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Abstract

Generalising results on time series estimation it is natural to consider func-
tion approximation with finite data observations in a probabilistic setting. The
function is treated as a stochastic process where for each point in the functions
domain the function is a random variable. Equivalently the function can be
considered as a single random variable whose range is a space of functions. In
this paper two results, well known within the context of time series estimation
and stochastic control, are generalised to probabilistic function approximation
problems. Under mild conditions on the space of functions it is shown that the
optimal function estimate corresponds, for all reasonable symmetrical loss func-
tions, to the pointwise conditional expectation given the observed data. Further,
in the case where the space of functions belongs to the class of Gaussian pro-
cesses the optimal estimate is the conditional expectation even for asymmetric
loss functions.



1 Introduction

Generalising results on time series estimation it is natural to consider func-
tion approximation with finite data observations in a probabilistic setting. The
function is treated as a stochastic process where for each point in the function
domain the function is a random variable. Equivalently the function can be
considered as a single random variable whose range is a space of functions. In
describing the space of functions as a stochastic process we make use of the finite
dimensional distributions of points on the function. For example, the Gaussian
case leads to a particularly rich theory. The Gaussianity of the space of func-
tions refers to the correlation properties of points on the function surface. So for
smooth functions we express a preference for close points in parameter (input)
space to also be close in output space. We then have an appropriate probability
space of functions.

Our problem is then, given such a probability space of functions and a set of
observations of the function at known points, to infer the value of the function
at unknown points. Although we may interpret the function as a single random
variable we do not use the observations to infer directly a single function from
this space. Instead, the function is inferred indirectly by estimating values for
specific points on the function - there is no initial step where a functional rela-
tionship is formed. Obviously the whole function can be inferred by estimating
values over the whole input space.

In order to distinguish between possible estimates it is necessary to compare
the estimates using a loss function. Given the error in the estimate a loss func-
tion is defined which is positive and a nondecreasing function of the error. A
natural estimate then corresponds to the minimum of the expected loss. Tradi-
tionally the loss function is chosen to be the mean-squared error which is simple
to handle, optimal for Gaussian noise, and always gives the best linear estimate
(although better nonlinear estimators may be possible). More often than not
alternative loss functions are deemed too difficult to handle mathematically,
although they may have practical merit.

In this paper two results, well known within the context of linear filtering,
are generalised to probabilistic function approximation problems. Under mild
conditions on the space of functions it is shown that the optimal function esti-
mate corresponds, for all reasonable symmetrical loss functions, to the pointwise
conditional expectation given the observed data. Further, in the case where the
space of functions belongs to the class of Gaussian processes the optimal esti-
mate is the conditional expectation even for asymmetric loss functions.

The issue of non-mean-squared error loss functions within linear filtering
was first addressed by Benedict and Sondhi (1957) under the assumptions of
Gaussianity and polynomial loss functions. It was shown that the optimum
Wiener filter was identical to that found in the case of mean-squared error. More
generally Sherman (1955, 1958) considered the case of symmetric loss functions
and symmetric, unimodal, probability distributions. Brown (1962) specialised
these results by assuming that the probability distribution is Gaussian. In this
case a much wider, asymmetric class of loss functions is allowable. Generalising



in a different direction, if the loss function is also assumed to be symmetric
and convex, the restriction on the unimodality of the conditional probability
distribution can be relaxed (Hall and Wise 1991).

These results are well known in the context of linear filtering (Kalman 1960;
Deutsch 1965; Jazwinski 1970) and have been applied to optimal control (Har-
ris 1992). The purpose of this paper is to present the results in the more
general context of probabilistic function approximation. The results are then
directly applicable to the Gaussian process approach to function approxima-
tion (Williams 1999) and also to support vector machines (Vapnik 1998) in the
presence of Gaussian noise.

In the next section the probabilistic setting for function estimation is de-
scribed based on the idea of stochastic processes. The particular case of Gaus-
sian stochastic processes is described in detail. In Section 3 optimal estimation
is introduced and shown to correspond to the conditional expectation in the
case of a squared error loss function. The key results of the paper relating
to symmetric and asymmetric loss functions are then presented in Section 4.
The particular example of polynomial loss functions for Gaussian processes is
addressed in Section 5.

