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Abstract 
In this paper a direct approach to trajectory optimisation, based on Finite Elements in Time (FET) 

discretisation is presented. Trajectory optimisation is performed combining the effectiveness and flexibility of 

Finite Elements in Time in solving complex boundary values problems with a common nonlinear programming 

algorithm. In order to avoid low accuracy proper to direct approaches, a mesh adaptivity strategy is 

implemented which exploits the ability of finite elements to represent both continuous and discontinuous 

functions. The effectiveness and accuracy of direct transcription by FET are proved by a selected number of 

sample problems. Finally an optimal landing manoeuvre is presented to show the power of the proposed 

approach in solving even complex and realistic problems. 

 

 

1 Introduction 

 

One of the most important aspects in space 

mission projects is the design of trajectories (e.g. 

transfer orbits, homing trajectory, rendezvous), 

under several constraint conditions arising from 

mission requirements. The optimisation of the 

above mentioned trajectories, with respect to one 

or more objectives, is of primary importance to 

the actual realisation of the mission. This requires 

the solution of complex and strongly nonlinear 

boundary value problems, which is commonly 

obtained by numerical means. 

Most of numerical methods to trajectory 

optimisation or optimal control problem can be 

classified in two categories: direct methods and 

indirect methods [1]. The direct methods include 

those that transcribe the continuous problem to a 

finite-dimensional nonlinear programming 

problem (NLP) by some parameterisation of the 

control and state histories.  

Indirect methods are based on finding the 

solution of a boundary-value problem that results 

from the first-order necessary conditions of 

optimal control in terms of the adjoint differential 

equations, the maximum principle, and associated 

boundary (transversality) conditions [2]. This 

translates into a nonlinear multipoint boundary 

value problem, whose solution is usually found 

by a root-finding algorithm. Generally indirect 

methods converge rapidly in the immediate 

neighbourhood of the optimal solution providing 

an extremely accurate solution.  

However there are three primary drawbacks to 

this approach in practice. First, it is necessary to 

derive analytic expressions for the necessary 

conditions, and for complicated nonlinear 

dynamics this can become quite daunting even 

using dedicated software. Second, the region of 

convergence for a root-finding algorithm may be 
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surprisingly small, especially when it is necessary 

to guess values for the adjoint variables that may 

not have an obvious physical interpretation. 

Third, for problems with path inequalities it is 

necessary to guess the sequence of constrained 

and unconstrained sub arcs (referred to as the 

switching structure) before iteration can begin. 

On the other hand, a direct method requires 

neither an analytical expression for the necessary 

conditions nor an initial guess for the adjoint 

variables. All direct methods can be applied 

without explicit derivation of the necessary 

conditions, i.e., adjoint, transversality, maximum 

principle, and do not require any specification of 

the arc sequence for problems with path 

inequalities. Instead, the dynamic variables are 

adjusted to directly optimise the objective 

function, and at the end of the optimisation 

process it is possible to obtain a good estimation 

of the adjoint variables [3].  

However direct approaches generally seam not 

to be able to achieve high accuracy on final 

solution, even after many iterations, especially for 

the controls, when discontinuities in the solution 

occur. In this case the output of a direct algorithm 

is quite noisy and should be refined by an indirect 

method [4].  

Anyway it is sometimes desirable to have a 

unique general tool which can converge easily to 

the solution with good accuracy without the need 

to derive specific equations for specific problems. 

The idea, presented in this paper, is to exploit 

the high flexibility of Finite Elements in Time 

(FET) in representing both continuous and 

discontinuous time histories to the robustness of a 

common NLP algorithm. Indeed using the 

appropriate representation of the controls and the 

states, during the transcription process, could lead 

to accurate solution even without a further 

refinement by an indirect approach. 

FET have been already used to solve complex 

problem proving their effectiveness and 

robustness compared to shooting or multiple 

shooting techniques [5],[6],[7]. Anyway so far, 

all FET approaches to optimal control problem 

can be classified as indirect methods and still 

suffer from most of the major drawbacks of 

general indirect methods. In particular the need to 

explicitly derive transversality and adjoint 

equations and the necessity to identify the 

switching structure previously to begin the 

optimisation process. 

