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Abstract

A novel approach to the determination of the neighbourhood and the identification of
spatio-temporal dynamical systems is investigated. It is shown that thresholding to convert
the pattern to a binary pattern and then applying cellular automata (CA) neighbourhood
detection methods can provide an initial estimate of the neighbourhood. A coupled map
lattice model can then be identified using the CA detected neighbourhood as the initial
conditions. This provides a coarse-to-fine approach for neighbourhood detection and iden-
tification of coupled map lattice models. Three examples are used to demonstrate the
application of the new approach.

1 Introduction

The modelling, analysis, and control of spatio-temporal dynamical systems present many compu-
tational and theoretical challenges with potential applications to physical, chemical, biological,
and ecological systems (Kaneko 1993, Sóle, Valls and Bascompte 1992, Yanagita and Kaneko
1997, Tabuchi, Yakawa and Mallick et al 2002, Köhler, Reinhard and Huth 2002). Traditionally
such systems have been studied using partial differential equations (PDE’s). More recently Cou-
pled Map Lattice (CML) models have emerged as an effective and powerful tool to study these
systems due to the computational efficiency and ability to reproduce complex spatio-temporal
behaviour. CML models were initiated in the late 80’s by Kaneko (1985, 1986, 1989a) and can
exhibit surprisingly rich dynamical behaviours, including spatio-temporal chaos, intermittency,
traveling waves and pattern formation (Kaneko 1989b). CML’s have been used to model con-
vected temperature fluctuations in the atmosphere (Platt and Hammel 1997), boiling processes
(Yanagita 1992), spatio-temporal chaos in fluid flows (He, Cao and Li 1995) and cloud dynamics
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(Yanagita and Kaneko 1997). Despite the considerable attention devoted to CML’s, the identifi-
cation of CML models from observations or measured data is still regarded as a difficult problem.
The aim of this paper is to introduce a new approach to identifying the CML equations from
spatio-temporal observations.

Various methods for the identification of local CML models from spatio-temporal observations
have already been proposed (Coca and Billings 2001, Billings and Coca 2002, Mandelj, Grabec
and Govekar 2001, Marcos-Nikolaus, Martin-Gonzalez and Sóle 2002, Grabec and Mandeji 1997,
Parlitz and Merkwirth 2000). An important step in all these modelling methods is the proper
reconstruction of the local state vectors at some specified site from the measured data, that is
determining the spatio-temporal region which influences the dynamics of that site. This region
can be decomposed into two effects: the spatial domain and the time lag. The determination of
these two regions is critical for obtaining a good approximation of the underlying spatio-temporal
dynamical relationship. In Coca and Billing 2001, and Billings and Coca 2002, the CML equa-
tions were restricted to be symmetrically coupled with neighbouring lattice sites within a circular
neighbourhood with some finite radius in the spatial domain. In Grabec and Mandeji 1997 and
Parlitz and Merkwirth 2000, a state vector was reconstructed from a set of neighbouring values
in a rectangular spatio-temporal region while a simple triangular region was used by Mandeji,
Garbec and Govekar (2001). Recently, an effective approach to determining the neighbourhood
for CA modelling in a binary space has been proposed by Mei and Billings (2002). This motivates
our study, and instead of searching for the neighbourhood directly from the original space where
real cell entities and CML modelling have to be used, an initial estimate of the neighbourhood
is first extracted from an associated binary pattern. The approach involves thresholding the
real valued pattern to produce a binary pattern. CA neighbourhood detection methods are then
applied to produce an initial neighbourhood to prime the CML modelling. CML identification
methods can then be applied to produce the final model. This is a coarse-to-fine modelling
strategy which can considerably reduce the computational requirements compared to the more
direct approach of searching for the entire neighbourhood in the original space. Providing the
main features of the system can be extracted from the thresholded pattern, the approximate
neighbourhood should provide a quick method of priming the CML neighbourhood search.