2 Probabilistic Function Estimation

We first give a concrete description of the class of problems to be solved. We
assume there exists some (unknown) function (signal), y(z), and noise, n(x).
Neither can be observed directly, instead we observe z(x) = y(z)+n(z). Suppose
we make N observations giving rise to the values of z(x1),...,2(xnx). Given this
information, the problem is then to make inferences about the (unobservable)
values of the function, y(z), for arbitrary z. As an example case, assume z =
t € R is time and the z(t1),...,2(tn),t1 < --- < ty constitute a time series
of observations. Three estimation problems can then be envisaged: (i) if ¢t <
tn this is a smoothing problem; (ii) for ¢ = ¢y it is called filtering; and (iii)
when ¢ > ty this is a prediction problem. More generally, for z € RV, such
ordering is not possible. The problem is then simply referred to as estimation, or
approximation when we wish to emphasise that y(z) is some unknown function.

A natural setting for the estimation problem is probability theory and statis-
tics. The function, noise, and observations are then regarded as stochastic pro-
cesses. Given a probabilistic description of these processes we can then deter-
mine the probability with which particular values of the function and noise will
occur. We now review the definition and interpretations of stochastic processes.

2.1 Stochastic Processes

Formally, a stochastic process, z(z), is a collection of random variables, defined
on a common probability space, (Q2,F, P), and indexed by the elements of a
parameter set X'. In general, the stochastic process takes values in R? (a vector
valued process), however we consider only the scalar real-valued case. Common



examples of X include R,R*,Z,Z", where the process is often referred to as
a time series. We consider the case where X C R", for which the stochastic
process is often called a random field.

Various interpretations of stochastic processes are meaningful (Lamperti
1977; @Qksendal 1998). Most often, the process is regarded as a function on
X such that for each z € X the value of z is a random variable. Since, strictly
z = 2(z,w) where z € X,w € Q, this interpretation as a random variable means
w — z(x,-), where for each fixed z, the function z(z,-) is measurable with re-
spect to F. The notion of a sample function (trajectory or sample path) arises
if, instead, we fix w € 2 obtaining the function z(-,w) : X — R. For our pur-
poses, though, it is also meaningful to consider z as a single random variable
z(z,w) whose range is a space of functions of X. In this case we talk of a random
function.

Many of the important properties of stochastic processes can be determined
by the family of all finite-dimensional distributions. Let zi,...,zx € X then
the collection

P(€) = P{(z1) < &,...,2(ox) < Ex} (1)

as z ranges over all vectors of members of X' of any finite length, is called the
collection or family of finite-dimensional distributions of z. This family con-
tains all the information which is available about z from the distributions of
its constituent variables, z(z). Given such a collection, Kolmogorov’s extension
theorem ensures that, under certain mild consistency conditions, a stochas-
tic process exists having P () as its finite-dimensional distributions (Lamperti
1977).

In this paper we will be concerned solely with the stationary case. For
X =R RT,Z or ZT, a stochastic process is stationary if the finite dimensional
distributions of the process are invariant under translations of time (subsets of
the real line). That is, z is stationary when

Plz(z1) < &,..h2(on) <En = Plz(ei+A) <&, .00 2(anv+4) <En} (2)

for every x1,...,2n,A € X. More generally, for X C R™ the process is station-
ary if Eq. 2 holds for all n-vectors A in X.

2.2 Gaussian Processes

Consider now a stochastic process z(z) with E{|z(z)|?} < oo for all z € X.
Such stochastic processes are known as second order processes. We can then
define the covariance function of the process

k(z,2") = E{z(z)2(z')} 3)
for all z,2' € X.

Definition 2.1 A function k(z,z') : X x X - R, z,2' € X, is non-negative



definite (or equivalently positive semi-definite) iff

N N
ZZCiCjk(.TL'i,.Z'j) Z 0

i=1 j=1

for any distinct x1,...,xNy and scalars ci,...,cn. If strict inequality holds
unless all the ¢;’s are zero, k is said to be positive definite.

Theorem 2.1 A function k : X x X — R is the covariance of some process
{z2(z)} iff k is non-negative definite. k is positive definite iff the random vari-
ables {z(x)} are linearly independent.

Proof See, for example, Lamperti (1977). O

Definition 2.2 Let (9, F, P) be a probability space. A random variable z¥ =
[2(21),...,2(zN)] : @ = RY has the multivariate normal distribution N(u, K)
if the distribution of 2V has a density of the form

P = e {5 Y -7

p(z(z1),...,2(zN)) = JonNE] exp
where K is a positive definite symmetric matriz.
Theorem 2.2 If [2(z1),...,2(zN)] is N(p, K) then
1. E{z(z1),...,2(zN)} = p, which is to say E{y(z;)} = p; for all i; and
2. the covariance matriz K is such that [K|;; = E{(2(z;) — ps)(2(x;) —125) })-

Proof See, for example, Grimmett and Stirzaker (1992). O

Definition 2.3 A stochastic process z(x), * € X, is called Gaussian if every
finite linear combination of the random variables z(x) is normally distributed.
Equivalently, every finite dimensional vector [2(x1),...,z(xN)] is multivariate
normally distributed for all N.

