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Abstract

In this paper we investigate the underlying structure of the Lucas (1988) endogenous growth
model. We derive analytically, the restrictions on the parameter space that are necessary and
sufficient for the existence of balanced growth paths and saddle-path stable local dynamics. We
demonstrate that in contrast to the original model, with the addition of an external effect and
depreciation in the human capital sector, the Lucas model can be made consistent with the
high degrees of intertemporal elasticities of substitution increasingly estimated in the empirical
literature—even if there is a significant degree of increasing returns to scale in the physical
production sector of the economy. Finally we demonstrate that for a given baseline rate of
steady state growth, with the inclusion of modest degrees of depreciation and external effects
to the human capital production process, the model can accommodate the widest possible
range of economies—including those characterized by low discount factors, high elasticities of
intertemporal substitution, increasing returns in the final goods sector, and also both the high
rates of population growth and steady state per-capita output growth we observe in many parts
of the world today.
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1 Introduction

Since publication of Lucas (1988), the two-sector endogenous growth model with human capital has

featured in increasing numbers of applications in macroeconomics. This paper has two aims. First,

to provide an atlas of sorts for the Lucas model—one extended to include sector-specific external

effects and depreciation in both sectors—by mapping out analytically, the precise restrictions on

the parameter space necessary and sufficient for the existence of balanced growth paths and for the

existence of saddle-path stable equilibria in their vicinity. Second, the Lucas model in its original

form has trouble accommodating values for the intertemporal elasticity of substitution that are

significantly higher than one, a problem that becomes more acute for high rates of population

growth or high rates of per-capita output growth. With the growing body of empirical evidence

pointing towards higher values for the intertemporal elasticity of substitution in mind, this paper

demonstrates that by adding a degree of sector-specific external effects and/or depreciation to the

human capital sector, the two-sector model can be made consistent with high rates of intertemporal

elasticity of substitution, as the well as high rates of population growth and high rates of output

growth we commonly observe in many parts of the world.

In Section 2, we present the two-sector endogenous growth model with both depreciation and

sector-specific external effects in each sector of the economy, and derive the laws of motion that

characterize the model’s dynamic behavior. Caballé and Santos (1993) analyze the two-sector model

with depreciation in both sectors but only establish some general conditions for the existence

of balanced growth paths. Xie (1994) includes external effects in the production sector, while

abstracting from depreciation and external effects in the production of human capital. Unlike

Caballé and Santos, Xie presents explicit bounds on the parameter space necessary and sufficient

to guarantee balanced growth, however only by setting the intertemporal elasticity of substitution

strictly equal to the reciprocal of the share of physical capital in the production sector. In this

paper we do not impose this restriction.

In Section 3, we derive the steady state values for capital, consumption, and hours of mar-

ket work. Following Benhabib and Perli (1994) and Ben-Gad (2003), we then use these values to

analytically define the restrictions on the parameter space in terms of bounds on the subjective

discount rate necessary and sufficient to ensure the existence of interior solutions to the representa-

tive agent’s optimization program which support unique balanced growth paths. In Section 4, we

further restrict the parameter space, by ruling out balanced growth paths characterized by unstable

local dynamics.

Section 5 demonstrates the implications of our analytical results using numerical examples that

focus on the behavior of the model in the usually problematic region where the intertemporal
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elasticity of substitution is greater than one. Varying the magnitude of both external effects and

the intertemporal elasticity of substitution, while fixing the other parameters of the model, we

demonstrate that with the inclusion of external effects and depreciation the two-sector model is

able to accommodate the high values for the intertemporal elasticity of substitution as estimated

by Hansen and Singleton (1982), Amano and Wirjanto (1997), Mulligan (2002) and Gruber (2006)

for the United States, or Hamori (1996) and Fuse (2004) for Japan.

Finally in Section 6, we restrict our attention to those portions of the parameter space most

likely correspond to empirically relevant rates of growth. Fixing the baseline rate of steady state

growth, we demonstrate that including modest degrees of depreciation and external effects to the

human capital production process, enables us to calibrate the model for the widest possible range of

economies—including those characterized by low discount factors, high elasticities of intertemporal

substitution, increasing returns in the final goods sector, and high rates of population growth and

steady state per-capita output growth.

2 The Model

The economy is composed of a large number of households whose behavior can be represented by

the intertemporal maximization of an infinite-lived representative agent. This agent maximizes

utility over time t, by choosing the dynamic path of consumption, c, and u ∈ (0, 1), the fraction of

time as well as human capital h devoted to working in the final goods sector:

max
c

∫ ∞

0
e(n−ρ)t σ

σ − 1
c1−1/σdt, (P.1)

subject to the constraints:
·
k = wuh + (r − δ) k − c,

·
h = ν [(1− u) h]1−γ [

(1− ū) h̄
]γ − εh,

where σ is the constant rate of intertemporal elasticity of substitution, ρ a positive discount rate,

n the natural rate of population growth, δ the rate of depreciation of physical capital k, r its rate

of return, ε the rate of depreciation of human capital and w the wage rate. The terms ū ∈ (0, 1)

and h̄ are the time t share of time devoted to market work and the time t stock of human capital,

aggregated over all the agents in the economy and expressed in per-capita terms—hence the term
[
(1− ū) h̄

]γ captures the efficiency enhancing external effects of that portion of the human capital

stock employed in that sector, and the parameter γ regulates its magnitude. Time not devoted

to work for wages is spent accumulating human capital—ν is the maximum rate at which human

capital can be accumulated.
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Physical goods are produced by a combination of physical capital and effective labor φ = uh:

y =
(
ūh̄

)β
F (k, φ) , (1)

where the term
(
ūh̄

)β captures the efficiency enhancing external effects of that portion of the human

capital stock employed in the final goods sector. We assume that the function F : R2 → R takes

the constant returns, Cobb-Douglas form F (k, φ) = kαφ1−α. Internal factor returns are:

r =
(
ūh̄

)β
Fk (k, φ) , (2)

w =
(
ūh̄

)β
Fφ (k, φ) . (3)

