
with
(8.44) Ci = Cy(A,m) = ((m+1)1(2(m+2)CA)" .

Finally, for the coordinate Hq = (A(H))a1 (H1 — B(()H)KO), we can again apply
the Chain Rule according to Theorem [D.291 The image coordinate H is obtained
as a composition of maps

(8.45)
F: Ml,O x E x My— Ml,O X ]\4'0)T0 and G : (Ml,O X MO,TO) X Mgy — MO,TO

with
(8.46)
F(Hy, K, H) = (Hy, K§™) and G((Hy, Ko), H) = (AS) 1 (H, — B{P K))

yielding Hy = G o F. Both needed conditions, G' € cm (Y xV,,Mg,,) as well as
FeClr(U,, xW,xV, My x Mjy,,) have been already proven.

(ii) This is an immediate consequence of the definition of the map 7 and the fact

that S(0,0,H) =0 (cf. (£G2).

(iil) Using that Ky = 0 for K = 0 and that gﬁ’; (0,0,H) = gﬁ,’; (0,0,H) =0, we can

compute the derivatives of g = T (y,0,H) at H = 0:

OH {Akl ifj=k+1l,j=0,...,N—2

0H, 0 otherwise,
(8.47) B
0Hy |-A;'B, ifj=k,
0K; 0 otherwise,
and
OK 41 —0
OH, ’
(8.43) - N
0Kpy1  |JCp it j=k#0,
oK; o otherwise,

fork,j=0,...,N — 1.

Consider now a vector y € Y, with [ly[ly, <1 and its image ¥ under the map
T (y,0,H)

oy y=0’
o7 (y,0,H)

8.49 7=
(8.49) 7] 9y veo?
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Since [[y[ly. < 1, we have [|[H [, o < n*, k= 0,...,N = 1, and | K|, < L,

k=1,...,N, for the coordinates H,Ey), K,gy) of the vector y. Using H,gy), K,iy), for
the coordinates of the image 7, we get

IHS 0 < 114G I

0] nk M
I o < I1AG 105 + | Ay 1HllBkll <zt —)k=1...,N-%
Vo
— N—-1 M
H(y) < A*l B~ n < :
|| N—l”N—l,O — H N*lH” N 1|| a = a\/@

1K, = 0;

. k k
1K@, <CialL <o k=2, N
’ o «

As a result,
1 M 0
Yy < (—=0+—))Vv-—.
Tl < (=0 3 Vs

It suffices to choose the parameters i and « so that n+ M/a < 01/2 (0 < n < 61/?),
yielding

(8.50)

0 0
HM <0<1, s=ro,1m0—2,...,m0 — 6.

oy ’y:OHL(ZS,ZS)
O

ProoOF oF PROPOSITION Bl  Having thus, in Lemma B2 verified the assump-

tions (E)-(E-4) of Theorem [EJ] for the map 7 in the role of F, there exist con-

stants pi1, p2, and p depending (through p in Lemma B2]) on h and A and C,

depending (through C = C(L,h,A) in Proposition IL6) on L,h, and A, and the

map

(851) F BEXMU(//)\D//)\Q) _)B},TO(Z)\)

(in the role of f) so that T(F(K,H), K, H) = F(K,H) for any

(IC,H) S BEXMo(ﬁlaﬁQ)u

and

(8.52) F € C™(Bpxm, (51,72), Y),

satisfying ([82)) whenever (K,H) € Bgxn, (p1,p2) and j,¢ € Ny with £+ j < m.
Here, the estimates (82) follow from the bounds (ES]). O

8.2. Properties of the map H

Using our results in the previous section we finally obtain a map H mapping
a neighbourhood of the origin in E to My so that T (F(I,H(K)), K, H(K)) =
F(K,H(K)) and II(F(KL,H(K))) = H(K). This requires another application of
the implicit function theorem, this time for the composition of the projection IT
with the map F in Proposition We write G := Il o F in the following. The
projection II: Y, _a, — M is a bounded linear mapping for any 0 < n < m.
Using Proposition Bl we obtain, in particular, that G € C*(Bgxn, (1, p2), Mo).
Note that F(0,H) = 0 because T (0,0, H) = 0 for all H € V, (see (ii) in Lemma[82]),
and thus G(0,H) = 0 and DxG(0,0) = 0. Therefore, by standard implicit function
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theorem, there exists a CJ"-map H: Bg(p1) — B, (p2) with a suitable p; < p1
and pz = pa such that G(K, H(K)) = H(K).






APPENDIX A

Discrete Sobolev Estimates

For the convenience of the reader we recall a discrete version of the Sobolev
inequality. Discrete Sobolev inequalities are classical, see, e.g., Sobolev’s original
work [Sob40]. Let B, = [0,n]¢ N Z%, and for p > 0 define the norm

v = (2 )

zeB,

(A1) 1£1l, = 111

for any function f: B, — R.
ProroOSITION A.1. For every p > 1 and m, M € N there exists a constant
¢ =¢&(p, M, m) such that:

(i) Iflgpgd,p—l*z — 1. and ¢ <p*, g < oo, then

1
P

_d _d —d
(A.2) n 1 fll, < en Eflly + et RV,

(it) If p > d, then
(A.3) f(z) = f)| <en' 7 |Vf],  for all 2,y € B.

(iii)) IfmeN, 1<p< 4 L —

1
P 5—%,andq§pm,q<oo,then

M—1
(A.4) nTE|fll, < €nE ST (V) flly + enTE (V)M ]
k=0

(iv) If M = | 42|, the integer value of 42, then

M
(A.5) max |f(z)] < €n~F Y [(nV)F £,
k=0

zeB,

REMARK A.2.
(i) In the proof of (iv) we actually get

M
(A.6) max [f(z)] < (n+1) Y@+ e Y IlmV)F £,

zeB, k=1

(ii) As written, the higher derivatives on the RHS of (i)-(iv) require the values of
f outside B,,. If one traces the dependence more carefully then one sees that
(V... Vg f)(x) is only needed for = such that x + aje; + -+ 4+ ageq € By, so
that only the values of f inside B,, are needed.
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The proof may be reduced to the continuous case by interpolation. Let n =1,
By = {0,1}¢, f: By — Ry, and let f be the interpolation of f which is affine in
each coordinate direction, i.e., f is the unique function of the form

d

(A7) f@) =[[(aiz: +b:), flx)=fx) forze{0,1}"

i=1
The Proposition [A 1] will be proven with help of the following Lemma.

LEMMA A.3.
(Z) (p+11)d2d ZzeBl < fo 1) f d:v < 2d erB I? ( )
(ii) SUPye(0,1)4 10: (& >| < maxse gy im0 [F(@+e) — (@) < (Caep a0 @+

1/p
ei)—f(x)|p) foranyi=1,...,d.

PROOF. (i) The integrand is a product of functions of one variable. Taking
into account that

(A.8) 2d§:fp ]I(Hm+by+ w)

reB, i=1

it suffices to prove the claim for d = 1. Considering thus a nonnegative function on
the interval [0, 1] of the form ax + b and assuming w.l.o.g. that a,b > 0, we get
(A.9)

1 P
p aFpp—k [ 1
b)Pdx = bP—r < bP —a"bPT" = —bP + = b)P.
/O(a:c+) x kz_:o(k>k+1 +Z()2a 5 +2(a+)
On the other hand,

& p 1 1 & P 1

kpp—k kpp—k
E a®bP" > —— E a“bP" = a+ b)P
(A.10) k0<k>k+1 p+1 (k) p—i—l( )

k=
_— 1
> Z(a+b)P —w)
+1(2(a“L )"+ 3

(i) For f of the form (A7) we have 0; f(z) = a; H;l#(ajxj +b;) while, on the
f(

other hand, we have a; H#i(ajxj +b) = flzx+e)— f(z) = f(z+e) — f(z) for
any z € By such that z; = 0. [l

Proor oF ProrosITION [AT]l (i) and (ii) follow from Lemma [A3] and the
continuous embedding Theorem.

The claim (iii) follows from (i) by iteration.

To prove (iv), assume first that d is odd and thus M = 42| =
apply (iii) with p =2, m = M — 1, and

1 1 M-1 d—(d-1) 1

[JisH

+ % Let us

(A-11) T2 T4 T e W
Hence,

M
(A.12) N3Vl < €n” 2[00 ],

k=1



A. DISCRETE SOBOLEV ESTIMATES 101

Further,
(A.13) [f(@) = fy)| < €' 72|V [y = CnZ [Vl
for all 2,y € By, by (ii). Averaging over y yields
(A.14) [f(2) = (n+ 17" fW)] < €nF ||Vl
yeB,
On the other hand,
(A.15)
1/2 1/2
=17 Y fw < 073 fw?) (1) <),
yEBy yEB, yEB,
yielding
(A.16) (@) < €nZ ||V fllog+ (n+ 1) 72| f,

for all € B,,. The assertion (iv) for odd d follows.
Similarly for even d when M = L%J = % + 1 and we use m = M — 2 and
q=2d>p,=d O






APPENDIX B

Integration by Parts and Estimates of the
Boundary Terms

For the convenience on the reader we spell out the estimates of the boundary
terms in detail.

a)d=1

The forward and backward derivative are dv(z) = v(z+1) —v(x) and 0*v(z) =
v(x —1) —v(x).

ProposITION B.1 (Integration by parts). Let g,v,u: Z — R and m € N.
Then:

(i)
> g@dv(z) = Y 9 glz)o(x) + g(m)v(m +1) — g(=m — 1)v(—m).
(ii)

> du(@)ov(x) = > (970u)()v(x) + du(m)v(m + 1) — du(—m — L)v(—m).

ProprosITION B.2 (Evaluation of the boundary terms). There exist a
constant ¢ < 3v/2 such that for any v: Z — R and any m € N, m > 1, one has

2 2 ¢ S 2 S 2
B.1)  w(=m)>+o(m+1)*< T 1;”0(;1:) +c(2m+1)wzz_m3v(x) .
PROOF. Assume first that the number of those x € {—m,...,m} for which

v(z)? > L (v(—=m)*+v(m+1)?) is at least 2’\’72!1. Then > w(z)? > ﬁ@m—l—
1) (v(—=m)? +v(m +1)?).
On the other hand, if the number of such z’s is less then 2”\}—;1, then there

2 2
exists x such that dv(x)? > %%

, implying

m )2 2
Z ()’ > 1 v(=m)*+v(m+1) '
32 2m + 1
Indeed, having assured the existence of y and z such v(y)? < (v(=m)? + v(m +
1)%) (the existence of such y is obvious for m > 1 implying that (1 — %)(2771 +
1) > 1) and v(2)* > (v(—m)? + v(m + 1)?) (again, its existence follows since

r=—m
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=

(v( m) —|— v(m +1)?) < max{v( m)?,v(m + 1)*}) implying that the interval

2
(% (v(=m)*+v(m+1)?), 1 (v(—=m)?+v(m+1)?)] has to be spanned within at most
2\/'21’1 increments Jv(x)?.
In both cases,
1 - 2 2
(B.2) 2m+1z;m v(z)? + (2m +1) m;ﬂav 3\[( v(—=m)? 4+ v(m +1)?)
implying the claim. 0

The combination of Proposition [B.1] and [B.2] yields:

PRropPOSITION B.3. Let u,v: Z — R and m € N. With the constant ¢ from
Proposition[B.4 and any n > 0, one has

(B.3)
m 1 * 2 1 ua 2
L_Z_:mau(x)av(f ’ 5 (2m+1)? w_z_m‘ (9"0u) (=) +§ﬁm;mv(x) i
20 o= 17+ dutn?] + {m 2 3 o]

b) Multidimensional case

Let X € P be a union of k-blocks. Further, let 9 X = Uf-l:laiiX , where, for
any i =1,...,d,

(B.4) O X ={zczv¢Xr+te,€X orxeX,x+e ¢ X}
and
(B.5) 0f X=0X+e;:={x+e:2€d; X}

Notice that 9~ X UdTX = dX, the boundary defined in ([Z3T]).

