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New counterpropagating geometries are presented for localizing ultracold atoms in the dark regions created by the
interference of Laguerre–Gaussian laser beams. In particular dark helices, an “optical revolver,” axial lattices of
rings, and axial lattices of ring lattices of rings are considered and a realistic scheme for achieving phase stability
is explored. The dark nature of these traps will enable their use as versatile tools for low-decoherence atom
interferometry with zero differential light shifts. © 2012 Optical Society of America
OCIS codes: 020.1335, 020.7010.

The optical dipole force generated by far off-resonance
laser beams has been utilized in an extremely wide vari-
ety of experiments on ultracold matter. It has been used
as a matter wave beam splitter/tunable barrier [1,2], has
stirred up vortices [3], and created crystals of atoms
stored in precise optical lattices [4]. If the light is red-
detuned from an atomic resonance atoms are attracted
to regions of bright optical intensity, whereas blue-
detuned light attracts atoms to the lowest intensity
regions.
Smoothly varying electric fields can have a zero cross-

ing in space, and one can thereby make spatial regions in
one, two, or three dimensions that are completely dark.
The advantage of this darkness is that as the atoms scat-
ter photons at a rate proportional to I∕Δ2, where I is
the light intensity and Δ is the detuning from resonance,
ultracold atoms in dark traps have a greatly reduced heat-
ing rate due to photon absorption and emission.
In addition, the light shift due to the optical dipole ef-

fect is proportional to I∕Δ, and thus two regions of dif-
ferent intensity I1 and I2 will have corresponding energy
difference E2 − E1, leading to an (often unwanted) time-
dependent phase shift ϕ � �E2 − E1�t∕ℏ. Such a problem
is obviated in dark traps. Gravitational forces and ther-
mal motion/quantum mechanical zero-point energy will
lead to sampling of nondark regions of the potential;
however, magnetic “levitation” [2] and ultralow tempera-
tures, respectively, can minimize these effects.
To illustrate the wide range of options available with

optical trapping, we discuss some of the geometries
for atom trapping obtained to date. Single-beam blue-
detuned traps can be used as “optical pipes” [5] via
Laguerre–Gauss (LG or “donut”) laser modes [6]. By com-
bining two copropagating laser beams, one can also
make three-dimensional (3D) dark traps “optical bottles”
[7,8], rings [9], and ring lattices (“optical ferris wheels”)
[10,11]. To date counterpropagating geometries with LG
beams have been relatively rarely used experimentally,
although they open a plethora of geometries as we show
here. Cylindrical axicon beams without the angular mo-
mentum of LG beams were used in a counterpropagating
geometry in Ref. [12] to create a dark axial array of rings
(“axial” refers to the beam propagation direction).
Theoretical papers have discussed ways to make bright
(red-detuned) axial lattices of ring lattices [13], and he-
lices [14], and we extend all of these geometries into
the preferable (low-decoherence and light shift) dark
configuration.

The LG field mode of index ℓ (only the case with the
other index p � 0 is used) can be expressed in cylindrical
polars as
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where the beam has wavenumber k � 2π∕λ, angular fre-
quency ω � ck, power P, waist w0, Rayleigh range
zR � πw0
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������������������������
1� z2∕zR2

p
and s � �1 is the

propagation direction relative to the z axis. In the follow-
ing illustrations we will consider rubidium atoms in
light fields of wavelength λ � 532 nm, far blue-detuned
from the atomic resonances at λ0 � 780 nm and
795 nm. All beam waists are w0 � 5 μm, unless stated
otherwise. Note the mode described in Eq. (1) is the
square-root of the intensity (i.e., not the electric field,
but proportional to it). Useful estimates of the scattering
rate and potential depth of a dipole beam light with inten-
sity I are [10]

�R;U� ≈ ħΓβ�Δ−2
Γ ; �kBΔΓ�−1�∕8;

respectively, where β � I∕IS and the Rb saturation inten-
sity and natural linewidth are IS � 16.3 W∕cm2 and
Γ � 2π × 6 MHz, respectively. The detuning of the dipole
beam in linewidths is ΔΓ � �ω − ω0�∕Γ ≈ 3.0 × 107.

Examples of the different kinds of dark optical trap
geometries obtainable using superpositions of LG beams
are: dark helix lattices (Fig. 1), counter-rotating dark he-
lix lattices (Fig. 2), an axial lattice of rings (Fig. 3), an
axial lattice of ring lattices (Fig. 4), and an axial lattice
of ring lattices of rings (Fig. 5).

Tonks–Girardeau gases are intriguing systems where
1D confinement of strongly interacting bosons can lead
to behavior mimicking noninteracting fermions [15]. In
Fig. 1 (similar to Fig. 2), each helical dark core has a lead
angle ≈

λ�ℓ1−ℓ2���
2

p
πw0

� ���
ℓ1

p
�

���
ℓ2

p � � 39 mrad and has harmonic

trap frequencies 154 kHz and 6.0 kHz in the axial and ra-
dial directions, respectively. By reducing the detuning (to
tighten the trap) it will be possible to use each helix to
compactly store long Tonks gas chains—in Fig. 1 even a
40 μm axial extent of helix with radius 11 μm has an un-
coiled length of 1 mm. Such an extension is not
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possible in crossed-beam dipole lattices where trap
lengths are limited to the typical beam waists of ≈100 μm.
For the helical scheme tunable axial confinement would
be provided with harmonic magnetic fields.
The use of larger rings for trapping Bose–Einstein con-

densates has applications in rotational sensing [16], and
more recently there have been rapid developments in
small-scale optical traps for precise studies of superfluid-
ity and the quantization of flow in rings [17,18]. The traps
we show in Figs. 3 and 5 illustrate a way of extending the
single ring traps of Refs. [17,18], allowing scalability to a
large array of rings in which the flows in each ring could
be stored as individual qubits for quantum processing.
A major advantage of the counterpropagating lattice

geometry is that structures can be formed with subwave-
length axial structure, and tight axial confinement can be
achieved without additional fields—like the bright geo-
metry discussed in Ref. [13]. The lattice is an interfero-
metric superposition of counterpropagating beams, as

such although the shape of the lattice is not phase-
dependent, phase-stability is required to completely axi-
ally localize the optical traps. A trick used in optical
lattices, to avoid aligning two separate beams with inter-
ferometric stability, is to retroreflect Gaussian beams
with a mirror near the position of the trap. The node
of the transverse electric field at the mirror ensures lat-
tice stability if this mirror alone is stable.

