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Abstract
Molecular regulation of embryonic stem cell (ESC) fate involves a coordinated interaction
between epigenetic1–4, transcriptional5–10 and translational11,12 mechanisms. It is unclear how
these different molecular regulatory mechanisms interact to regulate changes in stem cell fate.
Here we present a dynamic systems-level study of cell fate change in murine ESCs following a
well-defined perturbation. Global changes in histone acetylation, chromatin-bound RNA
polymerase II, messenger RNA (mRNA), and nuclear protein levels were measured over 5 days
after downregulation of Nanog, a key pluripotency regulator13–15. Our data demonstrate how a
single genetic perturbation leads to progressive widespread changes in several molecular
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regulatory layers, and provide a dynamic view of information flow in the epigenome,
transcriptome and proteome. We observe that a large proportion of changes in nuclear protein
levels are not accompanied by concordant changes in the expression of corresponding mRNAs,
indicating important roles for translational and post-translational regulation of ESC fate. Gene-
ontology analysis across different molecular layers indicates that although chromatin
reconfiguration is important for altering cell fate, it is preceded by transcription-factor-mediated
regulatory events. The temporal order of gene expression alterations shows the order of the
regulatory network reconfiguration and offers further insight into the gene regulatory network.
Our studies extend the conventional systems biology approach to include many molecular species,
regulatory layers and temporal series, and underscore the complexity of the multilayer regulatory
mechanisms responsible for changes in protein expression that determine stem cell fate.

We applied a single well-defined perturbation to murine ESCs by downregulating Nanog, a
key pluripotency factor13–15. A lentiviral-based complementation system was introduced
into mouse ESCs in which short hairpin RNA (shRNA) depletes endogenous Nanog mRNA,
and normal levels of Nanog expression are restored in a doxycycline-dependent manner
from an shRNA ‘immune’ version7 (Fig. 1b). Previously, we showed that this engineered
ESC clone is fully pluripotent in vitro and in vivo when maintained in the presence of
doxycycline7. After doxycycline removal, Nanog mRNA and protein levels rapidly decline
(Fig. 1c), and both pluripotency and self-renewal capacities of ESCs diminish with time. We
collected data from four molecular layers. Specifically, we performed: (1) chromatin-
immunoprecipitation microarray (ChIP-chip) analysis of histone H3 lysine 9 and 14
acetylation (acH3K9/14) at gene promoter regions to assess chromatin modification
(designated as HIS); (2) ChIP-chip analysis of RNA polymerase II localization at 3′ exons of
gene coding regions to reveal active transcription (designated as POL); (3) gene expression
microarrays to quantify mRNA abundance (designated as RNA); and (4) protein mass
spectrometry to measure nuclear protein abundance (designated as PRO) (Fig. 1a). Fold
changes were calculated for each gene by comparing the expression levels of a molecular
layer on days 1, 3 and 5 (doxycycline absent, Nanog depleted) to day 0 (doxycycline
present, Nanog expressing), allowing for comparisons across the different experimental
platforms (Supplementary Fig. 1). To estimate experimental noise, a significance threshold
in each experiment was determined based on the experimental replicates of all measured
genes at a false discovery rate (FDR) of 5% (Fig. 1d and Supplementary Fig. 2).