LEMMA B.4. Let B be a k-block and let v : B U OB — R. Then, for any
i=1,....d,

(B.6) Z v(z)? < c(l}k Z v(z)? + LF Z|V1v(x)|2)

xeafB zeB reB
and
1 .
(B.7) > v@)? <o X v@)? + LY Vi),
z€d; B zEB z€B

where ¢ is the constant from Proposition [B.2

PRrOOF. Applying Proposition [B.2] to all lines in B that are parallel to e;, we
get (B.E). Similarly for (B.Z)), when considering the sites on these lines in the
opposite order. (I

Notice that, using Viv(z) = —V,v(z—e;), the last term in (B7)) can be actually
replaced by LFY 5 |Viv(z)?

To formulate the following immediate corollary of Lemma [B.4], let, for any
X € Py and ¢ € N, the neighbourhood Uy(X) be defined iteratively with U;(X) =
X UOX and Upyr (X) = Up(X) U DU (X).
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PROPOSITION B.5. Let X € Py, and u: Uy(X) — R. With the constant ¢ from
Proposition [B2,

(a)

F 3 V(@) <2c(z Vo(@)]? + L2 3 |V21)(:E)|2),
z€oX zeX zeU1(X)

(b)

L* 3 V() < 2c(L2’f 3 V@) + L% Y |V3v(x)|2>,
z€0X zeX zeUi(X)
and

(c)

5k Z |V3 |2 < 2C(L4k Z |V3 )|2 +L6k Z |V4U({E)|2)
z€oX zeX zelUy (X)

PrROOF. Let By, ..., B, denote the k-blocks contained in X. Applying Lemma
B4l to each By, £ =1,...,n,i=1,...,d, observing that

(B.8) 0x c | JoBy,
=1
and summing over i, we get
(B.9)
d
F S Vo) < c( 3 IVu@)? + 2% ST S (1Rl + |v;viv(x)|2)).

rz€e0X rzeX zeX i=1

Using
d d

(B10) D> M ViV@)PP = Y D Vi@ < Y (Vi)

rzeX i1=1 rzeX—e; i=1 €U (X)
we get the first claim.
The second and the third claim follow in a similar way. O

Notice that the sums over z € U;(X) on the right hand side of the bounds in
Proposition [B] can be actually replaced by the sums over z € (X U9~ X) \ (X N
0~ X).

ProrosITION B.6. Let u,v: X UJX — R and X € Py. With the constant ¢
from Proposition [B.2 and any n > 0, we get

n(1+ cd) L*
(B.11) | Vu(z)Vu(x)| < —orm > v(a:)2+2—n > |Vu(x)*+
rxeX reXUO—X zGB*X
+ 3 Y IVu(@) + S V().
rzeX reXUO—X

PROOF. For any z € 0; X, let ¢;(z) = +1if v € X and ¢;(z) = -1 if z ¢ X.
By Proposition [B] for each i € {1,... d} we have

(B12) Y Viu(@)Viv(x) = Y ViViu()v(z) + > e(@)Viulz)o(e + ).

zeX zeX rz€d; X
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Summing over i = 1,...,d, we get
(B.13)
d
‘ZVu(x)VU(:E” SZ Z |VZu(z) |+Z Z |Viu(x)v(z +e;)] <
zeX i=1 zeX—e; i=1 z€d; X
L 2 2 n : 2, L 2
LS Y Y e L Y
K reXUO—X =l xeX—e; il z€d~ X
d
n
toEY D v’
=1 pearx
Applying now Lemma [B.4] on the last term, we get the claim. O

LEMMA B.7. LetY C X, X, Y € Py, and u: Uy(X) — R. Then

(B.14) gleag){(u |Y| Z 2 + 2(diamX)? max|Vu( )2
€Y
Proor. Cf. Lemma 6.20]. Considering the shortest path from any
r € X toy €Y, we have
(B.15) lu(2)] < [u(y)] + |2 = ylo max|Vu(z)].

Using that |z —y| < diamX (with the diameter taken in |-| _ metric on Z%), using
the inequality (a + b)2 < 2a2 + 202, and averaging both sides over Y, we get

(B.16) IYI > uy)® + 2(diamX)? mg(qvu(z)ﬁ
yeyY
yielding the claim. O



APPENDIX C

Gaussian Calculus

Here we recall the formulae for the derivative of a Gaussian integral with respect
to the covariance matrix. The arguments are classical, but we provide proofs for
the convenience of the reader. We begin with the first derivative. We will make the
following general assumptions throughout this appendix.

Let V' be a finite dimensional Fuclidean vector space with scalar product (-,-)
and Lebesque measure X. Denote by Sym™ (V) and Sym® (V') the set of positive
definite respectively of positive semi-definite symmetric operators on V. For C €
Sym™ (V) denote by pe the Gaussian measure with covariance C. Let g: V — R be
measurable and assume that there exists a B € Sym® (V) and a constant M € R
such that

lg(x)] < Mez (%2 forall 2 € V.

For €~! > B define
1 A
(C1)  H(E) = /V o(x) pe(dr) = o /V glw)e 52 \(da).

We first recall that H is real-analytic in the set {€ € Sym®(V): €1 > B}. In
fact we will extend H to a complex analytic function as follows. Let V denote the
complexification of V with the canonical sesquilinear-form (-, -), let GL(V) denote
the set of all invertible C-linear maps from V to itself and let

U:={€eGL(V): Re(C 'z, z) > (Bx,z) Vo € V\ {0}}.
Define H on U by the right hand side of (CIJ).

LEmmaA C.1. (i) The map H: U — C is analytic and the derivative at C
in direction C reads as
. 1 ) )
(C.2) DH(C,C) = / g(:v)§((€_1€€_1:v,:v) — Tr(€7'C)) pe(da).
v

(i) Assume in addition that g is continuous and that there exists a continuous
function w: V. — (0,00) such that

(C.3) glz+y) < Me%({BI’I)w(y), x,y € V.
Define
(C4) A(€)0) = [ oo+ 9 pelde) for ally V.

Then H is an analytic map from U to the space
Oy = {h e C®(V): ], < oo},
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where
|h(y)|

7]l = sup —=5,
v yeV |w(y)|

and the derivative at C in direction C € GL(\N/) 1S glven as
DHE.E)y) = [ ga+n)Dif(€a,)Ndo). ye V.
14

where
efé(eilzvz)

UG det(2m@)1/2
PROOF. (i) Set

C.5 e e ¥ e
( . ) f( 7:E) T det(27r€)1/2'

Then for every x € V the map C — f(C,z) is complex differentiable in U, and
(using Jacobi’s formula for the derivative of determinants) we get that

. 1 . )
(C.6) Dif(C,z,C) = 5((e*lee*lz, z) —Tr(€'C)) f(C, ).
In particular for each € > 0 there exists M’ > 0 such that
(C.7) D1 f(€,2,8)| < Metelel*e3(C 20 @),

Since Re (C~1) > B and since V is finite-dimensional we also have that Re (€~1) >
B + €ld and thus the function

g(z)|D1f(C,z,0)]
is integrable. Now for any € # 0 we estimate

1 . .
@\H«f +&) - H(e) - /V 9(r) D1 £(€, 2, €) A(da)|

f(€+€) = f(€) = Dif(€,x,C)
< [ lo@ = [ Atdr).

(C.8)

For G — 0 the integrand on the right hand side of (C8) goes to zero for every
x € V. It remains to find an integrable majorant. We have

1
f(G—i—@,:v)—f(G,:v):/o Dy f(C+ sC, x)ds.

Now for every € € U and every € > 0 there exist § > 0 and M" > 0 such that for
all € € B5(C) we have

‘le(é,.f, e)| < M//eés\z‘ze,%(e—1mym)|é|'
Hence for |€| < ¢ the integrand in is bounded by the integrable function
¢ g
|g(@)|(M' + M")edelolem3(C ),

Thus by the dominated convergence theorem the right hand side of (C.8) goes to
zero as € — 0. This concludes the proof of (i).
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(i) The continuity of the map y — H(C)(y) follows directly from the dominated
convergence theorem. Indeed, assume that y, — 7 in V as & — oo. Using the
continuity of ¢ we obtain

glx+yr)f(Cz) = glx +7)f(C,x) forevery z €V as k — oo.

Moreover, for |y; — 7| < ¢ we have

|9(z + i) £(€, )] < Me2P= (- sup w(2)) f(C, ),
2€B;s(Y)

and the right hand side is integrable. Hence
H(@)(yr) — HC)(T) ask— oo

by the dominated convergence theorem. To verify complex differentiability define
first the linear map

(L) = | gta+9)Dif(€..8) M),
Then one sees as above that y — (L€)(y) is continuous. Moreover it follows from
the bounds (C3) and (CI1) that
Ie|, < MM’|€|/ eH(BH+ela=€7)r0) ) (42 < oo,
%
Thus L is a bounded lincar map from GL(V) to CY (V). Finally we check differen-
tiability. We have
(e +&)y) - HE©)(y) - Le(w)|

< / lg(x +y)||f(C+ C,z) — f(C,x) — Dy f(C,x,C)| A(dx)
1%
ng(y)/V e%@w\f(e +C,z) — f(€,2) — D1 f(C,z,€)| A(dw).

Dividing by w(y)|€| and taking the supremum over y we get
|H(€+€) + H(C) - LE|,
-y / i [F(€+Cx) — [(Cx) - Dif(C,2,0)]
-y €|
Now as in (i) it follows from the dominated convergence theorem that the right hand

side goes to zero as € — 0. Thus H is complex differentiable at € with derivative
DH(C) = L. O

A(dx).

We will apply Lemma with € = G;ﬂ"), the covariance matrices which arise
in the finite range decomposition (see Proposition 1)), and B = »B;, = 2Ch~2B,,
where By, is as in Lemma (.3l Now an important point is that the finite range
decomposition in Proposition 1] does not yield a bound on terms like

Tr(e) Dy
which are independent of k and N.
In order to derive bounds on the derivatives of g — H(C”) which are inde-
pendent of k& and N we now derive different expressions for the derivatives of H
which do not involve €~1 but which require derivatives of g. This leads to a loss of
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regularity when we consider the convolution operator g — [ g(- + z) pe(dz) as an
operator between function spaces and we shall see later how to deal with this loss
of regularity.

In the following we assume that

(C.9) €1, -+, €dim (v) is an orthonormal basis of V.

LEMMA C.2. Let B € Sym™ (V) and let g € C*(V) with
2
(C.10) sup Z|Dsg(a:)|e_%(3m’m) < 00.
eV —0

Furthermore, let € € Sym™ (V) be given with @' > B. Let C € Sym™ (V) and
define
1) = [ @) eseldo)

Then h is a C'-function on some interval (—ao, ag) and

(C.11) WO = [ (40)@) e (da),

where
dim (V)
1 o ny .
(C.12) Ag(zx) = 3 Z Ci,jDg(x,e;,e5), with C;; = (Cey,e;).
ij=1

REMARK C.3. In coordinate free notation the map A in (CI2) can be written
as

Ag(z) = Tr(Hess (g(a:))@),
where Hess (g(x)) is the linear map V' — V defined by
(Hess (g(z))a, b) = D?*g(x,a,b) foralla,beV.

Sometimes it is more convenient to use an orthonormal basis of the complexification
V of V to evaluate Ag. If we extend Hess (g(z)) as a C-linear map and D?g(z, -, )
as a C-bilinear map, then

(Hess (g(z))a,b) = D*g(z,a,b) for all a,b € v

since the sesquilinear form (-, -) on V x V is anti-linear in the second argument. If
we also extend € as a C-linear map and if f1..., fqim () is an orthonormal basis

of IN/, then

dimV

Try (Hess (9(x))C) = Try; (Hess (9(x))C) = > (Hess (9(x))C fi, fi)-

i=1

Hence
dim (V)
1=1
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PROOF. One can easily check that the definition of A is independent of the
choice of the orthonormal basis. The whole statement is invariant under isometries.
Hence we may assume that V' = R" with the standard scalar product and that

e1,... ey is the standard basis. Furthermore, we write C(t) := € + ¢C in the
following. The starting point is the formula for the Fourier transform of a Gaussian
(C.14) / e U6 oy (da) = e 2 (EMED)

By continuity of ¢ — C(¢) we may assume that there is an ap > 0 and a 6 > 0
such that for t € (—ag, ap) we have B < C~1(¢) — §Id and C(t) > §Id. From now on
we consider h(t) only on the interval (—ag, ag).