In this paper the general development of direct 

transcription by FET discretization is derived and 

applied to some meaningful sample problems of 

different nature with boundary and path 

constraints.   

 

 

2 Trajectory Optimisation Problem  

A general trajectory optimisation problem (or 

optimal control problem) consists of finding a 

control vector u(t) and the final time tf, that 

minimise the performance index: 
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subject to a system of n non-linear differential 

equations: 
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2n boundary conditions: 
 

nkittt ffi 2,...,1    ,0)),(),(( 0 xx      (3)                                               

 

and m inequality constraints on the controls 

and states of the form: 

 

fi tttmitttG  0    ,,...,1       ,0)),(),(( ux  (4)                                

 

The vector of control variables is denoted by 

u(t)=(u1(t),…,ul(t))
T
 and the vector of state 

variables is denoted by x(t)=(x1(t),…,xn(t))
T
. The 

functions J:n+1, F: n+l+1n,: 

2n+1k, and  G: n+l+1m are assumed to 

be continuously differentiable. The controls 
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ui:[t0,tf]i=1,…,l, are assumed to be bounded and 

measurable and tf may be fixed or free. 

 

 

3 Direct Transcription by FET 

In this chapter general development of the 

direct transcription method by FET is presented. 

Algorithms based on indirect transcription by 

finite elements in time discretisation have been 

already demonstrated to be really effective in 

solving even difficult problems tanks to their 

good convergence and accuracy properties 

[5],[6]. Never the less they still suffer from most 

of the major drawbacks of indirect methods.   

In fact, they need to introduce a sequence of 

arcs along which state or control constraint shall 

be alternately active or inactive and to provide a 

first guess for it [7]. Furthermore they need to 

explicitly derive the necessary conditions, which 

can be quite cumbersome for realistic problems. 

Thus a direct approach should be welcome for 

several difficult applications where an initial 

guess of the solution is required at a relative low 

cost. Starting from this solution a further 

refinement can be obtained either by indirect 

transcription, or by the same direct method using 

a mesh refinement strategy [8].  

The basic idea is to transform the optimal 

control problem into a general non-linear 

programming problem (NLP) of the form: 
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where, y is the vector of NLP variables, J(y) the 

objective function to be minimised, c(y) a vector 

of non-linear constraints and bl and bu 

respectively lower and upper bounds on NLP 

variables. 

The first step to transcribe optimal control 

problems by FET, consist of writing differential 

equations into weighted residual form considering 

boundary conditions of the weak type (or natural 

type): 
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where w(t) are generalised weight (or test) 

functions. Integrating by parts xw T , one 

obtains: 
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Variational equation (8) must be satisfied 

along with algebraic and boundary constraints: 
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Now let the time domain D(t0,tf)  be 

decomposed into N  finite time elements: 
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N
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On each time element Dj, states, controls  [x,u] 

and test functions w are parameterised as 

follows: 
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The quantities xs, and us are called internal 

node values and the basis functions fs and gk are 

chosen within the space of polynomials of order 

p-1 and p respectively: 
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Notice that generally the order p of the 

polynomials can be different for states and 

controls. 

In a more general way the domain D could be 

decomposed as a union of smooth images of the 

reference time interval [-1,1] where a reference 

parameter  is defined as: 
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Polynomials fs and gk can be constructed in 

several ways. One possible choice is to use 

Lagrangian interpolants associated with internal 

Gauss-type nodes. Generally speaking if s 
p

s=1 

are the set of Gauss points on the reference 

interval [-1,1], fs() will be the Lagrangian 

interpolating polynomial vanishing at all Gauss 

points except at s where it equals one.  

Each integral of the continuous forms (1) and   

(8), is then replaced, for each element, by a q-

points Gauss quadrature sum. Therefore the 

objective function (1) becomes a sum of N Gauss 

quadrature formulas: 
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while integral (8) is split into N integrals of  the 

form: 
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where i are Gauss weights. 