Unlike Lucas’ aggregate external effects, we limit the scope of external effects to be sector-

specific. Only the portion of human capital that is employed in a sector generates spill-over effects

for that sector, but these are sufficient to generate both differential rates of steady state growth for

the two types capital, and higher rental rates for human capital in rich countries. The most obvious

spill-overs are likely to be the result of complementarities between the skills of workers—personnel

in a sector interact and learn from each other. Efficiency of the final goods sector is certainly

enhanced by increases in the total stock of knowledge—however, this may be knowledge produced

by both domestic and foreign human capital sectors. Restricting spill-overs to be sector-specific

obviates the need to distinguish between endogenous domestically produced human capital, and

the foreign portion of human capital which is accumulating exogenously.1

The present value Hamiltonian that corresponds to the consumer’s optimization problem is:

H (c, u, k, h, λ, µ) = e(n−ρ)t σ

σ − 1
c1−1/σ + λ [wuh + rk − c− δk] P.1 (4)

+µ
[
[(1− u) h]1−γ [

(1− ū) h̄
]γ − εh

]
,

where λ and µ are the costate variables for physical and human capital.

Inserting the values from (2) and (3), in place of r and w, the first order necessary conditions

for an interior solution to the individual constrained optimization are:

e(n−ρ)t

c1/σ
= λ, (5)

(1− α) λh
(
ūh̄

)β
kα (uh)−α = µ (1− γ) ν (1− u)−γ h1−γ

[
(1− ū) h̄

]γ
, (6)

1Paul and Siegel (1999) find strong evidence of sizeable increasing returns—two-thirds to almost three-quarters

can be ascribed to agglomeration effects—sector specific external effects at the two-digit industry level. Harrison

(1998) finds evidence of increasing returns but rejects spillovers between sectors and Benhabib and Jovanovic (1991),

demonstrate that the source of any aggregate increasing returns to scale are not associated with the capital input.

Finally, Durlauf et. al. (2008) finds strong evidence for the existence of production externalites in explaining cross-

country differences in per-capita growth.
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α
(
ūh̄

)β
kα−1 (uh)1−α λ− δ = −

·
λ, (7)

µ
[
(1− γ) ν (1− u)1−γ h−γ

[
(1− ū) h̄

]γ − ε
]

+ λ (1− α)
(
ūh̄

)β
kα (uh)−α u = − ·

µ, (8)

plus the two transversality conditions,

lim
t→∞λk = 0, (9)

lim
t→∞µh = 0, (10)

and the constraint that u falls within the unit interval. We define the parameter space Θ: θ ≡
(α, β, γ, δ, ε, ν, ρ, σ, n) , and θ ∈ Θ, where Θ = R2

++ ×R4
+ × [0, 1)3 .

Setting ū = u and h̄ = h, differentiating (5) with respect to time, and substituting into (7), the

law of motion for per-capita consumption is:

·
c

c
= σ

(
αkα−1φ1−α+β − ρ− δ

)
. (11)

The law of motion for per-capita physical capital is:

k̇

k
= kα−1φ1−α+β − c

k
− δ − n, (12)

Substituting the wage equation into (6) and differentiating with respect to t:

µ̇

λ
− µ

λ2
λ̇ =

α (1− α) kα−1φβ−α

(1− γ) ν
k̇ +

(β − α) (1− α) kαφβ−α−1

(1− γ) ν
φ̇. (13)

Substituting (8) and (12) for µ̇ and k̇ into (13) yields the law for motion of effective labor:

φ̇

φ
=

α

α− β

(
(1− γ) ν − ε

α
+

1− α

α
(n + δ)− c

k

)
. (14)

The evolution of the economy is described by the system (11), (12) and (14) in the non-stationary

variables c, k and φ. To make this system stationary, we define stationary consumption and

physical capital: c̃ = cφ−
1−α+β

1−α , k̃ = kφ−
1−α+β

1−α . The dynamic system reduces to two stationary laws

of motion: ·
c̃

c̃
= σ

(
αk̃α−1 − δ − ρ

)
− ϑ

(
(1− γ) ν − ε

α
+

1− α

α
(n + δ)− c̃

k̃

)
, (15)

and ·
k̃

k̃
= k̃α−1 + (ϑ− 1)

c̃

k̃
− ϑ

(1− γ) ν − ε

α
− n + δ

α− β
, (16)

where ϑ = 1−α+β
α−β

α
1−α .
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3 Balanced Growth

The balanced growth paths of the economy are the solutions to the equations (15) and (16) when
.

c̃=
.

k̃=0. Differentiating φ = uh with respect to time: φ̇ = u̇h + uḣ, setting u̇ = 0, and combining

the law of motion for human capital in (4) with (14), (15), and (16) yields the steady state fraction

of hours devoted to production in the final goods sector:

u∗ =
ρ− n− (η − γ) ν + ηε

(1− η) ν
, (17)

where η = (1−α+β)(σ−1)
(1−α)σ is the product of the curvature of the utility function, and the ratio of the

social marginal product of human capital to the private marginal product of human capital. The

steady state growth rate of physical output, consumption wages and physical capital is:

κ =
(1− α + β) ((1− γ) ν − ε− ρ + n)

(1− α) (1− η)
, (18)

and the steady state growth rate of human capital is (1−γ)ν−ε−ρ+n
1−η .