Now assume first that g belong to the Schwartz class S(R™) of smooth and
rapidly decreasing functions. By Plancherel’s formula we have

(C.15) h(t) = /]Rn g(x) Me(t)(dl') = ﬁ /Rn g(g)e*%(e(t)ié) de.

Since g € S(R™), the right hand side is differentiable with respect to ¢ and the
identity 0,¢(&) = i€;9(€) yields, with another application of Plancherel’s formula,

h(t) = —= /Rn a(&) Z Cjkgjgke—%(@(t)&f) d¢

k=1

1 o )
(271')”/ Z Cjk(ajakg(g)e_f(e(t)ﬁf) d¢

Jik=1

= % / > Cin(0;0k9)(x) pey (dz) :% Tr(CD?g(x)) pier) (dz)
" k=1 R~

N | =

= - Ag(ZC) Me.:,_té(d‘r)'

This proves assertion (CII) and (CI2) for g € S(R™). For a general g we use
a cut-off and a convolution with a mollifier. To do so we first rewrite the result for
g € S(R™) in the integral form
(C.16)

| s@new(an - | g neoan = [ 3 [ D) neqw ) ds.

Now, for g € C2(R") consider the Gaussian measure hy(z)dz on R with covariance
+ and define g := hy * g € S(R™). Hence (CI6) holds for g, and we have a
uniform convergence gp — g and D?g;, — D?g. Since C(s) > dId we can pass to
the limit using the dominated convergence theorem which proves (CI6) whenever
g € C2(R™). Finally, for g as in the lemma we let n € C>°(R™) to be a cut-off
function that vanishes outside the unit ball B(0, 1) and equals 1 in the ball B(0, 3).
Let gr(x) = ¢(§)g(z). Then g, € CZ(R™) with g, — g and D?*gj, — D?g uniformly
on compact subsets and

2
(C.17) sup g (z)| + sup | Dgx ()] < Csup > [Vog(a)].
s=0

Since €71(s) > B + dId we may pass to the limit by the dominated convergence
theorem. This shows that (CI6) holds for all g € C?(R™) which satisfy (CI0)
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with » = 1. Finally continuity of ¢  C(t), the bound B < €~!(s) — §Id and
the dominated convergence theorem imply that s — [, Tr (CD?g(x 7)) pe(s)(dr) is
continuous. This finishes the proof. O

LEMMA C.4. Let B € Sym® and assume that g € C?*(V), ¢ € N, satisfies
C.18 su Dég(z)|e 2357 < .
(C.18) sup Z\ 9(x)|

Assume that C € Sym™ with €1 > B. Then the function H defined by (CI)
satisfies

(C.19) DYH(@,Cy,... &) = /V (Ag, -+ Ag,9) (x) pe(dx),

where for f € C%(V) the operator Ap, 15 defined by

1 dim (V)

(C.20) (A (@ Z CiiD*f(x, e, ¢)).

7,7=1

PRrROOF. Since we already know that H is analytic in U it suffices to show the

result for €; = --- = G, = €. The full result follows by polarization. It thus suffices
to show that the function A in Lemma satisfies

dk
(C.21) @h(t) _/V (A%9)(z) pe_ye(dr)  for 1<k <Y,

where A = A;. We prove this by induction. The case k = 1 is just Lemma
Thus assume that k& < ¢ — 1 and (C21)) holds for k. Let g := A*g. Then g satisfies
the assumptions of Lemma[C.2l Thus by the induction assumption and Lemma[C.2]
we obtain

k+1
G0 = 5 [ e e@) = [ (4D)@) neyelan)

= [ (4510)(@) e
(]

We finally collect formulae for the derivatives up to the third order for a general
dependence, that is, we now let (—d,) >t — C(¢) € Sym ™ (V) be a C* map with
C(0)~! > B and let g satisfies the assumptions of Lemma [C:4 Then

(C.22) h(t) = /V 9(2) e (de)

is a C* map on some interval (—¢’,d’) and the derivatives of h can be computed by
the chain rule. In particular we obtain the following formulae.

(C.23) h(t) = DH(E(), E(t)),

(C.24) h(t) = D2H(E(t),E(0), &(t)) + DH(E(), &(1),

(C.25) h(t) = DUH(E(1), (1), €(1), €(1) + 3D H(E(). (1), E(1)
+ DH(e(), &(t)).
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In general D¥h(t) is a sum of terms of the form
(C.26) DYH(C(t), A, ..., Ay)
with

4
(C.27) A;=D"C(t) and > ji=k.
i=1
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APPENDIX D

Chain Rules

Here we formulate and prove a chain rule with loss of regularity for a composi-
tion of two maps. It turns out that proving the needed claims as well as checking
their assumptions in particular cases is much simpler when formulated in terms of
higher order one-dimensional directional derivatives and the related Peano deriva-
tives. We first review their properties and the mutual relations[]

D.1. Motivation

Before we enter into the precise statement of the setting and the results we
consider a simple example how loss of regularity can easily arise even for seemingly
innocuous maps and we sketch the key calculation in the proof of the main re-
sult. Consider the space C*(S') of 27-periodic k times continuously differentiable
functions and the map F : C¥(S!) x R — C*(S1) defined by

F(y,p)(t) = sin(y(t - p)).
It is easy to see that F' is continuous and that the map y — F(y,p) is smooth (in
fact real-analytic) as a map from C*(S1) to itself. For a fixed y € C¥(S1)\ C*+1(9)
the map p — F(y, p) is, however, not differentiable as a map from R to C*¥(S1). It
is only differentiable as a map from R to C*~1(S') and we have

(%F(y,p)(J = —cosy(-—p) y'(-—p).

Similarly p — F(y,p) is a C! map to C*~! for [ < k. Thus each derivative with re-
spect to p leads to loss of one derivative in . A similar phenomenon occurs if we use
formula (CII) to compute the derivative of the convolution maps G(g, €) := g* pe
with respect to the covariance €. Our renormalisation step involves a composition
of several maps of this type and one might think that this leads to a multiple loss of
regularity. The main result of this appendix, Theorem [D.29 below, shows that this
is not the case. The behaviour of the composed map is no worse than the behaviour
of the individual maps.

To state the result informally consider scales of of Banach spaces X,, C
Xni1C...c Xp,Y,C...CYpand Z,, C ... C Z; as well as a Banach
space P and maps

G: X xXP—=Y,, F:YxP—Z,

IThe present version of this Appendix is based on notes written by David Preiss. He has not
only provided a suitable framework for smoothness, in terms of classes CJ" and C™ introduced
below, with particularly clear proofs of chain rule with loss of regularity, but he has also shown
(Theorem [D:10) that functions from C™ have continuous, multilinear, and symmetric directional
derivatives. Nevertheless, all deficiencies of the present Appendix are the author’s fault.
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and the composed map

H(z,p) := F(G(x,p),p).
Informally, the assumptions on F' and G are that these maps are well-behaved
with respect to the first argument, but each derivative with respect to the second

argument leads to a loss of order one in the scale of Banach spaces, i.e., that for all
0<n<m-—1I

(D.1) D{DLF(y,p): Y/, x P' - Z, is bounded
and
(D.2) D{D\G(z,p): X, x P' -Y, is bounded.

Then we want to show that
(D.3) D{DYH(y,p): X), ., x P' — Z, is bounded.

If we assume that all natural expressions make sense this can be seen as follows.
From the chain rule we deduce inductively that DL H (z, p,p') := DSH (z,p,p, ..., D)
is a weighted sum of the terms

DYD4F(G(x,p), p, Dy G(z,p,p"),..., DFG(x,p,p"), 1)
with k>0and1+ Zl;:l ls = I. Another application of the chain rule shows that
D]DYH (z,p,37,p') is a weighted sum of the terms
DY DLF(Gla,p). p DY Gla,p, ), ..., DY D§Gla,p, i ™), )
with j. > 1, jo > 0,1 > 1 and

k k k
i+ ds=d ity =1
r=1 s=1 s=1
In particular we have [y <[ — 4 and hence
DI*DyG: X x P - Y, (-iy=Y s is bounded.

Moreover

DM*DLF YRR P Z, s bounded.

Thus || DI DY H (,p, &7, p')| z, is bounded in terms of ||$H-;(n+l and ||p||5. By polar-
ization we get the desired assertion (D.3]). The main point in the proof of Theorem
[D29is to give a precise definition of the informal assumptions (D)) and (D:2) and
to show that under these assumptions all the operations performed above make
sense.

D.2. Derivatives and their relations

Directional derivatives.

DEFINITION D.1. Let X and Y be normed linear spaces, Y C X open and
G : U — Y be a function. Directional derivatives of G at x € U in directions
Z1,...,%; € X are defined by

j : . d
(D.4) D]G(:C,:vl,...,:vj):d dt1 x—l—Zthk

ty=..=t;=0
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We will use the shorthand D/G(x,i7) = DIG(x, i, ..., i), and later, similarly,

—
J
i .j TN . . . .
D'G(x,&7,...,4") = D’G(z, &1, ..., 21,.. ., Tk, ..., k)
—— N——
J1 Jk

c koo
with j =>7"_, js.
DEFINITION D.2. We use C7"(U,Y") to denote the set of continuous functions

G : U — Y such that for each j < m and & € X, the derivative D/ G(x,i7) exists
and the map (z,42) € U x X — D’G(z,4?) € Y is continuous.

REMARK D.3. The star * is added just to indicate that this is not the standard
class C™ of m-differentiable functions. Also, this definition is formally much weaker
than that by Hamilton [Ham82] who takes G to be m-times differentiable if D™ f :
UxX x -+ x X =Y exists and is continuous (jointly as a function on the product

space). However, Theorem [D.10] below shows that it actually yields the same space.
Note that for X = R it follows directly from the definition of C7*(U,Y’) that
C™U,Y) =C™U,Y). We will see in Proposition [D.17] that this identity holds

whenever X is finite dimensional. o

In proofs, especially when proving chain rules, it is often useful to rely on the
notion of Peano derivatives.

DEFINITION D.4. The Peano derivatives G(™(z,#) of a function G at z in
direction & are defined inductively by
16D (),
Gl + td) — Y0~y Sy
(D.5) G™ (z, &) = n!lim ( )20 "

t—0 tm

whenever the derivative exists. Equivalently,

(D.6) HG(HM)_i%ﬁHY — o(t") as t — 0.
=0 '

LEMMA D.5. We notice the following obvious properties of these derivatives.
(a) GO (z, ) exists iff G is continuous at x in direction &; then G (z,1) = G(x).
(b) G (x,ti) = "G (z, ).

We show that C7 (U, YY) can be equivalently defined using the Peano derivatives.

LEMMA D.6. Suppose G is m-times Peano differentiable at every point of the
line segment [z, + &| in the direction of . Then for any 0 < j <n <m,
AR ER )

7“ < sup

1! Y

0<r<1

H G (z +12,%) — G (z, 1)

|69 @+ .0 - =) I,

i=0

PrOOF. The case j = n is obvious. When j <n, X =Y =R and # = 1, the
inequality follows immediately from the mean value statement of [OIi54] Theorem
2(ii)]. To prove the general case, find y* € Y™ realizing the norm on the left and
use the special case for the map t € R — y*G(z + t&) € R. (]

PROPOSITION D.7. G € CT"(U,Y) iff G (x,%), n < m exist and are contin-
wous on U x X. Moreover, for such G, D"G(z,i") = G (x, &) on U x X for

n<m.
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Proor. If G € C™(U,Y ) and the segment [z, 2 + &] C U, then the function
(—e,14+¢€) 2t — Gz +ti) € Y is m-times continuously differentiable, and, in
view of [Die60] 8.14.3 and 8.14, Problem 5],

" DIG
(D.7) HG(erm) —Z#tkH o(t") as t — 0,
Jj=0 ’

for each n < m, yielding GY) (x,2) = DIG(x,47), j =0,1,...,m

For the opposite implication, suppose G(™) exists and is continuous on U x X.
Given any (z,%) € U x X, for small enough |¢| we may use Lemma [D.6] with n =
and ¢ instead of & to 1nfer that foreach 0 <j<n=j5+1<m,

1
GaW) tid) — GUT) (. VIl = ot t—0
H (x + ti, &) ; (x,2) v o(t) as ,
which says that £ G (z + ti, #)|,_, = GUY(z,4). Hence D"G(x,3") exists and
equals to G (z,2) for every (z,42) € U x X and 0 < n < m. Since G(™ are
continuous, G € C"(U,Y). O

We also show that in the presence of continuity it suffices to require the exis-
tence of the Peano derivatives in a rather weak sense.