A Gaussian process is necessarily a second order process.

Theorem 2.3 Suppose we have some function k, non-negative definite, such
that for each finite set x1,...,xn € X the matriz [K)i; = k(z;, ;) is symmetric
and non-negative definite. Then there exists a Gaussian process having zero
mean and k for its covariance function.

Proof This follows from Kolmogorov’s extension theorem, see, for exam-
ple, Lamperti (1977) and Grimmett and Stirzaker (1992). O



3 Optimal Estimation

Given a set of observations, 7(z1),...,n(zn) of the stochastic process z(z) the
probability of occurrence of values £(z) of the stochastic process y(z) is given
by the conditional probability distribution function

Ply(z) <&lz(21) = n(21),- .-, 2(zn) = n(2n)] = F(y)- (4)

Clearly, F(y) embodies all the (statistical) information about y(z) which is
contained in the available observations.

A statistical estimate of the random function, y(z), will be some function
of the distribution function, F(y), and therefore a function of the random
observation variables, z(x1),...,z(zn). We denote this estimate by y(z|Z%)
which is itself a stochastic process whose value is known whenever the values of
2(x1),...,2(zrN) are known. In general, the value of y(z|Z") will be different
from the (unknown) value of y(x). We therefore need a criterion for assessing
which is the best possible estimate. Define the error in the estimate by

e =y(z) —y(z|Z%). ()

As a criterion we define a loss function L(-) on e which is (i) positive, and (ii) a
non-decreasing function of e. A natural estimate y(z|Z) of y(z) is that which
minimises the average or expected loss

E{Lly(z) - y(«|Z™)]} = E[E{Lly(2) - y(|Z")]|2(21),..., 2(zn)}]  (6)

where the outer expectation on the RHS is over all possible observation sets.
However, since this expectation does not depend on y(z|Z") (which is already

conditional on z(z1),...,2(znN)), but only on z(x1),. .., 2z(zN), then minimising
Eq. 6 is equivalent to minimising
E{L[y(z) — y(z|Z™)]|z(z1),- .-, 2(zN)}- (7)

3.1 Least Squares Estimation

The basic, and simplest, case is to consider L(e) = €2, known as least squares
estimation, for which the optimal estimate can be found straightforwardly.

Theorem 3.1 Assume that L(e) = €? and y(x), 2(z1),...,2(zN) are any ran-
dom variables with E{|y(z)|?} < oo then the random variable y*(x|Z™) which
minimises the expected loss, FEq. 6, is the conditional expectation

y*(z|ZN) = E{y(2)|z(21), . .., 2(an)}. (8)
Proof We can write

E{ly(z) — y(z|Z™M)|2(21), ..., 2(en)} =
E{ly(z) —y* (@ ZM)] + [y* (2] Z27) = y(2|ZM)]|(21), .. ., 2(2w) }



which can be expanded thus

E{[y(z) — y*(@|ZM)|2(z1), - .., 2(@n) }+
2E{[y(x) — y* (@|Z™)]ly* (| Z7) - y(2|ZV)]|2(21), .., 2(zn) }+
E{[y*(2]2") — y(@| ZV)P|2(z1),- .-, 2(zn) }-

But y*(z|Z") — y(x|Z") is orthogonal to every function y(z) which is measur-
able on the sample space z(z1),- .., 2(zn) and whose square is integrable (Doob
1953) (Theorem 8.3, p.22). Hence

E{ly(z) —y(@|Z™)P|z(21),.. ., 2(an)} =
E{ly(2) — y*@|Z™)P|2(21), ., 2(an) }
+B{[y"(|Z") = y(2|ZV)P|2(21), .., 2(2n)}-

The first term on the RHS is unaffected by the choice of y(x|Z"), and for all
y(z|ZN) is always positive. Hence the LHS is minimised by setting

y(z|ZV) = y* (2| Z7). (9)

O
A less rigorous argument follows by expanding the expected loss, Eq. 7, as

E{ly(z) — y(@|ZV)P|2(z1), ..., 2(xn)} =
E{y*(2)|2(x1), .., 2(zn)} — 2B{y(2)y(2|ZV) |2(z1), - -, 2(2n) }
—|—E{y2(:1:|ZN)|z(:1:1), oo z2(zn)}

But y(z|Z") is already conditioned on z(z1),...,2(zn) and therefore
E{ly(z) - y(|Z™)P|2(21),. .., 2(2n)} =