Here and in the following we introduce the 

notation: 
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Parameters x
b

j-1 and x
b

j are boundary values at 

the beginning and at the end of each element.  

Different choices of internal Gauss points 

could lead to different FET algorithms: if Gauss-

Lobatto points are chosen both for generating test 

functions and for the numerical quadrature rule 

(q=p+1), there is no need of an actual integration, 

but the function F can be simply collocated at 

integration points. Another possibility is to use 

Gauss-Legendre points to generate control 

functions and Gauss-Lobatto points to generate 

states and weight functions. Numerical 

quadrature of the integral equation (8) is then 

performed by Gauss-Legendre rule (q=p), while 

integral (16) can be developed either by Gauss-

Lobatto or Gauss-Legendre rule. This second 

choice has given a particularly good result, 

especially when the control function is non-linear, 

as can be seen in examples 1 and 3. Whatever fs 

and gk are generated, the linear part of equation 

(17) can be always integrated only once before 

the optimisation process begins.  

Now equation (24) must be satisfied for every 

arbitrary value of virtual quantity wk, as a 

consequence each element equation (17) is 

developed into p+1 equations: 
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System of equations (20), is written for each 

element. All the elements are then assembled 
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matching the final boundary node to the initial 

one of the next element. For continuous solution, 

in order to preserve the continuity of the states, at 

matching points, the following condition must 

hold: 

 

x
b

j = x
b

j+1           j=1,…,N-2      (21)                                                                                           

 

Thus all the boundary quantities (21) cancel 

one another except for those at the initial and 

final times.  

Algebraic constraint equation (4) can be 

directly collocated at Gauss nodal points: 
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The N*(p+1)*n algebraic equations (27) along 

with system (22) represent the c(y) constraint of 

the nonlinear problem while y=[xs,us,x
b
0,x

b
f,t0,tf] 

the NLP variables. 

Notice that the present formulation is bi-

discontinuous because continuity at boundaries of 

each element is only weakly enforced. This 

means that, generally, there is a gap between the 

internal nodes, at the boundary nodes. This allows 

control, for which no continuity requirement is 

imposed, to be discontinuous at boundaries, 

providing the possibility to better fit 

discontinuous time histories.  

However, for continuous solution, it can be 

demonstrated numerically that, using the above 

development for state and controls, the gap 

between internal nodes and boundary nodes tends 

to zero as the accuracy increases. This can be 

clearly seen in example 1. 

 

3.1 Mesh Refinement 

The solution of the above mentioned NLP 

problem provides a good estimation of the states, 

the control and the adjoint variables (an extensive 

discussion on necessary first order optimality 

conditions of the discretised problem can be 

found in [8]). A further refinement can be 

achieved either by an indirect method or adjusting 

appropriately the mesh grid. Thus, in order to 

achieve an accurate solution, a mesh refinement 

algorithm has been implemented. The algorithm 

consists of five different strategies thought to fit 

at best each element on each sub arc: p adaptivity, 

h adaptivity, smoothing, stretching and dynamic 

tuning.  

p adaptivity: for each element the order of the 

polynomials is increased if the gradient of the 

solution, found after each macro-iteration, is 

grater than a given value. Defining on each 

element the gradient as: 

 

,...,Nj

,...,ps
xx

t ss

ss

j

j

s

1                                

2    
2

1

1















         (23) 

 

the number of nodes is increased according to: 

 

1: max  ppj j

s           (24) 

 

 h adaptivity: if p reaches a limit value pmax, 

the element is split into two lower order elements. 

Thus defining the splitting point as: 

 

2

1 ss
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the element split takes place where the gradient 

reaches its maximum: 
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smoothing: the order of the element is 

lowered in two easily definable cases: 

 -if the gradient is smaller than a given value: 

 

1: min  ppj j

s       (27) 

 

-if, for p>2, after two macro iterations, the 

gradient remains unchanged and: 
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stretching: after every macro iteration the 

length of each element is changed according to 

the following rule: 
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with, of course, the constraint that: 
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dynamic tuning: in this case N different tj  

are introduced directly into the optimisation 

process, as NLP variables, along with constraint 

30. 