The paper is organised as follows. Section 2 introduces the CML model of spatio-temporal
dynamical systems and provides an alternative derivation for the input-output representation.
The identification method is presented in section 3 which includes system identification, pattern
thresholding and neighbourhood detection. Section 4 illustrates the proposed approach using
three examples. Finally conclusions are given in section 5.

2 The CML model

Consider a d-dimensional lattice I consisting of the set of all integer coordinate vectors i =
(i1, · · · , id) ∈ Zd. The deterministic CML state-space model of spatio-temporal dynamical sys-
tems defined over I is of the following form (Coca and Billings 2001)
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xi(t) = fl(xi(t − 1), ui(t − 1)) + fc(xi(t − 1), ui(t − 1), smxi(t − 1), smui(t − 1)) (1)

where xi(t) ∈ Xi ⊂ Rn and ui(t) ∈ Ui ⊂ Rl, Xi and Ui are open sets, n and l-dimensional
vectors representing the local state and input variables respectively at the ith site in I, and fl

and fc are piecewise differentiable maps. sm is a spatial shift operator, which is defined as

sm = (sp1, sp2, · · · , spm) (2)

such that

smxi(t) = (sp1xi(t), s
p2xi(t), · · · , s

pmxi(t)) = (xi+p1
(t), xi+p2

(t), · · · , xi+pm
(t)) (3)

where p1, p2, · · · , pm are the indices of the neighbours of the ith site - that is the region in I
around the ith site, which influences the dynamics of that site.

The CML model (1) can also be written, in terms of the global state and input variables x =
{xi}i∈I ⊂ X =

∏

i∈I Xi and u = {ui}i∈I ⊂ U =
∏

i∈I Ui, as follows

x(t) = f(x(t − 1), u(t− 1)) (4)

where f : X×U → X is the function sequence f = {fi}i∈I with fi = fl+fc and i = {i1, · · · , id} ∈
I.

In general, the direct measurement of the state vector x is not possible and only some observable
variable y which depends on the state and input can be measured. Therefore, the state-space
model of the CML is usually complemented with a measurement equation

yi(t) = hi(x(t)) (5)

Here it is assumed that the measurement function is identical for each site, i.e., hi = h. Further-
more, it is assumed that the lattice equations are spatially invariant over the observed spatial
domain. This implies that the difference equations corresponding to each lattice site or location
are the same for all lattice sites. Generally it is also assumed that the following input-output
representation

yi(t) = g(qnyyi(t),q
nuui(t), s

m′

qnyyi(t), s
m′

qnuui(t)) (6)

can be derived for any site from (1) and (5). In (6), q is a backward shift operator such that

qnyyi(t) = (yi(t − 1), yi(t − 2), · · · , yi(t − ny)) (7)
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A number of sufficient conditions which ensure that this can be found are given in Billings and
Coca 2002 for the symmetric or anti-symmetric coupling cases Here an alternative derivation of
this result for a more general case is given below.

From the measurement equation (5) and state equation (1),

yi(t) = hi(x(t)) =: Φ1
i (x(t))

yi(t + 1) = hi(x(t + 1)) = hi ◦ f(x(t), u(t)) =: Φ2
i (x(t), u(t))

...

yi(t + ny − 1) = hi(x(t + ny − 1)) = hi ◦ fny−1(x(t), u(t))

=: Φ
ny

i (x(t), u(t), u(t + 1), · · · , u(t + ny − 2))

where ◦ denotes the composition of functions. Then

smyi(t) = smhi(x(t)) = smΦ1
i (x(t))

smyi(t + 1) = smhi(x(t + 1)) = smΦ2
i (x(t), u(t))

...

smyi(t + ny − 1) = smhi(x(t + ny − 1)) = smΦ
ny

i (x(t), u(t), u(t + 1), · · · , u(t + ny − 2))

Let Yi(t) = (yi(t), yi(t + 1), · · · , yi(t + ny − 1), smyi(t), s
myi(t + 1), · · · , smyi(t + n − 1))T , U(t) =