E{y*(2)|2(x1), ..., 2(zn)} = 2y(|ZV) E{y(2)|2(x1), ..., 2(2n)} + 4 (2] Z7).
Differentiating with respect to y(z|Z) and equating to zero

y*(2|ZY) = B{y(z)|z(21), ..., 2(zn)}- (10)

3.2 Conditional Expectation with Gaussian Processes

Assume that y(z), n(z) and z(z) are Gaussian. Consider the N + 1 random
variables, z(z1),...,2(zn), 2(z), which have a joint Gaussian distribution with
constant mean, u, and covariance matrix, X. Let the (N + 1) x (N + 1) matrix
Y be partitioned as follows

Y Yo
Y = 11
[221 222] (1)

where $1; € RV*N 511, = BT € RN and X, is a scalar.



The random variables 2V = [z(z1), ..., 2(zn)]" and 2’ = z(z) — LE 2N
are statistically independent and
B{2'} = p=E0L5 un, B{('=E{z'})(z'-E{z'})} = 2~ 1,5, D1z (12)
where uy = E{z(z1),...,2(zn)}, p = E{2(z)}. The proofs follow standard
results (Mardia et al. 1979).
Since 2’ is independent of 2", its conditional distribution for a given value of

2V is the same as its marginal distribution, Eq. 12. Rearranging, z(z) is equal to
2! + 2L, 3 12N where the second term is constant for given zV. By substituting

for 2" and simplifying, the conditional mean of z(x) given z(z1),...,z(znN) is
given by
E{z(z)|2(z1), .-, 2(an)} = p+ SHEG (2 — uw) (13)

and the conditional variance of z(z) is the same as that of 2, i.e.

E{(z(2) — B{2(@)|2(z1), .- -, 2(zn)})?[2(21), - .., 2(2n)} = Do — Ty Do

(14)
If we further assume that n(z) is zero-mean and independent of y(x) then
E{z(z)|z(x1),...,2(zn)} = E{y(z)|z(z1),...,2(xN)}. Assume n(x) is zero-
mean with

E{n(z)n(z)} = 08(z — 2), (15)
therefore y(x) has the same mean as z(z), i.e. u, and
E{(y(z) — E{y()N(y(a") — E{y(z")})} = k(z, z"). (16)
Then
E{y(@)|z(z1),-- ., 2(en)} = p+ kT (K + 07 1) 7 (2" — pv) (17)
and
E{(y(z) — E{y(2)|z"})*|2(z1), ..., 2(en)} = k(z,2) + of — kT (K + ail);lk‘)
18

where k = [k(z,21),...,k(z,zn)]T and [K);; = k(z;, z;).

4 Alternative Loss Functions

We now come to the main results of the paper. In this section more general
classes of loss function are considered under different restrictions on the condi-
tional probability distribution. For the given assumptions the optimal estimate
always corresponds to the conditional expectation as would be found in the least
squares case.

4.1 Symmetric Loss Functions

Definition 4.1 The class of symmetric loss functions, L(e), satisfy the follow-
mg:



Examples include L(e) = ae?, ae?, ale| for a € RT.
Theorem 4.1 Assume that L satisfies Definition 4.1 and that the conditional
distribution F(y), defined by Eq.4, is:

1. symmetric about the mean §:

Fly-y)=1-F(y—-y)
2. convex for y < §:
FAyr + (1= Ny2) <AF(y1) + (1 = N F(y2)
for all y1,y2 < g and 0 < A < 1.

Then the random function, y*(x|Z™N), which minimises the expected loss, Eq. 6,
is the conditional expectation

y*(2|ZY) = B{y(z)|z(21), ..., 2(zn)}- (19)

Proof See Sherman (1958) and Astrom (1970). O

Note that conditions (1) and (2) of Theorem 4.1 are equivalent to the associ-
ated probability density function p(y(x)|Z") being symmetric about the mean,
7, and unimodal.

Corollary 4.1 If the stochastic processes y(z), n(x), and z(z) are Gaussian,
Theorem 4.1 holds.

Proof Conditional distributions on a Gaussian process are Gaussian (Ander-
son 1984). Hence the requirements of Theorem 4.1 are always satisfied. O

4.2 Asymmetric Loss Functions

Consider further, the restriction whereby y(x), n(z), and z(z) are Gaussian. We
can then extend Theorem 4.1 to the class of asymmetric loss functions which
are non-decreasing for |e| > 0 defined as follows.

Definition 4.2 The class of asymmetric loss functions, L(e), can be written as
follows:
L(e) = Li(e) + La(e)
where
Li(e) =0 fore <0
0<er <ey implies 0 < Li(er) < Ly(e2)

and
Ly(e) =0 fore>0
e1 < ez <0 implies 0 < La(ez) < La(er).