Although changes between different gene expression steps are generally correlated
(Supplementary Fig. 3), both concordances and discordances exist on the individual gene
level. The discordances show regulatory events that alter gene expression. We performed a
supervised gene/protein classification to identify the key regulatory step that is most
responsible for changes in protein levels, which directly determine cellular phenotype. We
anchored our analysis on observed changes in protein levels and assessed the concordance of
changes in the other three layers by comparing PRO to RNA, then RNA to POL, and finally
POL to HIS (Fig. 2a). Proteins with significant changes were assigned to one of four
categories at each time-point: category 1 proteins exhibit discordant PRO and RNA changes
in expression, which is indicative of translational and posttranslational regulation; category
2 proteins exhibit concordant PRO and RNA changes in expression, but discordant RNA
and POL changes in expression, which is indicative of post-transcriptional regulation;
category 3 proteins exhibit concordant PRO, RNA and POL changes in expression, but
discordant POL and HIS changes in expression, which is indicative of transcriptional
regulation; and category 4 proteins exhibit concordant changes in expression across all four
layers, which is indicative of regulation through chromatin modification. Proteins tend to
stay in the same category over time (Supplementary Fig. 4). Category 1 constitutes 43–52%
of all the genes with significant changes in protein levels, indicating that translational and
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post-translational regulatory mechanisms have important roles in ESC fate
decisions11,12,16,17. However, it is unclear whether this is specific to stem cells or whether it
is characteristic of other biological systems.

In addition to providing a genome-wide perspective of ESC fate change, our concordance
analysis also provides useful information on the level of individual genes (Fig. 2b). For
example, the ESC transcriptional regulator Esrrb7 falls into the category 2 concordance
pattern at all time points. This indicates that ultimate levels of Esrrb protein are primarily
regulated post-transcriptionally, at least under our experimental conditions, and not by direct
Nanog regulation at the transcriptional level. It has been proposed that Esrrb and Nanog
mutually regulate each other by a positive feedback circuit6,18. Our concordance pattern
analysis of Esrrb indicates that at least one other component is likely to be involved in this
circuit, which is responsible for the post-transcriptional regulation of Esrrb, possibly a
microRNA19,20.

Gene-ontology analyses across the four molecular layers suggest a complex interaction
between different molecular regulatory mechanisms in cell fate regulation (Fig. 2c and
Supplementary Fig. 5). For example, differentiation- and development-related genes are
over-represented among the genes that only show changes in acH3K9/14 levels, but not on
the other three layers (Fig. 2c). Furthermore, chromatin- and nucleosome-assembly-related
genes are overrepresented among the genes upregulated on the RNA polymerase II binding
layer but not on any of the other three layers (Fig. 2c), suggesting that the chromatin
modifiers are primarily regulated at the transcription step. Therefore, reconfiguration of
chromatin structure, although an important factor in ESC fate alteration, may have a
secondary role to primary regulation by transcription factors5,6,8,21–23.

To gain further insight into systems-level regulatory control of changes in ESC fate, we
combined our data with that of previous stem cell regulatory network studies to form a new
synthesis (Fig. 3)6,8,24. A core protein–protein interaction network was previously identified
in murine ESCs involving 26 proteins centred around Nanog24. We found that this
interactome is enriched in proteins that decreased in expression after downregulation of
Nanog (Supplementary Fig. 6). On day 5, 8 out of the 26 interactome proteins are at
significantly reduced levels (Supplementary Fig. 7). These are: Sall4, Rnf2, Oct4 (also
known as Pou5f1), Ilf2, Nanog, Mybbp1a, Sall1 and Esrrb. Of these eight proteins only one
(Rnf2) does not directly interact with Nanog (Fig. 3a). This suggests interdependence
between the Nanog interactome and the network of genes under Nanog transcriptional
control.

Nanog protein binds to thousands of genomic locations in undifferentiated ESCs5,6. Our data
show that approximately 20% of the previously identified Nanog-binding genes change their
transcription levels (POL) during the first 5 days after Nanog downregulation. Of those that
changed, approximately 50% also exhibit changes in protein levels (PRO) (Fig. 3b and
Supplementary Fig. 7). To determine how the changes in expression develop after the
downregulation of Nanog, we analysed the temporal alterations of mRNAs in the context of
an extended transcriptional regulatory network proposed previously8 (Fig. 3c). Our data
show that most genes in this network are downregulated after the removal of Nanog. In
particular, downregulation of Oct4 and Sox2 (protein levels shown in Supplementary Fig. 7)
occurred later than downregulation of Klf4 or Rex1. This suggests that decreases in Oct4
and Sox2 expression are not responsible for decreases in Klf4 and Rex1 expression under
our experimental conditions. The temporal sequence of changes in gene expression is
loosely correlated with the chromatin-binding data6,8. These two sources provide
independent and complementary information about the ESC gene regulatory network. Using
the same principle that later molecular events cannot regulate earlier events, we can extract
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new sets of useful information concerning the gene regulatory relations from the temporal
order of the network reconfiguration (Fig. 4 and Supplementary Fig. 8).