The first four strategies will be generally 

referred to as static refinement. 

The gradient (23) is computed both for states 

and for controls, anyway in many cases the 

leading parameter, taken into consideration for 

mesh adaptivity, is just the gradient of the control 

or of a function of control components. 

 

 

4 Examples and Numerical Results 

In this section the approach is validated by two 

sample problems characterised by typical 

difficulties that can be encountered in space 

mission design. The former demonstrate the 

accuracy of the method in solving problems 

characterised by continuous solutions, the latter is 

to demonstrate the effectiveness of FET 

discretisation and mesh adaptivity when 

discontinuous control function are present. 

Finally a realistic case, characterised by a 

strongly non-linear force function quite difficult 

to be treated by an indirect approach, is addressed 

to confirm the power of the method in solving 

even complex and realistic problems. 

All the results reported in this section have 

been obtained implementing the direct trajectory 

optimisation method, mentioned in the previous 

sections, in a FORTRAN code called DEMON 

Toolbox (Direct finite Elements Multiobjective 

Optimisation Toolbox). 

 

4.1 Minimum Time to Orbit 

The first example (taken from reference 2 

section 2.7) is a takeoff problem with constant 

gravity acceleration. Denoting with x and z the 

position of a particle at a given time and with u 

and v its velocity, the objective is to minimise the 

time to transfer the particle to a rectilinear path at 

an altitude h, from the surface of the Moon, with 

an horizontal velocity U.  In addition the final 

vertical velocity is constrained to be zero. 

The objective function is 

 

min  t f                               (31)  

                                                                         

and the state equations are defined as 
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with boundary conditions at initial and final time: 
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The acceleration g is constant and equal to the 

gravity acceleration on lunar surface: 

g=0.0016km/s
2
. The thrust angle  is the control 

variable while the mass is constant and the 

acceleration a is equal to a=0.0049 km/s
2
. The 

required final horizontal velocity is U=1.6559 

km/s at an altitude h of 50 km over the surface of 

the Moon. 

As stated before in this example state 

polynomials are generated on Gauss-Lobatto 

points while control polynomials are generated on 

Gauss-Legendre points. In Fig. 1,2 and 3 the 

results for internal nodes for three different mesh 

distributions are reported: two elements with 

polynomials of the first order (two internal nodes 

for each element) referred to as FET1 in table 1, 
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four elements with polynomials of the first order, 

referred to as FET2, and four elements with 

polynomials of the second order (three internal 

nodes for each element), referred to as FET3.  

For the two elements solution is quite evident 

the difference between the internal nodes and the 

analytical solution. On the other hand, already 

using four polynomials of the first order internal 

nodes well fit the analytical solution for the 

states. Since the final solution is a smooth 

function of time, a slight increase in the order of 

polynomials provides with an extremely accurate 

solution. In this case, internal nodes lie exactly on 

the analytical solution and no gap at boundaries 

can be seen. It should be noticed that, thanks to 

the proper choice of Gauss nodes, controls fit 

perfectly the analytical solution already for the 

two elements solution. 

 

  

ANALYTICAL 

 

 

FET1  

2:2 

 

FET 2 

2:2:2:2 

 

FET 3 

3:3:3:3 

0 43.632 43.323 43.644 43.638 

f -9.700° -9.976 -9.655 -9.691 

tf (s) 373.182 373.171 373.179 373.18 

Table 1. Comparison between analytical and numerical 

results 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 1 Trajectory in the x-z plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.2 Velocity in the u-v plane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Control law vs. time. 

