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Abstract 

 
Many studies have typically applied a linear structural spring-mass-damper oscillator and a van der Pol 

wake oscillator to model a one-dimensional cross-flow vortex-induced vibration (VIV). In this study, 

an advanced model for predicting a two-dimensional coupled cross-flow/in-line VIV of a flexibly-

mounted circular cylinder in a uniform flow is proposed and validated. The ensuing dynamical system 

is based on double Duffing-van der Pol (structural-wake) oscillators with the two structural equations 

containing both cubic and quadratic nonlinear terms. The cubic nonlinearities capture the geometrical 

coupling of cross-flow/in-line displacements excited by hydrodynamic lift/drag forces whereas the 

quadratic nonlinearities allow the wake-cylinder interactions. Some empirical coefficients are 

calibrated against published experimental results to establish a new generic analytical function 

accounting for the dependence of VIV on a physical mass and/or damping parameter. By varying flow 

velocities in the numerical simulations, the derived low-order model captures several important VIV 

characteristics including a two-dimensional lock-in, hysteresis phenomenon and figure-of-eight 

trajectory tracing the periodically coupled in-line/cross-flow oscillations with their tuned two-to-one 

resonant frequencies. By making use of a newly-derived empirical formula, the predicted maximum 

cross-flow/in-line VIV amplitudes and associated lock-in ranges compare well with several 

experimental results for cylinders with low/high mass or damping ratios. Moreover, the parametric 

studies highlight the important effect of geometrical nonlinearities through new displacement coupling 

terms and the ratio of in-line to cross-flow natural frequencies of the freely-vibrating cylinder. 
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Nomenclature 
 
Ax/D, Ay/D Dimensionless in-line and cross-flow amplitudes 
Axm/D, Aym/D Dimensionless maximum attainable amplitudes 
a, b, c Coefficients of best-fit analytical functions 
CD, CL  Unsteady drag and lift coefficients 
CD0, CL0   Drag and lift coefficients of a stationary cylinder 
Cfx, Cfy  Hydrodynamic damping coefficients 
CM   Added mass coefficient 
Csx, Csy  Structural viscous damping coefficients 
D  Diameter of a circular cylinder 
f*   Ratio of cylinder in-line to cross-flow natural frequencies 
FD, FL  Fluctuating drag and lift forces 
Fx, Fy  Hydrodynamic forces in streamwise and transverse directions 
Kx, Ky  Spring stiffness 
MD, ML  System mass parameters 
mfx, mfy  Fluid added masses 
msx, msy  Cylinder masses 
p, q  Reduced vortex drag and lift coefficients 
SG Skop-Griffin parameter 
St   Strouhal number 
Sx, Sy  Excitation terms simulating the effect of cylinder on the near wake 
t Dimensionless time 
T  Dimensional time 
V  Uniform flow velocity 
Vr Reduced flow velocity 
Vrxm, Vrym Reduced velocities at maximum attainable amplitudes 
X, Y  Dimensional in-line and cross-flow displacements 
x, y   Dimensionless in-line and cross-flow displacements 
α*x, α*y, β*x, β*y  Dimensional geometrically-nonlinear coefficients 
αx, αy, βx, βy  Dimensionless geometrically-nonlinear coefficients 
γ  Stall parameter 
εx, εy  Wake coefficients 
θ  Angle of attack of the flow relative to the cylinder 
λx, λy  Combined fluid-structural damping terms  
Λx, Λy  Wake-cylinder coupling coefficients 
μx, μy, m*x, m*y, m* Mass ratios 
ξx, ξy, ξ Structural reduced damping coefficients 
ρ  Fluid density 
Ω    Ratio of vortex-shedding to cylinder cross-flow natural frequencies 
ωf   Vortex-shedding angular frequency 
ωnx, ωny  Structural natural frequencies in still water 
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1. Introduction 

Vortex-induced vibration (VIV) is a fundamental phenomenon commonly encountered in various 

practical engineering applications and physical sciences where a fluid flow dynamically excites and 

interacts with a bluff solid/flexible structure. In connection with the oil & gas industry, the risk of VIV 

is one of the most technically and economically critical concerns in the analysis and design of key 

offshore cylindrical structures including risers, mooring cables, pipelines and subsea components. 

Although a basic mechanism of the VIV occurrence is well known (Blevins, 1990) and VIV-related 

subjects have been extensively investigated (Bearman, 2011; Sarpkaya, 2004; Williamson and 

Govardhan, 2004), a completely reliable simulation model for predicting the associated fluid-structure 

interaction and nonlinear dynamical behavior is still needed. Owing to the complexity of the vortex 

hydrodynamics, the intrinsic mechanism of the structure, the overall elasto-hydro nonlinearities, the 

influence of several mechanical/physical parameters, and the necessity to calibrate and validate the 

simulation model with substantial experimental data, modelling of VIV remains a challenging theme. 

 VIV occurrences are widely categorized as cross-flow or in-line VIV in which the structure 

oscillates in the direction transverse to or aligned with the flow, respectively. Many studies have 

focused on the modelling of pure cross-flow VIV excited by the lift force because of its usually 

observed largest response (Bishop and Hassan, 1964; Gabbai and Benaroya, 2005; Hartlen and Currie, 

1970; Sarpkaya, 2004). Very little is known about the effect of oscillating drag force, the ensuing in-

line VIV, the coupling of cross-flow/in-line VIV, the dependence on system parameters and how to 

realistically model these features. Several recent experimental studies have evidenced the significant 

effect of in-line VIV (Dahl et al., 2006; Dahl et al., 2010; Jauvtis and Williamson, 2004; Jeon and 

Gharib, 2001); due to a doubled oscillating frequency, this can contribute – as much as the cross-flow 

VIV – to the current-induced fatigue damage of structures (Vandiver and Jong, 1987). Computational 

flow visualizations have also illustrated different vortex mode patterns in the wake behind cylinders 

oscillating with one-degree-of-freedom (DOF) vs. two-DOF displacements (Karanth et al., 1995). Due 

to combined lift/drag forces associated with the shedding vortices and the fact that actual underwater 

structures possess multiple natural frequencies in different directions, a condition of coupled cross-

flow/in-line VIV is certainly achievable in most practical situations which can be responsible for 

dangerously-amplified dynamics. Nevertheless, most of the numerical tools currently used in the 

engineering industry are limited to the analysis of cross-flow-only VIV (Chaplin et al., 2005; Srinil, 

2010, 2011; Srinil et al., 2009). Therefore, an advanced predictive model accounting for the coupled 



4 
 

cross-flow/in-line, two-dimensional (2-D) or 2-DOF VIV, as proposed in the present study, would be 

worthwhile from a practical and industrial viewpoint. 

 Several researchers have applied phenomenological models to describe a fluctuation of the lift force 

with a van der Pol-based wake oscillator (Bishop and Hassan, 1964; Facchinetti et al., 2004; 

Farshidianfar and Zanganeh, 2010; Hartlen and Currie, 1970; Skop and Balasubramanian, 1997; Srinil, 

2010; Stappenbelt, 2011). To simulate the VIV of circular cylinders in uniform flows, a set of coupled 

(linear) structural and (nonlinear) wake oscillators have typically been considered. Some general 

aspects – pertaining to the recent use of wake-structure oscillator models – should be summarized: 

• A standard linear mass-spring-damper system is used to describe the cylinder oscillation. The 

effect of structurally geometrical nonlinearities has often been disregarded.  