(u(t), u(t + 1), · · · , u(t + ny − 2))T , and Φi = (Φ1
i , Φ

2
i , · · · , Φ

n
i , smΦ1

i , s
mΦ2

i , · · · , s
mΦ

ny

i )T , then it
follows that

Yi(t) = Φi(x(t), U(t)) (8)

If Φi is a Cr map (differentiable up to r), r ≥ 1 and the partial derivatives of Φi in the mea-
surement site i with respect to x(t) are isomorphic with respect to U(t), then from the implicit
function theorem in Banach space that x(t) can be expressed locally in terms of Yi(t) and U(t)
which implies

yi(t + ny) = hi(x(t + ny)) = Φ
ny+1
i (x(t), u(t), u(t + 1), · · · , u(t + ny − 1)) (9)

that is

yi(t) = g′(yi(t − 1), yi(t − 2), · · · , yi(t − ny);

smyi(t − 1), smyi(t − 2), · · · , smyi(t − ny); u(t − 1), u(t− 2), · · · , u(t − ny))

= g′(qnyyi(t), s
mqnyyi(t),q

nyu(t)) (10)
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In practice, it is reasonable to expect that the measurement function yi(t) will depend only on a
finite number of states and input variables in the neighbourhood of the measurement site, then
(10) can be rewritten in the following form

yi(t) = g(qnyyi(t),q
nuui(t), s

m′

qnyyi(t), s
m′

qnuui(t)) (11)

3 CML identification

3.1 The identification procedure

From (11), the task of the identification is to reproduce the dynamical relation g from the
measured data. For a specific site i, the identification procedure can be outlined as below

i) Determine the spatial neighbourhood sites (represented by sm′

) of the ith site;

ii) Determine the time lags ny and nu;

iii) Apply the Orthogonal Least Squares (OLS) algorithm to obtain the parameters of the CML
model (polynomials as regressors).

If data is available from more sensors than the minimum required to extract the CML equations,
the additional measurements can be used in model validation. The CML model identified using
a set of data from a given spatial site can be validated on data recorded at different spatial
locations by computing the model predicted output

ŷj(t) = g̃(qny ŷj(t),q
nuuj(t), s

m′

qny ŷj(t), s
m′

qnuuj(t)) (12)

Model predicted output is a much more rigorous test than one step ahead predicted outputs
which most authors use.

Note that in the above identification procedure, the spatial neighbourhood sites (represented
by sm′

) of the identified site and the time lags (ny, nu) need to be known a priori. In other
words, the neighbourhood of the identified site, i.e., the region around that site which influences
the dynamics of that site in the spatial domain and the time domain need to be known before
starting the identification. In practice, these two factors are important in determining the spatio-
temporal dynamics of the underlying system. Determining which site and what time lag should
be included in the model structure is therefore very important in CML identification. Whilst
Chen and Billings (1990) proposed an algorithm for time lag determination which has been
used in many applications, little progress has been made in the determination of the spatial
neighbourhood. As noted in section 1, existing methods tend to choose a circular, rectangular or
triangular region around the identified site as the initial spatial neighbourhood. In the following
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sections, a novel approach will be presented to detect the initial neighbourhood using thresholding
and a CA method.

3.2 Feature extraction by thresholding

In this study, thresholding will be applied to extract the main features of a spatio-temporal
dynamical system. For a real-value spatio-temporal dynamical system, snapshots of the evolution
of the system both in time and space show up as a series of images which represent the features
of the underlying dynamical system. The features in these images are reflected by the magnitude
distribution of the variables, generally real entities, over a spatial domain of interest at some
specific time instants. By thresholding these images to form binary counterparts, the main
features of the original system may, depending on the dynamics of the patterns involved, be
retained using only two-levels, which significantly reduces the computational requirements for
searching for candidate neighbours.

The thresholding process can be accomplished using histograms. The basic procedure is as follows

i) Produce a histogram of the measured or simulated data from the underlying spatio-temporal
system;

ii) Determine the threshold value by setting it as some value between the peaks or the centre
of the distribution occurring in the histogram;

iii) Generate a binary spatio-temporal data set.