Setting the left hand sides of (15) and (16) equal to zero we solve for balanced growth consump-

tion and capital:

c̃∗ =
[
(1− α)(n + δ)

α
+

(1− α + β − η)((1− γ)ν − ε) + (α− β)(ρ − n)
α(1− η)

]
k̃∗, (19)

and

k̃∗ =
[

α (1− α) (1− η)
(1− α + β − (1− α) η) (n + δ + (1− γ) ν − ε)− β (δ + ρ)

] 1
1−α

. (20)

To ensure the existence of interior solutions along the balanced growth path, the representative

agent cannot be so impatient that he allocates all available time to immediate production, or

so patient that all participation in the labor market is postponed indefinitely as the maximum

accumulation of human capital is pursued. Therefore, as in Benhabib and Perli (1994) and Ben-

Gad (2003), we use bounds on the discount rate to describe the restrictions on preferences necessary

to ensure that the fraction of hours worked is on the unit interval and that the steady state rate of

growth is positive.

We define the two disjoint subspaces of the parameter space Θ1, Θ2 ⊂ Θ:

Θ1 ≡ {θ ∈ Θ| n + (η − γ) ν − ηε < ρ < n + (1− γ) ν − ε and η < 1} , (21)

Θ2 ≡ {θ ∈ Θ| n + (1− γ) ν − ε < ρ < n + (η − γ) ν − ηε and η > 1} . (22)

Proposition 1 If θ ∈ {Θ1, Θ2}, the steady state growth rate κ > 0, the steady state fraction of

hours worked u∗ ∈ (0, 1), and the steady state stock of physical capital k̃∗ > 0.
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Proof: If η < 1 then from (18) κ > 0 iff ρ < n + (1− γ) ν − ε which implies ρ < n +

(1− γ) ν − ηε and u∗ < 1 from (17). Furthermore if η < 1 and ρ < n + (1− γ) ν − ε then ρ <

(n + (1− γ) ν − ε)
(
1 + (1−α)(1−η)

β

)
+ (1−α)(1−η)δ

β which from (20) implies k̃∗ > 0. If η > 1 then from

(18) κ > 0 iff ρ > n+(1− γ) ν−ε which implies ρ > n+(1− γ) ν−ηε and u∗ < 1 from (17). Further-

more if η > 1 and ρ > n + (1− γ) ν − ε then ρ > (n + (1− γ) ν − ε)
(
1 + (1−α)(1−η)

β

)
+ (1−α)(1−η)δ

β

which from (20) implies k̃∗ > 0. Finally, from (17), u∗ > 0 iff η < 1 and ρ < n+(η − γ) ν−ηε, or η >

1 and ρ > n+(η − γ) ν−ηε. ¥
The conditions in Proposition 1 are necessary but not sufficient to ensure the existence of an

interior balanced growth path. For example if α = 0.6 β = 0.31, γ = 0.28, δ = 0.03, ε = 0.15, ν =

0.2, ρ = 0.03, σ = 4, and n = 0.02, then k̃∗=147.355, u∗=0.0085, κ=0.0857, however consumption

is negative: c̃ =-0.00185. Therefore to ensure that steady state consumption c̃∗ > 0 we define the

subsets ΘA
1 , ΘB

1 , ΘC
1 ⊂ Θ1 and ΘA

2 ,ΘB
2 , ΘC

2 ⊂ Θ2 :

ΘA
1 ≡ {θ ∈ Θ1|n +

(
1− 1− η

α− β

)
((1− γ) ν − ε)− ζ < ρ < n + (1− γ) ν − ε and α > β}, (23)

ΘB
1 ≡ {θ ∈ Θ1| n + (η − γ) ν − ηε < ρ < n + (1− γ) ν − ε and α < β}, (24)

ΘC
1 ≡ {θ ∈ Θ1|n + (η − γ) ν − ηε < ρ < n +

(
1− 1− η

α− β

)
((1− γ) ν − ε)− ζ and α < β}, (25)

ΘA
2 ≡ {θ ∈ Θ2|n + (1− γ) ν − ε < ρ < n +

(
1− 1− η

α− β

)
((1− γ) ν − ε)− ζ and α > β}, (26)

ΘB
2 ≡ {θ ∈ Θ2|n + (1− γ) ν − ε < ρ < n + (η − γ) ν − ηε and α < β}, (27)

ΘC
2 ≡ {θ ∈ Θ2|n +

(
1− 1− η

α− β

)
((1− γ) ν − ε)− ζ < ρ < n + (η − γ) ν − ηε and α < β}. (28)

where ζ = 1−η
α−β (1− α) (n + δ). Note that in addition to Θ1 ∩ Θ2 = ∅, also ΘA

i ∩ Θj
i = ∅, where

i ∈ {1, 2} and j ∈ {B, C}.

Proposition 2 If α 6= β, the necessary and sufficient condition for the existence of an interior

balanced growth path is: θ ∈ ΘA
1 ∪

(
ΘB

1 ∩ΘC
1

) ∪ΘA
2 ∪

(
ΘB

2 ∩ΘC
2

)
.

Proof: From (19), for a positive valued k̃∗, then c̃∗ > 0 iff ρα−β
1−η > α−β

1−η n −
(
1− α−β

1−η

)
((1 −

γ)ν − ε) − (1− α) (n + δ). If α−β
1−η > 0 then c̃∗ > 0 iff θ ∈ Θ1 ∪ Θ2 and ρ > n +

(
1− 1−η

α−β

)
((1 −

γ)ν − ε) − 1−η
α−β (1− α) (n + δ), hence θ ∈ ΘA

1 ∪
(
ΘB

2 ∩ΘC
2

)
. If α−β

1−η < 0, then c̃∗ > 0 iff θ ∈
Θ1 ∪ Θ2 and ρ < n +

(
1− 1−η

α−β

)
((1 − γ)ν − ε) − 1−η

α−β (1− α) (n + δ), hence θ ∈ (
ΘB

1 ∩ΘC
1

) ∪
ΘA

2 . ¥
The sets Θ1 and Θ2 are separated in Θ by a hyperplane defined by the set Θ3:

Θ3 ≡ {θ ∈ Θ|ρ = n + (1− γ) ν − ε and η = 1} . (29)
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If θ ∈ Θ3 the numerators and denominators in both (19) and (20) are both equal to zero, implying

the existence of an infinite number of balanced growth paths. For the case of α = β, see Corollary

1 in Appendix 8.1.