Here we suggest (Fig. 6) the use of a phase grating near
the trap location as this will have three advantages: the
lattice axial location depends only on the grating stabi-
lity, alignment of the trap relies only on successful angle
alignment of the grating, and the grating itself can be
used to change the LG mode superposition of the beam
into the required counterpropagating mode to complete
the lattice. In order to achieve sufficient resolution that
the grating efficiently and accurately generates the re-
quired mode, the incoming beammust cover several hun-
dred grating periods. This could be achieved in vacuo, in
Littrow configuration, slightly away from the beam focus
with a microfabricated grating substrate with a size of
≈200 μm and grating period ≈1 μm (ensuring a large dif-
fraction angle so other diffracted orders do not affect the
beam superposition). An ex vacuo grating would simplify
alignment, and as long as an astigmatism-compensated

Fig. 1. (Color online) A dark helix lattice arising from a super-
position of 100 mW of LG5 and a counterpropagating 170 mW
LG15 beam. (a) Contains radial [left �40 μm�2] and axial [right
�4λ � 2.13 μm� × 40 μm] slices through the beam. Intensity
and phase are shown in the top and bottom images, respec-
tively. At the maximum intensity shown (white zones) the scat-
tering rate and potential depth are R � 0.19 Hz and U � 43 μK,
respectively. (b) Extends the radial 2D intensity plot into a 3D
contour plot indicating the intensity minima (blue) at 10% and
25% of the maximum of the scale in the radial intensity slice.
Note the axial extension is only one wavelength 532 nm, i.e.,
exaggerated by a factor of ≈75.

Fig. 2. (Color online) An “optical revolver” generated by a
superposition of 100 mW of LG3 and 290 mW of LG25 with coun-
terpropagating 190 mW of LG11, all other dimensions as for
Fig. 1. Here, R � 0.26 Hz, U � 60 μK. The inner helical dark
core has a lead angle of 38 mrad and leads to harmonic trap
frequencies 183 kHz and 6.9 kHz in the axial and radial direc-
tions, respectively.

Fig. 3. (Color online) An axial lattice of rings formed by a
100 mW LG0 beam (with the typical 5 μm waist) counterpropa-
gating with 1.0 W of LG0 beam (with a waist of 30 μm). Here,
R � 0.18 Hz and U � 42 μK. Each dark ring has trap frequen-
cies 370 kHz and 4.9 kHz in the axial and radial directions,
respectively. This geometry is useful for storing multiple persis-
tent currents or creating annular Tonks–Girardeau gases.

Fig. 4. (Color online) An axial lattice of ring lattices formed by
a 100 mW LG7 beam and 100 mW LG

−7 (with the typical 5 μm
waist) counterpropagating with 2.6 W of LG0 beam (with a waist
of 30 μm). Here, R � 0.60 Hz and U � 140 μK. Each dark trap
has an axial trap frequency of 550 kHz, and the trap is quartic
rather than harmonic in the radial and azimuthal directions—
useful for exploring 2D quantum gases.
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zoom lens is used [19], a spatial light modulator could be
used as a means to simply program different phase grat-
ings and change lattice geometries.
The scheme’s robustness to experimental imperfec-

tions is vital. Laser pointing stability is paramount, pre-
cluding ion lasers in favor of fiber-coupled tapered
amplifiers or doubled DPSS/fiber lasers. Counterpropa-
gating beammisalignment can beminimized using a small
aperture near the fiber output, or by fiber-recoupling
counterpropagating light. We estimate this misalignment,
via ray-tracing a simple beam line, to be angular (and
associated radial) values of ≈1 mrad and 1 μm, at the trap
location. This leads to noticeable changes in the total
intensity pattern, particularly for Figs. 1(a) and 2(a)
due to the small counterpropagating waists. However,
the dark trapping potentials in the 3D contour plots
[Figs. 1–5(b)] remain largely unchanged, even with rela-
tivemode power changes of ≈20%. In conclusion, we have

illustrated several new dark counterpropagating optical
trapping geometries and presented a realistic, robust
scheme for their experimental generation. The dark nat-
ure of these traps mean that their zero differential light
shifts can be used in atom interferometry, and they also
have applications in extending Tonks–Girardeau gases,
parallelization of superflow and quantum information
storage.

The author is grateful for stimulating discussions with
E. Riis, P. F. Griffin, S. Franke-Arnold, and G. Walker.
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Fig. 5. (Color online) An axial lattice of ring lattices of rings,
all parameters as in Fig. 4, except the counterpropagating
Gaussian beam has power 650 mW. Here, R � 0.15 Hz and
U � 34 μK. Each dark ring has a spatially varying axial (radial)
trap frequency of 260–290 kHz (4.6–15 kHz).

Fig. 6. (Color online) An incident (red, ki) laser beam diffracts
from a 2D phase grating (with a lens) into counterpropagating
(green, kd) and discarded reflected (blue, kr) orders.
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