 

4.2 Minimum thrust attitude manoeuvre 

with bounded control (bang-zero-bang 

control) 

The second example (taken from reference 2 

section 3.9) consists of a minimum time attitude 

manoeuvre. Denoting with  the attitude of a 

satellite at a given time and with  its angular 

velocity, the objective is to minimise the thrust to 

rotate the satellite from initial state (t0)=1 and 

(t0)=0 to final state (tf)=0, (tf)=0 in a given 

time tf=3. 

The objective function and the state equations 

are defined as 
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with boundary conditions at initial and final time: 
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An additional inequality constraint is imposed 

on the control variable u: 

 

1u                  (37)                                                                    

 

Results for state are reported in Fig. 4 and 5 

where internal nodes are represented by a dotted 

line while analytical solution is represented by a 

solid line.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Attitude angle  in radiant vs. time. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 5 Attitude angular velocity in radiant vs. time. 

Lobatto points have been used both to generate 

states and controls polynomials and for 

quadrature formulas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Control law: initial mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig..7. Control law: smoothing and first p refinement. 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

Fig. 8 Control law: second p refinement. 
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Fig. 9 Control law: final mesh. 

 

 ANALYTICAL FET 

STATIC 

FET 

DYNAMIC 

t1 0.381966 0.377 0.3819 

t2 2.618033 2.619 2.6180 

Table 2. Switching structure 

 

In this example, the first solution labelled step 

1 in Fig.6, has been obtained using a uniform 

distribution of 4 elements with polynomials of the 

first order both for the states and for the controls. 

The leading parameter for mesh refinement is the 

gradient of the control. As a second step, p 

adaptivity and smoothing have been applied. The 

two central elements are merged into one single 

element because the gradient of the solution is 

almost zero over the whole interval. At the same 

time the order of the other two elements is 

increased to 2 in order to overcome the 

discontinuity in the control function (see Fig.7). 

Anyway a further increase, up to 3, of the order 

does not lead to a meaningful improvement (see 

Fig.8). Therefore at the next iteration, the solution 

for the control is split into three arcs, one element 

each arc, and the order of the polynomials is 

reduced to one on each arc (see Fig.9). A very 

accurate result has been obtained applying the 

dynamic strategy directly after step 1. Results for 

the switching structure are reported in table 2, 

both for static and dynamic strategies, and 

compared to the analytical solution.  

It should be noted that, due to nature of the 

solution, control could be represented by three 

constant functions, while the state requires 

(especially the position, which is a quadratic 

function of time) higher order polynomials. 

 

4.3 Constrained Optimal Landing 

Several future missions for lunar exploration 

aim to perform a soft landing on the South Pole 

of the Moon. The objective of this analysis is to 

design an optimal landing trajectory, which 

minimises the initial mass of the spacecraft under 

several constraint conditions of different nature. 

The landing manoeuvre is divided in two phases: 

a coast phase and a homing phase. 

During the first one the spacecraft is 

transferred from a circular parking orbit into an 

elliptical orbit with the periselenium over the 

South Pole. From this coasting orbit, homing 

phase will begin firing the main engine while 

approaching the South Pole from the far side to 

the near side of the Moon (see Fig. 10).  Here 

only the homing phase will be analysed while the 

coasting trajectory is supposed to be known and 

represents a constraint for the homing trajectory 

[9],[[10]. The spacecraft is subject to the gravity 

force of the Moon and a main engine, with 

limited thrust, controls the descent (see Fig.12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 10 Coasting orbit geometry 

 

A linear mass flow equation is introduced to 

take into account mass variation. The resulting 

system of differential equations which governs 

the dynamics of the spacecraft is defined as 

follows: 
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Fig. 11 Direction of the thrust and velocity vector relative 

to the inertial reference system. 

 

where the state and the control vectors are 

defined as follows: 

 

 T
Rzyxzyx mvvvsss ,,,,,,x             (41)                                                            

 T

zyx uuu ,,u                        (42)                                                                    

 

The mass ratio mR is defined as the ratio 

between the propellant mass and the dry mass of 

the spacecraft, while the thrust Tmax is the ratio 

between the actual maximum thrust of the engine 

and the dry mass of the spacecraft. Isp is the 

specific impulse of the engine and g0 the gravity 

constant on Earth surface.  