4 Dynamics and Equilibria

The results in the previous section demonstrate the conditions for balanced growth paths to be

both interior and unique. However, the equilibrium paths that converge to these growth paths are

only unique if the dynamic system has a saddle path structure. To find the local stability properties

of the reduced system in the neighborhood of the balanced growth paths, we linearize the system

(15) and (16). The Jacobian of the linearized system evaluated at the balanced growth path is

given by:

J =


 J11 −J11 + β(ρ+δ)σ−(1−α+β)((1−γ)ν+n+δ−ε)

1−η

β
α(1−α+β)J11 − β

1−α+βJ11 − (1−α)(n+δ)+(1−α+β)((1−γ)ν−ε)
α−β


 , (30)

where J11 = ϑ c̃∗

k̃∗
, and the value of c̃∗

k̃∗
is defined from (19) (see Appendix).2 If the Jacobian of the

reduced system has eigenvalues of opposite signs, we conclude that at least in the neighborhood

of the balanced growth path, all competitive equilibria are determinate (locally unique). If both

eigenvalues are negative, all paths converge to the balanced growth path and any point in its vicinity

qualifies as a competitive equilibrium, and if both eigenvalues are positive, all paths diverge from

the balanced growth path and violate the transversality conditions.

Proposition 3 In the neighborhood of a balanced growth path competitive equilibrium are unique

iff θ ∈ ΘA
1 ∪

(
ΘB

2 ∩ΘC
2

)
.

Proof: The determinant of J is:

|J| = α (1− α) (1− η) σ

α− β
c̃∗k̃∗α−1. (31)

which is negative if and only if η < 1 and α > β, or η > 1 and α < β. From (23)—(28) the determi-

nant (31) is negative iff θ ∈ ΘA
1 ∪

(
ΘB

2 ∩ΘC
2

)
and the eigenvalues of J have opposite signs and equi-

libria are locally unique. ¥
The implication of Proposition 3 is that the portions of the parameter space defined by ΘB

1 ,ΘC
1 ,

and ΘA
2 , might support the existence of a unique balanced growth path, but the equilibria in the

neighborhood of these balanced growth paths are either unstable or indeterminate. We can rule

out the latter.
2The Jacobian J is not defined for α = β. Henceforth we ignore this case.
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Average Annual Population Growth 1997-2006

n ³ 0.02
0.0175 £ n < 0.02
0.015 £ n < 0.0175
0.0125 £ n < 0.015
0.01 £ n < 0.0125
n < 0.01

Figure 1: Population growth rates n, averaged over the decade between 1997-2006. Source: Mathematica

Research

Proposition 4 If θ ∈ ΘA
2 ∪

(
ΘB

1 ∩ΘC
1

)
, all equilibria in the neighborhood of a balanced growth path

are unstable.

Proof: The trace of J is:

trJ =
ρ− n− ((1− γ) ν − ε) η

1− η
. (32)

which is positive iff θ ∈ Θ1 ∪ Θ2 and negative otherwise. From (23)—(28) the determinant (31)

is positive iff θ ∈ ΘA
2 ∪

(
ΘB

1 ∩ΘC
1

)
. If the determinant and trace of J are positive, the eigenvalues of J

are positive as well, and we can rule out multiple equilibria (indeterminacy). ¥

5 Intertemporal Elasticities of Substitution Greater than One

The vast majority of models in the macroeconomic literature employ preferences characterized by

constant intertemporal elasticity of substitution. In the DSGE literature these elasticities are in

turn calibrated with values of σ that typically range between one half and one, a consequence of

the fact that for time additive utility functions, the intertemporal elasticity of substitution is the

reciprocal of the Arrow Pratt measure of relative risk aversion, which is usually assumed to fall

within the range between one and two. By contrast, in the endogenous fertility literature (see Barro

and Becker (1988), (1989)) the intertemporal elasticities of substitution are generally greater than

one. These values can be found in some recent empirical studies on the United States and Japan.

Gruber (2006) estimates the intertemporal elasticity of substitution for individuals in the United

States to be two. Hamori (1996) estimates the elasticity for Japanese consumers to be between one

9
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Figure 2: The parameter space for α = 0.35 and n = 0.0125.
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and two, and Fuse (2004) estimates the elasticity in Japan to be about four. Attanasio and Weber

(1989), Mulligan (2002), Vissing-Jørgensen and Attanasio (2003), Bansal and Yaron (2004), Bansal,

Kiku and Yaron (2007), and Hansen, et. al. (2007) all estimate high values for the intertemporal

elasticity of substitution for the Epstein-Zin recursive utility function.3 The question remains

under what circumstances the two-sector endogenous growth model can cope with these higher

elasticities.4

In Figure 2, we vary the magnitude of both external effects β and γ along the unit interval, for

values of the intertemporal elasticity of substitution σ equal to 1.25, 1.5, 2, and 4, while holding

the other parameters of the model fixed. We set the share of capital in output α equal to 0.35,

the subjective discount rate ρ equal to 0.03, and the rates of depreciation for physical and human

capital δ and ε equal to 0.065, and 0.05, respectively. We set the value of ν, the parameter that

abstracting from depreciation, and in the absence of any activity devoted to production represents

the maximum growth rate for human capital, equal to 0.175. Finally, we set the rate of population

growth to n=0.0125, which approximates the recent experience of many middle-income countries

such as Chile and Mexico at 0.0120, Indonesia and Peru at 0.0130, or Ecuador and South Africa at

0.0131 (see Figure 1).

