
Optimal Multi-Robot Path Planning with Temporal Logic Constraints

Alphan Ulusoy† Stephen L. Smith? Xu Chu Ding† Calin Belta† Daniela Rus‡

Abstract— In this paper we present a method for automati-
cally planning optimal paths for a group of robots that satisfy
a common high level mission specification. Each robot’s motion
in the environment is modeled as a weighted transition system.
The mission is given as a Linear Temporal Logic formula.
In addition, an optimizing proposition must repeatedly be
satisfied. The goal is to minimize the maximum time between
satisfying instances of the optimizing proposition. Our method
is guaranteed to compute an optimal set of robot paths. We
utilize a timed automaton representation in order to capture
the relative position of the robots in the environment. We
then obtain a bisimulation of this timed automaton as a finite
transition system that captures the joint behavior of the robots
and apply our earlier algorithm for the single robot case
to optimize the group motion. We present a simulation of a
persistent monitoring task in a road network environment.

I. INTRODUCTION

Recently there has been an increased interest in using
temporal logics to specify mission plans for robots [1], [2],
[3], [4], [5]. Temporal logics are appealing because they
provide a formal high level language in which to describe a
complex mission. In addition, tools from model checking [6],
[7] can be used to generate a robot path satisfying the
specification, if such a path exists. However, frequently there
are multiple robot paths that satisfy a given specification.
In this case, one would like to choose the optimal path
according to a cost function. The current tools from model
checking do not provide a method for doing this. In our
previous work [8] we considered Linear Temporal Logic
(LTL) specifications, and a particular form of cost function,
and provided a method for computing optimal robot paths
for one robot. In this paper we extend this result to multiple
robots.

For simplicity of presentation, we assume that each robot
moves among the vertices of an environment modeled as
a graph. However, by using feedback controllers for facet
reachability and invariance in polytopes [9], [10] the method
developed in this paper can be easily applied for motion
planning and control of robots with “realistic” continuous dy-
namics (e.g., unicycle) traversing an environment partitioned
using popular partitioning schemes such as triangulations and
rectangular partitions.

The main difficulty in moving from a single robot to mul-
tiple robots is in synchronizing the motion of the robots, or in

This work was supported in part by ONR-MURI N00014-09-1051,
ARO W911NF-09-1-0088, AFOSR YIP FA9550-09-1-020, and NSF CNS-
0834260.
† Hybrid and Networked Systems Laboratory, Boston University, Boston,

MA 02215 (alphan@bu.edu, xcding@bu.edu, cbelta@bu.edu)
? Dept. of Electrical and Computer Engineering, University of Waterloo,

Waterloo ON, N2L 3G1 Canada (stephen.smith@uwaterloo.ca)
‡ Computer Science and Artificial Intelligence Laboratory, Massachusetts

Institute of Technology, Cambridge, MA 02139 (rus@csail.mit.edu)

allowing the robots to move asynchronously. In [11], the au-
thors propose a method for decentralized motion of multiple
robots subject to LTL specifications. In their approach, the
robots take transitions (i.e., travel along edges in the graph)
synchronously. Once every robot has completed a transition,
the robots can synchronously make the next transition. While
such an approach is effective for satisfying the LTL formula,
it does not lend itself to optimizing the robot motion,
since time is spent “waiting” for other robots. In [12], the
authors take a different approach, representing the motion of
the robots in the environment as a timed automaton. Each
robot then has a continuous clock variable that describes
its progress along a transition (i.e., a robot’s position along
an edge between two vertices). The authors then look at
satisfying specifications given in computational tree logic
(CTL). In this paper, we utilize a similar timed-automaton
representation. However, we consider LTL specifications,
for which the control synthesis problem is fundamentally
different. In addition, rather than just satisfying the formulas,
we optimize the motion of the robots.

In terms of optimizing paths, the most closely related
work has been on the vehicle routing problem (VRP) [13].
Recent results [14], [15] present extensions of vehicle routing
problems to more general classes of temporal constraints.
In [15], the authors consider vehicle routing with metric
temporal logic specifications. The goal is to minimize a cost
function of the vehicle paths (such as total distance traveled).
The authors present a method for computing an optimal set
of paths by converting the problem to a mixed integer linear
program (MILP). While the approach is computationally
intensive, it has been used to solve problems of real-world
significance. However, their method does not apply to the
persistent monitoring and data gathering applications that are
of interest in this paper. In particular, it does not allow for
specifications of the form “always eventually,” which appear
when specifying that a robot should repeatedly perform a
task. In this paper we take an entirely different approach
to optimizing robot motion, resulting in an optimization
problem on a graph, rather than a MILP.