 

 

 

 

 

 

 

 

 

 
Fig. 12 Spacecraft model 

Starting from the results for the control vector 

u, the inclinations,  and , of the thrust vector 

relative respectively to the x-y and to the z-x 

plane (see Fig. 11) have been computed. 

The function U is the potential due to the 

gravity forces acting on the spacecraft, namely 

the gravity field of the Moon. In a selenocentric 

reference frame, the potential of the lunar gravity 

field is a sum of the potential of a sphere and the 

perturbation accounting for all the deviations of a 

real body from a sphere [11]: 
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The perturbing function RM is given as an 

expansion into spherical harmonics: 
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where M is the gravity parameter of the Moon, 

rM is the mean equatorial radius and  is the phase 

of the lunar rotation, namely the angle between 

some body fixed direction along the equator Xf 

and some inertial direction along the equator X 

(see Fig. 13). Parameters Clm and Slm are spherical 

harmonics coefficients while Plm are Legendre 

spherical polynomials. 

In this paper the perturbing function is 

developed up to order and degree 2, which is of 

course unrealistic to describe perturbations due to 

the gravity field of the Moon [12], but is enough 

to demonstrate the effectiveness of the 

optimisation approach in solving problems with 

highly nonlinear force functions. However, it has 

been demonstrated, in previews works [9], that 

for short arcs the perturbing function (44) does 

not produce relevant changes in the final optimal 

solution. 
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Notice that developing the analytical Jacobian 

of function (44) is quite cumbersome even using 

a dedicated software, thus in this case an indirect 

approach is less attractive than a direct one, 

especially for a preliminary study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13 Selenocentric and inertial reference frame 

 

The initial point is constrained to lie on a 

given coasting orbit, thus initial position and 

velocity have to satisfy the following set of 

nonlinear algebraic equations, functions of the 

initial state vector and of the orbital parameters of 

the desired coasting orbit: 
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where:  
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Orbital parameters, for the coasting, orbit are 

summarised in table 3.  

Final conditions on the states require having 

zero velocity at an altitude of 1 m over the 

ground. At this point the main engine is cut off. 

The landing site is located at 86 of latitude South 

and 0 of longitude and is slowly moving with the 

Moon. Therefore final condition are explicitly 

functions of time and of the Moon rotation 

velocity  : 
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PARAMETER VALUE 

a 1798 km 

e 0.0222 

 270 

 1 

i 90 

Table 3. Coasting orbit keplerian parameters 

 

Final time tf is free but bounded. At the 

beginning of the homing trajectory the 

performance index, J1, is the initial mass ratio, i.e. 

the initial amount of propellant onboard: 

 

)0(  min 01  tmJ R                   (48)                                                   

 

Below 10 km, at t=t3, a new objective 

function, J2, is introduced in order to maintain the 

velocity vector ground oriented. The new 

objective function is a combination of the 

previous merit function, and a weighted 

difference between the desired angle of descent 

and the actual one:  
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Landing process is depicted in Fig. 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 14. Landing process. 

 

The first solution has been computed using a 

uniform distribution of 8 elements with 

polynomials of the first order both for states and 

controls. After that all the static strategies have 

been applied in order to identify accurately the 

switching points. As a consequence the overall 

number of elements is risen up to 10 for the 

problem without manoeuvre and to 11 for the 

problem with manoeuvre, and the order for each 

element is risen up to 2. 

 Dynamic tuning has been applied both to the 

problem with and without the manoeuvre. 

However modified functional (49) makes the 

problem quite sensitive to mesh distribution and 

the present implementation of dynamic tuning has 

produced results less good than expected. 

Therefore only the output of static procedures has 

been reported here. 

In Fig. 15 the history of the altitude is plotted 

against time both with and without the midcourse 

manoeuvre, while in Fig. 16 and 17 trajectories 

respectively in the x-z and x-y plane are reported. 

For states, solid line represents internal node 

solution while dotted line represents boundary 

node solution. 