LEMMA D.8. Suppose G:U = Y and g; : U x X =Y, 0 < j < m, are
continuous functions such that for a weak* dense set of y* € Y™, y* o G is m-
times Peano differentiable on U with its jth Peano derivative being y* o g;. Then

G e C(U,Y) and D*G(x,i) = GU) (z, 1) = g;(x, ©).

Proor. For the y* for which the assumption holds, Proposition [D.7] shows
that y* o G € C™(U,R) and D’(y* o G)(x,47) = y* o g;(x,4). Hence, whenever the
segment [z, x + ti] is contained in U,

y ( (x + ti) Zgj tj) = %/Ot(t—s)my*(gm(w—i—s:b,:b) — gm (2, &)) ds.
=0

The function s € [O, t] = (t—8)"(gm(x + s&, &) — gm(z, ©)) is continuous, hence its
Riemann integral, say I, exists as an element of the completion of Y. But since by
the above y*(I) = y* (G(:v +ti) =3, Mtj) for a weak* dense set of y* € Y™,

m'

gJ j L[ —s T+ 8T, %) — x, %)) ds
Gl +t2) Z /0@ V™ (gon (1 + ,8) — gun (7)) ds.

Since g, is continuous, G is m times Peano differentiable at every z € U as a
mapping of U to Y, with continuous G (z, &) = gj(z, ). So the statement follows
from Proposition [D.7 O

The previous Lemma will be used in the situation when G : Y — Y and
Y < V (meaning Y is a linear subspace of V and || - |[v < | - ||y) to require
differentiability for the map G : U4/ — V only.

COROLLARY D.9. Suppose Y — V and G: U — Y is m times Peano differ-
entiable when considered as a map to V and such that each function G(j)(:zz,:t),
0 < j < m, has values in'Y and is continuous as a map of U x X to' Y. Then
G e Cm™U,Y) and DIG(x,37) = GY) (x, ).
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PROOF. Since V* is weak* dense in Y, Lemma [D.§ is applicable with
9j ({E, .I) = G(J) (Ia I)

Multilinearity and symmetry of derivatives.

THEOREM D.10. X, Y be normed linear spaces withUd C X open, and let G €
C™U,Y). Then, for every 1 < j < m, the directional derivative D’ G (z, 1, ..., d;)
exists for all z € U and &1, ...,2; € X.

Moreover, it is a continuous, symmetric, j-linear map in the variables &1, . .., T;

and DIG € CT"7 (U x X7)Y).

The main idea is to get information on the map s — G (z + sv,,..., &) by
writing
G(r + s(v+tz)) = G(x + sv + sti)
and using Peano differentiability of G at x on the left hand side and Peano differ-
entiability at « + sv on the right hand side. A key tool is the following polynomial
interpolation lemma. Theorem [D. 10 will then be a consequence of Proposition[D.12]
below.

LeMMA D.11. For any j = 0,...,m, let ®; : (—so,50) — X be bounded and
;R — X. Suppose that

(D.8) > s (W(t) — Bi(s)t) = o(s™) as s — 0
j=0
for every t € R. Then for each j =0,...,m:
(a) The function ¥, is a polynomial of degree at most j and
(b) there ezists a polynomial p; : R — X of degree at most m — j such that
Di(s) = pj(s)j— o/gsm’j) as s — 0.
(c) Moreover, if ®;,¥; also satisfy (D.8) ther3

oly —
poy s=0 (0,1

|®; — &, < Climsup sup)HZsﬂ'(@_gpj(t))H.
§=0

ProoF. Fix different to,...,t, € (0,1) and let ¢; be the corresponding La-
grange basis polynomials, ¢;(tx) = dx ;. Then for every t € R,

=D ST (W@(t) = B ()8) = > aqn(t) Y s (W(tk) — Di(s)t]) = o(s™),
=0 k=0 §=0
implying that ¥;(t) — > p- ¥;(tr)qr(t) = 0 for each j = 0,1,...,m and thus each
W;(t) is a polynomial of degree at most m. Only now we use that @; are bounded,
yielding from (D.8) that Zi:o sk (Wi (t) — @y (s)t*) = o(s?) for every j = 0,...,m,
and the above argument with j instead of m shows that ¥; has degree at most j.

2For p(s) = > =0 pes® we define IPll o1y = maxe—o,... nlpel-
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For (b)), let 0 < ¢ < m and find a; so that > 1" akti = d,¢. By the degree
estimate on ¥;, Y7 ap¥;(t;) = 0 for j < £. Hence
(D.10)

m

Z s Zaklpj+g (tr) éia Z J(8)t — Wy(tg)) = o(s™ ).
Jj=0 k=0

k=0 7=0

For (@), we just notice that, in view of (D.I0), the coefficients of py(s) are linear
combinations (with fixed coefficients) of the values ¥;(tx) with t5 € (0, 1).

O

PROPOSITION D.12. Let G € C™(U,Y ). Then for every 1 < j < m, the
directional derivative DIG(z, i1, ..., &;) exists for allx € U and @y, ...,3; € X, it
is symmetric and j-linear in the variables &1, ..., &, and D'G € C"™7 UxXTY).

PrROOF. We show that f(z,4) := G (z,4) belongs to CT" (U x X,Y’) and is
linear in #. Used recursively, this shows that for each 1 <j <m, (z,41,...,4;) —
DiG(x, i1, ..., &;) is j-linear in &, . ..,4; and belongs to CT* /(U x X7,Y). Re-
call that by Proposition D7, G is m-times Peano differentiable and G (z, 1) =
DiG(z,47) for j <m, x €U, and & € X.

Fix 2,4,v € X and denote &;(s) = G (x + sv,4)/j! and ¥;(t) = GU) (2, v +
ti)/j!. By definition, for each t € R, G(z + s(v + t&)) = >0 OW (t)s? + o(s™).
Also, by Lemma [D.6]

(D.11)  [|G((x + sv) + sti) Z@ Y(st)]| <

< (st)™ sup ||G( (z + sv+ Tsti,u) — G (z + sv)|| = o(s™).
0<r<1

Hence Y7 s/ (7;(t) — ®;(s)t’) = o(s™) and we see from Lemma [D.ITI@) that
G (z,v + ti) = a + bt for some a,b. For t = 0 we get a = G (x,v) and
by continuity, b = lim;_,oo GV (z,v/t + i) = GV (x,2). Hence GV (z,v + i) =
GV (z,v) + GM(z, &), and we infer that f(z,4) = G (x, &) is linear in the second
variable.

By Lemma [D.ITI[B), for each fixed x,j: the function g;(xz) = f(z, &) has the

Peano derivative gfbj ) (x,v),7=1,. — 1. Moreover, continuity of Peano deriva-

tives G and Lemma [D.11i[) 1mply that (z,4,v) — g(J)(:zz,v) is continuous on
U x X2, Since f(x,) is linear in i,

(D.12) (@, @) + t(u, @) — (2, 8)) = g2 (2 + tu) — g:(2) + tga(z + tu),

showing that f is m — 1 times continuously Peano differentiable. Hence f belongs
to C™~1(U x X,Y) by Proposition [D.71
Symmetry of the directional derivatives follows from the following lemma. [

LEMMA D.13. Let G: U — Y and fix (not necessarily distinct) T1,...,05 € X

Suppose that the directional derivative v € U — DIG(z,#1", .. :Efck) exists and is
continuous whenever j := j1 + -+ + jr < m. Then for any t1,...,1; € R,

J J
' tk’“

]1!"'jk!'

k
(D.13) GO (2, tis) =4 > DIG(wif, ... @)
s=1

Jit+etie=j
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In particular, D*G(x, (Z]::l tois)®) = GW)(x, Zl::l tsiks) exists and
(D.14) DkG(I, il, ceey ik) = DkG(I, iﬂ.(l), ce ,.i'ﬂ.(k))
for every permutation © of {1,...,k}.

Proor. Expanding recursively and estimating errors by Lemma [D.6, we get
i . t]l . t]k
(D.15) Gz +t) teis) = > DIG(x, il ... xfj)llitj +o(t™),
o . it !
Ji=itFjr<m
which shows (D.I3)). Since the right hand side of (D.13)) is continuous in x, Propo-
sition [D.7] used separately on each line in the direction Z];:l tsts implies that the
iterated derivative D*G(z, (Zf 1 ts xs)k) exists and equals G(k)( Zf tsds).
Using the equality (D.13) with ZS 1 tsis replaced by Z 1 tr(s)En(s) gives the
same left hand side. Since the right side is a polynomial, the coefﬁments in front of
ty - - -t are equal, giving the last statement. O

REMARK D.14. Notice that the order of directions in the recursive expansion
can be chosen. As a result, the assumption can be narrowed, say in the case of
two directions {41, %2}, to the assumption that the directional derivative z € U —
DiG(x, &', i i1°) exists and is continuous whenever j := j; + jo 4+ jz < m and
Jjs € {0,1}. 3

The following Corollary is a useful criterion for proving that a given func-
tion on a product space belongs to C}". It involves partial derivatives which are
defined and denoted in the standard way. In particular, DI D5G((x, p), p’,&7) =
DI G((x,p), (0,p)", (&,0)7).

COROLLARY D.15. Suppose G : O € X x P - Y, m € N, and for each
j+ <m, the derivative (x,p,&,p) — D{DSG((x,p),pl, i7) exists and is continuous
on O x X x P. Then G € C"(0,Y).

PrOOF. Lemma [D.13]shows that for each j < m the Peano derivative
G ((w,p), (&) = D'G((w,p), ((#,0) + (0,p))) =

kzi: (.)D]G p), (0,9)", (&,0)/7") =

0

kzajo(.)Dﬂ *DEG((x,p), p", a7 ")

exists and is continuous. Hence G € C"(0,Y") by Proposition [D.7] O

REMARK D.16. Notice that in view of Remark [D.14] there is also a flexibility
in the demanded order of partial derivatives in the condition in the Corollary. ¢

Relation to usual derivatives.

PRrROPOSITION D.17. Using C™(U,Y) to denote the usual spaces of Fréchet
differentiable functions (with operator norms on multilinear forms from L,,(X,Y))
and m > 0, we have

C"U,Y)={GeCMU,Y):D"GeCU,L,(X,Y))} DCUY).
If X is finite dimensional then C™(U,Y ) = C*(U,Y ).
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ProoOF. We first show the inclusion
(D.16) {GeC™U,Y): D"G e CU,Ln(X,Y)} >CI
Let G € C"*Y(U,Y). Given z € U find § > 0 with
(D7) |ID™MG(x+ i, 81, Zma1)]] <1 whenever max{||Z], [|4:]|} < 0.