In the upper left-hand panel of Figure 2 we consider the conditions for the existence of an

interior balanced growth path, fixing the intertemporal elasticity of substitution to σ=1.25. The

value of η is less than one, as long as β < −1−α
1−σ , so throughout the portion of the parameter

space under consideration η < 1. Both the areas shaded in dark and light gray, denoted ΘA
1

and ΘB
1 ∩ ΘC

1 , respectively, represent the combinations of β and γ along the unit interval that

satisfy all the necessary and sufficient conditions for interior balanced growth paths. However,

from Proposition 3 only the former, shaded in dark gray, ΘA
1 , represents economies characterized

by unique saddle-path stable equilibria. This area is bounded from below by the constraint u∗ > 0,

which begins where the value of γ equals 0.429 and rises linearly. Therefore, in order to ensure the

existence of an interior balanced growth path, the value of the external effect in the human capital

sector, γ, must be positive, but no greater than 1 − ρ−n+ε
ν —here equal to 0.614—otherwise the

constraint that the growth rate is positive, κ > 0 is violated. Raising the value of β, necessitates
3Tversky and Kahneman (1992) estimate the coefficient of relative risk aversion to be 0.22, but in their non-

expected utility framework, its reciprocal cannot be automatically treated as the intertemporal elasticity of substi-

tution.
4Jones et. al. (2005) simulate the behavior of the endogenous growth model with elastic labor supply and

fluctuations. Though they include depreciation in both sectors of the economy, the production function for human

capital is linear at both the private and social levels—in their model the intertemporal elasticity of substitution

cannot be much higher than 1.11. Nonetheless it only at this upper bound that the simulated standard deviation of

the consumption-output ratio approaches that observed in US data.
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Figure 3: The parameter space for α = 0.35 and n = 0.02.
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Figure 4: The parameter space for α = 0.5 and n = 0.0125.
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raising the value of γ as well. However since for σ = 1.25 and all values of β < 1, θ ∈ Θ1, unless

we are willing contemplate aggregate production functions homogenous of degree greater than two,

no unique saddle path stable equilibria that converge to an interior balanced growth path emerge,

unless the external effects β and γ, are no larger than 0.35 and 0.614, respectively.

Raising the value of σ to 1.5, narrows the range of values of β and γ that support the existence

of interior balanced growth paths, and at minimum the value of γ, in the upper right-hand panel

of Figure 2, must be at least 0.138. Raise the value of σ above 1.65 and components of Θ2 appear

for values of β <1. For example, in the lower left-hand panel of Figure 2, σ = 2. If β = 0.65, then

η=1 and the set that corresponds to interior balanced growth paths reduces to a single point in

the separating hyperplane Θ3. Beyond this point, as the value of β grows beyond 0.65, the range

of values for γ consistent with the existence of interior balanced growth paths, expands within the

region defined by ΘB
2 ∩ΘC

2 . The regions that support saddle-path equilibria, ΘA
1 and ΘB

2 ∩ΘC
2 , are

separated in Θ by closed neighborhoods.

Finally, raising the value of σ to 4, the upper range of recent estimates of the intertemporal

elasticity of substitution cited above, greatly reduces the size of ΘA
1 . Furthermore, for all values of

β < α, η is less than one. Hence the region ΘB
1 ∩ ΘC

1 disappears, and the region ΘA
2 , where the

balanced growth path is also unstable, emerges instead. The point on the separating hyperplane

Θ3, where η =1, is {β, γ} = {0.217, 0.614}.
A necessary and sufficient condition that ensures u∗ > 0, is that σ < (1−α+β)(ν−ε)

(1−α+β)(ν−ε)−(1−α)(ρ−n+γν) .

Given ν > ε and ρ > n, this condition is satisfied for all σ < 1, even if external effects are absent

from both sectors. Raising the value of σ above one and beyond, the curvature of the human capital

production function, regulated by the value of the parameter γ, becomes critical. Furthermore, the

higher the rate of population growth, the higher the degree of curvature required as well. In the

absence of external effects in either the human capital or the production sector, the aforementioned

upper bound on σ reduces to ν−ε
ν−ε−ρ+n . Therefore in our example if n=0.01, the upper bound for

σ is 1.190, and if n=0.0125 the upper bound drops to 1.163.

During the decade between 1997 and 2006 the annual rate of population growth in South

America averaged 0.0143 per year, implying an upper bound of 1.144. The rate of population

growth in South Asia averaged .0178, corresponding to an upper bound of 1.108; in the Middle

East it averaged 0.0185, corresponding to an upper bound of 1.101; in Central America it averaged

0.02, corresponding to an upper bound of 1.087; and in Sub-Saharan Africa 0.258, corresponding

to an upper bound of 1.035.5 Furthermore, once we introduce increasing returns at the social level
5South Asia: Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, Sri Lanka; Middle East : Al-

geria, Bahrain, Egypt, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Mauritania, Morocco, Oman, Palestinian

Territories, Qatar, Saudi Arabia, Sudan, Syria, Tunisia, Turkey, United Arab Emirates, Yemen; Sub-Saharan Africa:
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generated by human capital external effects, all these upper bounds drop lower still.

Writing our necessary and sufficient conditions as bounds on the curvature of the human capital

production function, an interior balanced growth path only exists for η < 1, if (ν−ε)η+n−ρ
ν < γ <

ν−ε+n−ρ
ν ; or for η > 1, when ν−ε+n−ρ

ν < γ < (ν−ε)η+n−ρ
ν . If β = 0 and σ = 1.25, the former bound

corresponds to 0 < γ < 0.571, if n=0.005; 0.029 < γ < 0.6, if n=0.01; and 0.043 < γ < 0.614, if

n=0.0125. Similarly, the bounds that correspond to the rate of population growth in South America

are 0.053 < γ < 0.625; for South Asia, 0.073 < γ < 0.645; for the Middle East, 0.077 < γ < 0.649;

for Central America, 0.086 < γ < 0.657; and for Sub-Saharan Africa, 0.119 < γ < 0.690. More

generally, comparing the panels in Figure 2 where n=0.0125, with the panels in Figure 3 where

n=0.02, the only difference is that all the admissible areas that correspond to interior balanced

growth paths are shifted vertically by 0.0429. The higher the rate of population growth, the greater

the degree of curvature in the human capital production required if the intertemporal elasticity of

substitution is greater than one.