The contribution of this paper is to present a method for
generating optimal paths for a group of robots satisfying
general LTL formulas. We focus on minimizing a cost
function that captures the maximum time between satisfying
instances of an optimizing proposition. The cost is motivated
by problems in persistent monitoring and in pickup and deliv-
ery problems. Our solution relies on describing the motion of
the group of robots in the environment as a timed automaton.
This description allows us to represent the relative position
between robots. Such information is necessary for optimizing
the robot motion. We provide a bisimulation [16] of the

ar
X

iv
:1

10
7.

00
62

v1
 [

cs
.R

O
]

 3
0

Ju
n

20
11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/9321864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
alphan@bu.edu
xcding@bu.edu
cbelta@bu.edu
stephen.smith@uwaterloo.ca
rus@csail.mit.edu

infinite-dimensional timed automaton to a finite dimensional
transition system. From this point we are able to apply our
previous results [8] to compute an optimal run. This run
then maps to a path for each robot. We provide simulation
results for robots in a road network environment. The main
hurdle in our approach is the computational complexity. We
discuss ways in which this can be reduced, and show that
fairly complex problems can be solved under this framework.

The organization of the paper is as follows. In Section II,
we give some preliminaries. In Section III, we formally
state the motion planning problem for a team of robots,
and in Section IV we present our solution. In Section V
we present an experimental case study for a team of robots
performing persistent data gathering missions in a road
network environment. Finally, in Section VI, we discuss
some promising future directions.

II. PRELIMINARIES

A. Transition Systems and LTL

Definition II.1 (Transition Systems). A (weighted) transi-
tion system (TS) is a tuple T := (QT , q0

T ,→T ,Π,LT , wT),
where

(i) QT is a finite set of states,
(ii) q0

T ∈ QT is the initial state,
(iii) →T⊆ QT ×QT is the transition relation,
(iv) Π is a finite set of atomic propositions (observations),
(v) LT : QT → 2Π is a map giving the set of all atomic

propositions satisfied in a state, and
(vi) wT :→T→ R+ is a map that assigns a positive weight

to each transition.

We define a run of T as an infinite sequence of states rT =
q0q1 . . . such that q0 = q0

T , qk ∈ QT and (qk, qk+1) ∈→T

for all k ≥ 1. A run generates an infinite word ωT =
L(q0)L(q1) . . . where L(qk) is the set of atomic propositions
satisfied at state qk.

Definition II.2 (Formula of LTL). An LTL formula φ over
the atomic propositions Π is defined inductively as follows:

φ ::= > | α | φ ∨ φ | φ ∧ φ | ¬φ | Xφ | φU φ

where > is a predicate true in each state of a system, α ∈ Π
is an atomic proposition, ¬ (negation), ∨ (disjunction) and
∧ (conjunction) are standard Boolean connectives, and X
and U are temporal operators.

LTL formulas are interpreted over infinite words (gener-
ated by the transition system T from Def. II.1). Informally,
Xα states that at the next state of a word, proposition α is
true; and α1 U α2 states that there is a future moment when
proposition α2 is true, and proposition α1 is true at least until
α2 is true. From these temporal operators we can construct
two other temporal operators: Eventually (i.e., future), F
defined as Fφ := >U φ, and Always (i.e., globally), G,
defined as Gφ := ¬F¬φ. The formula Gφ states that φ is
true at all positions of the word; the formula Fφ states that
φ eventually becomes true in the word. More expressivity
can be achieved by combining the temporal and Boolean

operators. We say a run rT satisfies φ if and only if the
word generated by rT satisfies φ.

Definition II.3 (Büchi Automaton). A Büchi automaton is a
tuple B := (S,S0,Σ, δ,F), consisting of (i) a finite set of
states S; (ii) a set of initial states S0 ⊆ S; (iii) an input
alphabet Σ; (iv) a non-deterministic transition relation δ ⊆
S × Σ× S; (v) a set of accepting (final) states F ⊆ S.

A run of the Büchi automaton over an input word ω =
ω0ω1 . . . is a sequence rB = s0s1 . . ., such that s0 ∈ S0,
and (sk, ωk, sk+1) ∈ δ, for all k ≥ 1. A Büchi automaton
accepts a word over Σ if at least one of the corresponding
runs intersects with FB infinitely many times. For any LTL
formula φ over Π, one can construct a Büchi automaton with
input alphabet Σ ⊆ 2Π accepting all and only words over
Π that satisfy φ. We refer readers to [17] and references
therein for efficient algorithms and freely downloadable
implementations to translate a LTL formula over Π to a
corresponding Büchi automaton.