Hence for ||#| < ed™*t! and max; |45 <1,

(D.18) || D™G(x 4 &, 81, ..., &m) — DTG (2, &1, ... &m)|| =
=" D™G(x + i, 01, ..., 0%m) — DTG (2,001, . . ., 0| <
<6 ™ sup |D™MG(x +ti, S, ., 0Fm, 02/ | 2| ||2]] < €,
o<t<1

yielding the inclusion.
Now we show by induction that

(D.19) C"UY)D{GeC*"U,Y): D"GeCU,L,(X,Y)}
since the other inclusion is obvious. For m = 1 the inclusion follows from the
linearity of the derivative DG(z, -), Proposition and Lemma applied with
n=1and j = 0. Now assume that (D19 holds for m — 1 and let G € C"(U,Y)
with DG € C(U, L,,(X,Y). By (D.16) applied with m — 1 instead of m we have
D™ 1G € C(U,Lym-1(X,Y)) and thus by induction assumption G € C™~1(U,Y).
Define the maps F': U — Ly,—1(X,Y) and K : U — L(X, Lp—1(X,Y)) by
(D.20) F(x)(d1,. .. dm_1) = D™ 'G(x,d1,. .. &m_1),
(D21) K(x)($m)($1, ce ,Ll":m_l) = DmG(JJ, 113'1, . im).
Our aim is to show that F is Fréchet differentiable at * € U and its Fréchet
derivative agrees with K. Then F € CY(U, L,,,_1(X,Y)) and thus G € C™(U,Y).
For a fixed @1, ..., &m—1 € X, let (t) := F(x+tdy,)(Z1,. .., m-1) and assume
that [z, 2 + i,,] CU. Since G € C(U,Y), the function @ is in C'((—¢,1+¢),Y)
and by Lemma [D.6]
(D.22) [o(1) — 2(0) — 2'(0)[ly < sup 12 (7) = 2'(0)|y <
7€(0,1

< s ID"Gla + 7im) = DG, e Wil il
T€(0,

Now &'(0) = K (x)(&m) (21, ..., &m—1) and taking the supremum over all
jla s 7j7m71

with ||&;]] < 1 we get

(D.23) |F(z+&m) — F(z) = K(x)(Zm)| L, (x,v) <
< sup [|D"G(x + TEm) — D"G(2)| 1, x,v)|Em]-
7€(0,1)
It follows from the continuity of D™G (as a map with values in L,,(X,Y)) that F
is Fréchet differentiable with derivative K.
Finally assume that X is finite dimensional and let G € C™(U,Y"). By multi-
linearity of D™G(x,-) and polarization we see that

| DG (z) — D™ G(2)||1,.(x,v) < C(m) ;lll‘p” |D™G(z,v™)— D™G(z,v™) ||y
veX:||v||=1
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Since (z,v) — D™G(z,v™) is continuous and {v € X : ||v]| = 1} is compact it
follows that D™G € C(U, L,,(X,Y’). This finishes the proof of the proposition.
O

D.3. Chain rule with a loss of regularity

Here we consider the chain rule showing that F o G € C7"(U, Z) in the sit-
uation when G : U — Y, F : Y — Z, where U and ) are open subsets of X
and Y, respectively, and G € CI"(U,V) for some Y < V (meaning, as above,
that Y is a linear subspace of V' and |-||;, < [|[ly-). This generalizes the chain
rule of Theorem 3.6.4] where V. =Y and F is assumed to belong to
C™(Y, Z). In our situation, although F o G obviously makes sense, expressions
such as DF(G(z), DG(z, 1)) may not, since derivatives of G belong to V' and so
not to the domain of the derivative of F'. So for the chain rule to hold, a natural
assumptions are that Y is dense in V' and D’F has a continuous extension from
VXY toYx Vi, (The density of Y in V is not really needed, but is conve-
nient since it guarantees that the extension is unique and j-multilinear in the last
variables.)

DEFINITION D.18. We use C{#(Y, Z) to denote the space of maps F : Y C
Y — Z such that for any j < m, the derivative D’ F" exists and can be extended to
a continuous map D{,F of YxV7to Z (with a slight abuse of notation we usually
skip the subscript V' from D%,)

REMARK D.19.

(a) For j = 0 this requires only that F': }) — Z be continuous.

(b) Proposition [D.7] and the polarization formula show that it suffices to extend
the maps (y,9) € Y x Y — D/F(y,9’) to continuous maps defined on J) x V.

(c) By Proposition D7, CyH(Y, Z) € C*(Y, Z) with equality when V =Y. o

LEMMA D.20. Let F € C(YV, Z) and j <m. Then D}, F € Cy i (Yx VI, Z).

- PROOF. By the polarization formula it suffices to show that (y,v) — @(y,v) =
Dy, F(y,v7) belongs to Cy} 7 (Y x V, Z). Considering first & as a map of Y x Y
to Z and using multilinearity of the derivative, we have
(D-24) DYD3®((y,v), 0%, 5%) = j -+ (5 = L+ 1)DTFF (y, 077", 0", )

for £ < j and k < m — j. Since these derivatives are zero for £ > j, we have @ €
C" (Y xY, Z) by Corollary[D.T5]and Theorem [D.I0l Moreover, expressing D*®,
0 < s < m—j, with the help of partial derivatives, we see that these derivatives have
continuous extensions to maps (Yx V) x(VxV)* — Z implying the statement. [

THEOREM D.21. SupposeUd C X andY CY are open, Y -V, G:U—-Y,
GU) CcY, GeC"UV), and F : Y — Z, F € C}(¥,Z). Then F oG €
C™U, Z) and DI (F o G)(z,i7) is a linear combination of terms

(D.25) D F(Gla), DI Gla, i), ..., DI Gl 7))
where js > 1 and Z]::ljs =7.

ProOOF. We will show existence and continuity of Peano derivatives of F o G.
Let x €U, © € X. For any t, working just on the segment

I, = [G(z),G(z + )] C Y
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we have an estimate

Zj: DSF(G(z), (G(z + ti) — G(x))*)

(D.26) HF(G(:v + 1)) — )

DIF(y,(G(z +ti) — G(z))?) — D' F(x, (G(z + ti) — G(x))?)
7 H
for any 7 < m. Here all derivatives of F are applied to elements of Y, so the

extension has not been used yet. Since (G(x +t&) — G(x))/t converge, in the norm
|- llv, to G'(z,4), G'(z,%) € V and, using continuity of the extended D’ F,

DIF(y,, (G(z + t&) — G(x)) /1)) — DIF(2,G' (2, 4)) as t — 0

whenever y; € I;. Hence the right side of (D28)) is o(t/). Since z,# are fixed,
expanding D*F(G(z), (G(z + t&) — G(x))*®) is standard: DF(y,1,...,9s) has
been extended to a continuous s-linear form on V*, into which one plugs a C’
function R - Y C V, namely t — G(z + t&) — G(z).

It follows that FoG is m-times Peano differentiable with derivatives given by the
terms from the expansion of D*F(G(z), (G(x+tz) — G(x))*), giving (D:25). These
formulas show that (F o G)(®) is continuous as a map U x X — Z. Consequently,
FoGe C™U,Z) by Proposition [D.7 O

< sup
yel:

D.4. Chain rule with parameter and a graded loss of regularity

In the chain rule of this section, the main point is that the inner and/or outer
function depend on an additional parameter, the regularity of partial derivatives de-
pends on the order of the derivative with respect to the parameter, and the resulting
composition has the same regularity properties as the functions we are composing.
In principle, this chain rule is very different from the one in Theorem[D.29] although
we will reduce its proof to is.

ProrosiTiON D.22. Suppose P,Q,Y ,V are normed linear spaces, P, Q and

Y are open subsets of P, Q and Y, respectively, Y =Y,, = Y1 — ... = Y,
O:P =Y and F:Y x Q—V are such that ®(P) C Y and for each 0 < { <m,

(i) ® € C 4P, Yy);

(ii) for each j < m —£, DIDSF exists on' Y x Q x Q" x Y and has a continuous

extension to )Y x Q X Qe X Yéj.

Then the map ¥ (p, q) := F(P(p), q) belongs to CT(Px Q, V) and for each j+£ < m
the derivative D{Détp((p, q),q",1’) is a combination of terms

(D.27) Dy D3F((2(p), q), 4", D" @(p, "), ..., D™ &(p,*))
where js > 1, Z]::ljs =j and DiDSF denotes the extension from ().

ProoF. Clearly, D5W((p, q), ") = D5F((®(p), q),¢") exists for each 0 < £ < m,
and with fixed ¢ and ¢ it is a composition f, ;0 ®, where f, ;(y) = D5F((y,q),d%).
By @), ® € C"*(P,Y2), and by @), f,4 € C;Z_é(y, V). Hence by Theorem [D.21]
the function p — D¥((p, q), %) belongs to C"~¢(P, V) and its jth derivative is a
combination of the terms specified in (D.27).

It remains to observe that (p,q) — ((2(p), q), ¢, DI ®(p,p’), ..., DIk d(p,pi*))
maps, by the condition j; < 7 < m—/{ and (), P x Q continuously to (¥ x Q) x Q x
Y;" and this space is mapped by ((y,9),d, U1, - - -, k)= DiDSF((y,0), % 91, - - Ux)
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continuously to V' by (). Hence each of the functions in (D:27)) maps P x Q con-
tinuously to V', implying that ¥ € C*(P x Q, V). O

COROLLARY D.23. If, under the assumptions of Proposition we are also
gwen a function T € C7*(P,Q) with Y (P) C Q, the map O(p) := F(P(p), T (p)) be-
longs to C"(P, V') and for each n < m, the derivative D"O(p,p") is a combination
of terms

DiDEF((9(p),Y(p)), D" Y (p,p™),..., D7 Y (p,p’"), D" &(p,p"), ..., D*®(p,p*))
where js,0s > 1 and Zi:l Js + Zle ly=mn.

PROOF. Observe that © = ¥ o k where ¥ comes from Proposition [D.22] and
k: P —= PxQis k(p) = (p,T(p). Since k € C"(P,P x Q), x(P) C P x Q and
U e O™(P x Q,V), the statement follows from Theorem [D.211 O

The following main chain rule is a ‘symmetric’ version of the above, which
is capable of being iterated. It will be stated in the following situation. Let P,
X:Xm<—>...<—>X0,Y:Ym<—>...<—>Y0andZ:Zm‘—>...‘—>vaobe
normed linear spaces, Y C X, V C P, and Y C Y are open. We will use X, to
denote the closure of X in X,,, and similarly for Y;, and Z,,. Also, we use X (and
similarly Y and Z) for the sequence (X, ..., Xo).

The class of functions we will consider may be informally described as those
G:U XV =Y for which DJD5G is a continuous map U x V x P* x ’)Ei — Y44,
i.e., ¢ derivatives in the parameter p € V lead to a loss of regularity of order ¢ in
the scale of Banach spaces. Since this description has several interpretations, we
give a rather detailed one as a formal definition.

DEFINITION D.24. For any 0 < k < m, we define c* (U xV,X,Y) as the set of
all maps G : U x V — Y such that
(a) G € CFU x V,Yp).
(b) For each j + ¢ < k, the function

('rvpajjla' "Hjjjapla' "le) — D{DgG((xap)vpla "Mpfvjlv" 'ijj)v

which is by (a) defined as a map U x V x X? x P* — Y, has a (necessarily

unique) extension to a continuous mapping U x V x f)?; x P* — Y,. This
extension is also denoted D] D5G. .
(c) Foreach 0 < j < k—¢and each 0 < n < m—/¢ the restriction of D] DgG (which

has been already extended by (b)) to U x V x ’)Ziﬂ x P* has values in Y;, and
is continuous as a mapping between these spaces.

Notice that, clearly, CN'Z(L{ xV,X)Y)) C C~'k(Z/{ x V,X,Y) for k < i. For proving
that G € C*(U x V,X,Y) the following simplification of this definition is rather
useful.

B LEMMA D.25. Assume that 0 < k < m. Then G: U xV — Y belongs to
Ck(Z/I x V, X, Y) iff

(i) as a map of U x V to Yy, G has derivatives D{DéG((z,p),pe,jﬂ) for all
JHl<k, (x,p)eUXV,pe P and € X;
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(ii) for0<j<k—{and all0 <n < m—{ there is continuous map ¥j ¢ ,: U X
YV x Xpye X P =Y, such that D{DgG((x,p),pl,ij) =, o n(z,p,&,p) for
every (x,p) EU XV, pe P, and & € X.

