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Abstract

Let Hy, H> be Hilbert spaces, T' a bounded linear operator on H; into H» such
that the range of T, R(T), is closed. Let T* denote the adjoint of 7. In
this paper, we review the convergence of the method of steepest descent to a
solution of the equation T*Tx = T*b,b € H,, for any initial approximation
zg € H;. The method converges to the unique minimum norm, or generalised,
solution if, and only if, zo is in the range of T*. Further, we establish the
convergence of the method of steepest descent to the unique regularised solution
(T*T + pI)~1T*b,b € H; if zo is in the range of T*.



1 Introduction

Following the discussion in (Nashed 1970), let H; and H» be Hilbert spaces
over the same scalars (real or complex). For any subspace, S, of Hy; or Hy, the
orthogonal complement and closure of S are denoted by S+ and S respectively.
We consider a bounded linear operator, T, on H; into Hy. Then T™* denotes
the adjoint of T, i.e. for all x € Hy,y € Hy !,

(Tz,y) = (z,T"y).

Let R(T') and N(T) denote, respectively, the range and null spaces of T'. The
following relations are then well known (Nashed 1970)

H, = N(T)eN(T), (1)

Hy = N(I)eN(T"), (2)

{RD)}* = N(T™), R(T*) = N(T)*, ®3)
R(T) is closed <& R(T*)is closed , (4)
N(T*T) = N(T), R(T) = R(TT"). (5)

A vector u € H; is called a least squares solution of the operator equation 2
Tx=0b, b€ H,, (6)

if inf{||Tz—b|| : x € Hi} = ||Tu — b||. It can be shown that u is a least squares
solution of Eq. 6 if, and only if, u is a solution of the “normal” equation

T*Tx =T"b. (7)
The following theorem summarises this.

Theorem 1.1 (Groetsch, 1977) Suppose T : Hi — Hs has closed range and
b € H,, then the following conditions on x € Hy are equivalent:

(i) Tx = Pb;

(i) ||Tu —b|| < ||Tx —b|| for any x € Hy; and
(iti) T*Tz = T*b.
where P denotes the projection of b onto R(T).

In the case that H; is finite dimensional Eq. 7 always has at least one solution
since R(T*) = R(T*T). However, when H; is infinite dimensional this equation
may have no solutions. We therefore assume that R(T) is closed. Then there
always exists at least one least squares solution for each b € Hy. For N(T') # {0}

n expressing inner products, (-,-), it is assumed the Hilbert space to which the inner
product belongs is obvious.

2With real applications in mind b will sometimes subsequently be referred to as the data
and H»> as the data space.



there will be infinitely many solutions since if u is a least squares solution so is
u+ w for any w € N(T).

By the continuity and linearity of T and T™ the set, S, of all least squares
solutions of Eq. 6 is a nonempty closed, convex set. Hence it contains a unique
element, v, of minimal norm, i.e.,

[|[Tv=0b|| <||Tx —0b|| forall z € Hy,

and
[|lv]| < [lul]] forallu € S, u #w.

We then define the generalised inverse of T as the operator Tt : Hy — H; such
that TTh = v, i.e. that operator which assigns, to each b € H,, the unique least
squares solution of minimal norm of Eq. 6. T is linear and bounded. Note
that if 7" is invertible we have Tt = T—!. The associated least squares solution
of minimal norm is the generalised solution, denoted zf(= v). It can also be
shown that TTb is the unique least squares solution in R(T*) (Nashed 1970).

The following lemma, will be used in the proofs of convergence in Sections 3
and 4.

Lemma 1.1 (Petryshyn, 1967) Suppose T is as described above and R(T)
is closed. Then the restriction of T to N(T)*+ = R(T*) has a bounded inverse.

Equivalently, there exists a number m > 0 such that [|Tz|| > mlz| for all
z € N(T)*+ = R(T").

In the next section the regularisation method for the solution of the linear
operator equation is described. In Section 3 the method of steepest descent is
described for generalised solutions, and subsequently extended in Section 4 to
the case of regularisation solutions, of the linear operator equation.