B. Timed Automata
A clock is a real-valued variable that increases at a rate of

one as time progresses. Clocks may be valuated, or reset to
zero. Let C denote a set of clocks. A clock valuation of some
clock x ∈ C, denoted as v(x), is a mapping from C to R≥0

that assigns a real value to each clock. A clock constraint g
over a set of clocks C is formed according to the grammar

g ::= x < c
∣∣ x ≤ c ∣∣ x > c

∣∣ x ≥ c ∣∣ g ∧ g,
where c ∈ N is a constant and x ∈ C is a clock. We let
G denote the set of all clock constraints over C. A clock
valuation v(x) of some clock x satisfies a clock constraint
g at some time iff g evaluates to true for v(x).

Definition II.4 (Timed Automata). A timed automaton is a
tuple A := (QA, q0

A, CA,GA,→A,Π,LA) where
(i) QA is a finite set of states,

(ii) q0
A ∈ QA is an initial state,

(iii) CA is a finite set of clocks,
(iv) GA is a finite set of clock constraints over CA,
(v) →A⊆ QA×GA× 2CA ×QA is the transition relation.

A transition is a tuple (q, g, c, q′) where q is the
source state, q′ is the destination state, g is the clock
constraint that enables the transition, and c ⊆ CA is
the clock-resets, which is the set of clocks to be reset
right after the transition.

(vi) Π is a finite set of atomic propositions, and
(vii) LA is a map assigning a subset of Π to each transition

of →A.

The semantics of the timed automaton can be understood
as follows: starting from the initial state q0

A, the values of all
clocks increase at rate one, and the system remains at this
state until a clock constraint corresponding to an outgoing
transition is satisfied. When this happens, the transition is
immediately taken and the clocks in the clock-resets are
reset. The timed automaton from Def. II.4 can be seen as
a particular case of the timed automaton defined in [18],
which also allows for clock invariants associated with states.

A timed automaton, as defined in Def. II.4, has a finite
set of clock regions RA, which is the set of equivalence
classes of clock valuations induced by its clock constraints
GA. Intuitively, a clock region r ∈ RA is a subset of the
infinite set of all clock valuations of CA, in which all clock
valuations are equivalent in the sense that the future behavior
of the system is the same. In [18], it has been shown that
a clock region can be either a corner point (e.g., (0,1)), an
open line-segment (e.g., 0 ≤ x1 = x2 ≤ 1), or an open
region (e.g., 0 ≤ x1 ≤ x2 ≤ 1). The clock regions RA of a
timed automaton A induce an equivalence relation ∼A over
its state space, and a simulation quotient, which we refer to
as the region automaton R = A/ ∼A. The region automaton
R induced by this equivalence relation is a bisimulation
quotient. To define R, we define a clock region r′′ to be
the time-successor of a clock region r if and only if there
is a t > 0 such that all possible clock valuations in r are in
clock region r′′ after time t.

Definition II.5 (Region Automata). The region automaton
R of a timed automaton A (Def. II.4) is a tuple R :=
(QR, q0

R,→R), where
(i) QR is the set of states of the form {q, r} such that

q ∈ QA and r ∈ RA,
(ii) q0

R is the initial state of the form {q0
A, r

0} such that
q0
A is the initial state of A and all clock valuations of
r0 are zero, i.e., xi = 0 ∀ xi ∈ r0,

(iii) →R is the transition relation such that there is a
transition from {q, r} to {q′, r′} if and only if there is
a transition from q to q′ in A and a clock constraint
g in GA and a clock region r′′ such that:
(a) r′′ is a time-successor of r,
(b) r′′ satisfies the clock constraint g, and
(c) r′′ goes to r′ when corresponding clocks are reset

once g is satisfied and the transition is made.

III. PROBLEM FORMULATION AND APPROACH

Let
E = (V,→E) (1)

be a graph of the environment, where V is the set of vertices
and →E⊆ V × V is a relation modeling the set of edges.
In practice, E can be the quotient graph of a partitioned
environment, where V is a set of labels for the regions
in the partition, and →E is the corresponding adjacency
relation. For example, V can be a set of labels for the roads,
intersections, and buildings in an urban-like environment and
→E can show how these are connected (see Fig. 5).

Consider a team of m robots moving in an environ-
ment modeled by E . The motion capabilities of robot i =
{1, . . . ,m} can be represented by a transition system (see
Def. II.1)

Ti = (Qi, q0
i ,→i,Π,Li, wi), (2)

where Qi ⊆ V ; q0
i is the initial vertex of robot i; →i⊆→E

is a relation modeling the capability of robot i to move
among the vertices; Π is a set of propositions assigned to the
environment, which are assigned by Li to robot i; wi(q, q′)
captures the time for robot i to go from vertex q to q′, and

we assume that wi(q, q′) is always an integer. In this robotic
model, robot i travels along the edges of Ti, and spends
zero time on the vertices. Note that we allow the assignment
of propositions to differ for different robots to capture
the possibly different capabilities of the robots to satisfy
propositions in the environment. Also, in the definition of
transition systems, each transition is deterministic, so any
run on Ti can always be followed by robot i.