• The coupling of wake and cylinder motions is recognized through a linear term in the wake 

equation depending on the cylinder displacement, velocity or acceleration. 

• Empirical coefficients in the wake oscillator rely upon calibration with experimental amplitude 

data; however, these coefficients are generally assumed to be constant.  

• A complete wake-structure oscillator model for simulating the coupling of cylinder cross-

flow/in-line motions excited by the hydrodynamic lift/drag forces is lacking. 

 To overcome some of the aforesaid issues, the objectives of the present study are to (i) advance the 

wake-structure oscillator models to realistically simulate the coupling of cross-flow/in-line VIV of 

flexibly-mounted circular cylinders in uniform flows, (ii) calibrate empirical coefficients by accounting 

for the important mass/damping parameters, and (iii) validate the predicted 2-DOF VIV responses with 

recently published experimental data in terms of maximum attainable amplitudes and lock-in ranges. 

Overall, the main contributions of this paper are the introduction of new cubic nonlinear terms in the 

two structurally coupled (Duffing-type) oscillators defining cylinder cross-flow/in-line motions, the 

inclusion of quadratic nonlinear terms entailing the wake-structure interaction through the 

consideration of relative velocities of the cylinder and the incoming flow, the use of a variable 

empirical wake coefficient through a newly derived function, and the effect of in-line-to-cross-flow 

natural frequency ratio of the cylinder. Some recent studies have shown the effect of geometrical 

nonlinearities on cross-flow VIV (Hover, 1998; Srinil, 2010; Stappenbelt, 2010) whereas the present 

work aims to highlight such potential effect on coupled cross-flow/in-line VIV. 

 The paper is structured as follows. In Section 2, a low-order predictive model for a circular cylinder 

undergoing 2-DOF VIV is proposed based on two sets of nonlinear structure-wake equations. In 

Section 3, new generic analytical functions of empirical wake coefficients are identified through the 
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best-fits of relevant experimental results. The analysis and prediction of coupled cross-flow/in-line VIV 

is systematically performed in Section 4 which highlights the effects of several important parameters 

and fundamental 2-D VIV behaviors, and displays good comparisons with experimental results in the 

literature. Also, the overall effect of new modelled terms and empirical coefficients on the predicted 

VIV response is summarized. The paper ends with the conclusions in Section 5. 
 

2.  Two-Dimensional VIV Model with Combined Structural/Hydrodynamic Nonlinearities 

A low-order mathematical model simulating the nonlinear 2-D free vibration of an elastically-

supported circular cylinder in a uniform steady flow with a velocity V is developed. The cylinder is 

assumed to be infinitely long such that a mechanical spring-mass-damper system (i.e. the structural 

oscillator) can be used to model the cylinder dynamic response. As displayed in Fig. 1, the cylinder of 

diameter D is constrained by a two-directional four-spring system, freely oscillating in both in-line 

(streamwise) X and cross-flow (transverse) Y directions with O at the cylinder centre being the origin of 

the co-ordinates. In contrast to several existing VIV models which typically consider a linear structural 

oscillator to describe the cylinder – mostly Y – displacement (Gabbai and Benaroya, 2005), the effect of 

geometric nonlinearities (i.e. spring nonlinear stiffness or restoring force) of the oscillating cylinder is 

herein accounted for alongside the hydrodynamic nonlinearities governing the fluctuation of the vortex-

induced lift/drag forces.  

 By permitting the cylinder to oscillate in both cross-flow/in-line directions, experimental results 

(Moe and Wu, 1990; Sarpkaya, 1995; Stappenbelt, 2011) showed that the associated cylinder 

amplitudes noticeably increase in comparison with the pure cross-flow VIV, owing to the greater 

influence of fluid-structure interaction. Depending on system parameters, the cross-flow maximum 

amplitudes in the 2-D VIV case may achieve such high values as 1.5D (Dahl et al., 2006) or even 2D 

(Leong and Wei, 2008), being much greater than typical values of about 1D observed in the cross-flow-

only VIV (Govardhan and Williamson, 2000; Khalak and Williamson, 1999). According to the large-

amplitude response, the axial stretching of the springs may become intrinsically nonlinear, being 

amplitude-dependent and bi-directionally coupled. Recently, the applied VIV analysis of flexible 

curved/straight structures has highlighted how the multi-mode interactions in conjunction with 

structural nonlinearities play a crucial role in both numerical VIV prediction and comparison with 

experimental results (Srinil, 2010). Based on these findings, two nonlinearly-coupled structural 

oscillators in conjunction with two nonlinear wake oscillators are proposed for advanced 2-D VIV 

modelling and simulation. 
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 The nonlinear equations of motion of the 2-D freely-oscillating cylinder are derived based on the 

actual physics of the moving springs, similar to the formulation described by Bush (1992) in a one-

directional spring case. By considering four coupled springs as in Fig. 1, the geometrically-nonlinear 

oscillators governing the in-line and cross-flow vibrations of the cylinder may be expressed as 

( ) ( )* 3 * 2) ,( sx fx sx fx x x x xm m X C C X K X X XY Fα β+ + + + + + =         (1)  

( ) ( )* 3 * 2) ,( sy fy sy fy y y y ym m Y C C Y K Y Y YX Fα β+ + + + + + =    (2) 

where a dot denotes differentiation with respect to the dimensional time T, X and Y are dimensional in-

line and cross-flow displacements, ms, mf, Cs, Cf and K the associated cylinder mass, fluid added mass, 

viscous damping, hydrodynamic damping and spring stiffness coefficients, respectively, with co-

subscripts x and y identifying properties in these directions. We assume mfx = mfy = mf and Cfx = Cfy = 

Cf, with mf = πρD2CM/4 and Cf = (2πStV/D)γρD2 (Facchinetti et al., 2004). Herein ρ is the fluid density, 

CM the added mass coefficient (assumed to be unity for a circular cylinder (Blevins, 1990)), St the so-

called Strouhal number (Sarpkaya, 2004), and γ the stall parameter which is directly related to the 

sectional mean drag coefficient and assumed to be a constant equal to 0.8 (Facchinetti et al., 2004). The 

quantities α*x, α*y, β*x, and β*y are geometrical coefficients pertaining to the moving spring-mass 

system. Note that Eqs. (1) and (2) are so-called Duffing oscillators (Nayfeh, 1993) whose cubic-type 

nonlinear terms capture the axial stretching feature (X3, Y3) and physical coupling of cross-flow/in-line 

motions (XY2, YX2). The use of two coupled Duffing oscillators can also be found in some other 

scientific applications (Raj and Rajasekar, 1997). 