We now present the analogous theorem for asymmetric loss functions with
Gaussian conditional probability distributions. The proof is reproduced from in
full owing to the importance of the result (Brown 1962).

Theorem 4.2 Assume that L satisfies Definition 4.2, assume also that the
stochastic processes y(z), n(z) and z(z) are Gaussian. Then the random vari-
able Y*(z|ZN) which minimises the expected loss, Eq. 6, is the conditional ex-
pectation

y*(21ZY) = B{y(z)|z(21), ..., 2(zn)}- (20)

Proof Since y(z) and z(x) are Gaussian we must have e = y(z) — y(z|ZV)
Gaussian and E{e} = 0 by hypothesis. Therefore the probability density func-

tion of e is given by
(e) = L ex —i (21)
per= oV2n P1 202
where, by definition,
o = [E{’}]'? = [B{ly(2) — y(@|Z")P|2(21), ..., 2(an) /2 (22)

Now, by definition

BLE} = [ Lepte)de (23)
Substituting Eq. 21 in Eq. 23
B{L(e)} = — 1% /_ " Lie)exp {_;7} de. (24)

By replacing throughout e with oe and therefore de by ode (the limits of inte-
gration remain unchanged) we have

E{L(e)} = UL\/% /O;L(ae)exp{—(j;z}ade
/(:L(Ue)exp{—é}de
[/OooLl(Je)exp{—é}de—}-/OOOLz(Je)exp{—;—z}de]

where Ly and L, are as given in Definition 4.2.
Now, consider o7 and o2 such that 0 < o1 < 2. From the monotonicity
requirements on L; and Ly (Definition 4.2)

- 5~
) 3

e> 0= L1(0'1€) < L1(0’2€)

and
€ S 0=> L2(01€) S L2(02€).



Therefore 0 < 01 < o2 implies
2

\/Lz_W/ZL(ale)exp{—é}deg \/LZ_W/O;L(aze)exp{_%}de. (25)

This states that, when considered as a function of o,

E{L(e)} = \/%_ﬂ [ O; L(oe) exp {-%} de (26)

is a nondecreasing function of ¢ and also, therefore, of 62. Since E{L(e)} there-
fore varies monotonically with E{e?} it is clear that y*(z|Z”) which minimises
E{e?} will also minimise E{L(e)}. But

y*(2ZY) = B{y(z)|z(21), ..., 2(zn)}

minimises E{e?}, therefore it also minimises E{L(e)}. O

5 Example: Polynomial Loss

As a particular example, consider the class of polynomial loss functions (Bene-
dict and Sondhi 1957)
L(e) = le|* (27)

where @ € Rt. Again, assuming y(z) and z(z) are Gaussian we must have
e = y(z) —y(z|ZN) Gaussian and E{e} = 0 by hypothesis, hence

1 o0 e?
— el[*expq ——= p de
oV2mw /_ool | p{ 202}

vy e {5z pae
— e|*exp{d ——
oV2m Jo P 202

by symmetry. This integral can be evaluated as (Barnett and Cronin 1986)

E{L(e)}

a/2 a
B{LE@) = 21 (25) o) (28)

where, by definition
o = [E{*}]'? = [B{[y(2) — y(@|Z™)|2(21), .., 2(zn)}]'/?

and I is the usual Gamma function.
Differentiating Eq. 28 with respect to y(z|Z) and equating to zero
a2
(22220 (A1) @)= 2B t@lee), ..o o)) + 20017 =0,
LS 2
(29)
The first term will always be greater than zero as 0? > 0 and therefore a nec-

essary and sufficient condition for a minimum is that the second term vanishes,
ie.

y*(zZ2Y) = B{y(z)|z(z1), ..., 2(zn)}- (30)

10



6 Conclusions

A general framework for probabilistic function estimation from finite data has
been described. The function is treated either as a stochastic process, where
for each input point the function is a random variable, or equivalently as a sin-
gle random variable whose range is a space of functions. In practise it is the
former which is used. In order to distinguish between estimates it is necessary
to compare them using a loss function. In the least squares case, and under no
restrictions on the probability space of functions, the optimal estimate corre-
sponds to the conditional expectation given the available observations. Further,
it was shown that for symmetric loss functions and a symmetric (about the
mean), unimodal, probability distribution of functions, the optimal estimate is
still the conditional expectation. In the Gaussian case this result was shown to
be further relaxed to include asymmetric loss functions. To demonstrate these
results the particular case of a polynomial loss function and Gaussian space of
functions was derived.
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