We assume that there is an atomic proposition π ∈ Π,
called the optimizing proposition. We consider LTL formulas
of the form

φ := ϕ ∧GFπ, (3)

where ϕ can be any LTL formula over Π, and GFπ specifies
that proposition π must be satisfied infinitely often. In a
persistent data gathering task, π can be assigned to regions
where new data is gathered, while ϕ could be used to specify
rules (such as traffic rules) that must be obeyed at all times
during the task.

We assume that each run ri = q0
i q

1
i . . . of a Ti (robot i)

starts at t = 0 and generates a word ωi = ω0
i ω

1
i . . . and an

infinite sequence of time instances Ti := t0i t
1
i . . . such that

ωki = Li(qki) is satisfied at tki . In order to define the behavior
of the team as a whole, we consider the sequences Ti as sets
and take the union

⋃m
i=1 Ti and order this set in an ascending

order to obtain T := t0t1, Then, we define ω = ω0ω1 . . .
to be the word generated by the team of robots where ωk

is the union of all propositions satisfied at tk. Finally, we
define the infinite sequence Tπ = Tπ(1),Tπ(2), . . . where
Tπ(k) stands for the time instance when π is satisfied for the
kth time by the team. We can now formulate the problem:

Problem III.1. Given a team of robots modeled as tran-
sitions systems Ti and an LTL formula φ in the form (3);
Synthesize a run ri for each robot in the team such that the
word generated by the team satisfies φ and Tπ minimizes

J(Tπ) = lim sup
i→+∞

(Tπ(i+ 1)− Tπ(i)) . (4)

Note that a solution to Prob. III.1 minimizes the maximum
time between satisfying instances of π. Since we consider
LTL formulas containing GFπ, this optimization problem
is always well-posed. For the data gathering task previously
mentioned, this translates to minimizing the maximum time
in between two data gatherings.

Our solution to Problem III.1 can be outlined as follows:
(i) For each transition system Ti, i = 1, . . . ,m, we

obtain the dual transition system Di where states and
transitions are swapped and propositions are assigned
to the transitions (Sec. IV-A);

(ii) For each dual transition system Di, we obtain a corre-
sponding timed automaton Ai. Each timed automaton
consists of a single clock, which keeps track of the
amount of time that a robot has been traveling between
states in the original transition system Ti and we
create a product timed automaton P as the parallel
composition of Ai, i = 1, . . . ,m timed automata
(Sec. IV-B);

(iii) We obtain the region automaton R as the bisimulation
quotient of P (Sec. IV-C);

(iv) We find the optimal run on R using the OPTIMAL-
RUN algorithm we previously developed in [8]. We
project this run back to the individual Ti, i = 1, . . . ,m
to obtain the solution to Prob. III.1 (Sec. IV-D).

IV. PROBLEM SOLUTION

In this section, we explain each step of the solution
to Prob. III.1 in detail. For illustration, we use a simple
example throughout this section involving two robots in an
environment consisting of three vertices. We present a multi-
robot scenario in a more realistic setting in Sec. V.

A. Dual Transition Systems

We proceed by converting the transition system Ti for
each robot to a dual transition system Di. The dual D of
a transition system T is obtained by swapping its states
with its transitions. More precisely, given T = (QT , q0

T ,→T

,Π,LT , wT), we define D = (QD, q0
D →D,Π,LD, wD) as

follows: if (a, b) ∈→T , then ab ∈ QD, and (ab, bc) ∈→D.
Intuitively, this means that the robot can “go from a to c
through b.” As propositions are originally assigned to the
states of T, they are satisfied on the transitions of D, i.e., if
(ab, bc) ∈→D, then LD((ab, bc)) = LT (b). In addition,
weights assigned to transitions of T are now defined on
states of D, i.e., wD(ab) = wT (a, b). This means that in the
dual Di of a Ti time is spent on the vertices and transitions
are instantaneous. Since the initial state q0

T of T can have
multiple outgoing transitions, the initial state q0

D does not
correspond to any transitions, therefore it has zero weight,
but it connects to all outgoing transitions of q0

T . The duals
of two simple transition systems are shown in Fig. 1.

a

bT1
π

2 2

(a)

a

b πT2

c

2

2
1 1

(b)

D1

π

q0
D1

2

2

0

(c)

π

D2

π

π

π

q0
D2

2

1

1

2

0

(d)

Fig. 1: (a) and (b) show the transition systems T1 and T2 for two
robots in an environment with three vertices. The states of the transition
systems correspond to vertices {a, b, c} and the edges represent the motion
capabilities of each robot. The weights of the edges represent the time
needed to traverse from a state to another; (c) and (d) are the dual transition
systems D1 and D2 corresponding to T1 and T2, respectively. A state
labelled ab means that the robot is travelling from vertex a to b.