 For an oscillating cylinder, Fx and Fy are the time-varying hydrodynamic forces determined by 

resolving the sectional drag FD and lift FL forces – which are considered to be non-coincident with the 

horizontal and vertical axes (see Fig. 1) – into the streamwise and transverse directions. By accounting 

for the relative velocities of the incoming flow and the cylinder streamwise motion, assuming a small 

angle of attack θ of the flow relative to the cylinder (Blevins, 1990), and omitting the mean drag 

component, Fx and Fy may be expressed as (Wang et al., 2003) 

cos si ,nx D L D LF F VF F F Yθ θ= − ≈ −   (3) 

cos si .ny L D L DF F VF YF Fθ θ= + ≈ +   (4) 

 Accordingly, the unsteady drag and lift force components are given by  

2 2,     1 1
2

  ,
2

 D D L LF DV C F DV Cρ ρ= =  
(5) 
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where CD and CL are the time-varying drag and lift coefficients, respectively. By introducing the 

reduced vortex lift coefficients as p = 2CD/CD0 and q = 2CL/CL0 (Facchinetti et al., 2004) in which CD0 

and CL0 are the associated drag and lift coefficients of a stationary cylinder (assumed as CD0=0.2 

(Currie and Turnbull, 1987) and CL0=0.3 (Blevins, 1990)), the time variation of the fluid vortex 

variables p and q may follow the self-excitation nature of the van der Pol-based wake oscillators 

described by 
 

( )2 22 1 4 ,x f f xp p p p Sε ω ω+ − + =    (6) 

( )2 21 .y f f yq q q q Sε ω ω+ − + =   (7) 
 

 Herein, ωf = 2πStV/D is the vortex-shedding angular frequency, Sx and Sy are the excitation terms 

simulating the effect of cylinder motion on the near wake, εx and εy the wake empirical coefficients. 

The coupling and interaction between the fluid and the structure is captured through the excitation 

terms Fx (Eq. 1), Fy (Eq. 2), Sx (Eq. 6) and Sy (Eq. 7). Whilst Fx and Fy depend on the projection of 

oscillating drag/lift forces through Eqs. (3)-(5) accounting for the reduced vortex coefficients p and q, 

the influence of Sx and Sy may be assumed to be linearly proportional to the displacement (Noack et al., 

1991), velocity (Skop and Balasubramanian, 1997) or acceleration (Facchinetti et al., 2004) of the 

cylinder. Based on 1-D VIV studies, Facchinetti et al. (2004) have examined the effect of the coupling 

term Sy on the VIV modelling and finally suggested the use of an acceleration model. Similarly, we 

assume in the 2-D VIV modelling that 

,     ,x yx yS X D S Y DΛ Λ= =   (8) 
 

where Λx and Λy are the empirical coupling parameters adopted equally as Λx=Λy=12 based on the 

suggested Λy=12 in Facchinetti et al. (2004). This assumption would allow us to focus on the scaling 

and calibration of other control parameters (ε, α, β): see Sections 3, 4.1 and 4.2. 

 By introducing the dimensionless time t = ωnyT, displacements x = X/D and y = Y/D, the 

nonlinearly-coupled Eqs. (1), (6), (2) and (7) with four unknown variables (x, p, y, q) – simulating 

coupled in-line (x) and cross-flow (y) VIV due to fluctuating drag (p) and lift (q) fluid forces – become 

( ) ( )2 3 2 2 22x x x D L rx x f * x x xy M p M q y V ,λ α β Ω π Ω+ + + + = −   (9) 

( )2 2 ,2 1 4x xp p p p xε Ω Ω Λ+ − + =   (10) 

( )3 2 2 22 ,y y y L D ry y y y yx M q M p y Vλ α β Ω π Ω+ + + + = +   (11) 
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( )2 2 ,1y yq q q q yε Ω Ω Λ+ − + =    (12) 

where Ω = StVr is equivalent to ωf/ωny, being the ratio of vortex-shedding frequency to the cylinder 

cross-flow natural frequency in still water, with Vr = 2πV/ωnyD the so-called reduced flow velocity 

parameter (Sarpkaya, 2004). The ratio of structural natural frequencies in X and Y directions is given by 

f* = ωnx/ωny where 

,     .yx
nx ny

sx f sy f

KK
m m m m

ω ω= =
+ +

 
 (13) 

 MD and ML are the system mass parameters defined as  

0 0
2 2 2 2

1 1,      ,
2 8π St 2 8π St
D L

D L
x y

C CM M
µ µ

= =  
(14) 

in which the mass ratios μx and μy are expressed as (Facchinetti et al., 2004) 

2 2,     .sx f sy f
x y

m m m m
D D

µ µ
ρ ρ
+ +

= =  
(15) 

 The damping terms λx and λy, accounting for the effects of structural viscous damping and fluid 

added damping (stall term), are given by 

*2 ,     2 ,x x x y yyfλ ξ γΩ µ λ ξ γΩ µ= + = +  (16) 

where ξx and ξy are the structural reduced damping coefficients. Note that the mass ratio definition in 

the literature is variable but it is widely recognized by the notation m* (Williamson and Govardhan, 

2004) relating to Eq. (15) by  
 

* *4 ,     .4yx x yM Mm C m Cµ π µ π= − = −  (17) 

 In parametric studies, the mass ratio is herein referred to as m*; the condition of m*x = m*y = m* is 

applied since practical offshore cylindrical structures generally have a circumferentially-uniform mass. 

However, some experimental studies have considered unequal m*x and m*y (Dahl et al., 2006; Moe 

and Wu, 1990) which would make calibration more complicated. With the same reason, ξx = ξy = ξ is 

assumed. Finally, αx, αy, βx, and βy are the dimensionless counterparts of geometrical parameters α*x, 

α*y, β*x, and β*y, respectively, whose effects will be investigated in Section 4.1. 

 It is worth emphasizing that Eqs. (9) and (11) contain cubic (x3, xy2, y3, x2y) and quadratic ( ,qy py  ) 

nonlinearities, the former capturing the axial stretching/structural coupling of x-y displacements and the 
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latter allowing the wake-cylinder interactions so do the linear terms in the right hand side of Eqs. (10) 

and (12). Some of these nonlinear terms may entail drift components (Nayfeh, 1993) but the latter are 

disregarded as attention is placed on the oscillating components. The cylinder natural frequency ratio f* 

is a key physical parameter in addition to m* and ξ which are embedded in MD, ML, λx and λy (Eqs. 

13-17). The non-linearly coupled Eqs. (9)-(12) are numerically solved using a fourth-order Runge-

Kutta scheme with an adaptive time step enabling the solution convergence and stability, and with 

assigned initial conditions at t = 0 of x = y = 0, p = q = 2 and zero velocities. The case of increasing Vr 

is generally considered. However, if a sudden jump of response amplitude occurs, Vr may also be 

decreasingly varied to capture a possible hysteresis. In all simulation cases, Vr is varied in steps of 0.1. 