ProoF. If G € C*(U x V,X,Y), (@) and (@) are obvious. For the opposite
implication, assuming () and () we see that for each j + ¢ < k, (z,p,2,p) —
DID5G((x,p), pt,47) is a continuous map U x Vx X x P — Yy. Hence G € C*(U x
V,Y,) by Corollary [D.I5] yielding [D24@). Lemma and the polarization
formula establish the function

(‘Tupai;la cee 7i.j7p17 e 7pf) — D{DéG((xup)aplu e 7]557‘@17 e ,.’I]])
as a combination of terms
(xapu ‘rblu e 7i‘jap17 cee 7pf) — D{DéG((xup)a (Z Ukpk)ea (Z Tkxk)J)
kel kelJ

where I C {1,...,¢}, J C {1,...,j}, and o}, 7 = £1. This shows that for each
0 < n < m —¢, the derivative D] DG can be extended to a continuous map ¥ ¢,
from U x V ><3(/zl+g x P*to Y,. With n = 0 this shows [D.24I[h). For 0 <n <m—¢
we see from X = X,,, = X,,1¢ — X, that both ¥, 4, and the restriction of ¥, ¢ o

toU xV x fle x P* are continuous as maps of U := (U x V' x 32514-@ x PY||- Ix.)

to ¥p. Since X is dense in (Xpi, || - [|x,.,), and so also in (Xnqr, || - [Ix,), the
maps ¥; ., and W, ¢ o coincide on a dense subset of U, hence on all of U, proving

D24@). 0
REMARK D.26. Clearly, the claim remains true if one replaces
D{D{G((x,p), 5",
with the derivatives taken in the opposite order (see Remark [D.I6]). In the present
and the following appendices, in the notation C™ (U xV, X, Y) we indicate, somehow
pedantically but usefully for clarity in proofs, the sequences X, Y of Banach spaces.
When using this notion in particular applications, the sequences X and Y will

be clear from the context and we will skip them from the notation writing just
C™(U x V). o

For working with functions from C™ (U %V, X,Y) it is useful to know that they
have properties stronger than those given in the definition.
LEMMA D.27. Let G € C™(U x V,X,Y) and 0 < j,n < m — {. Then
(1) for fized x € U, the map p — G(x,p) belongs to CL(V, ?m,g);
(2) for fitedp €V and p1,...,pe € P, the (extended) map
(xvjlv ceey IJ) — D{DgG((xvp)aplv cee 7p55 jjlv cee 7xj)
belongs to C;j_é;j (U x }i—% Y,).

Proor. () By Corollary[D.9and [D24@) with n = m—¥¢, the map p — G(x,p)
belongs to C(P, Y,,—¢). Hence the derivative D5G is an iterated limit of elements

of Y taken in the norm of Y;,_,, and so it belongs to ?m_g.
@) By Lemma [D.20 it suffices to show that the function

T — DgG((xap)vpla .. apl)
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belongs to C;’g;fe U, }N’n) But this follows by the same argument as in the proof of
@. O

REMARK D.28. Since (2) puts the values of the (extended) derivatives into the
corresponding closures of Y, G belongs to C™ (U x V,X,Y) iff and only if it belongs
to this space when X, and Y,, are replaced by /)En and f’n, respectively. So, at
least in proofs, we may always assume that X is dense in X, and Y in Y,,. o

THEOREM D.29. Let G € C™(UxV,X,Y), GUxV) C Y, F e C™(YxV,Y,Z)
and define F o G: U xV — Z by F o G(x,p) := F(G(x,p),p). Then F oG €

CmU x V., X,Z).

PROOF. By Remark[D.28 we may assume X, = X, and similarly for Y;, and
Z,. Set H := F o @. For fixed x € U, the function p — H(x,p) is of the form of a
composition F(P(p), T (p)) where the outer function F': Y x V — Z and the inner
functions ®(p) = G(z,p) and T'(p) = p satisfy the assumptions of Corollary [D.23]
with @ = P, @ =P and V = Z. Hence p — H(x,p) belongs to C*(P, Z,) and
for each £ < m, the derivative D§H ((x,p),p’) is a combination of terms

(D.28)  DYDyF((G(z,p),p),p", DY G((x,p),p™), ..., Dy G((x,p),p"™))

where mg > 1 and 7 + El;:l mg = L.

We now fix p,p and differentiate the function in (D:28) with respect to x. We
set

K(x):= (G(x,p), D3 G((z,p),p™),...,Dy"*G((z,p), p™" ))
and
L(yvylv cee 7yk) = DlchéF((yvp)apza ylv cee 7yk)

Then the expression in (D:28) is given by the composition (L o K)(z). Since my <
I —i <m —i we have m — my >4 and it follows from Lemma [D.27] @) (applied to
the s-th component of K with n = m — mg) that

KeCm Y U;y xY").
Application of Lemma [D.27] @)) to F' yields that
Le cg;j;k(y x Y, Zy) C c;z;fl (VY x Yi¥, Zo).
where the inclusion follows from the relation [ > i+ k. Hence, Theorem [D.21] shows
Lo K € C" YU, Zy) and for each j < m — £ the derivative of DI(L o K) (and

hence the derivative D{ DS H) exists and is given by a sum of terms of the form
(D.29)

DEDLF((Gl,p).p). ', DY D Gl(2,p), 5" i), ..., DI* DY G((w,p), 5%, i)

where j, + 05 > 1, i+ Y5 6o =Land YF_ j, = J.

Finally, we rely on Lemma [D.27] once more. For any s = 1,...,k, the map
(z,p, &,p) — DI D5 G((x, p), p', 7°) is a continuous map from U x V x X,,_ ¢, X P
to Y,,, whenever ny; < m —{,. Choosing ns = n-+{—{ for any fixed n < m—/{, we
getamap U X VX X ¢ X P — Y, 1oy, Using that £, < £—i, the derivatives have
been extended so that the function of (z, p, i, p) defined in (D29) is a composition
of continuous maps

UXV XXy xP—-YxPxP xYr,
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and
i k
YXPxP' XY, —Z,.

Hence (z, p, &,p) — D} DSH((x,p), p¢, #7) is continuous as a map of U x V x X, ¢ X
P to Z,, and we conclude from Lemma [D.25] that H € C™ (U x V, X, Z). O

REMARK D.30. Let py € V and assume that G(U x Bs(po)) C Y,
(D-30) 1D D5G (2, p), 5", @)lly, < Cullil,, 1511

for any (x,p,&,p) € U X Bs(po) X Xpiex Pand any 0 < j+0<m, 0<n <m-—I
and

(D-31) ID{DE((y, ), 5", )z, < Callglly, ., 191

for any (y,p,9,p) € ¥ x Bs(po) X Yoyex Pand any 0 < j+¢<m, 0 <n <m-—1.
Then

(D.32) 1D D3 H (2, p), 5", 3|z, < Csllil, ., 151"

n-+~0

for any (x,p,4,p) € U X Bs(po) X Xptex Pand any 0 < j+£<m, 0 <n <m-—I,
where C3 depends only on C;, Cy and m. In fact, since D} DSH((x,p), p’, 27) is a
weighted sum of the terms in (D.29) it is easy to see that there exists a constant
C(m) such that C3 < C(m) C1(1 + CF"). o

If we the introduce the norm
(D.33)

1Gl G iy = inf { M+ [D{DSG(, ), .7y, < Ml oI,
V(x,p,&,p) EUXV X Xpppx Pandany 0< j+£¢<m, 0<n<m-—1}

then the remark implies that || H|| can be controlled in terms of | F|| and ||G||.

D.5. A special case of a function G that is linear in its first argument

Here we discuss conditions assuring that G € C™ in a special case of linear
dependence on the first variable:

LEMMA D.31. Let G: X xV —Y and assume that:

(i) For any p € V, the map x — G(x,p) is linear.

(ii) For any 0 < ¢ <m and any x € X, the map p — G(x,p) is in CL(V, Y _).
ui) For any po € V there exists 0,C > 0 such that

1i1) F V th ists §,C >0 h th

1D3G (), 8)ly, < Cllzlx,.[1Il°
for any 0 <l <m,0<n<m-—2¢ and (x,p,p) € X x Bs(po) x P.
Then G € C™(X x V,X,Y). Moreover
(D.34) 1GllEm (Brxy sy < Clm)(1+ R)M',
where
M' = inf {M : | DyG((z.p), 5y, < Ml|z]|x,,.. 5]l
(D.35) for any (z,p,&,p) € X xVx P and any 0 <n+ ¢ <m}
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PrRoOF. We will verify the conditions of Lemma

The conditions (i) and (@) above imply the condition Lemma [D25{). In-
deed, taking into account the linearity of G in the first variable, the derivative
D1G((w,p), ) exists and equals G(#,p) (with any norm |-[ly., 0 < n < m (in
particular, also n = m — £) on the target space Y'). Thus D5D,G((z,p),%,p") =
D5G((d, p),p*) and DED]G((i,p), 47, p*) = 0 for j > 2.

Further, we show that the derivatives (z,p,p) — D5G((x,p),p’) can be ex-

tended to continuous maps @y, : X410 X V x P = Y,,. Indeed, consider fixed
peV,pe P, x € X,y and a sequence z, € X, converging to = in the norm of
Xotes lew — 2llx,,, — 0. The derivative D5G((xy,p), p*) belongs to Y,y — Y,
for each xy, and in view of the bound (i) we get

(D.36) ID5G((ak, ), 5°) — D3G((wr ), 5) |y, < Cllaw — 2l x5

yielding the existence of the limit @, (7, p,p) := limy_o DEG((z1,p),p") € Ya.
This also gives the continuity of the map x — @, (x,p,p). Combined with the
continuity (p,p) — D5G((z,p),p") from the condition (), we get the continuity of
Py, as stated above.

To conclude, we introduce the continuous ¥y : X X VX X4y x P =Y,
defined by @y ¢n(x,p,&,0) = Pon(p,z,p) and P14, : X XV X Xppy X P = Y,
defined by W1 ¢ n(x,p, &, p) = Pen(p, &,p). For j > 2 we take ¥ ¢ n(x,p,&,p) = 0.

The assumptions of Lemma are thus satisfied, allowing us to conclude
that G € C™(X x V,X,Y). O

D.6. A special case of function G not depending on the parameter p

In applications of the chain rule it is convenient to also consider the case of
maps that do not explicitly depend on the parameter p. We get

LEMMA D.32. Suppose that G :U xV =Y and G :U — Y satisfy

(D.37) G(z,p) = G(z) Y(z,p) elU x V.
Assume that
(1) GeCU,Y,,) and i
(2) for 1 < < m the map (v,%) — D'G(x,3") can be extended to a contin-

uous map from U x Xy to Yo and for 1 < n < m — 1 the restriction of
this map to U x X, is continuous as a map with values in'Y ,,.

Then G € C™U x V,X,Y). Moreover
(D'38) HGHGm(uXuXX) <M
with
(D.39) ‘
M’ =inf {M : |DIG(z,3")|ly, < M|z|' V(z,%) €U x X, VO<n<m}.

PRrOOF. First note that DgG =0 for £ #0. Let ¢ 0 : U x Xg — Yp denote the
extension of D'G to U x X, and let ¢1,n denote the restriction of ¢ to U x X,,.
Set

(D4O) ¢j,0,n(x7p; :E,p) = (bl,n(xa I)a 1/}j,l.,n(x7pa :E,p) =0 if! # 0.
Then the assertion follows from Lemma [D.25 O
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D.7. A map in C'\ C} and failure of the inverse functions theorem in C!

ProrosiTION D.33. Let H be an infinite dimensional separable Hilbert space.
Then there exists G € CL(H,H) N C*>(H \ {0}, H) such that G is not Fréchet
differentiable at zero. Moreover the exists a function F € C}(H, H) which satisfies
DF(0,%) = & but which is not invertible in any neighbourhood of 0.

PROOF. Let (ex)ren be an orthonormal basis of H. We will construct G as a
convergent sum

(D.41) G(z) =Y Grlw)ex
keN
such that

G e C*® (H),

the support supp G of G}, is concentrated near 2 *ey,

supp G, Nsupp G; = @ for k # 1,

the gradients VG, are uniformly bounded and converge weakly, but not
strongly, to 0 as k — oc.

Specifically G}, can be defined as follows. Let Pj denote the orthogonal projec-
tion of H onto the subspace

(D.42) Xp:={reH:(v,e;)=0 Vj<k-—1}

Let

(D.43) peCZ((—15:15), 0<¢<1, ¢0)=1,

(D.44) Gr(x) =27 (128 Pex — exl”) [] ¢ (2* (, ej)) :
Jj<k-1

For k = 0 the product [[;, , is replaced by 1. Clearly G € C*°(H). Moreover

_k+j

(D.45) suppGy C Ky, == {:v H(ze)| <3277 ifj<k—1,

(@, ex) — 2% < L and |Pejya] < 52*’6}.
We claim that
(D.46) KinK =2 ifk#l.
To show this we may assume that k£ < [. If x € K N K; then the definition of
K, implies that (z, ;) > 327" while the definition of K; yields |(z, ex)| < %2_%.
Since both inequalities cannot hold simulateneously we get K N K; = @. Note also

that

1 25 1
(D.47) rekK, = |z]*< 52—’f + ET% + gz—% < 97kl
In particular if 29 # 0 then the ball By, 2(x0) intersects only finitely many of
the sets K. Hence the sum G = ), Giey, is a finite sum in B|x0|/2(:vo) and thus

defines a C>° map on that set. Thus
(D.48) G e C>*(H\{0},H).