2 Regularised Solutions

The problem of solving Eq. 6 is said to be well posed if a unique solutions exists
which depends continuously on the data, b. Following (de Mol 1992) we adopt a
less restrictive definition since we know that a unique generalised solution exists.
The following statements are equivalent:

(i) the problem of solving T'z = b is well posed;
(i) 2! exists for any b € Ho;

R(T) is closed; and

)
)
(iii) Tt is continuous (equivalently bounded);
(iv)
) A

(v

= 0 is not an accumulation point of the spectrum of T*T



Otherwise, the problem is said to be ill-posed, i.e. the generalised inverse, T,
is unbounded. In order to obtain estimates of z! which are stable to variations
in the data, b, we must seek regularised solutions of the ill-posed problem.

A regularising algorithm, or regulariser, is a family of operators, {L,} :
H, — H;, depending on a positive parameter u, which provide bounded ap-
proximants of the generalised inverse. The L, are therefore continuous linear
operators for any p > 0 which approximate Tt in the sense that

i — 7t
Jim, L,b=T" (8)
for each b € D(T'). A regularisation method is a regularisation algorithm
together with a choice p = u(e,b®) which ensures

Hm Ly peyb° = TTh 9)
e—0
b=—b

for any noisy data, b° € Ha, in an e-neighbourhood of the true (noise-free) data,
b (i.e. [|b—0b°]| <e).
The parameter, u, called the regularisation parameter, is chosen in such a
way that
lim p(e,b%) = 0. (10)
)
For a given regularisation method, the function zj, = L,b° tends to the gen-
eralised solution z! corresponding to the true data when the noise, €, tends to
zero. Hence, x5, is a stable and meaningful approximate solution of the linear
inverse problem.
We can bound the error in taking zj, = L,b° as an estimate of the exact

generalised solution, 2t = T'*b, using the triangle inequality as follows
16" =TTl < [I(Ly — TNl + [|Lu (07 = D). (11)

The first term on the RHS is the error due to the approximation of Tt by the
regularising operator L, which tends to zero when g — 0 (c.f. Eq. 8). The
second term is the error due to the presence of noise on the data and is bounded
by €||L,||. When g — 0, ||L,|| tends to ||TF||, which is infinite in the case of an
ill-posed problem.

We now describe the particular case of the Tikhonov regularisation method.
Consider the problem of minimising the functional

1 Iz
@u(2) = 5Tz~ blJ* + §||:v||2- (12)

The quadratic functional ®,[z] has a unique minimum, denoted by z,, which
is a solution of
(T*T + pl)x, =T*b (13)

where I denotes the appropriate identity operator. The operator (T*T + plI) is
invertible for p > 0 and hence

z, = L,b, where L, = (T*T + pI)~'T* (14)



which is known as the Tikhonov regulariser. We can also write the regulariser

as follows
L, =T*TT*+ ul)™* (15)

from which it is clear that z, € R(T*) C N(T)* and hence Eq. 14 defines a
regularisation method (for a proof see (Groetsch 1984)).

In the sequel we will be interested in the case where R(T) is closed (and
hence Tt bounded), for which the problem of solving Eq. 6 is always well posed.
However, this does not ensure that the generalised solution will be numerically
stable. The relative error in the generalised solution corresponding to noisy data

is bounded as follows: Is ’r|| ||6bf||

T

<om (16)
(|t [Iot ]

where C(T) is the condition number of the operator T, given by

o) = ITllITt = |3 a7)

min
Amin and Ay, are, respectively, the lower and upper limits of the positive part
of the spectrum of LL*. For a large condition number, the amplification of the
data error may cause the generalised solution, 2!, to be very unstable. The
problem is then said to be ill-conditioned and, even though well-posed, we still
need to apply regularisation to achieve a stable solution. This is the reason for
discussing regularisation for the linear operator equation, Eq. 6, even though
R(T) is closed.