3. Identification of Empirical Coefficients Depending on System Mass and/or Damping 

The analysis and prediction of coupled cross-flow/in-line VIV of circular cylinders based on Eqs. (9)-

(12) depend on several empirical coefficients (εx, εy, Λx, Λy) and geometrically-nonlinear parameters 

(αx, αy, βx, βy). Fixed values of εy and Λy have recently been proposed for a 1-D VIV (Facchinetti et 

al., 2004) whereas a new set of εx, εy, Λx, Λy, αx, αy, βx and βy is herein proposed for a 2-D VIV. For a 

given m*, ξ and f*, these coefficients and parameters can be identified by calibrating the numerically-

obtained in-line and cross-flow amplitudes (Ax/D and Ay/D) with experimental results and by 

accounting for some qualitative VIV behaviors. Owing to a large set of variables, it is impractical in a 

parametric study to capture the system dependence on all of these variables. Accordingly, εx = 0.3, Λx = 

Λy = 12 (Facchinetti et al., 2004), and αx = αy = βx = βy = 0.7 are preliminarily fixed whereas the εy-

function is determined through the best fits of 2-D VIV experiment results in the case of varying (i) ξ 

(Blevins and Coughran, 2009), (ii) m* (Stappenbelt et al., 2007) and (iii) m*ξ (Blevins and Coughran, 

2009; Stappenbelt et al., 2007). After identifying the εy-functions, the sensitivity analysis of other 

coefficients/parameters will be carried out as in Sections 4.1 and 4.2. For a specific f* = 1, Table 1 

summarizes the test matrix from the two experiments by reporting the assigned ξ (Table 1a) or m* 

(Table 1b), and the associated m*ξ, along with the tuned εy deduced from relevant numerical-

experimental calibrations. In the following, only Ay/D are plotted whereas combined Ax/D and Ay/D 

will be presented in Section 4. 

 By first considering the case of varying ξ with a fixed low mass m*= 5.4 (Blevins and Coughran, 

2009), Fig. 2 illustrates a comparison of numerically-predicted (lines) and experimentally-obtained 

(squares) Ay/D for ξ = 0.002 (Fig. 2a), 0.02, 0.05, 0.1, 0.2 and 0.4 (Fig. 2b). With the lowest ξ = 0.002, 

results with increasing () and decreasing () Vr are plotted in Fig. 2a which reveals the jump-up and 
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-down responses (denoted by dashed lines) and hysteresis of amplitudes around Vr = 8. The 

experimental and numerical maximum Ay/D ≈ 1.5 and the associated lock-in ranges (4 < Vr < 8 or 10) 

are qualitatively and quantitatively comparable, although the numerical model underestimates the 

lower-amplitude branch (Vr > 8). Similar large maximum Ay/D values (1.5 and above) have also been 

reported by some other experiments, e.g. in Dahl et al. (2006). When ξ is increased by one (ξ=0.02, 

0.05) or two (ξ=0.1, 0.2, 0.4) orders of magnitude, both numerical and experimental results in Fig. 2b 

show decreasing Ay/D as expected, being as small as Ay/D ≈ 0.1 for ξ = 0.4. The numerical model also 

predicts the disappearing jump for high ξ = 0.05, 0.1, 0.2, 0.4. Table 1a shows, except ξ = 0.002 and 

0.4, the increment of εy with increasing ξ. From a dynamical viewpoint, the decreasing Ay/D is feasible 

as εy mainly governs the nonlinear damping term (Eq. 12) regulating the self-excited and -limiting 

character of the VIV response (Gabbai and Benaroya, 2005); thus, as εy increases, the damping effect 

increases too while keeping other variables unchanged.  

 For a given low ξ=0.006 (Stappenbelt et al., 2007), Fig. 3 compares numerical (lines) and 

experimental (squares) Ay/D for various m* = 2.36 (Fig. 3a), 3.68, 5.19, 6.54, 7.91, 8.76, 10.63 and 

12.96 (Fig. 3b). It is seen that the predicted jump-up and -down responses occur almost the same Vr in 

Fig. 3a; nevertheless, the jump disappears in Fig. 3b for higher m* = 7.91, 8.76, 10.63 and 12.96, 

similar to higher ξ cases in Fig. 2b. The maximum Ay/D as well as the associated lock-in ranges 

decrease as m* increases, in qualitative agreement with general experimental results (Jauvtis and 

Williamson, 2004). The model predicts a slight shift in Vr at the jump for high m* values (Fig. 3b) but 

this is considered of secondary importance as far as the primary attention is placed on calibrating 

maximum amplitudes. Comparing the case with m* = 5.4 and ξ = 0.002 in Fig. 2a to the case with m* = 

5.19 and ξ = 0.006 in Fig. 3b, the former shows a greater maximum Ay/D due to a lower ξ. Although 

both cases have comparable m*, such comparison emphasizes the role of damping in the VIV as 

suggested by Klamo et al. (2006). Similar to the increasing ξ case in Table 1a, Table 1b shows the 

increment of tuned εy with increasing m*; i.e. both cases yield the decreasing Ay/D (Figs. 2 and 3). 

 By plotting and applying variable curve fitting to the relationship of ξ and εy in Table 1a, a cubic 

polynomial-based function is chosen as the best-fit εy(ξ) function given by 
3 2

3 2 1 0 ,y a a a aε ξ ξ ξ= + + +    (18) 

  
where a0, a1, a2, and a3 are polynomial coefficients approximately equal to 0.0048, 0.0274, 0.8266 and 

-2, respectively. In the same way, curve fitting to the relationship of m* and εy in Table 1b entails the 

best-fit exponential εy(m*) function as  
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*
2

1 ,y

b m
b eε

 
  =  

(19) 

 

where b1=0.0045 and b2=0.228. In the third scenario, both m* and ξ are simply combined as m*ξ and 

the relationship of m*ξ and εy taking into account the information from both Tables 1a and 1b can be 

described by the best-fit Gaussian εy(m*ξ) function expressed as  
2 2* *

52

3 6
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(20) 

where c1=0.0366, c2=0.0762, c3=0.02046, c4=0.02995, c5=1.464 and c6=1.103. The above nonlinear 

functions enable us to capture the dependence of VIV on m* (Eq. 18), ξ (Eq. 19) or m*ξ (Eq. 20) 

through the wake empirical coefficient εy.  

 To validate the above functions and identify which of them will be used in the subsequent studies, 

we next apply Eqs. (18)-(20) along with Eqs. (9)-(12) to simulate 2-D VIV responses of a recent 

experimental model of Jauvtis and Williamson (2004) which considered f* = 1 with two measurement 

sets: (i) m* = 2.6 and ξ = 0.0025, (ii) m* = 7 and ξ = 0.0007. Experimental Ay/D (squares) are plotted 

against numerical Ay/D (lines) in Figs. 4a (case i) and 4b (case ii). The corresponding values of εy(ξ), 

εy(m*) and εy(m*ξ) are 0.0048, 0.0042 and 0.0052 in Fig. 4a, whereas they are 0.0048, 0.0116 and 

0.0052 in Fig. 4b, respectively. Note that these εy values are much smaller than the value 0.3 proposed 

by Facchinetti et al. (2004). Overall, a good agreement between experimental results and numerical 

predictions based on three different functions is found in the higher mass-damping (m*ξ = 0.0064) case 

(Fig. 4a), showing both the response jumps and overall amplitude (initial, upper and lower) branches 

(Jauvtis and Williamson, 2004). However, in the lower mass-damping (m*ξ = 0.0048) case (Fig. 4b), 

discrepancies in maximum Ay/D between experimental and numerical results are remarkable when the 

latter are based on εy(ξ) and εy(m*ξ) functions owing to their fixed and comparable εy being 0.0048 

and 0.0052, respectively. Based on these observations, the εy(m*) function based on Eq. (19) is 

preferably used in the following parametric investigations. 