3.3 Initial Neighbourhood detection using CA’s

The feature extraction process above produces an approximate binary representation of the
spatio-temporal pattern. Applying this procedure to the input-output measurements (ui(t), yi(t))
of the underlying spatio-temporal system, therefore produces a collection of corresponding binary
data (u∗

i (t), y
∗

i (t)). The assumption is that a dynamical relationship exists among these binary
input-output data which partially represents the main features of the original dynamical system
(6). Assume that the spatio-temporal dynamical relationship (6) can be expressed by a CA
model counterpart in binary space

y∗

i (t) = g(qnyy∗

i (t),q
nuu∗

i (t), s
m′

qnyy∗

i (t), s
m′

qnuu∗

i (t)) (13)

The approach developed by Mei and Billings (2002) can then be employed to detect the neigh-
bourhood both in the spatial domain and the time domain for the thresholded data (u∗

i (t), y
∗

i (t)).
Initially, assume the CA model has the following structure

y∗

i (t) = g(qny0y∗

i (t),q
nu0u∗

i (t), s
m′

0qny0y∗

i (t), s
m′

0qnu0u∗

i (t)) (14)
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where ny0
, nu0

, and m′
0 are the candidate time lags and the spatial range. The candidate term

vector is therefore

(qny0y∗

i (t),q
nu0u∗

i (t), s
m′

0qny0y∗

i (t), s
m′

0qnu0u∗

i (t)) ∈ B(m′
0+1)×(ny0

+nu0
)

B = {0, 1}, and the result from Mei and Billings (2002) can be used to determine the neighbour-
hood for (13) if the candidate set is large enough:

Proposition 1 Let y = f(x1, x2, · · · , xn) be a Boolean function from Bn to B, B = {0, 1}. For
any given component xi, there exists a Boolean function f ′ : Bn−1 → B, f ′(x1, · · · , xi−1, xi+1, · · · , xn)
∈ B such that f = f ′◦pi, where pi is the natural projection from Bn to the other n−1 components
except i if and only if

f(x1, · · · , xi−1, 1 − xi, xi+1, · · · , xn) ≡ f(x1, · · · , xi−1, xi, xi+1, · · · , xn) (15)

for all [x1, · · · , xi−1, xi+1, · · · , xn] ∈ Bn−1.

Condition (15) implies that the ith component makes no contribution to the Boolean function
f so that it can be discarded. Repeatedly applying the above proposition to (14), produces a
minimal collection of components which represent the neighbourhood. This neighbourhood can
then be used to prime the CML identification.

During the implementation of the neighbourhood detection algorithm, a filtering procedure is
employed to reduce the possibility of problems caused by noise or other disturbances in the
feature extraction process by thresholding. Typically problems may arise when noise causes a
sampling point to cross the binarisation threshold because then the obtained binary pattern may
not reflect the original dynamics correctly. These effects are identical to the problems which
arise in Probabilistic CA (PCA) with dynamic noise where cell states can be flipped during
the evolution of the CA (Billings and Yang 2003). Algorithms which reduce and in some cases
mitigate these problems can be employed here. The function of the filtering procedure is to filter
these erroneous data out. This can be achieved by applying the criterion (15) to the expected
values instead of the variables themselves. In practice, the expected values will be approximated
by the sample means computed over the data obtained from the thresholding process. For more
details, refer to Mei and Billings (2002).

Obviously this strategy will work well when the dynamics of the CML pattern, can be reasonably
approximated by a binary pattern. There will be cases where this is not the case. However, our
simulations suggest that this approach works well in the many examples that we have simulated.
The advantage is that the neighbourhood search over the binary pattern is very straightforward
and relatively quick. This is then used to prime the CML identification and can be considered
as a coarse-to-fine approach to neighbourhood detection. The histogram of the original pattern
provides a good indicator of whether the method will work well and this can be used as the
decision boundary. Little computing effort will have been wasted even if the histogram suggests
the method may not be appropriate for a particular spatio-temporal pattern. If the coarse-to-fine
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neighbourhood detection method is however applied model validation, based for example on the
CML model predicted output, should be used as a means of testing the authenticity of the final
CML model.