3 The Method of Steepest Descent

Let T be a bounded linear operator on H; into H, and assume that R(T) is
closed. Suppose that f : H; — R is the non-negative functional

£(&) = 5Tz~ b, (18)

We seek a point z* € H; such that
f(z*) =inf{f(z) : x € Hi}.

We assume that f is Fréchet differentiable at each point of H;. Given an initial
approximation, g, the method of steepest descent for minimising f(x) is given
by

T4l = Tn — @V f(2n) (19)

where V f(xz,,) is the gradient of f at z, (Groetsch 1977). That is, we move in
the direction of most rapid decrease of f. The «, are then chosen to minimise
f(zny1) at each step.

Now, it can be shown that (Groetsch 1977)

Vf(x) =TTz —T* (20)



which we denote by R, and therefore
Tyl = Ty — Ry

Choosing oy, to minimise f(Znp+1)

1 1
[(@ny1) = §||T~7:n+1 - b||2 = §<Tmn+1 —b,Txpy1 —b)
1
= §(T(xn —apR,) = b,T(z, — anRy) — b).

But Tz, — b = r,, the residual, and therefore

1
f(@ny1) = §(rn —a TRy, — anTR,)

1 1
= §<rna Tn) - an<Tn; TRn> + §C¥i<TRn,TRn>

This is minimised when

Of (nt1) -0
da, )
Therefore
—{rn,TRy) + an,{TR,,TR,) =0,
from which
o s TRa) (7o, Re) _ |Ral?
" TR ITRAI*> (1T R[>
Checking the second partial derivative condition for a minimum
O f(zn
% = (TR, TRy) = |TRal* > 0

and therefore the choice, Eq. 23, does in fact minimise f(z,41)-

(23)

Theorem 3.1 Let Hy and Hy be Hilbert spaces and T be a bounded linear
operator on Hy into Ho such that its range, R(T'), is closed. The sequence of

steepest descent defined by

Ipn+1 = Tp — aana
R, = T*Tx,—T"b,
_ IRalP
oy = >
1T Rn||

(24)
(25)

(26)

converges to a least squares solution of Tx = b for any xo € Hy. The sequence

{z,} converges to the unique element T if and only if zo € R(T*).

Proof.



By Eq. 22

f(@nt1)

1
5 Tz, —

1
§”Tmn - b||2 - an<Tmn

a, TR, —b,Tz, — a,TR, —b)

1
= b,TRy) + 50Ll|T Rl

Substituting for a,,, Eq. 26,

(| Rn|” 1 |IR,I*

n = n) — T*Tx, —T*b, R,) + = TR,|?
| Rall® 2, 1 IR
flan) - 1 Bnll” + 5 :
IT R 2||TR,[?
Combining the last two terms
_ L ||Rn|*
f(@ny1) = flzn) — 9 IT R,
Thus f(zn41) < f(zy,) for all n, with equality holding when R,, = 0.
Recursively
| Bs[*
f(xn-l—l Z ||TRZ||2
Since f(z) (= 3||Tz — b||?) is bounded below by zero
i [IR:l*
2
— [|TR;||

Moreover, by Schwarz’s inequality ||T'R;||? < ||T||?||R:||* and therefore

|2

S IR
2 [TIPIRIP

1 00 o
=0 =0

1T R |>

Hence, combining Eq. 28 and 29

Therefore

o
DR < o0
=0

R,=T"Tx, —T*b—=0asn— 0.

(27)

(28)

(31)

All that remains is to show strong convergence of {z,}. Given Eq. 24 we have,

by recursion,

n
Tyl = To — E o R;
=0

(32)



Therefore
m—1 n—1
Ty = To — Z o; Ry, T, =30 — Z o;R;. (33)
i=0 i=0

Consequently, for m > n,
m—1
Ty — Ty = — z o;R;. (34)
i=n

Since R; = T*Tx; — T*b € R(T*) for all i we must have z,,, — x, € R(T*) for
all m,n. By Lemma 1.1 there exists a positive number § such that
62||$m - mn”2 < T (@m — xn)”2 = (T(@m —zn), T(Tm — Tn))
= (T*T(xm — Tn), Tm — Tn). (35)