B. Construction of the timed automata

By constructing the duals of the original transition systems
of individual robots, we can now fully capture the evolution
of time for each robot taking transitions on Ti with a timed
automaton as defined in Def. II.4. We can then generate a
product timed automaton capturing the time evolution of the
whole team.

To this end, for each robot, we define a clock xi, which
records how much time has passed in each state of Di. We
interpret the weights on the states of Di as clock constraints,
i.e., each state ab in Di is associated with a clock constraint
v(xi) ≥ wT (a, b). We set the initial value of the clock for
each robot to 0, and we let the clock constraint for the
initial state of Di to be immediately satisfied. At each state,
once the clock constraint is satisfied, it triggers an outgoing
transition and clock xi is reset to 0. As mentioned before in
Def. II.4, we enforce a transition when a clock constraint is
satisfied. We denote the timed automaton corresponding to
Di as Ai. The timed automata corresponding to the Di’s in
Fig. 1 are illustrated in Fig. 2.

π

x1 ≥ 2
x1 := 0

x1 ≥ 2
x1 := 0

x1 = 0

q0
A1

x1 ≥ 0
x1 := 0

π

x2 ≥ 2
x2 := 0

x2 = 0

x2 ≥ 2
x2 := 0 x2 := 0

x2 ≥ 1

x2 := 0

x2 ≥ 1

x2 ≥ 2
x2 := 0

x2 := 0

x2 ≥ 1

π

π π

q0
A2

x2 ≥ 0
x2 := 0

Fig. 2: Timed automata A1 and A2 of each robot, corresponding to D1

and D2 shown in Fig. 1c and Fig. 1d, respectively. The equations next to
each arrow represents the clock constraint and the clock-reset associated
with each transition of the timed automaton.

We capture the joint behavior of the robots by taking the
parallel composition of the individual timed automata Ai,
i = 1, . . . ,m, and calling it the product timed automata
P. The set of states of P is the Cartesian product of the
set of states of Di, i ∈ {1, . . . ,m}. The initial state of
P is (q0

D1
, . . . , q0

Dm
). We enable a transition from state

(q1, . . . , qm) to (q′1, . . . , q
′
m) if and only if, for all i, either

(qi, gi, ci, q
′
i) ∈→Ai

, or if (qi, gi, ci, q
′
i) /∈→Ai

for some
i, then qi = q′i. We label this transition with the union
of propositions satisfied by the corresponding transitions in
→Di

, and similarly the clock constraints that enable this
transition are the union of all clock constraints gi associated
with the transitions that are taken and inverses of the clock
constraints associated with the remaining transitions that are
not taken. Moreover, the clocks are reset for all robots i that
transitioned to a new state q′i. We require that at least one
robot i makes a transition to a new state for each transition of

P. Since we enforce each transition to be taken immediately
when all clock constraints are satisfied, some transitions of
P may never be taken because they are always preceded by
some other transitions for all possible clock values. Such
transitions will be referred to as invalid transitions. For the
example given in Fig. 1 and Fig. 2, we show the resulting
product timed automaton P = A1 ×A2 in Fig. 3 (without
invalid transitions).

x1 ≥ 2
x2 ≥ 2

x1 ≥ 2
x2 ≥ 2

x1 ≥ 2
x2 ≥ 2

x1 ≥ 2
x2 ≥ 2

x1 ≥ 2
x2 ≥ 2

x1 ≥ 2
x2 ≥ 2

x1 = 0
x2 = 0

P = A1 ×A2

q0
P

x1 ≥ 0

x2 ≥ 0

x1 < 2 x1 < 2

Fig. 3: The product timed automaton P describing the motion of the two
robots. The state ab, ba denotes that A1 is in state ab and A2 is in state ba.
To avoid notation clustering, we do not show the clock-resets and invalid
transitions. For example, in the transition from state (ba, bc) to (ba, cb),
robot 2 completes a transition, so its clock is reset, while robot 1 does not
complete a transition, the state stays the same and the clock is not reset. The
transition from (ba, bc) to (ab, bc) is invalid, because it can never happen
before the transition from (ba, bc) to (ba, cb).

C. Construction of the Region Automaton

From the product timed automaton P, we can obtain the
region automaton R as a bisimulation quotient of P (see Sec.
II-B). Note that the bisimulation quotient we obtain from P
is a particular case of the bisimulation quotient of a general
timed automaton, where the transitions are enforced when
clock constraints are satisfied. In the process of obtaining
R, all invalid transitions of P are automatically removed,
by the definition of region automata.