4 Simulation studies

4.1 Example 1 ? Non-homogeneous Wave Equation

Consider the following non-homogeneous wave equation

∂2v(t, x)

∂t2
− C

∂2v(t, x)

∂x2
= u(t, x), x ∈ [0, 1] (16)

with initial conditions

v(0, x) = 0

dv(0, x)

dt
= 4exp(−x) + exp(−0.5x) (17)

where

u(t, x) = −13exp(−x)cos(1.5t) − 9.32exp(−0.5x)cos(2.1t) (18)

For C = 1.0 the exact solution v(t, x) of the initial value problem (16), (18) is

v(t, x) = 4exp(−x)cos(1.5t) + 2exp(−0.5x)cos(2.1t)

−4exp(−x)exp(−t) − 2exp(−0.5x)exp(−0.5t) (19)

The measurement function was taken as

y(t, x) = v(t, x) (20)

The reference solution was sampled at 21 equally spaced points over the spatial domain Ω =
[0, 1], x = {x1, · · · , x21} = (0, 0.05, · · · , 0.95, 1). From each location, 1000 input/output data
points sampled at ∆t = π/100 were generated. The data are plotted in Fig. (1).
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Terms Estimates ERR STD
yi(t − 1) 0.16799E+01 0.99734E+00 0.11860E+00
yi(t − 2) -0.99911E+00 0.26578E-02 0.86569E-11
ui(t − 1) 0.97171E-03 0.16440E-05 0.14638E-12

yi−1(t − 1) 0.16906E+00 0.89148E-07 0.57112E-01
yi+1(t − 1) 0.15065E+00 0.83493E-15 0.61560E-01
yi−1(t − 2) -0.79775E-03 0.35227E-15 0.77924E-11
constant 0.78551E-17 0.41257E-16 0.42323E-15
ui(t − 2) 0.14685E-04 0.24471E-17 0.14312E-12

Table 1: Example 1: The terms and parameters of the final CML model

The histogram of the input/output data is shown in Fig. (2) which exhibits a normal-like
distribution. Therefore, the threshold value was set to be zero to obtain a binary counterpart of
the original pattern. The obtained neighbourhood from cellular automata was i − 1, i + 1, and
i + 2 in the spatial domain and t − 1, t − 2 in the time domain. This estimated neighbourhood
comprises the neighbourhood, i − 1 and i + 1, used in Billings and Coca 2002, which indicates
the rationale for using the proposed strategy. Using the neighbourhood as an initial estimation,
different combinations of the sites within this were tested for the CML modelling. The case,
which the neighbourhood was selected to be i− 1 and i + 1 in the spatial domain and t− 1, t− 2
in the time domain without the symmetrical restrictions, is presented here.

The identification data consisted of 1000 data points of input/output data ui(t), yi(t) at site
i = 3 corresponding to x = x3 = 0.1. In addition, 1000 input and output data ui(t), yi−1(t) and
yi+1(t) from neighbouring locations x = x2 = 0.05 and x = x4 = 0.15 acted as inputs during
the identification. The identified model is listed in Table (1), where ERR denotes the Error
Reduction Ratio (Chen and Billings 1989) and STD denotes the standard deviations. It is shown
that the number of terms in the identified model is 8 which is less then that (9 terms) from
Billing and Coca 2002.

The model predicted output and error are plotted in Figs.(3) and (4), which show very good
agreement between the exact solution and the CML model output.

To test the possible effects from noise upon the neighbourhood detection algorithm, white noise
with variance 0.3 was superimposed on the data set described above. The noisy data for site x3

is shown in Fig. (5). Fig. (6) shows the binary counterparts of y(t, x3) with and without noise.
By applying the filtering procedure based on sample means (Mei and Billings 2003) and the CA
algorithm, exactly the same neighbourhood was obtained.