Moreover G (0) = 0 and thus G(0) = 0.
We now show that

(D.49) the directional derivative D'G(0, %) exists and equals 0; and that
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(D.50)  the map (&) +— D'G(x,) is a continuous map from H x H to H.

To prove (D.49) we note that Gy(z) = 0 if |(z,e)| < & and |Gy(z)| < 1 for all
x € H. Thus

(D.51) |Gr(x)] < 2|(z, ex)].
Since each function Gy, is in C*°(H) it suffices to show that for each & € H

m—oo 40 t

1
(D.52) lim lim sup —‘ Z Gk(tdc)ek‘ =0.
k>m

Now by (D.51)) and orthogonality

(D.53) ’ Z Gr(ti)ey ’ = Z |G (ti)|> < 4t® Z |(&, ex)|? = 48| Ppi|?.

k>m k>m k>m
Thus
1
(D.54) lim sup —’ 3 Gk(tjz)ek’ < 2|P,,d|
=0 1

and the assertion (0.52)) follows.
To prove (D.50Q) it suffices to prove continuity at (0, ) since we already know
that G € C°°(H \ {0}, H). Thus we need to show

D.55 lim D'G(z,v) =0.
( ) (z,v)—(0,z) ( )

Since D'G is linear in the second argument and since finite linear combinations
le\;[o aje; are dense in H it suffices to establish the following two properties

(D.56) |D'G(z,v)|| < C|lv|| ¥(z,v) € H x H,
(D.57) lim D'G(z,e,) =0 VmeN.
T—
To prove the bound on D'G note that (for z # 0)
(D.58) VGi(r) = 202" Pox — ex|))2" Pex —ex) [ @(2F (.¢)))
j<k—1
+o(l[2FPer — ex]?) > ¢ (27 (z,0))27 ¢ 11 0(27% (x,¢))).
1<k—1 j<k—1,j#l
Since the vectors eq,...,er_1, 2k Pex — e are orthogonal this yields, with C" =
sup [¢'[%,
1
(D.59) IVGr(z)|? < 40" + ¢ > 2k <o

1<k—1
Since the G have disjoint support and since D'G(0,v) = 0 it follows that
(D.60) ID*G(x,v)|| < V2sup|¢| |[v]| V(z,v) € Hx H

and thus (D.50).
To prove (D.57) note that G(z) = 0 if ||lz]| < 227%. Thus for [|z| < 227™ we
have

m—Fk

s if 2 € supp G}, for some k,

<2

(D.61) |D'G(x, em)] {
=0 else.
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Now if z € supp G, and = — 0 then k — co. This implies (D.57).
Thus we have shown that
(D.62) G eCHH,H) with D'G(0,#)=0 Vic H.

We finally show that G is not Fréchet differentiable at 0. If G was Fréchet differ-
entiable at 0 the Fréchet derivative DG(0) would satisfy DG(0) = 0. Thus Fréchet
differentiability would give

o IG@I

a=0 ||z

(D.63)

On the other hand we have
(D.64) G(2ikek) = Gk(27k6k)6k = 27k6k.
Taking k — oo we get a contradiction to (D.G3)).

To get a counterexample to the inverse function theorem in CL(H, H) set

(D.65) F(z) =z — G(z).
Then F € C}(H, H) and by (D.62))

(D.66) D'F(0,#) =4 Vi€ H.
Now (D.64) imlies that

(D.67) F(27%er) =0=F(0)

and hence there exists no neighbourhood of 0 in which F' is invertible. O



APPENDIX E

Implicit Function Theorem with Loss of Regularity

Here we state and prove a version of the implicit function theorem which in-
corporates a loss of regularity and is tailored for the use in Chapters and

We consider a function of three variables (rather than a function of two variables
as in the standard version of the implicit function theorem). The implicit function
we are looking for expresses the first variable as a function of the second and the
third variable. The reason for this set-up is that the second and the third variable
play very different roles. Differentiation with the respect to the third variable (which
in our application is the renormalised coefficient in the difference operator) leads
to a loss of regularity, while differentiation with respect to the second variable does
not. This bad behaviour with respect to the third variable is partially compensated
by the fact that we know that F'(0,0,p) = 0 for all values of the third variable in a
neighbourhood of 0 (and not just for p = 0) and that we have uniform control of
D1 F(0,0,p).

THEOREM E.1. Let m > 2. Let X = X,, — ... = Xy, E, and P be
normed spaces, with X = (X,,,...,Xo), E=(E,...,E), and X x E = (X,, X
E,...,Xox E). Further, letUd C X,V C E, and W C P be open and assume
that F € C™((U x V) x W;X x E,X), i.e., F € C™U xV x W, Xy), for any
7'+ 7" + £ < m the derivative

D{/D‘%” DLF can be extended to a continuous map
(E.1) UxVxWx XI x B x P' - X,
and
the restriction of D{ID%”DgF defines a continuous map
(E.2) UxVxWx XD x B xP' 5 X, if0<n<m—1.
Assume, moreover, that (0,0,0) €U x V x W and
(E.3) F(0,0,p) =0 for allp e W,
and, there exists v € (0,1) such that
(E.4) [ D1F(0,0,p)| n(x,,x,) <7 for anyn <m andp e W.

The@vthere exist open subsets u - U,j - l), and W C W with 0 € 1/7, 0 e 17,
0 €W, and a unique function f:V x W — U such that

(E.5) F(f(w.p),@,p) = f(w,p) for any (w,p) €V x W.
Moreover f € C’m(\j X VNV,X), i.e.,
(E.6) FECTWXW, Xm_n) foral0<n<m

133
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and
(E.7) D{IIDlzf VxWx B x P! = X, is continuous

for i +1<m.

Finally if F(z,w,p) = x and (x,w,p) € UxVxW then z = f(w,p). The
derivatives of f are given by the usual formulae, see (E28) for the first derivative
and the inductive definitions (E.33) and (E34) for the higher derivatives.

If

I 1l

for all (x,ww,p) €U XV X W and all 0 < n < m — ¥, then there exists a constant
Cy = Co(Ch,v,m) such that

(E8) 1D D3 f (w,p, %07, 5°) ||, < Callew|l? [15]°

-/ -1 . i . .11 . . -/
”D{ D% DgF(wivpvx] , 7pl)||Xn < Cl”‘THanH

for all (w,p) € V x W.

The examples in Proposition [D.33] shows that the inverse function theorem
(and hence the implicit function theorem) in general does not hold in C}, even
when there is no loss of regularity. This is why we assume m > 2 in Theorem [E.1]

REMARK E.2. The usual implicit function theorem also holds in the C}* spaces
instead of the C™ spaces as long as m > 2. More specifically, let Y C X,V C E
and assume that F' € C"(U x V, X) with F(0,0) = 0 and ||D1F(0,0)] <~ < 1.
Then there exist  C U and V C V and f € C™(V, X) with f(V) C U such
that F(f(w),@) = f(w@) for all @ € V. This follows directly from Theorem [E1l
Indeed, it suffices to consider the situation where X,, = ... = X¢ = X and to
extend F' trivially to a function on U x V x P which is independent of the third
argument. Then F satisfies all the hypothesis of Theorem [E.1] and the conclusion
of the theorem gives the desired assertion. o

REMARK E.3. Let U=U x V, X, = X, x E. Then, strictly speaking, the
definition of C™((U x V) x W, X x E, X) requires that

D’ Df;F can be extended to a continuous map

(z,)
(E.9) UxWxX)  xP' X, if0<n<l—mandj+l<m.
In view of Corollary [D.15] this is equivalent to (E.2]). o

PROOF.
Step 1. Prelimary estimates.
We claim that there exist subsets Y C U,V C V, W C W that are balls around

0 and a constant M such that the following estimates hold:
- .17 VY7 T TR AETISIYA
(E.10) |D] Dy D3F((z,,p), 4", %", p)lx,,, < Ml o)z l5le

for all (z,,p) €U xVxW, alli € X,&v € E,p € P, and all j/ + j" + £ =2,
0<n+4<m,

(B.11)  ||DyF((z,@,p), @) x,, < M|&|e  forall (z,@,p) €U x V x W,

(E.12) |F(0,@,p)|x, <M|w|g forall (w,p) eV xW, and
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(E.13) |D1F(z,@,p)|n(x,.x,) < 52 for all (z,,p) € UxVxW,0<n<m.

Indeed, using the joint continuity in (E2) at (z,w,p) = 0 and (&, @, p) = 0 we see
that for € = 1 there exists a ¢ € (0, 1] such that

D1 Dg D3F((@,,p), 37, B x,00 < 1
it max(dlLx, . ], [7p) < & and max((lalx. ||z [plle) < 6. By the mul
tilinearity of Dj D} DY this implies (EI0) if M > 6~2. Similarly we see that

(E-II) holds. Now (EI2) follows from (E.II)), the assumption F(0,0,p) = 0 and
Lemmal[D.Gl Finally (E3]) follows from the assumption || Dy F(O 0 p)HL(Xm x,) <

v and (IETQI) (applied with ¢ = 0) provided that the radius of U and V is chosen
sufficiently small.

Step 2. Existence, uniqueness and continuity of f.

First, observe that, according to (.2)), the derivative Dy F" defines a continuous
map D1F U XV x W X X — X . Taking into account the inequality (E13)

and, possibly, shrinking the diameters of balls Z/{ V and W we have
(E.14) |F (21, ,p) = Fz2,@,0)| x, <o —zalx,,

for any x1,x9 € U and any w € V and p e W. Employmg now the Banach fixed
point theorem [Die60] (10.1.1)] (and possibly shrinking V and W further) we get
the existence of a unique map f : VxW U such that F'(f(w,p), @, p) = f(@,p)
for any (w,p) € V x W; moreover, f € CO(V x W, X,,).
Step 3. Differentiability of f, i.e., f € Cl(V X W Xm-1)-

Using the characterisation in terms of Peano derivatives, Proposition [D.7], we
need to find a continuous function f() : (V x W) x (E x P) = X,,_1 so that, for
anywxperWandwxpeExP we have

(E.15) tang 1)me | =0

with

(E-16) §(t) 1= f(@ + e, p+ tp) — f(w,p).

Introducing

(E.17) G(z,w,p) == F(z,w,p) —

the function f is defined by

(E.18) G(f(w,p),@,p) = 0 for all (w,p) €V x W.

Differentiating now formally the equation

(E.19) G(f((,p) + &, D)), @ + t, p+1p)) = 0

with respect to ¢ and setting

(E-20) R" := DyG((z,@,p), w) + DsG((z,@,p). p)
we expect that

(E.21) I ((@.p). (@,5)) = ~DiG(z,=,p) 'R}

with = f(w,p).
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The mapping D1G(z,w,p) : X, — X, is bounded and invertible for any
n < m since, according to (EI3)),

1+~
(E.22) D:1G(z,@,p) — Un(x,.x,) < — < 1
and thus
_ 2
(E.23) | D1G(z, @, p) 1HL(Xn,Xn) < E

for any (z,w,p) € U x V x W. Hence, the function f() introduced by (E2I) is
well defined.

To verify the claim (EIH), we recall that £ is continuous (with values in X,;,)
and use the first assertion in Lemma [D.27 with [ = 1 and Lemma [D.6] to estimate

(E.24)
| G(z +&(t), @ + two, p + tp) —G(z+£(t), w+tw, p)—D3G(z+E(t), w+tw, p, th) |l x,,.
=0
<t sup [|[D3G(z+£(t), @ +tww,p+7tp,p) — DsG(x +&(t), @ +tw,p, p)l x,,_,
7€[0,1]
= o(t).