In Figure 4 we restore the rate of population growth to n=0.0125, but raise the share of capital

in the production of physical output α, to 0.5. In the upper left-hand panel, σ=1.25 and if β = 0,

the value of γ must once again fall between 0.043 and 0.614. Here the constraint that ensures

u∗ > 0 possesses a larger slope in the size of the external effect β, so the range of the parameter

set consistent with the existence of interior balanced growth paths, is narrower than in Figure 2.

If α = 0.5, β = 1, and σ=1.5, then η=1, so Θ3 is the very edge of the upper right-hand panel of

Figure 4.

In the lower left-hand panel of Figure 4, we set σ=2 so that α = 1/σ, and this corresponds to

the version of the original Lucas model investigated in Xie (1994), though with the external effect

from human capital restricted to be sector specific. Like Xie (1994) here too we do not encounter

any unstable balanced growth paths, both ΘB
1 ∩ ΘC

1 and ΘA
2 disappear. However, because we

rule out intersector spill-overs, so that only the human capital employed in the production sector

generates positive external effects there, there is no region characterized by indeterminacy either,

and all interior balanced growth paths are saddle path stable.

Finally, in the lower right-hand panel of Figure 4, for σ=4, the size of ΘA
1 reduces to a relatively

small region, while the size of ΘA
2 , the range of parameter values that correspond to unstable

dynamics expands when compared to its counterpart in Figure 2. Note also that in contrast to all

Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, Central Africam Republic, Chad, Co-

moros, Côte d’Ivoire, Democratic Republic of Congo, Djibouti, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia,

Ghana, Guinea, Guinea Bissau, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, Mauritius, May-

otte, Mozambique, Namibia, Niger, Nigeria, Republic of Congo, Reunion, Rwanda, Saint Helena, São Tomé Principe,

Senegal, Seychelles, Sierra Leone, Somalia, South Africa, Swaziland, Tanzania, Togo, Uganda, Zambia, Zimbabwe.
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Average Annual Per-Capita Real GDP Growth 1997-2006

Κ ³ 0.03
0.0265 £ Κ < 0.03
0.024 £ Κ < 0.0265
Κ < 0.024

Figure 5: Per-capita real output growth κ, averaged over the decade between 1997-2006. Source: Mathe-

matica Research

the other panels in Figures 2 and 4, the binding constraint is no longer either just κ > 0 or u∗ > 0,

but rather for high values of β and γ, c∗ > 0 as well. This again demonstrates why Proposition 1,

or merely restricting the parameter space to θ ∈ {Θ1, Θ2} is a necessary, but not at all a sufficient

condition for the existence of an interior balanced growth path, and the further restrictions imposed

in Proposition 2 are both necessary and sufficient.

6 Calibrating the Model for a Given Growth Rate

To better understand the nature of the parameter space and how it relates to empirically relevant

rates of growth, we can solve (18) for one of the deep parameters of the model, then redefine the

balanced growth path in terms of the steady state per-capita rate of growth κ. But which parameter

should we replace? We are interested in analyzing the behavior of the model for different values

of β, γ, ε, and σ, and the values of α, δ, ρ, and n are all parameters that can be easily calibrated

using widely available data, as indeed can the growth rate κ. By contrast, there is very little direct

evidence available that can be used to set the value of ν, the maximum possible growth rate for

human capital at the social level, if every moment is devoted to its production (abstracting from

its rate of depreciation). Therefore solving (18) for ν:

ν =
(1− α) (1− η) κ + (1− α + β) (ρ + ε− n)

(1− α + β) (1− γ)
, (33)
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Figure 6: The parameter space for δ=0.065, κ=0.0265, ρ=0.03 and σ=4.
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and then substituting (33) in (17) yields steady state hours worked:

u∗ =
(1− α + β)(κ + (ρ− n + γε− κ)σ) + (1− α)γκσ

(1− α + β)(1 + (ρ− n + ε)σ)− βκσ
, (34)

in (19) yields steady state consumption:

c̃∗ =
[

1
α

(δ + ρ +
κ

σ
)− n− δ − κ

]
k̃∗, (35)

and (20) yields steady state physical capital:

k∗ =
(

ασ

κ + (ρ + δ)σ

) 1
1−α

, (36)

all in terms of the steady state growth rate κ.

Clearly from (36), if α,δ,κ,ρ, and σ are all positive, k∗ > 0. We redefine the parameter space

Θ̄: θ̄ ≡ (α, β, γ, δ, ε, κ, ρ, σ, n) , and θ̄ ∈ Θ̄, where Θ̄ = R2
++ × R4

+ × [0, 1)3 and define the subsets

Θ̄1, Θ̄2, Θ̄3 ⊂ Θ̄ :

Θ̄1 ≡
{

θ̄ ∈ Θ̄| ρ > n− γε− (1− α)γκ

1− α + β
− 1− σ

σ
κ

}
, (37)

Θ̄2 ≡
{

θ̄ ∈ Θ̄| ρ > α(n + δ + κ)− δ − κ

σ

}
, (38)

Θ̄3 ≡
{

θ̄ ∈ Θ̄| ρ > n− ε +
βκ

1− α + β
− κ

σ

}
. (39)

Proposition 5 If α 6= β, the necessary and sufficient condition for the existence of an interior

balanced growth path is: θ̄ ∈ Θ̄1 ∩ Θ̄2.