4.2 Example 2 - Sine-Gordon Equation

Consider the two-dimensional Sine-Gordon Equation (Hirota 1973)
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Figure 1: Example 1: System output
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∂2u(t, x, y)

∂x2
+

∂2u(t, x, y)

∂y2
−

∂2u(t, x, y)

∂t2
= sin(u(t, x, y)) (21)

which describes the motion of the magnetic flux quanta on a Josephson junction transmission
line.

The exact three-soliton solution of (21) can be expressed in the following form

u(t, x, y) = 4tan−1(
g(t, x, y)

f(t, x, y)
) (22)

where

f(t, x, y) = 1 + a(1, 2)exp(η1 + η2) + a(1, 3)exp(η1 + η3) + a(2, 3)exp(η2 + η3)

g(t, x, y) = exp(η1) + exp(η2) + exp(η3) + a(1, 2)a(1, 3)a(2, 3)exp(η1 + η2 + η3)) (23)

in which

a(i, j) =
(Pi − Pj)

2 + (qi − qj)
2 − (wi − wj)

2

(Pi + Pj)2 + (qi + qj)2 − (wi + wj)2

ηi = Pix + qiy − wit − η0
i , (η

0
i is constant)

P 2
i + q2

i − w2
i = 1, for i, j = 1, 2, 3

provided that the parameters Pi, qi, and wi, i = 1, 2, 3 satisfy the condition

det







P1 q1 w1

P2 q2 w2

P3 q3 w3





 = 0

The solution (22) was sampled at 50 × 50 spaced points with ∆h = 0.05 with the following
parameter values, P1 = 1.1, P2 = P3 = 0.3; q1 = 0.0, q2 = q3 = 1.2 and w1 = 0.4583, w2 = w3 =
0.6633, and initial conditions

u(0, x, y) = 4tan−1(
g(0, x, y)

f(0, x, y)
) (24)

The measurement function was taken as
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Terms Estimates ERR STD
yi,j−2(t − 1) 0.85718E+00 0.99999E+00 0.11960E+01
yi−2,j(t − 1) 0.38689E+00 0.11733E-05 0.52748E+00
yi,j−3(t − 1) -0.27956E+00 0.28690E-07 0.81747E+00

constant -0.14333E-04 0.10377E-10 0.25698E-04
yi−1,j(t − 1) 0.60874E-01 0.47631E-11 0.10475E+01

yi−1,j(t − 1)yi−1,j−1(t − 1) -0.12208E-02 0.12146E-13 0.13893E-01
y2

i−2,j(t − 1) -0.14189E-01 0.11647E-13 0.11793E+00
yi−1,j(t − 1)y2

i−2,j(t − 1) 0.78280E-03 0.10020E-13 0.26307E-01
yi−1,j−1(t − 1)yi,j−2(t − 1) 0.65649E-01 0.91298E-14 0.49675E+00

y2
i,j−2(t − 1) -0.49985E-01 0.72695E-14 0.37229E+00

yi,j(t − 1)yi−2,j(t − 1)yi,j−3(t − 1) 0.24243E-01 0.53862E-14 0.77486E-01
yi−1,j(t − 1)yi,j−2(t − 1)yi,j−3(t − 1) 0.18671E-02 0.45060E-14 0.16395E-01
yi,j(t − 1)yi−1,j(t − 1)yi,j−2(t − 1) 0.21671E-01 0.29832E-14 0.40881E-01

yi,j(t − 1) -0.26475E-01 0.16857E-14 0.23102E+00
yi,j(t − 1)yi−1,j−1(t − 1)yi−2,j(t − 1) 0.39445E-01 0.14168E-14 0.10067E+00
yi−1,j(t − 1)yi−2,j(t − 1)yi,j−3(t − 1) -0.10455E-01 0.12683E-14 0.11613E-01
yi,j(t − 1)yi,j−2(t − 1)yi−2,j(t − 1) -0.66183E-01 0.12633E-14 0.14130E+00