Similarly, using the second assertion in Lemma [D.27] and Lemma we get
(E.25)
|G+ &(t), @+, p) — Gl .p) ~DrGz, @, p. (1)) — Do, ., 125) |,
=0
= o(t) + o(l§()] x,,—,)-

Combining these two estimate we deduce that

(E.26) ID1G (@, p)&(t) + LR | x,,_, < ot) + o([|E(D)]x,, )
. and using (E:23) and the definition of f™) it follows that
(E.27) 1€(t) = tF P x,._, = o(t) + o(JIEE) ]| x,_,)-

This implies first that ||(¢)|x,, , < Ct for small |¢| and then division by ¢ yields
the desired assertion (EI5).

We finally show that
(E.28)

f(l)((va)a (va)) = _DlG(Ia wap)il(DQG((xv va)a w) =+ DgG((.I, va)ap))
defines a continuos map from V x W x xE x P to X,,_;. Together with (E.1f)
this show that f € CL(V x W; X,,,_1). Clearly the map
(E.29) (@, p), (,p)) = D2G((z,w,p), @) + D3G((2,@,p),p)
has the desired continuity properties.
It thus suffices to verify the following continuity property of D;G~' for any n
with 0 <n < m:
(E.30) Whenever (z;,@;,p;,y;) — (z,@,p,y) in U x V x Wx X,
then D1G(zj,@;,p;) 'y; — D1G(z,,p) 'y in X,,.

This would be obvious if were able to assume that (x,w,p) — D1G(z,w,p) is
continuous as a map with values in L(X,,, X, ). However, we only have continuity
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of (z,w,p, &) —» D1G((x,w,p),&) as a map from UxVxWx X, to X,. To

show that (E-30) holds under this weaker assumption let z := D1 G(z,w,p) 'y and

zj = D1G(zj,w@;,p;) 'y;. Then

(E.31) DiG((x), 5, p5) z5—2) = (Yj—y)—(D1G((%, @;,p;),2)—y) = 0 in Xo.

Since | D1G (x5, @;,05)  lL(x,,x,) < 2/(1—7) it follows that z; — z in X,.
Step 4. Higher Peano derivatives and proof of (ES).

Let 2 < k < m. Employing Proposition [D.7] again, we will prove that f €
Ck(V X W X k) by showing that f : VxW — X ,n_k has continuous Peano
derivatives up to order k. As before (w,p) € V x W and for sufficiently small ¢ let
&(t) == f(s+tow,p+tp) — f(w,p). We will show by induction that £(¢) is Peano
differentiable at 0 and that the Peano derivatives up to order k£ can be computed
by expanding the identity

(E.32) 0=G(z+&(t),w +tw,p+tp)), wherex = f(w,p),
to order k in t.

Define () by ([E21). For k > 2 define inductively Ry, = Ry(t) = Ry (t, @, p, @, 1)
and f*) = f)(w, p, @, p) as follows,

(E.33) Ry(t) :=

P N
Z J/IJ/MZIDJ DJ DKG (wivp)a< Z —tq> 77.ﬂj 7pé)t] +é +

Gl 4! +e<k
3 +e=1

,(CJ ) to denote its j-th order derivative
att =0, ie., R,(CJ)/j! is the coefficient of #/ in the polynomial Ry. Also, notice that
in the right hand side of the equation above, only terms (@ of the order ¢ < k — 1
occur. Note also that Rj(t) contains all the terms of order t/ with j < k of the
joint Taylor expansion of G and {(t) except for the term DG (x,w,p,{(t)). Thus
looking on the coefficients of t* it is natural to define

(E.34) f® = —DyG(2,,p) 'R,

Note that Ry is a polynomial in ¢. We use R

i.e., f(®) is the unique solution of the linear equation DG (z,w, p, ) + R(k)

(we will see below that R,(ck) € X ,,—r and that this equation has indeed a unique
solution in X, k).
For k < m, we will prove by induction that

(E.35) e X, 4

and that f* is the sought Peano derivative since

f(Q) .
>t

(E.36) Hg(t) - — o(t").

For k = 1 the definitions of Rgl) and f(1) agree with those given in Step 3. The
claims (E238) and (EZ36) for £ = 1 were also established in Step 3.
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Assume now that (E35) and (E36]) hold for £ — 1 and that k& < m. Then it is
easy to see that for all ¢ we have Ry (t) € X,,— and in particular R,(Ck) € Xom—p.

Indeed, if £+ j” > 1 then Ek =3 f(Q) t?7 € X ,,,_p+e and, since

, X B x P to Xk,
the first sum in the definition of Ry (t) isin X ,,_g. If £ = j” = 0, then Ek ! f:)
X n—k+1 which is mapped by D{G(:z:, w, p) into X ,,,—k+1 implying that the second
sum in the definition of Ry(t) is contained in X,,_g+1 C X,—k. We have seen
in Step 3 that the map @ — D;G((z,w,p), &) is bounded and invertible as a map
from X, to X, for all 0 < n < m. Hence, the definition (E34) implies that f®*)
is well defined and lies in X,,, .
To prove ([E30), we first define

(E37) D] D} DG maps UxVxWx X .

t1 ¢

(E38) Ek(t) = Z j"]”‘f‘Dj DJ Dg((x w p) g(t) i’ wj”’pé)tj”"rf_*_

i’ i +e<k
3 +ex1

3" 4D G((x,m,p), (1))
2<j'<k

Similar to the estimate for the first derivative, it follows from Lemmal[D.27 Lemmal[D.6l
and Proposition [D.7] (c.f. also Lemma [D.13) that
(E.39)

|G + €(t), = + te5,p + t9) — Gl ,p) ~DrG((w, =, ), £(1) — Re(t)|

IN

Xom—k

< sup Z ”|€’ (DJ DEG((.I+T€(t),w—|—7’tw7p—|—7’tp),wj,,,pl)—
Tel0A]" 5 o,

- Dy DiG(@ w.p) )|

+ sup
T€[0,1]

s (D DI DEG((w, +ré (), 7o, prrtp), (42)7 57" )~

345" =k
i'=1

11

~ D{ Dy DiG((w w.p), () &) |
m—k

The first term on the right hand side is o(t*) since D%l/DgG is continuous in all of
its arguments and since {(t) — 0 in X,,. For the second term we use that ¢ < k—1
since 7/ > 1 and that, as proven in the Step 3 the function &(t)/t converges to
fMin X,,_1. As a result observing that DJ DJ De is a continuous map from
UxV xWx an_l x BV x P’ t0 Xm_1—¢ <> Xm_r, the second term is also
o(tk). In summary,

(E.40) ID1G (2, ,p), £(1)) + Re(t)] x,.,_, = o(t*).
Combining the induction assumption,

(E.41) Hg(t) - k_z £
q=1

= o(th=7"=1)

m—k+0+5"

e
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"_p f(Q)

valid for any j” + ¢ > 1 with the estimate || Z t X, i < 30T

which follows from (E.41)) and the bound ||£(¢ )”mel < Ct proven in Step 3, we

can evaluate every term occurring in Ry, — Ry. Namely, we bound
(E.42)
k—t—j" w i
-/Jr -/ =1 q 1 -/ LAl . =11
| DI Dy DyG (. m.p), (3 L) ey, &7 e+

q=1

= o(th).

me,k

Here we took into account that the difference Ry — Ek contains only terms with
J1 > 1 implying that o((tF=7" —#)1)t7" T3z = o(t*) since (k—j" — €)1+ 5" +L+755 >
kE+ (j; — 1)(k—j" =€)+ j4 > k. Similarly for the remaining terms,

k—1 -
(E.43) DG (=), (D0 Lt - S(t))h,é“(t)h

= o(th)

)

‘anfk

since j > 1 and {474 > 2 and thus o((tF~1)71)t72 = o(¢%)tk= DU =D+ =1 — o(¢k),
As a result, we can conclude that

(E.44) 1Rs(t) = Br(®)]x,, . = o(t*)

and thus

(E.45) ID1G((x, 0, p), (1) + Ri ()] x,, . = o(t").
Moreover one can easily check that for any ¢ < k

(E.46) [1Rq(t) = Ri(t)llx,,, . = o(t?)

and thus the derivatives of order ¢ at 0 satisfy Réq) = RI(CQ), Now the definition of
@ for g < k implies that

(B.47) D\G((z,@,p), @) = —RW = —R?.
Thus
(E.48) IDyG (. p). Zf % 4 Ri(t)]x,._, = oft*)

since Ry is a polynomial with Values in X,,_j. Comparison with (E43) yields
f@ k
(E.49) | D1G((z, @, p), Z —t9)||x,,_, = o(t")

and this implies the claim (E36)) since & — G((z, @, p), %) is a bounded and invert-
ible map from X, j to itself.

We have thus shown that for any n < m the map f: V x W — X,,_, has
Peano derivatives for any & < n given by

(E.50) F (@, p), (@,5)) = WV,

where f*) is inductively defined by (E33) and (E34) with « = f(w,p). It follows
by induction that the maps

(E.51) (@, p, (@,p)) = RS,
(E.52) (w,p, (2,p)) = f*)

are continuous as maps from Vx W x E x P to X,,_,, (here we use again (E30)).
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Thus f(™ exists and is continuous on (17 x W, X m—n). By Proposition [D.7]
the existence and continuity of Peano derivatives f(") thus finally implies that
FeCVxW, X,_p) for all n < m.

Step 5. Improved estimates for DJ D5 f and proof of (E7).
For j = 0 there is nothing to show since Db f(w,p,p’) = fU(w,p,0,p) and thus

(EX) follows from (EE). For j > 1 set

n:=j+4
and note that
1 R - SR I G o
(E.53) Ef(") (w,p, @, sp) = Z slﬁED{Déf(w,p, @, p)
’ 1=0 o

Thus, up to a constant factor, D{Dg f is given by the coefficient of s' in the
polynomial s — f() (w,p, o, sp). Using this observation we will now prove (1)
by induction over n.

For n = 1 the assertion follows directly from (E28)).

Assume the assertion has been shown for j+1 < n —1 (where n < m). We will
show the assertion for j +1 = n. In view of (E34) it suffices to show the following:

If Rf;fl)(w,p, @7, p) is the coefficient of s’ in the polynomial
h(s) := R (w, p, @, sp)

then o
Rf:l) VX Wx Ex P — X,,_; iscontinuous.

To see this note that h(s) is a weighted sum of terms of the form
D{/D%//Dg/F(‘T? w, P, f(q1)7 ey f(qj/)7wj”,pf/) Sé/
with (%) = £(%)(w, p, <, sp) and terms of the form
D{,F(x7 w?p, f(ql), ctc f(qj,))'
Using ([E53) we see that R\") is a weighted sum of terms

n,l
Ty := DI DI DY F(x,w,p, D DL f, ..., DS DY f,09" p¥')  with £; < € — ¢/
and of terms
Ty = DI F(a,w,p, D" DY f,... D' DY f) with ¢; < £
where
DD = DS DY (e, 5%, 17).
Now by induction assumption
DYDYV X W x E% x Pl = X, (1)

is continuous if ¢; < ¢ — ¢. Thus T} : V x WxExP — X,_v¢ is continuous.
Similarly one shows continuity of T5.

Step 6. Proof of (E.g]).
This is proved by induction over n = j + [ very similar to Step 5.



APPENDIX F

Geometry of Course Graining

We will use two combinatorial lemmas (Lemma 6.15 and 6.16 from [Bry09])
proven by Brydges that are for completeness summarised below.

LEMMA F.1. Let X € P{\ Si. Then

For any X € Py we have
(F.2) [X[;, = (14 a(d))[X];4; = (L4 a(d)2C(X)| with o(d) = rrgmyaren -

LEMMA F.2. There exist 5 = 6(d, L) < 1 such that
(F.3) Z §IXIe < 1

XePp\Sk
X=U

Jor any k € N and any U € Py ;.
PROOF. For any X contributing to the sum we have | X[, > (1+2x(d))|X|, 4
and thus

(F4) Z 5|X\k < 2Ld‘U|k+16(1+2“(d))|U|k+1 <1

XGPE\S;C
X=U

I
once & < 27 THF2«(d) O
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