To facilitate comparisons and visualization of the multilayered time series, we generated
interactive movies to display our data (Fig. 4 and Supplementary Fig. 8;
http://amp.pharm.mssm.edu/ronglu). Expression changes for 400 genes with the most
significant changes in protein levels on day 5 were projected onto two-dimensional
hexagonal arrays (Fig. 4a). Individual hexagons representing specific genes are dynamically
coloured according to the fold changes in each of the four molecular layers. This approach
facilitates genome-wide and temporal comparisons among the different molecular layers,
and allows clustering of genes with similar dynamics on multiple gene expression regulatory
layers. We have also generated interactive scatter plot movies to help visualize concurrent
changes across the different molecular layers (Fig. 4b). In these movies, individual genes
can be selected to illustrate the concurrent changes between pairs of molecular layers. For
instance, Fig. 4b demonstrates that changes in Esrrb mRNA and protein expression are
monotonically related, whereas Sall1 and Oct4 both show increased mRNA levels without
any corresponding increase in protein levels during the early stage of ESC differentiation.
Similar dynamics are also exhibited by several other previously identified essential ESC
factors25 (shown as red dots in Fig. 4b). These genes are regulated on different regulatory
layer(s) compared to Esrrb, and suggest that the transcription layer undergoes an early cell
fate reconfiguration without significant accompanying changes in protein production.
Recent studies proposed that fluctuating levels of Nanog may discriminate between
alternative pluripotent states of ESCs, in which high or low Nanog levels render ESCs
resistant or susceptible to differentiation inducing stimuli, respectively15,26–29. In our
system, the early time point of Nanog downregulation is comparable to the ‘low’ Nanog
state from these studies. Thus, the absence of changes in protein levels during the mRNA
layer reconfigurations could reflect the nature of these distinct pluripotent states.
Collectively, the variety of the multilayered expression patterns underscores the complexity
of the molecular regulation of ESC fate and suggests an intricate regulatory network
involving several molecular regulatory layers.

In this study we have provided a dynamic multimolecular layer view of a murine ESC fate
change in response to the downregulation of Nanog. In our experimental system the
transcription of Nanog is regulated by exogenous manipulation and not by the endogenous
regulatory circuit. This disrupts the balance of mutually regulated ESC molecular
circuits15,26–29, and allows for rapid and synchronous cell fate changes within the
population. However, our results nonetheless represent the average of a large cell
population, as we have shown previously that removing Nanog results in a complex mixture
of cell lineages7. In this work, our primary goal was to analyse the molecular dynamics that
are associated with the transition away from the pluripotent state as it occurs in most of the
cells. In vivo, cell fate alteration is probably triggered by several perturbations and inputs
dynamically. The single gene perturbation that we have used does not reflect the natural
signals that pluripotent cells are subjected to in vivo. However, it is a powerful tool to
dissect the complex regulatory networks that underpin ESC fate changes and offers an initial
window into the dynamic complexity of ESC fate regulation across multiple molecular
levels.