But
(T*T(xm — Tn), Tm — Tn)
= (T*T(xm —2n) —T*D+T*b, 21, — x1)
(T*"Txy —T*b, 2y, — ) — (T* Ty, — T*b, 2, — )
Hence

(T*T(Tm — Tn), T, — Tn)
< KTTxpm —T7b,2m — )| + (T*Txn — T%b, T — 240)|
< |T*Tzm — T||||2m — Zol| + |T*Tzn — T0||||Zm — Znl|-

Combining with Eq. 35 we have, finally,
(T*T (X — Tn), T — Tn)
< 1/O)T*Tzm —T*b|| + |IT*Tzn — T*B)IT (2m — za)ll.  (36)

But {T(z;, — x,)} is bounded, say ||T(m — z,)|| < M. Thus combining this
with Eqgs. 35 and 36

62||$m - ﬂl’n||2 < <T*T(wm - wn);xm - xn)
< (UYO(IT* Ty — T + |T* T — T IT (2 — )l
M
< (1T Tam = T8 + | T* Tz, — Tb])

Recall, T*Tz,, — T*b = R,, and T*Tx, — T*b = R, therefore

M
82||@m — za||* < T(Rm +R,) — 0asm,n — co.
Hence {z,} is a Cauchy sequence and therefore converges to an element u € H;
and

lim f(z,) = f(u) =inf{f(z):z € Hi}.

n—o0



Since
T*Tz, —T"b=R,, — 0

then
T*Tu=T*, u=T"b

that is, u is a least squares solution.
Now, if zg € R(T*)

Tpy1 = To — Z a;R; € R(T™)
=0

since R; € R(T*) for all . But R(T*) is closed and therefore u € R(T*). But
T'b is the unique least squares solution in R(T*). Thus we must have {z,}
converges to u = T1b.

For zo ¢ R(T*), mo = x}, + x| where x{, € R(T*) = N(T)* (since R(T*) is
closed) and zjj € R(T*)* = N(T). Hence

n n

' "

Tpy1 = To — E o R = Ty — E o; Ry + Ty
i=0 =0

n
= -'176 - ZaiRi + PN(T)-'L'O
=0

where Py 1y denotes the projection on the null space, N(T'). Since 2 € R(T*)
n
Ty — Za,-R,- — T, as n = .
i=0
Thus, for zo ¢ R(T™),
zn — TTh+ Pn(TyT0, asn — 00

i.e. {z,} converges to a, not necessarily unique, least squares solution. 0O

4 The Regularised Case

Again, let T be a bounded linear operator on H; into H2 and assume that R(T')
is closed. Suppose now that instead of f(z) we have the non-negative functional
(which is equal to ®,(z))

1 5 M
Freg(@) = I = bI* + S la|l”. (37)

We then seek a point z* € H; such that

freg(z™) = inf{freg(z) : x € H1}. (38)



Assuming that f,.y is Fréchet differentiable at each point of Hi, and given an
initial approximation, xo, the method of steepest descent for minimising freq(x)
is now given by

Tnt1 = Tp — 0V freg(Tn) (39)

where V freq(2y,) is the gradient of f,., at 2, and the al9 are chosen to minimise
freg(Znt1) at each step.
The gradient is given by

Vfreg(z) =TTz — T*b+ px = R™ (40)

and therefore the steepest descent algorithm becomes
Tpt1 =Ty — o) IR, (41)
Choosing al¢9 to minimise freq(Zp41)
1 1%
freg(@ns1) = §||T-Tn+1 - bl)*+ §||5L"n+1||2
but z,1 = x, — a9 R, therefore
1
Freg ns1) = 1T (@n = QG REED) = WP + 52 — o B2 .