4. Analysis and Prediction of Coupled Cross-Flow/In-Line VIV 

Coupled cross-flow/in-line VIV responses of circular cylinders with different m*, ξ and f* are now 

parametrically investigated to highlight the effect of key parameters and several VIV features. By way 

of examples, experimental input data (Blevins and Coughran, 2009; Dahl et al., 2006; Jauvtis and 

Williamson, 2004; Stappenbelt et al., 2007) whose Reynolds numbers are within the sub-critical flow 

regime are considered. A reference set of coefficients and parameters in the computation is based on εx 
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= 0.3, Λx = Λy = 12, αx = αy = βx = βy = 0.7, and the εy(m*) function deduced from the calibration in 

Section 3. 

4.1 Influence of Cylinder Geometrical Nonlinearities and Natural Frequency Ratio 

The influence of cylinder geometrical nonlinearities is first discussed based on the experimental data of 

Stappenbelt et al. (2007) with m* = 2.36 and ξ = 0.006 (Fig. 3a). Numerical Ax/D and Ay/D results are 

plotted in Figs. 5 and 6 for f*=1 and 2, respectively. Four simulation cases are performed with (i) 

neglected in-line nonlinearities αx=βx=0 (red lines), (ii) neglected cross-flow nonlinearities αy=βy=0 

(green lines), and (iii) neglected in-line/cross-flow nonlinearities αx=βx=αy=βy= 0 (pink lines), in 

comparison with the full coupling benchmark case (iv) with αx=βx=αy=βy=0.7 (blue lines) and 

experimental results (squares). Note that experimental results are unavailable in the f*=2 case. 

 Overall, simulation results reveal how omitting cross-flow and/or in-line nonlinearities can 

significantly affect the prediction of Ax/D and Ay/D, depending also on the specified f*. With f*=1 and 

αx = βx = 0 (red vs. blue lines), the in-line nonlinearities have a greater effect on Ax/D (Fig. 5a) than 

Ay/D (Fig. 5b). Nevertheless, the bent-to-right responses still qualitatively exhibit the hardening-spring 

and jump (dashed lines) behaviors as in the full-coupling and experimental cases. When αy = βy = 0 

(green vs. blue lines), it is worth remarking on some quantitative as well as qualitative changes. Both 

Ax/D and Ay/D responses increase and appear nearly vertical with a vanishing jump, similar to a typical 

linear resonant damped response. As a result, the maximum amplitudes (especially Ax/D) shift towards 

Vr = 5 lower than Vr = 9 in the benchmark case. This shift of response maxima is in qualitative 

agreement with experimental results of Stappenbelt (2011) with varying cubic nonlinearities. By 

further imposing αx=βx=αy=βy=0 and comparing with the previous αy=βy=0 case (pink vs. green 

lines), Ay/D appear unchanged whereas Ax/D noticeably drop. These highlight how the cross-flow (in-

line) geometric nonlinearities have a significant impact on both x and y (mostly x) responses. Overall, 

the αx = αy = βx = βy = 0.7 case provides the best fit to experimental results (squares). 

 With f*=2, both in-line/cross-flow geometrical nonlinearities now play a significant role in both 

Ax/D (Fig. 6a) and Ay/D (Fig. 6b) diagrams which display distinctive dynamic scenarios amongst all 

the compared four cases, quantitatively and qualitatively. The maximum Ay/D occurs with the αy = βy 

= 0 case whereas the maximum Ax/D occurs with the αx = βx = αy = βy = 0 case. The combined αy- 

and βy-based terms are found to be solely responsible for a jump as in Fig. 5 (see blue vs. red lines). 

With respect to the benchmark case, Ax/D (Ay/D) amplitudes increase (slightly decrease) when varying 

the cylinder frequency ratio from f*=1 (Fig. 5) to f* = 2 (Fig. 6), with Ax/D diagram in the f*=1 case 
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displaying an emergence of a small first resonant peak around Vr = 2.5 (Fig. 5a). This is possibly due to 

a primary resonance between the wake and cylinder in-line frequencies. Overall, increasing f* enhances 

the coupling and interaction of Ax/D and Ay/D through system cubic/quadratic nonlinearities.  

4.2 Influence of Wake-Cylinder Coupling and In-Line Wake Coefficient 

The influence of the acceleration coupling terms (Λx, Λy) and the in-line wake coefficient (εx) (Eqs. 10 

and 12) on the prediction of 2-D VIV is next discussed based on the experimental data of Stappenbelt 

et al. (2007) with m* = 2.36, ξ = 0.006 and f*=1. By individually varying (i) Λy, (ii) Λx and (iii) εx, a 

comparison of Ax/D and Ay/D with respect to the benchmark case (Λy = Λx = 12 and εx = 0.3) is 

displayed in Figs. 7a and 7b (i), Figs. 7c and 7d (ii), and Figs. 7e and 7f (iii), respectively.  

 As Λy increases, it can be seen in Figs. 7a and 7b that overall amplitudes become greater, widening 

the associated lock-in ranges. This highlights a role played by the cross-flow acceleration coupling 

term in Eq. (12). On the contrary, the variation of Λx has a negligible effect on 2-D amplitudes as 

shown in Figs. 7c and 7d. This may be attributed to the small Ax/D and, correspondingly, the negligible 

contribution of cylinder in-line accelerations through Eq. (10).  

 With regard to varying εx, a noticeable feature should be mentioned via Fig. 7e. In particular, the 

numerical model predicts two resonant peaks in the in-line amplitude diagram (Fig. 7e) as in Figs. 5a, 

7a and 7c, with the first resonant peak occurring at a low reduced velocity range (2 < Vr < 4) and 

increasing with decreasing εx. The first and second peaks in Fig. 7e are reminiscent of the second and 

third lock-in ranges of in-line oscillations, respectively, with the asymmetric vortex shedding in the 

cylinder wake (Currie and Turnbull, 1987; Jauvtis and Williamson, 2004). Based on some other trial 

simulations (not shown herein), it has been found that the first such peak would disappear if the in-line 

wake frequency in Eq. (10) was set equal to the cross-flow wake frequency in Eq. (12). As for the main 

2-D lock-in range (4 < Vr < 10) (Jauvtis and Williamson, 2004), numerical results in Figs. 7e and 7f 

show a small εx effect on Ax/D and Ay/D. By comparing overall numerical and experimental results in 

Figs. 5-7, the reference set of coefficients Λx = Λy = 12, εx = 0.3 and parameters αx=βx=αy=βy=0.7 is 

the preferred option to be assumed in subsequent studies. 

4.3 Influence of Mass/Damping Ratios and The Griffin Plots  

The proposed wake-structure oscillator model is now used to predict and investigate the effect of m* 

and ξ on the in-line response. In accordance with cross-flow responses shown in Figs. 2a and 2b (with 

varying ξ), Figs. 3a and 3b (with varying m*), Figs. 4a and 4b (with varying m*ξ), the predicted in-line 

responses in the f*= 1 case are now displayed against experimental results of Blevins and Coughran 
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(2009), Stappenbelt et al. (2007), Jauvtis and Williamson (2004) in Figs. 8a (ξ= 0.002, 0.02), 8b (m* = 

2.36, 3.68) and 8c (m*ξ ≈ 0.0064, 0.0048), respectively.  