In Fig. 18,19 and 20 are reported the modulus 

of the velocity, its direction relative to the x-y 

plane and relative to the x-z plane respectively.  

The effect of J2  is quite evident in all the three 

plots.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 15 The altitude vs. time. 

 

 
 

 

 

 

 

 

 

 

 
 

Fig. 16. Trajectory in the x-z plane. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 17. Trajectory in the x-y plane. 
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Fig. 18 Velocity Modulus vs. Time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 19. Velocity direction relative to the x-y plane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 20. Velocity direction relative to the x-z plane 

 

The value chosen for parameter wv is 0.02. A 

higher value produces a sharper manoeuvre while 

a smaller value yields a more gentle turn.  

Thrust optimal program without and with 

manoeuvre is plotted respectively in Fig.21 and 

22 , while thrust vector direction relative to the x-

y and x-z plane is reported respectively in Fig. 23 

and 24 (in this case only internal nodes are 

represented). Notice that, below 10 km, in 

accordance with the change in the velocity vector 

(see Fig.19), the thrust vector turns in the 

direction normal to lunar surface. 

During the manoeuvre the engines are off (see 

Fig. 22 ) and there is a slight increase in the 

velocity modulus (see Fig.18). The switching 

structure for the problem with and without 

manoeuvre is presented in table 5 while results 

for the overall propellant consumption in both 

cases are summarised in table  4.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 21 Thrust modulus without manoeuvre. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 22 Thrust modulus with manoeuvre 
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Fig.23 Thrust angle relative to the x-y plane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 24 Thrust angle relative to x-z plane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig..25 Mass Ratio vs. Time 

 

 

 Without 

Manoeuvre 

With 

Manoeuvre 

Initial mass ratio 0.7829 0.8964 

Final Time 627.447 s 775.806 s 

Tmax 4.9 m/s
2
 4.9 m/s

2
 

Isp 317 s 317 s 

Table 4 Results for the landing manoeuvre 

 

SWITCHING 

POINTS 

WITHOUT 

MANOEUVRE 

WITH 

MANOEUVRE 

t1 41.380 s 6.361 s 

t2 172.021 s 139.646 s 

t3 / 657.186 s 

t4 / 731.562 s 

Table 5 Switching structure for the optimal landing 

problem 

 

 

5 Conclusions 

In this paper, a direct trajectory optimisation 

approach based on Finite Elements in Time has 

been employed to derive optimal trajectory and 

optimal control law to perform a soft landing on 

the South Pole of the Moon. The resulting NLP 

problem has been solved by a dense sequential 

quadratic programming algorithm. The novel 

approach exploits the ability of finite elements in 

representing both continuous and discontinuous 

functions. Discontinuities occur, especially on the 

controls, when constraints are alternately active 

and inactive along different arcs composing the 

solution. In this case the method is able to 

identify the switching structure yielding an 

accurate solution even without a further iteration 

by an indirect approach. To this end a mesh 

refinement strategy is implemented to better 

represent the solution with the right choice of 

elements for each sub-arc. 

 In addition, the present formulation provides a 

good estimation to the adjoint variables, which 

can be used, alternatively to the mesh adjustment, 

for further refinement by an indirect approach. 

The effectiveness of the proposed technique 

has been proved by few selected problems 

presenting typical difficulties that can be 

encountered in space mission analysis and design.   
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Finally the optimal landing problem, related to 

future space missions aimed to the exploration of 

the Moon, has been afforded in order to confirm 

the effectiveness of the method even in difficult 

and realistic cases.  

Although the reduced dimension of the NLP 

problem obtained by FET still allows the use of a 

dense SQP algorithm, at a relative low 

computational cost, a meaningful enhancement of 

the performances can be achieved exploiting the 

sparse structure of the Jacobian and Hessian 

matrixes. To this aim, at the moment, a sparse 

SQP algorithm is under development, whose 

benefits will be particularly welcome, in many 

huge space trajectory design problems that 

usually require a high computational cost.  
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