Substituting r,, = Tz, — b and expanding

1
reg(@ni1) = F{rn— TR 1 — a9 TRY) +
B o — QIR 2, — o R20)
1 reg reg (a;eg)2 reg reg
= §<Tnarn) — a9 rp, TR;?) + T(TR" ,TRI9) +
ares 2
E a) = g, R0) + O (s, Ry,
This is minimised for
6freg(xn+1) _ 0
dant? e

Therefore

—(rn, TR}9) + o 9(T R %9, TR, *) — p(xpn, R, + orf9(RI9,RT%9) = 0

from which
a’td — (rn, TR7?) + p(n, R79) .
" T TR TR + (BT BT
But
(rn, TR;P) = (T%rp, R;P9) = (R — pan, R;)

(R, Bpf) — i, Ry7)



and therefore, finally,

o _ IR
" TR + IR

(67

As a check we have

62freg (xn-i—l)

a(areg)2 <TR;ega TRZGQ) + /"(R;.ega R:LEQ)

TR + pll Ry I* > 0

reg

for p > 0, therefore the particular choice of o,

freg($n+1)-
Theorem 4.1 Let H; and Hy be Hilbert spaces and T be a bounded linear

operator on Hy into Hy such that its range, R(T'), is closed. The sequence of
reqularised steepest descent defined by

, Eq. 42, does, in fact, minimise

Tpy1 = Tp— IR, (43)
R = T'Txy,—T"b+ pxn, (44)
reg||2

ITRn™|1? + pl| Bn7 |12

converges to the unique regularised least squares solution, (T*T + pI)~'T*b, of
Tz =b for any xo € R(T*).

Proof.
1
re n+ — o n— V— . ) n— V™
freg(Tny1) = 5 (Txp, —b—a9TR, Txy —b—al9TR) +
M Te Te Te Te
5(3,"” — ;R — ar R,
Expanding
1 Te Te aTeg 2 Te
Freo(a) = HTan — b - a9 (Tw, — b TRES) + 2T o
M Te Te ( Teg)z Te
B a1 = a9t B729) + O o2
But freg(zn) = :[|Tz, — b||* + £[|z,]|?, thus
_ reg reg (04269)2 reg (|2
freg@nt1) = freg(®n) — Tz — b, TR, ) + T”TRn I* =
reg\2
e uten, BEE7) + 8L e
which can also be written as
freg(@nt1) = freg(@n) — b9 (T*Tay — T*b + pay, — pan, R;) +
reg\2 reg\2
Ry — e, B0) + .

10



Now, T*Tz,, — T*b + pz, = R;%9, and thus

freg (Tny1) = freg (zn) — o IRy — pzn, B77) + @”TRZCQHQ -
o7, B29) + 2L s 2.
Therefore
fres@nn) = fregl@) = AN + ol %) + O Tz
o , R0) + 2 s
and finally

a’ed 2 ared 2
Freo(@asn) = Fregla) — et R0+ 2 o 4 220 o,

Substituting for a9, Eq. 42,

n
IRR|I*
X = Z - TE Te +
freg( n-‘rl) freg( n) ||TRn 9”2 +,U,||Rn 9”2
1 [iasd s 2
= TR N|" +
2 ([ITRZ|)? + ull R |1?)?
[ ”R:Leg”‘l ”Rreg”2
2 (ITR:I1? + pl Ba(12)2 "
_ IRl
R 74 T

1 (2l
2 (ITRa™|1? + pl| B 1%)?

(TR + pll Ry %)
and finally

1 (Rl
2 |ITR|? + pll B2 |1

fTeg(mn—i-l) = fTeg(xn) -

Therefore freg(Xnt1) < freq(zy) for all n, with equality holding when R7? = 0.
Recursively

24

NP+ pll RN

1
freg($n+1) = freg(xO) - 5 zz:; ”TR:e

Again, since freq(z) (= 3||Tz —b||* + £[|z||?) is bounded below by zero

°° IR )
re ! Te < 0. 46
R T

11



Moreover, by Schwarz’s inequality, ||[TR;“’||> < ||T|]*||R;*’||* and therefore

ITR;I* + pllRil?