METHODS SUMMARY
AcH3K9/14 levels were assayed using ChIP-chip. Acetylated regions in a 1-kilobase
window around the transcription initiation position were identified to generate acetylation
profiles (Supplementary Figs 9 and 10). ChIP-chip was also used to measure RNA
polymerase II localization on 3′ exons to directly assess transcriptional activity (elongation).
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Changes in mRNA levels were monitored using Agilent two-colour microarrays. Nuclear
protein levels were measured using peptide isobaric tagging followed by two-dimensional
liquid chromatography mass spectrometry (LC-MS/MS)16. We chose to measure nuclear
protein levels because cell fate determination is largely controlled in the nucleus. For
technical reasons, attempts to measure the entire proteome would have significantly
decreased the sensitivity of the nuclear protein measurements, as these only constitute
approximately 20% of all proteins in ESCs. All experiments were conducted in triplicate
except for the acH3K9/14 measurements, which were performed in duplicate. Reliability of
all data sets was verified using independent experimental assays, including conventional
chromatin immunoprecipitation (ChIP), quantitative PCR (qPCR), and western blot assays
for key pluripotency regulator genes (Supplementary Figs 11 and 12). Experimental
reproducibility was also verified using a linear analysis of variance (ANOVA) model30.
After data pre-processing and normalization, we were able to validate 1,627 nuclear proteins
and 12,488 genes (HIS/POL/RNA) with high confidence. For 1,212 nuclear proteins, we
were able to jointly obtain high-quality data across all four layers (HIS/POL/RNA/PRO).
Supplementary Fig. 1 provides an overview of the entire data processing pipeline and the
results of the quality-control procedures (ANOVA analysis). The significance of change is
determined at a FDR of 5% using an empirical Bayes’ model with Benjamini–Hochberg
correction on the basis of experimental replicates.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Measuring changes in the epigenome, the transcriptome and the nuclear proteome
after Nanog downregulation
a, Experimental design. AP, alkaline phosphatase; IP, immunoprecipitation; iTRAQ,
isobaric tag for relative and absolute quantification; MS, mass spectrometry. b, The
lentiviral vector construct to conditionally regulate Nanog expression levels7. dLTR, deleted
long-terminal repeat; FLAP, nucleotide segment that improves transduction efficiency;
Teton, tetracycline transactivator; WRE, woodchuck hepatitis virus post-transcriptional
regulatory element. c, Efficacy of Nanog protein downregulation as measured by mass
spectrometry (bar chart) and western blot (image, bottom). Error bars denote the s.d. of
duplicate measurements. d, Summary of the numbers of genes with significant changes at
different molecular layers on each day. Increased and decreased levels are shown in orange
and green, respectively.
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Figure 2. Comparisons across different molecular regulatory layers
a, Proteins with significant changes on each day are assigned to one of four categories on the
basis of concordance between expression steps (Methods). The percentages on the left are
calculated according to the number of proteins in each category. The P-value bar on the
right gives the inclusion significance level. b, Examples of proteins from each of the four
categories. Black dots represent the exact values for each experimental replicate. c, Selected
gene-ontology (GO) categories that are overrepresented at each gene expression step. The
complete panel is shown in Supplementary Fig. 5.
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Figure 3. Dynamic changes in ESC networks
a, The core ESC protein–protein interaction network24 (connections) overlaid with dynamic
protein changes observed in our data (rectangles are divided into three segments
representing changes on days 1, 3 and 5 compared to day 0). b, Heat map of multimolecular
layer gene expression changes for Nanog-binding genes6. Shown are the genes whose data
were obtained with high confidence on all four molecular layers. Genes are ranked on the
basis of changes in protein levels. c, The pluripotency transcriptional regulatory network8

(arrows) overlaid with mRNA fold changes (colours) from our data.
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Figure 4. Interactive visualization of the multilayer dynamic data
a, Snapshots from heat map movies showing 400 genes with the most significant changes in
protein levels on day 5. The position (pixel) of each gene locus is the same in all 12 heat
maps. b, Snapshots from dynamic scatter plots illustrating concurrent changes in mRNAs
and proteins. Red dots represent genes that have been identified to have important roles in
ESCs25. Supplementary Fig. 8 and the website http://amp.pharm.mssm.edu/ronglu are
interactive and each gene can be displayed as a line plot as exemplified by Esrrb, Oct4 and
Sall1.
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