yi,j−2(t − 1)y2
i,j−3(t − 1) -0.13504E-02 0.12183E-14 0.10186E-01

yi,j(t − 1)yi−1,j(t − 1)yi−2,j(t − 1) -0.18752E-01 0.11756E-14 0.42723E-01
y2

i−1,j(t − 1)yi−1,j−1(t − 1) 0.87364E-02 0.10906E-15 0.37293E-01

Table 2: Example 2: The terms and parameters of the final CML model

y(t, x, y) = u(t, x, y) (25)

From each location, 100 input/output data points sampled at ∆t = 0.1 were generated. Fig. (7)
shows four snapshots of y(t, x, y) at t = 0, t = 0.1×10 = 1, t = 0.1×20 = 2 and t = 0.1×30 = 3,
respectively. Fig. (8) shows the time series of the system outputs.

The histogram of all input/output data is shown in Fig. (9) which clearly exhibits two peaks
which suggests a suitable threshold value would lie between these two peaks. The threshold value
was therefore set to be 2 in this simulation. The obtained neighbourhood from cellular automata
was (i − 1, j), (i− 1, j − 1), (i, j − 2), (i − 2, j), and (i, j − 3) in the spatial domain and t − 1 in
the time domain.

The identification data consisted of 30 data points of input/output data ui(t), yi(t) at the node
(i, j) = (25, 25). The identified model is listed in Table (2)

The model predicted outputs and errors are plotted in Figs. (10) and (11), which show that the
identified CML model can reproduce the spatio-temporal patterns of the original system very
well.
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4.3 Example 3 ? A Chaotic Spatio-temporal System

Consider the following two-dimensional deterministic CML with symmetrical nearest neighbour
coupling

xi,j(t) = (1−ε)f(xi,j(t−1))+
ε

4
(f(xi,j−1(t−1))+f(xi,j+1(t−1))+f(xi−1,j(t−1))+f(xi+1,j(t−1)))

(26)

where xi,j(t)i, j = 1, · · · , N is the state of the CML located at site (i, j) at discrete time t, ε
is the coupling strength, and N is the size of lattice. Periodic boundary conditions, that is
x1,j(t) = xN,j(t), xi,1(t) = xi,N(t) for all i, j and t, are used throughout this simulation. Let
yi,j = xi,j is the observation variable of the CML at site (i, j). The evolution of the CML on the
lattice sites is governed by the local map f , which is chosen to be the logistic map

f(x) = 1 − ax2 (27)

This model has been extensively studied. It has been observed that for small ε (< 0.3) the system
evolves from a frozen random state to pattern selection and to fully developed spatio-temporal
chaos via spatio-temporal intermittency. For stronger coupling ε > 0.3 neither a frozen random
pattern nor a pattern selection regime is formed which implies there are no pattern changes in
this case (Kaneko 1989a).

In order to apply the proposed method, the model (26) with (27) was simulated for a lattice of
the size 50 × 50 with random initial conditions, periodic boundary conditions, and parameters
ε = 0.4, a = 1.55. The observation variable was set to be yi,j = xi,j . All data were normalised to
the interval [0, 1]. Some snapshot patterns are shown in Fig. (12). With these parameters, the
system is actually in a chaotic regime with Lyapunov exponents λ1 = 0.0648, λ2 = 0.0622, λ3 =
0.0158, λ4 = −0.0014, λ5 = −0.0106, λ6 = −0.0275, λ7 = −0.0478, λ8 = −0.0811, λ9 = −0.1360.
The Lyapunov exponents were calculated through the product of Jacobians of time steps 1 to
100 for a sub-lattice of the size 3 × 3 (the site (25, 25) as the centre point), where the boundary
effect is neglected. It follows that the KS entropy is 0.1428. In order to be able to calculate the
largest positive Lyapunov exponent from the data, a numerical algorithm proposed by Rosenstein,
Collins, and De Luca (1993) was employed. For the data from site (25, 25), the slope of the curve
obtained by the algorithm was found to converge towards a common value for the choice of
embedding dimensions m and provided a value of λ1

∼= 0.0644 for the largest Lyapunov exponent
which is very close to the value of 0.0648 obtained by the product of Jacobians. The correlation
dimension was also estimated by Rosenstein’s method to be around 0.495.