A

ITIPIRN? + wll R
IRZI*UITI + m).-

From which

0 reg |4 o Teg (|4
5 IRy S il
I TIPNR NP + pllREZNP = IRZNPAITIZ + p)

# io: ”Rreg”Z < f: ||R269H4 ‘ (47)
e+ u &S L TR + W'

Combining Egs. 46 and 47
Y IRP < oo
i=0

and therefore R %9 = T*Tx,, — T*b+ pz, — 0 as n — oo.
Again, all that remains is to show strong convergence of {z,}. By recursion

n
Te Te

Tpt1 = To — Zai R’ (48)

i=0
Hence, for m > n,

m—1

T — Tp = — Z a; R}, (49)
i=n

Now
R% = T*Txz; — T*b+ px; = (T*T + z; — T*b

Therefore, if o € R(T*) we must have R, € R(T*) for all i and therefore
Tm — T, € R(T*) for all m,n. Then, by Lemma 1.1

52||$m - -'I7n||2 < T (@m — -Z'n)”2 =(T"T(xm — Tn), Tm — Tn). (50)
But

<T*T($m - xn); Tm — xn)
= (T"T(xm — xpn) —T*b+T*b — pyy + Py — Py + Py, Ty — Tp)
= (T"Txm —T*b+ puxm, Tm — ) — (T*Txp —T*b+ py, Tm — Tp) —
T — Tn, Tm — Tn)
and therefore
|| Tm — z0]>? < (T*Tpm — T*b+ i, Tm — ) —

(T*Txy — T*b + pn, T — Tn) — pl|Tm — o>

12



Since p > 0 we have §% + u > 0 and therefore

(@ + )llzm — zall?

(T*Txp —T*b+ ppm, Ty — ) — (T* T2y, — T*0 + pp, Ty — Tn)
(T*T % — T*b + pZmy o — )| + {T* T2 — T+ pp, Ty — )|
|T*Txm, — T*b + pm||||m — Tnl| + |T* Tz — T + pan||||Tm — Znl|

IAN N IA

But, ||zm — z4|| < 1/6||T(2m — z5)||, and therefore

(62 + /"f)“wm - mn”Z <
(/O T* Tzm — T*b + pzm || + ([ T*Tzn — Tb + pxu| )T (2m — z4) |-

{T (% — x,)} is bounded, say ||T(zm — z,)|| < M and hence
0 + wl|zm — za|1?

M
< T(”T*Tmm -T"b+ ,umm” + ”T*Tmn -T*b+ anll)

S

= T(R:,fg + RI%9) — 0 as m,n — oo.

Thus {z,} is a Cauchy sequence and therefore converges to an element, u,e, €
H]_, and

nlgr;o freg(@n) = freg(tUreg) = inf{freq(x) : 2 € Hy} (51)
Since
T*Txy — T+ pzn, =R, — 0 (52)
then
(T*T + pl)uyeg = Tb (53)
or
Upeg = (T*T + pl) ™' T*b (54)

i.e. ureq is a regularised least squares solution.
Now, we have already required that zo € R(T*) (to ensure R;*Y € R(T*))
and therefore

Tnt1 =30 — Y ofR[* € R(T*) (55)
i=0
since R € R(T*) for all i. Since R(T*) is closed then u,., € R(T*). Now

(T*T + pI)~1T*b is the unique regularised least squares solution (in R(7*)) and
therefore we must have that {z,} converges to uyey, = (T*T + pI)~'T*b. O

5 Concluding Remarks
In the case of a bounded linear operator between Hilbert spaces with closed

range unique generalised and regularised solutions exist. In this report conver-
gence of the method of steepest descent to these solutions has been shown. In

13



the case of the generalised solution, convergence is to the unique solution if,
and only if, the initial approximation is in the range of the adjoint linear oper-
ator. If the initial approximation is not in the range of the adjoint, the method
of steepest descent converges to a not necessarily unique solution. In the reg-
ularised case convergence is guaranteed if the initial approximation is in the
range of the adjoint and convergence is to the unique solution. The case where
the initial approximation is not in the range of the adjoint was not considered
for the regularised case.
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