 Overall, there is good agreement between numerical and experimental results which display two 

coexisting resonant peaks and maximum Ax/D values about 0.2-0.3 being much smaller than the 

maximum Ay/D in the range of 1.2-1.5. However, for the system with low ξ= 0.002, the numerical 

model in Fig. 8a further reveals a third intermediate peak with the highest amplitude (Vr = 6) (see also 

the corresponding orbital motion in Fig. 13b). The in-line amplitudes as well as associated lock-in 

ranges are seen to decrease with increasing ξ (Fig. 8a), m* (Fig. 8b) and m*ξ (Fig. 8c), in the same way 

as the cross-flow amplitudes (Figs. 2-4). 

 Next, the influence of mass-damping on the 2-DOF VIV is demonstrated via the so-called Griffin 

plots. Over the last three decades, researchers had a discussion on whether the combined mass-

damping, viz. the Skop–Griffin parameter SG=2π3St2m*ξ (Williamson and Govardhan, 2004), could 

reasonably collapse different peak (typically cross-flow) amplitude data of different cylinders in the 

Griffin plots (Govardhan and Williamson, 2006). For the 2-D VIV study, observations in Blevins and 

Coughran (2009), Jauvtis and Williamson (2004) and Section 3 reveal the response dependence on both 

m* and ξ. To further justify this, experimental data of Blevins and Coughran (2009), Stappenbelt et al. 

(2007) and Dahl et al. (2006) are considered; the associated maximum attainable (Aym/D) and in-line 

(Axm/D) amplitudes numerically (solid lines) and experimentally (symbols) obtained are compared in 

Figs. 9a and 9b, respectively. In addition, the associated reduced velocities at which Aym/D and Axm/D 

occur (Vrym, Vrxm) are also drawn vs. SG in Figs. 9c and 9d. For each given m* = 2.5 and 7, SG is varied 

by altering ξ, and both f* =1 and 2 are considered. Note that experimental results of Dahl et al. (2006) 

were based on mx* ≠  my* (in the range of 3.3-5.7) and ξx ≠  ξy (in the range of 1.1-6.2 %), with f* 

ranging from 1 to 1.90, those of Blevins and Coughran (2009) were based on m* = 5.4 (varying ξ) and 

f* = 1, and those of Stappenbelt et al. (2007) were based on ξ = 0.006 (varying m*) and f* = 1. 

 It can be seen in Figs 9a and 9b that, for a specific SG, numerical results based on different fixed m* 

and corresponding ξ are different. Both Aym/D and Axm/D decrease with increasing SG, with the f* = 2 

(f* = 1) case entailing greater in-line (cross-flow) responses for both assigned m*. The difference in 

Axm/D results between the f* = 1 and 2 cases is pronounced particularly for the lower m*=2.5: these 

emphasize a combined role played by both f* and m* captured by the proposed model. The predicted 

Axm/D may reach a large value of 0.7 for a low SG with f* = 2. Apart from Aym/D and Axm/D, f* also 

does affect their corresponding Vrym and Vrxm as shown in Figs. 9c and 9d, respectively. While Vrym of 

Aym/D and Vrxm of Axm/D in the case of m* = 2.5 and f* = 1 are comparable, those in other cases appear 
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significantly different. Increasing f* tends to reduce Vrym for both m*. However, Vrxm increases 

(decreases) as f* increases for m* = 7 (2.5) due to the greater first-peak (second-peak) Axm/D, see, e.g., 

in the case of m* = 7 vs. 2.6 (Fig. 8c). As for the experimental comparison, the associated Aym/D and 

Axm/D, as well as Vrym and Vrxm, also decrease with increasing SG either due to the increasing ξ 

(Blevins and Coughran, 2009) or m* (Stappenbelt et al., 2007), except some cases in Figs. 9b, 9c and 

9d where mx*≠  my* and ξx ≠  ξy (Dahl et al., 2006).   

 By paying attention to the effect of m*, a different scenario to show the capability of the proposed 

model in the 2-D VIV prediction is illustrated in Fig. 10 (f*=1) based on two experimental datasets of 

Jauvtis and Williamson (2004) with fixed SG = 0.0064 and Stappenbelt et al. (2007) with variable SG. 

Former experimental results indicated that, at m* higher than 6, the variation of m* does not affect the 

peak amplitudes in either direction. Our numerical results agree with this but only for the in-line 

response shown in Fig. 10b. For the cross-flow response shown in Fig. 10a, numerical and 

experimental (Jauvtis and Williamson, 2004) results are in good agreement within the range 2 < m* < 6 

showing decreasing Aym/D with increasing m*; for m* > 6, however, the former continues to predict 

decreasing Aym/D, instead of the nearly-constant Aym/D from experiment. Although such a difference 

occurs at high m*, both numerical Aym/D and experimental results of Stappenbelt et al. (2007) are in 

good quantitative agreement throughout the considered m* range. As for Axm/D, Fig. 10b shows a good 

correspondence of overall numerical-experimental comparisons. 

 To further appreciate the combined effect of m* and f* on the 2-DOF VIV, Fig. 11 portrays the 3-D 

plots of amplitudes (Ay/D and Ax/D) vs. varying Vr and m* for a given f* = 1 (Figs. 11a and 11c) and f* 

= 2 (Figs. 11b and 11d), respectively. The fixed ξ = 0.001 is considered as an example. It can be 

summarized that, by decreasing m*, overall Ay/D and Ax/D and associated lock-in ranges increase 

whereby Aym/D and Axm/D occur at higher Vr. With f* = 2, very large Ax/D amplitudes of nearly 1.2 are 

found in a low m* range. This is a precarious circumstance since typical marine cylindrical structures 

have a low mass/damping and their natural frequencies could be tuned such that f* = 2 (Srinil, 2010). 

In essence, for a very low m* ≈ 0.5, the model with f* = 1 predicts the unbounded lock-in domain 

whose Ay/D and Ax/D persist throughout the considered Vr range (Figs. 11a and 11c). This occurrence 

of “resonance forever” (Govardhan and Williamson, 2002) is in good qualitative agreement with recent 

experimental results (Jauvtis and Williamson, 2004). Nevertheless, in the f*=2 case, Ay/D and Ax/D 

tend to decline at higher Vr as shown in Figs. 11b and 11d. 
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4.4 Two-Dimensional Trajectories and Figures of Eight 

It is of theoretical and practical importance to construct a 2-D (x-y) trajectory describing the 

relationship of cylinder in-line/cross-flow oscillations based on the proposed numerical model. In so 

doing, VIV simulations within the last ten cycles yielding steady Aym/D and Axm/D are considered for 

specific Vr in the neighborhood of hysteresis. Corresponding to Figs. 3a and 8b based on data of 

Stappenbelt et al. (2007) with m* = 2.36, ξ = 0.006 and f* = 1, the 2-D orbital motions in the cases of 

increasing (blue lines) and decreasing (red lines) flow velocities are drawn in Figs. 12a, 12b and 12c 

for Vr = 8, 9.25 and 9.45, respectively. Overall, the trajectories exhibit so-called figures of eight 

highlighting a tuned 2:1 resonance condition of in-line/cross-flow oscillating frequencies although 

inputting f* = 1. For a specific Vr, depending on initial conditions, identical (Fig. 12a) or different 

(Figs. 12b and 12c) figures of eight may coexist with increasing and decreasing Vr cases. 

 It is now worth exploring which numerical terms play an influential role in the figure-eight 

appearance. Two cases are considered for Vr = 9.45 in comparison with the increasing flow case in Fig. 