Proof: From (33), ν > 0 iff θ̄ ∈ Θ̄1. From (34), u∗ > 0 iff θ̄ ∈ (
Θ̄\Θ̄1

)∪ Θ̄3. However Θ̄3 ⊂ Θ̄1. Fi-

nally, from (35), c̃∗ > 0 iff θ̄ ∈ Θ̄2. ¥
We further subdivide Θ̄1 and Θ̄2:

Θ̄A
1 ≡

{
θ̄ ∈ Θ̄1| α > β, η < 1

}
, (40)

Θ̄B
1 ≡ {

θ̄ ∈ Θ̄1| α > β, η > 1
}

, (41)

Θ̄C
1 ≡

{
θ̄ ∈ Θ̄1| α < β, η < 1

}
, (42)

Θ̄D
1 ≡ {

θ̄ ∈ Θ̄1| α < β, η > 1
}

, (43)

Θ̄A
2 ≡

{
θ̄ ∈ Θ̄2| α > β, η < 1

}
, (44)

Θ̄B
2 ≡ {

θ̄ ∈ Θ̄2| α > β, η > 1
}

, (45)

Θ̄C
2 ≡

{
θ̄ ∈ Θ̄2| α < β, η < 1

}
, (46)

Θ̄D
2 ≡ {

θ̄ ∈ Θ̄2| α < β, η > 1
}

. (47)
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Figure 7: The parameter space for δ=0.065, κ=0.0265, ρ=0.03 and σ=4.
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Proposition 6 If the parameter values θ̄ ∈ (
Θ̄A

1 ∩ Θ̄A
2

) ∪ (
Θ̄D

1 ∩ Θ̄D
2

)
, there is a neighborhood of

the balanced growth path in which there exists a unique competitive equilibrium.

Proof: Follows directly from Propositions 3 and 5. ¥
In Figure 6, we set the values of δ = 0.065, and ρ = 0.03, fix the intertemporal elasticity of

substitution to σ=4, and vary the magnitudes of both external effects β and γ. The per-capita

rate of output growth is set to κ = 0.0265, which approximates the average per-capita growth rates

between 1997 and 2006 in the United Kingdom, at 0.0241; Australia, at 0.0243; Canada, at 0.0251;

Chile, at 0.0264; Turkey, at 0.0267; Pakistan, at 0.0271; Spain, at 0.272; or Sweden, at 0.0280 (see

Figure 5). In the upper two and lower two panels we set the population growth rate to n = 0.0125,

the share of physical capital to α = 0.35 in the upper and lower panels, and to α = 0.5 in the lower

two panels. In the middle two panels we set the rate of population growth to n = 0.015. In the

panels on the left-hand side, we set the rate of depreciation in the human capital sector to ε = 0,

and to ε = 0.05 in the panels on the right-hand side. What emerges in each of the six panels is

that given this high rate of intertemporal substitution, interior balanced growth paths only emerge

if there is at least some curvature in human capital production at the private level. How much

curvature is required, depends directly on both the rate of depreciation in that sector and the

population’s growth rate, and inversely on the magnitude of returns to scale at the social level in

the production sector. By contrast, the relative share of physical capital in the production process

has only a small impact on the admissible range of parameters that support balanced growth, but

once again substantially affects the model’s dynamic behavior.

Consider the left-hand panels of Figure 6, where ε = 0. For both instances where n = 0.0125,

balanced growth only emerges if the value of γ surpasses 0.0896, and then only if there are no

external effects in the production sector. Raise the population growth rate to n = 0.015, and

this threshold rises to 0.1840. Furthermore, in the absence of any depreciation in the human

capital sector, the degree of concavity we must introduce to ensure the existence of balanced

growth rises steeply, as we increase the size of β. Contrast this with the behavior of the model

if we introduce a degree of depreciation in the human capital sector. First, the threshold value

of γ drops precipitously, to only 0.0310 if n = 0.0125 and to 0.0637 if n = 0.015. Second, these

thresholds no longer rise quite so dramatically as the values of β increase.

We can further see the trade-offs between concavity at the private level in the production of

human capital, and the rate of depreciation in that sector, in the quasi-concave relationship between

ε and γ in the panels of Figure 7 that correspond to the necessary condition for ν > 0 in (33).

Again, there is a striking contrast between the required degree of concavity or depreciation, or

combination of both, that support interior balanced growth paths for n = 0.0125 and n = 0.015.
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Figure 8: The parameter space for δ=0.065, κ=0.0265, ρ=0.03 and σ=2.
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Figure 9: The parameter space for δ=0.065, κ=0.0265, ρ=0.03 and σ=2.
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Rewriting the definition of Θ̄1 in (37) in terms of a bound on the curvature parameter γ:

Θ̄1 ≡
{

θ̄ ∈ Θ̄| γ >
(1− α + β)((n + κ− ρ)σ − κ)
((1− α + β)ε + (1− α)κ)σ

}
, (48)

if β = 0, the terms 1-α in the numerator and denominator of (48) cancel, and the parameter α no

longer appears. Hence the corresponding panels in the uppermost and lowermost left-hand panels

of Figure 6, are identical. However, if the value of β rises to 0.4, (48) does change slightly between

the upper right and lower right panels of Figure 7, for different values of α. For n = 0.0125, and

ε = 0, the lower limit for γ is 0.1448, if α = 0.35; and 0.1613, if α = 0.5. The differences for

ε = 0.05 are smaller still, 0.0358 and 0.0369 for α = 0.35, and α = 0.5 respectively. It is in the

local dynamic behavior of the model in the region of the balanced growth paths, rather than the

conditions for the existence of the balanced growth path, where the value of α is decisive.

Returning to Figure 6, the set of parameters θ̄ ∈ Θ̄ that support unique saddle path equilibria

are confined to the subsets Θ̄A
1 ∩Θ̄A

2 and Θ̄D
1 ∩Θ̄D

2 , and these areas are separated by the set Θ̄B
1 ∩Θ̄B

2

that expands both to the left and right to cover a wider range of values for β, as α increases. In

Figure 7, the regions of the parameter space that correspond to balanced growth paths as both γ

and ε vary along the unit interval all correspond to Θ̄A
1 ∩ Θ̄A

2 , if β = 0. By contrast if β = 0.4, and

α = 0.35, the relevant region corresponds to Θ̄D
1 ∩Θ̄D

2 . In either case, the addition of a combination

of external effects and depreciation is sufficient to guarantee saddle path stable equilibria and unique

interior balanced growth paths. Only if the share of capital in production exceeds the size of the

external effect in that sector, and both are quite high (α = 0.5, β = 0.4) do all interior balanced

growth paths correspond to the parameter subspace Θ̄B
1 ∩ Θ̄B

2 in the lowermost right-hand panel

of Figure 7. Here the parameters that correspond to balanced growth paths are associated with

locally unstable dynamics—solutions that satisfy (5)—(8), but involve non-steady state ratios of

physical to human capital will correspond to dynamic paths that violate (9) and (10).