We can now assign propositions and weights to R, con-
verting it to a transition system as defined in Def. II.1. We
define a function LR : QR → 2Π such that, for each transi-
tion ({q, r}, {q′, r′}), the set of propositions corresponding
to the transition (q, g, c, q′) on P are assigned to the state
q′, i.e., observations defined on the transitions of P are
carried to their destination states in R. In the following,
we take m to be the number of clocks, or equivalently
the number of robots, in the product timed automaton P,
and di to be the largest integer constant that some clock
xi ∈ CP = {x1, . . . , xm} is compared with.

Proposition IV.1. For each state {q, r} of the region automa-
ton R, clock region r is always a tuple (v(x1), . . . , v(xm)),
where v(xi) are integers for all i = 1, . . . ,m.

Proof. Clock constraints are positive integers smaller than
or equal to di. Since the transitions are enforced when clock
constraints are satisfied, and the initial clock is set to 0,
every time a transition on P is taken, after the clock-resets,
we have v(xi) ∈ {0, . . . , di − 1}, for all i = 1, . . . ,m.

Therefore, the set of clock regions that can be reached on
R (the bisimulation quotient of P) are always corner points,
i.e., a tuple (v(x1), . . . , v(xm)), where v(xi) are integers for
all i = 1, . . . ,m. �

Using Prop. IV.1, we now assign a weight to each tran-
sition of R. Given a transition ({q, r}, {q′, r′}), we define
its weight to be the time t it takes to reach from r =
(v(x1), . . . , v(xm)) to r′′ = (v(x1) + t, . . . , v(xm) + t),
where r′′ is a time-successor of r. The region automaton
corresponding to the product automaton from Fig. 3 is shown
in Fig. 4.

ab, ab

(0, 0)

ba, ba

(0, 0)

ba, bc

(0, 0)

ba, cb

(1, 0)

π

ab, bc

(0, 0)

ab, cb

(1, 0)

ab, ba

(0, 0)

ba, ab

(0, 0)
RP

2 1

π

π

π

π

2 2

1

1

2221

1

1

q0
R

0

Fig. 4: The finite state region automaton capturing the joint behavior of two
robots in 9 states. In the circle representing a state {q, r}, the first line is
q and the second line is r.

The following proposition gives the bound on the size of
the region automaton R.

Proposition IV.2. The number of states |QR| of R is
bounded by

|QP |
(

m∏
i=1

di −
m∏
i=1

(di − 1)

)
(5)

Proof. From Prop. IV.1, all clock regions of R are corner
points, i.e., tuples of integers taking values within the range
{0, . . . , di − 1}. Counting the number of possible reachable
clock regions, we have

m∏
i=1

di −
m∏
i=1

(di − 1)

where
∏m
i=1 di is the number of all possible corner points

and
∏m
i=1(di − 1) is the number of corner points where all

clocks are non-zero (since one clock must be zero after the
reset, these corner points cannot be reached). Given a product
timed automaton with |QP | number of states, using the above
given bound on the number of reachable clock regions we
can conclude that |QR| is bounded by (5). �

Remark IV.3. In [18] the authors give the upper-bound on
the number of clock regions |RP | of P as

m! · 2m ·
m∏
i=1

(2di + 2),

which gives the upper bound of R as |QP | · m! · 2m ·∏m
i=1(2di + 2). From Prop. IV.1, using our particular case

of timed automata, |QR| is reduced by at least a factor of
m! · 22m.

We use Alg. 1 to obtain the region automaton R, by
applying a (recursive) depth-first search (DFS) on P. We
note that line 8 in Alg. 1 removes all invalid transitions in
P. Moreover, Alg. 1 generates R by finding all reachable
clock regions of P.

Algorithm 1: OBTAIN-REGION-AUTOMATON

Input: Product timed automaton P.
Output: Corresponding region automaton R.

1 begin
2 Obtain R by running a DFS on P starting from the

initial state and clock region r0 = (0, . . . , 0):
dfsP(q0

P ,r0).

3 Function dfsP(state q, clock region r)
4 begin
5 Find the next clock region r′′ when we have a

transition out of q.
6 w ← Time between r and r′′.
7 foreach transition t taken at r′′ do
8 Find the next clock region r′ once t is taken by

resetting the appropriate clock.
9 q′ ← Target state of t.

10 if {q′, r′} /∈ QR then
11 Add state {q′, r′} to QR with proposition

LP (t) of t.
12 Add {q, r} → {q′, r′} to →R with w.
13 Continue search from {q′, r′}: dfsP(q′, r′)

14 else if {q, r} → {q′, r′} /∈→R then
15 Add {q, r} → {q′, r′} to →R with w.