In the identification, a set of 100 observation pairs randomly selected among the data set was
used for identification. The threshold value was set to be 0.5 in this simulation and the obtained
neighbourhood from cellular automata was, (i, j − 1), (i, j + 1), (i − 1, j), and (i + 1, j) and the
time lag was 1.

During the identification, the maximal number of selected terms in the OFR selection algorithm
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Terms Estimates ERR STD
Constant 7.4046e-01 8.1197e-01 2.9845e-01
yi,j(t − 1)3 5.0098e-01 1.8189e-01 5.3908e-02
yi,j(t − 1) 1.4612e+00 2.3249e-03 4.2481e-02

yi,j−1(t − 1)yi,j+1(t − 1)yi−1,j(t − 1) -2.1694e-01 1.3244e-03 3.4310e-02
yi,j(t − 1)2 -2.3338e+00 7.6475e-04 2.8547e-02

yi+1,j(t − 1)3 -9.8188e-02 7.0280e-04 2.1954e-02
yi,j+1(t − 1)3 -3.1194e-02 9.9214e-05 2.0856e-02

Table 3: Example3: The terms and parameters for the final model

was set to be 10 and the tolerance ρ was chosen as 10−3. The final model is listed in Table (3).
The model predicted outputs and errors from the obtain model are shown in Figs. (13) and (14).
By using Rosenstein’s method to the data from site (25, 25), a positive value of λ1 = 0.0635 and
an estimated correlation dimension 0.494 were found.

The identification results clearly show that the proposed method can provide satisfactory predic-
tion performance for this chaotic dynamical system. Both estimated largest Lyapunov exponents
and correlation dimensions are quite close to the values calculated using the correct model.

5 Conclusions

A novel approach to the identification of spatio-temporal dynamical systems has been introduced.
It has been demonstrated that determining the neighbourhood for a real-value CML model can
be significantly simplified by employing a binary counterpart of the original data. Computing a
histogram of the data provides a good indication of whether this coarse-to-fine neighbourhood
detection algorithm will be worthwhile. Simulation results were included to demonstrate that
the coarse-to-fine procedure can produce excellent final CML models with a significant reduction
in computational resource.
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[13] Köhler, P., Reinhard, K., and Huth, A., (2002) Simulating anthropogenic impacts
to bird communities in tropical rain forests, Biological Conservation, Vol. 108, pp.
35-47.

[14] Mandelj, S., Grabec, I., and Govekar, E, (2001) Statistical approach to modeling
of spatiotemporal dynamics, Int. J. Bifurcation and Chaos, Vol. 11, No. 11, pp.
2731-2738.

[15] Marcos-Nikolaus, P., Martin-Gonzalez, J. M. and Sóle, R. V., (2002) Spatial forcast-
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Figure 7: Example 2: Sytem outputs at (a) t = 0, (b) t = 0.1× 10 = 1, (c) t = 0.1× 20 = 2, (d)
t = 0.1 × 30 = 3
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Figure 9: Example 2: Histogram of the data
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Figure 10: Example 2: Model predicted output at (a) t = 0, (b) t = 0.1 × 10 = 1, (c) t =
0.1 × 20 = 2, (d) t = 0.1 × 30 = 3
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Figure 11: Example 2: Model predicted error at (a) t = 0, (b) t = 0.1×10 = 1, (c) t = 0.1×20 =
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Figure 12: Example3: Some snapshots (at t = 1, 10, 50, and 100) from simulated data
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Figure 13: Example 3: Snapshots (at t = 1, 10, 50, and 100) from the estimated polynomial
model predictive output
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