Despite this last restriction the two-sector endogenous growth model does accommodate in-

tertemporal elasticities of substitution at the upper bound of estimates we find in the empirical

literature, and still generate valid balanced growth paths characterized by saddle path stable local

dynamics for relatively high rates of population growth, provided the human capital accumulation

process is augmented by small degrees of external effects and depreciation. In Figures 8 and 9 the

intertemporal elasticity of substitution is set at σ = 2. Here the model can easily accommodate

rates of population growth in the range of n=0.0175 to n=0.02, as long as the values of γ and ε

are above relatively small thresholds.

In Figure 8 the range of parameter values covered by Θ̄A
1 ∩Θ̄A

2 and Θ̄D
1 ∩Θ̄D

2 , that which supports

steady state growth and saddle path dynamics, is slightly large than in Figure 6. In the panels in
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the upper two rows the subspace that seperate them is Θ̄C
1 ∩ Θ̄C

2 rather than Θ̄B
1 ∩ Θ̄B

2 , but again

corresponds to growth paths charactorized by unstable dynamics. In the last row with α = 0.5,

Θ̄C
1 ∩ Θ̄C

2 , is of measure zero, corresponding to the points where β = 0.5. Hence all the steady

state growth paths in this case are generically saddle path stable, and all the areas corresponding

to steady state growth in Figure 9 fall into the category of Θ̄A
1 ∩ Θ̄A

2 in the left hand side panels,

or Θ̄D
1 ∩ Θ̄D

2 in the right hand side panels.

7 Conclusion

The Uzawa-Lucas two sector endogenous growth model accommodates two important observations:

there are large differences in the rental rates for human capital (wage for a given skill level) across

countries, and also differences between the growth rates of physical and human capital within each

country. Hence arises the need to understand precisely what combinations of parameter values and

steady state growth rates the model can and cannot accommodate.

Unfortunately, the usefullness of the model in its original form, is somewhat hampered by its

inability to accommodate preferences characterized by high intertemporal elasticities of substitu-

tion, particularly if the rate of population growth is high as well. By including external effects

and depreciation, we remedy this problem—the Uzawa-Lucas two sector endogenous growth model

can accommodate a far wider range of parameterizations than previously thought. Hopefully, with

this full set of necessary and sufficient conditions that guarantee the existence of unique interior

balanced growth paths, and saddle-path stable local dynamics in hand, applied macroeconomic

theorists will be able to put the model to use in many more contexts as well as extend it still

further. Furthermore future studies in the empirics of growth now have a model more general and

flexible to estimate and test.

8 Appendix

8.1 If α = β

Define the subsets of {Θ1,Θ2}:

ΘD
1 ≡ {θ ∈ Θ1|n + (η − γ) ν − εη < ρ <

(
1− η + αη

α

)
(n + δ + (1− γ) ν − ε) and α = β},

ΘD
2 ≡ {θ ∈ Θ2|

(
1− η + αη

α

)
(n + δ + (1− γ) ν − ε) < ρ < n + (η − γ) ν − εη and α = β},

ΘE
2 ≡ {θ ∈ Θ2| ε < (1− α) (n + δ)+ (1− γ) ν and α = β}.
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Corollary 1 If α = β, the necessary and sufficient condition for the existence of an interior

balanced growth path is: θ ∈ ΘD
1 ∪

(
ΘD

2 ∩ΘE
2

)
.

Proof: If θ ∈ {Θ1, Θ2} then u∗ ∈ (0, 1). If α = β, then k∗ = (1−(1−α)η)(n+δ+(1−γ)ν−ε)−α(δ+ρ)
(1−α)(1−η) and

c∗ = (1−α)(n+δ)+(1−γ)ν−ε
α . If θ ∈ ΘD

1 ⇒ η < 1 and k̃∗ > 0 iff ρ <
(

1−η+αη
α

)
(n + δ + (1− γ) ν − ε).

This in turn implies (1− α) (n + δ) + (1− γ) ν − ε > 0 ⇒ c̃∗ > 0. If θ ∈ ΘD
2 ⇒ η > 1

and k∗ > 0 iff ρ >
(

1−η+αη
α

)
(n + δ + (1− γ) ν − ε). If θ ∈ ΘE

2 ⇒ η > 1 and c̃∗ > 0 iff

ε < (1− α) (n + δ)+(1− γ) ν. ¥

8.2 The linearized dynamic system

The non-linear dynamic system is linearized:

J11 = σ
(
αk̃∗α−1 − ρ

)
− ϑ

(
(1−γ)ν

α − 2 c̃∗

k̃∗

)

J12 = α (α− 1)σk̃∗α−1 − ϑ c̃∗

k̃∗

J21 = (ϑ− 1) c̃∗

k̃∗

J22 = αk̃∗α−1 − ϑ (1−γ)ν
α

Along the Balanced Growth Path: σ
(
αk̃∗α−1 − ρ

)
= ϑ

(
(1−γ)ν

α − c̃∗

k̃∗

)
, substituting ϑ = 1−α+β

α−β
α

1−α

and rewriting in terms of parameters using

c̃∗

k̃∗
=

[
ρ− (1−α+β)(α−1/σ)

(1−α)(α−β) (1− γ) ν
]

(α−β)
α(1−η) we get J in (30) in Section 4.
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