We now show that the region automaton indeed captures
the behavior of the team. Given a run rR on R, we
denote the corresponding word (see Sec. II-A) as ωR and
the corresponding time sequence of satisfying instances of
propositions (see Sec. III) as TR. We have

Proposition IV.4. Given individual runs of the team, ri =
q0
i q

1
i . . . , i = 1, . . . ,m, there is a corresponding run rR on

R such that, the word ω generated by the team is ωR and
the time sequence T of satisfying instances of propositions
for the team is TR.

Proof. Each run ri = q0
i q

1
i . . . uniquely corresponds to a

run on Di, rDi = q0
Di

(q0
i q

1
i)(q1

i q
2
i), Since the weight

wTi(q
k
i , q

k+1
i) is defined to be the clock constraint associated

with state qki q
k+1
i on Ai, there is a sequence of transitions

rP on the product timed automaton P such that a transition
occurs if some set of states are visited on Ti’s. Since R
is a bisimulation quotient of P, this sequence of transitions
corresponds to a run on rR = q0

R{q0, r0}{q1, r1} . . ., such
that each transition ({qk, rk}, {qk+1, rk+1}) in rR corre-
sponds to some set of states being visited on Ti’s, which we
denote as I({qk, rk}, {qk+1, rk+1}). Similarly, if some set of
states are visited on Ti’s, there is a corresponding transition
({qk, rk}, {qk+1, rk+1}) for some k. The set of propositions
satisfied at the set of states I({qk, rk}, {qk+1, rk+1}) is satis-

fied when the transition ({qk, rk}, {qk+1, rk+1}) is taken and
the state {qk+1, rk+1} is reached on R. Therefore the word
ω generated by R is exactly the word generated by the team.
Also note that the state {qk+1, rk+1} corresponds to robots
leaving vertices I({qk, rk}, {qk+1, rk+1}). Because robots
spend zero time at vertices, {qk+1, rk+1} is reached at the
same time as when robots reach I({qk, rk}, {qk+1, rk+1}).
Therefore, the time sequence T of satisfying instances of
propositions for the team is exactly TR for run rR. �

D. Generating the optimal runs for individual robots

Once the region automaton capturing the behavior of the
team is constructed, we can use Alg. OPTIMAL-RUN [8] to
obtain an optimal run r?R on R that minimizes the lim sup
as defined in (4). The optimal run r?R always consists of a
finite sequence of states of R (prefix), followed by infinite
repetitions of another finite sequence of states of R (suffix).
Such a run is said to be in a prefix-suffix form.

For the example we have shown throughout this section,
running Alg. OPTIMAL-RUN [8] on R given in Fig. 4 for
the formula φ := GFπ results in the optimal run

T 0 2 3 4 6 8 10 . . .

r?R
ab,ab ba,bc ba,cb ab,ba ba,ab ab,ba ba,ab

. . .(0,0) (0,0) (1,0) (0,0) (0,0) (0,0) (0,0)
LR(·) π π π π π . . .

where the first row corresponds to the times when transitions
occur, the second row comprises the run r?R, and the last row
shows the satisfying atomic propositions. For this run, we
see that {(ab, ab), (0, 0)}{(ba, bc), (0, 0)}{(ba, cb), (1, 0)} is
the prefix and {(ab, ba), (0, 0)}{(ba, ab), (0, 0)} is the suffix
and will be repeated infinite number of times. Moreover, for
this example, the time sequence of satisfaction of π is Tπ =
2, 4, 6, 8, 10, . . . and the cost as defined in (4) is J(Tπ) = 2.

Given a run rR of R, we can finally project it down to
individual robots to obtain individual runs ri of Ti.

Definition IV.5 (Projection of a run on R to Ti’s). Given
a run rR on R where

rR =
{

(q0
1q

1
1 , . . . , q

0
mq

1
m), (v0(x1), . . . , v0(xm))

}{
(q1

1q
2
1 , . . . , q

1
mq

2
m), (v1(x1), . . . , v1(xm))

}
. . . ,

we define its projection on Ti as run ri = q0
i q

1
i . . . for all

i = 1, . . . ,m, where qki only appears in ri if vk(xi) = 0.

It can be easily seen that, given rR, its set of projected
runs ri correspond to rR as defined in Prop. IV.4, i.e., the
behavior of the team where robot i follows run ri is captured
exactly by rR. Moreover, if run rR is in prefix-suffix form, all
individual runs ri projected from rR are in prefix-suffix form.
Therefore, the individual runs projected from the optimal run
r?R are always in prefix-suffix form. For the optimal run we
obtained for the previous example, using Def. IV.5, we have
runs of individual robots as follows:

T 0 2 3 4 6 8 10 . . .
r?1 a b a b a b . . .
r?2 a b c b a b a . . .