12c: firstly, the lift and drag wake frequencies in Eqs. (10) and (12) are assumed to be equal depending 

on the Strouhal frequency; secondly, the relative velocities between the flow and the cylinder are 

discarded thereby neglecting the quadratic nonlinear terms in the right-hand side of Eqs. (9) and (11). 

The associated simulation results are plotted with solid and dotted lines in Fig. 12d, respectively. It can 

be seen that both quantitative and qualitative discrepancies occur when neglecting the quadratic 

nonlinearities: the in-line (cross-flow) amplitudes considerably diminish (slightly increase) without 

showing the figure of eight. On the other hand, a similar figure of eight remains even though the wake 

in-line frequency has been altered. Other simulation Vr cases also agree with these observations. This 

highlights that as the 2:1 resonance and thus the figure of eight is generally associated with quadratic 

nonlinearities, neglecting the latter ( ,qy py  ) – which capture the wake-cylinder interactions – may lead 

to the uncoupled in-line/cross-flow VIV response. 

 The influence of f* on x-y trajectories is illustrated in Fig. 13 based on the experimental data of 

Blevins and Coughran (2009) with m* = 5.4 and ξ = 0.002 (Figs. 2a and 8a). Simulation results with Vr 

= 4.5, 6, 7 and 7.6 are visualized in Fig. 13a, 13b, 13c and 13d, respectively, with six successive f* = 1, 

1.2, 1.4, 1.6, 1.8 and 2. It can be seen that, regardless of f*, most of the x-y trajectories entail figure-

eight orbits. They distinguish themselves depending on the corresponding in-line/cross-flow 

amplitudes, initial conditions, relative phases and the nearness or tuning of 2:1 resonant oscillating 

frequencies. These dual resonances confirm some recent experimental 2-D VIV results (Dahl et al., 

2006; Dahl et al., 2010). Non-figure-eight trajectories are also found in some cases, for instance, in Fig. 



17 
 

13b with Vr = 6 and f* = 1 or Fig. 13d with Vr = 7.6 and f* = 1.2. Recently, elliptic x-y trajectories have 

been found and explained to be subject to a strong structural coupling (Kheirkhah et al., 2012).  

 

4.5 Final Remarks 

Based on the calibration with experimental results and substantial parametric studies, it can be 

concluded – from a modelling and prediction viewpoint – that important physical parameters m*, ξ and 

f* independently govern the 2-D VIV response. In general, strong coupling and interaction of cross-

flow/in-line VIV motions take place in the fluid-structure system with low m*, low ξ and f* = 2, 

leading to large-amplitude responses whose Aym/D (Axm/D) may reach a high value of about 2 (1). 

 Depending on m*, ξ and f*, Table 2 summarizes the potential effect of geometrical nonlinearities 

through the newly proposed terms in the cylinder equations 9 and 11 (Figs. 5 and 6). The in-line cubic 

nonlinearities seem to have a quantitative effect on the overall motion by playing a greater role in the 

in-line response than the cross-flow response. Apart from the quantitative effect, the cross-flow cubic 

nonlinearities can also lead to a qualitatively different result if they are omitted whereby the jump and 

hysteresis disappear. These features are VIV amplitude-dependent: the higher the amplitudes the 

greater the geometrical nonlinear effects. As for the quadratic nonlinearities, it is essential to consider 

the relative velocities of the cylinder and the incoming flow in order to capture the 2:1 resonance and 

associated figure of eight (Figs. 12 and 13). The considered in-line wake frequency being twice the 

cross-flow wake frequency does not imply the figure of eight appearance but allows the occurrence of 

primary resonance (first peak) in the in-line response in addition to the main lock-in region involving 

cross-flow/in-line responses (Figs. 7 and 8). 

 As far as empirical coefficients are concerned, Table 3 summarizes the potential effect of εx, εy, Λx 

and Λy appearing in the wake equations (10 and 12). It can be seen that both εy and Λy have a high 

impact on cross-flow/in-line VIV predictions, possibly owing to the associated stronger wake strength 

and higher amplitude in the cross-flow direction (Figs. 2-4, 7a and 7b). In contrast, both main cross-

flow/in-line responses are marginally influenced by a variation of εx and Λx (Figs. 7c-7f). Nevertheless, 

the tuning of εx could have a high impact on in-line VIV with respect to its first-peak resonance (Fig. 

7e). Empirical functions for εy have been established (Eqs. 18-20) depending on m* and/or ξ, and it is 

herein recommended to vary εy in the numerical prediction and perform a sensitivity analysis when 

using the proposed nonlinear wake-structure oscillators. Of course, new experimental tests, calibrations 

and validations are needed in order to improve Eqs. (18)-(20) and capture the influence of other 
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important parameters such as f* and Reynolds number, in terms of both quantitative and qualitative 

aspects of coupled cross-flow/in-line VIV. 

 

 

5. Conclusions 

An advanced model for predicting a 2-D coupled cross-flow/in-line VIV of a flexibly-mounted circular 

cylinder in a uniform steady flow has been developed, calibrated and validated. The ensuing dynamical 

system is based on double Duffing-van der Pol (structural-wake) oscillators with the two structural 

equations containing cubic/quadratic nonlinear terms. The cubic nonlinearities describe the geometrical 

coupling of cross-flow/in-line displacements excited by hydrodynamic lift/drag forces whereas the 

quadratic nonlinearities allow the wake-cylinder interactions resulting from the relative velocities of the 

incoming flow and the oscillating cylinder. Some wake empirical coefficients have been identified 

based on calibration with experimental results in the literature, and new analytical functions accounting 

for the dependence of VIV on a physical mass and/or damping parameter have been established. These 

relationships would be useful for a future numerical implementation and experimental VIV analysis.  

By varying flow velocities in the numerical simulations, the derived low-order model captures 

several fundamental VIV characteristics including 2-D lock-in, hysteresis phenomena and figure-of-

eight trajectories tracing the periodically coupled in-line/cross-flow oscillations with their tuned two-

to-one resonant frequencies. These figures of eight appear regardless of the specified ratio of cylinder 

in-line to cross-flow natural frequencies. By making use of a newly-derived empirical formula, the 

predicted cross-flow/in-line VIV amplitudes and associated lock-in ranges compare well with several 

experiment results for cylinders with low/high mass or damping ratios, by also revealing the occurrence 

of critical mass whereby maximum amplitudes exhibit the unbounded lock-in scenario. Prediction 

results also agree with recent experimental observations about how the Griffin plots – with the Skop-

Griffin mass-damping parameter – may be insufficient to collapse maximum amplitude data of 

cylinders with different mass and damping. 

Overall, the parametric investigations highlight the important effect of structural geometrical 

nonlinearities through new displacement coupling terms and the in-line-to-cross-flow natural frequency 

ratio of the freely-oscillating cylinder. By simulating the two-DOF VIV using the traditional linear 

(uncoupled) vs. newly-proposed nonlinear (coupled) structural models, the obtained dynamic responses 

appear quantitatively and/or qualitatively distinctive. The more-complete nonlinear model gives rise to 

a better agreement with relevant experimental results. Depending on the mass and damping, the 

nonlinear model predicts that the cylinder natural frequency ratio of two enhances the 2-D nonlinear 
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coupling, interaction and resonance by noticeably amplifying the in-line amplitudes and enlarging the 

associated lock-in ranges. From a practical viewpoint, combined cross-flow/in-line large-amplitude 

responses would be responsible for the significant fatigue damage in actual flexible cylinders such as 

marine risers, mooring cables and subsea pipelines. 

Apart from enabling the 2-D VIV analysis and prediction by also confirming several meaningful 

VIV aspects observed experimentally, the proposed simulation model could be further improved by 

calibrating empirical coefficients with new experimental tests and/or computational fluid dynamics 

studies. In any case, the cylinder natural frequency ratio and geometrically nonlinear stiffness should be 

taken into account as one of the control parameters. Further analytical solution based on the proposed 

mathematical model could shed some light on the contributions of cubic/quadratic nonlinear terms and 

how they actually influence the vortex-induced dynamics and behaviors including the hysteresis, the 

multi-peak in-line response, the oscillating frequencies, the figure-of-eight character and relative 

phases. The hydrodynamic properties including added mass, added damping, oscillating lift and drag 

coefficients could also be systematically extracted. Finally, it is hoped that a combined analytical-

numerical-experimental framework would pave the way for a forthcoming improvement of numerical 

predictive tools to be utilized by the offshore industry where VIV continues to render a detrimental 

concern towards deep-water engineering applications. 
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Table Captions 

Table 1 Considered various ξ and m* based on experimental input data of (a) Blevins and 
Coughran (2009) for a given m* = 5.4 and (b) Stappenbelt et al. (2007) for a given ξ = 0.006, 
along with the tuned εy from associated model simulations. 

Table 2 Potential effect of geometrically-nonlinear terms on 2-D VIV response prediction. 

Table 3 Potential effect of empirical coefficients on 2-D VIV response prediction. 

Figure Captions 

Figure 1  A schematic model of a flexibly-mounted circular cylinder undergoing cross-
flow/in-line VIV due to fluid lift/drag forces exerted on the oscillating cylinder. 

Figure 2 Comparison of numerical and experimental (Blevins and Coughran, 2009) cross-
flow amplitudes with m*=5.4 and f*=1: (a) ξ = 0.002 with increasing () and decreasing 
() Vr; (b) varied ξ; squares denote experimental results associated with numerical results 
(lines) by same colors; dashed lines denote response jumps. 

Figure 3  Comparison of numerical and experimental (Stappenbelt et al., 2007) cross-flow 
amplitudes with ξ = 0.006 and f*=1: (a) m*=2.36 with increasing () and decreasing () Vr; 
(b) varied m*; squares denote experimental results associated with numerical results (lines) 
by same colors; dashed lines denote response jumps. 

Figure 4  Comparison of numerical (lines) and experimental (Jauvtis and Williamson, 
2004) (squares) cross-flow amplitudes by using the derived εy functions depending on mass 
εy(m*), damping εy(ξ) and mass-damping εy(m*ξ): (a) m*=2.6, ξ = 0.0025, f*=1; and (b) 
m*=7, ξ = 0.0007, f*=1; dashed lines denote response jumps. 

Figure 5 Comparison of numerical (lines) and experimental (Stappenbelt et al., 2007) 
(squares) amplitudes with m*=2.36, ξ = 0.006 and f*=1, by considering the effect of 
geometrical nonlinear terms: (a) Ax/D and (b) Ay/D; dashed lines denote response jumps. 

Figure 6  Effect of geometrical nonlinear terms based on experimental input data of 
Stappenbelt et al. (2007) with m*=2.36, ξ = 0.006 and f*=2: (a) Ax/D and (b) Ay/D; dashed 
lines denote response jumps. 

Figure 7  Comparison of numerical (lines) and experimental (Stappenbelt et al., 2007) 
(squares) amplitudes with m*=2.36, ξ = 0.006 and f*=1, by considering the effect of wake-
cylinder coupling terms and in-line wake coefficient: (a) Ax/D and (b) Ay/D for varied Λy, (c) 
Ax/D and (d) Ay/D for varied Λx, (e) Ax/D and (f) Ay/D for varied εx; dashed lines denote 
response jumps. 

Figure 8 Comparison of numerical (lines) and experimental (symbols) in-line amplitudes 
with (a) m*=5.4 and f*=1 (Blevins and Coughran, 2009), (b) ξ = 0.006 and f*=1 (Stappenbelt 



et al., 2007), (c) varied m*ξ and f*=1 (Jauvtis and Williamson, 2004): experimental results 
associated with numerical results by same colors; dashed lines denote response jumps. 

Figure 9 Comparison of numerical (lines) and experimental (symbols) maximum attainable 
amplitudes (a, b) and corresponding reduced velocities (c, d) versus SG for given m*=2.5 and 
7, f*=1 and 2: (a) and (b) are so-called Griffin plots. 

Figure 10 Comparison of numerical and experimental maximum attainable (a) cross-flow 
and (b) in-line amplitudes with varying m*. 

Figure 11  Three-dimensional plots of (a, b) cross-flow and (c, d) in-line amplitudes with 
varied m* and Vr for given ξ=0.001:  f*=1 (a, c) and f*=2 (b, d).  

Figure 12  2-D trajectories based on experimental input data of Stappenbelt et al. (2007) 
with m* = 2.36, ξ = 0.006 and f* = 1: (a) Vr = 8, (b) Vr = 9.25, (c) Vr =9.45, with blue (red) 
lines denoting increasing (decreasing) Vr case; (d) Vr = 9.45 with assumed equal cross-
flow/in-line wake frequencies (blue lines) and neglected quadratic nonlinear terms (dotted 
lines). 

Figure 13  2-D trajectories based on experimental input data of Blevins and Coughran 
(2009) with m* = 5.4, ξ = 0.002 and various f*: (a) Vr = 4.5, (b) Vr = 6, (c) Vr =7; (d) Vr 
=7.6. 



 

 

 

Table 1 

 

                                     (a) 

ξ m*ξ εy 
0.002 0.0108 0.0055 
0.02 0.1080 0.0053 
0.05 0.2700 0.0067 
0.1 0.5400 0.015 
0.2 1.0800 0.027 
0.4 2.1600 0.02 

 

   (b) 

m* m*ξ εy 
2.36 0.0142 0.0044 
3.68 0.0221 0.0062 
5.19 0.0311 0.0078 
6.54 0.0392 0.0095 
7.91 0.0457 0.014 
8.76 0.0526 0.017 

10.63 0.0638 0.027 
12.96 0.0778 0.045 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Table 2 

 

 
Modelled Terms 

 
Type of Nonlinearities 

 
Potential Effect 

 

3 2,x xx xyα β  
 

 
Cubic  
(in-line equation) 
 

Quantitative effect on cross-flow/in-line VIV 
response 

 
3 2,y yy yxα β  

 
Cubic 
(cross-flow equation) 
 

Quantitative and qualitative effect on cross-
flow/in-line VIV response 

,qy py   
 
Quadratic 
(in-line/cross-flow equations) 
 

Figure-of-eight appearance 

 

 

 

 

Table 3 

 

Coefficients Potential Effect 
Cross-flow VIV In-line VIV 

εx Low High 
εy High High 
Λx Low Low 
Λy High High 
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