Note that, at time t = 3, the second robot has arrived at c
while the first robot is still traveling from b to a, therefore the

clock of the first robot is not zero at this time, i.e., v3(x1) 6=
0, and b does not appear in r?1 at time t = 3.

We finally summarize our approach in Alg. 2 and show
that this algorithm indeed gives a solution to Prob. III.1.

Proposition IV.6. Alg. 2 solves Prob. III.1.

Proof. Note that Alg. 2 combines all steps outlined in this
section. Run r?R obtained from Alg. OPTIMAL-RUN both
satisfies φ and minimizes (4) among all runs of R, which
was shown in [8]. As shown in Prop. IV.4 and as mentioned
above, there is a one-to-one correspondence between a set of
runs {r1, . . . , rm} and a run rR. Therefore, {r?1 , . . . , r?m} as
a projection of r?R onto Ti’s is the solution to Prob. III.1. �

Algorithm 2: MULTI-ROBOT-OPTIMAL-RUN

Input: m Ti’s and a LTL specification φ of form (3).
Output: A set of runs {r?1 , . . . , r?m} that both satisfies

φ and minimizes (4).
1 begin
2 forall the Ti do
3 Construct the timed automaton Ai by first

constructing the dual TS Di and then defining
clocks and clock constraints.

4 Find the product timed automaton P = Πm
i=1Ai.

5 Construct the region automaton R using
OBTAIN-REGION-AUTOMATON .

6 Find the optimal run r?R using OPTIMAL-RUN [8].
7 Project r?R to Ti’s to obtain runs {r?1 , . . . , r?m}.

V. IMPLEMENTATION AND CASE STUDIES

We implemented Alg. 2 in objective-C as the software
package LTL OPTIMAL MULTI-ROBOT PLANNER (LOMP)
and used it in conjunction with our earlier OPTIMAL-RUN
[8] algorithm to obtain simulations of robots performing
persistent data gathering missions in a road network en-
vironment. Our user-friendly software package is available
at http://hyness.bu.edu/Software.html. It uti-
lizes the dot tool [19] to visualize transition systems and the
OPTIMAL-RUN algorithm uses the LTL2BA software [20]
to convert LTL specifications to Büchi automata. A typical
usage of our software comprises three steps:

(i) The user defines Ti’s in text and imports them to the
application. Then, the application creates the region
automaton R following the steps detailed in Sec.IV
and exports an M-file which defines R in Matlab.

(ii) OPTIMAL-RUN algorithm is executed in Matlab to find
the optimal run r?R on R, which is projected onto
Ti, i = 1, . . . ,m to obtain the solution to Prob. III.1.

(iii) Finally, the resulting motion of the team is shown in
a simulator.

The road network that we consider for our case studies
is a collection of roads, intersections, and task locations. In
this road network, a road connects two intersections and the
task locations are always located on the side of a road. The
transition system that we used to model the motion of the

1 1
20

7

8

1 3

5

44

4

2 2

1 1

1

1 1 1

1 1

1

1

1 1

1

11 1

1 1

1

1

1 1

1

1

1

44

1

4

2

8

6

10

13

2125

17

24

12

20

16 11

19

15

23

26

18 14

22

P5

P2

P3

P1

P4

(1) (1)
(5)

(2)

(2)

(1) (2)

(2)

(1)(1)

(1)

(1) (1)

(1) (1)

(1)

(1) (1) (1)

(1) (1)

(1)

(1)

(1) (1)

(1)

(1)(1) (1)

(1) (1)

(1)

(1)

(1) (1)

(1)

(1)

(1)

(1)(1)

(1)

Fig. 5: The road network showing the labels of task locations and the
quantized weights of the road segments for the two case studies. Values
in blue are weights for the case where the weights are in {1 . . . 20} and
values in magenta are for the case where the weights are in {1 . . . 5}.

robots in this environment is illustrated in Fig. 5. We assume
that the transition systems Ti of robots are identical except
at the initial state. In Ti’s, the weights of transitions are
quantized so that the resulting region transition system has a
manageable size while still preserving the relative distances
of the road segments. In the following, we consider two
cases where the weights fall in the range {1, . . . , 5} and
{1, . . . , 20}, respectively.

We consider a persistent monitoring task where robots are
deployed to repeatedly gather and upload data. We require
robot 1 to gather data at P1 and upload the gathered data at
P5; and robot 2 to gather data at P2 and upload the gathered
data at P4. To specify this task, we let the set of atomic
propositions to be

Π = {Gather, R1Gather, R1Upload, R2Gather, R2Upload}
and assign the atomic propositions as follows:

L1(P1) = {R1Gather, Gather},L1(P5) = {R1Upload}
L2(P2) = {R2Gather, Gather},L2(P4) = {R2Upload}.

We aim to minimize the maximum time in between data-
gatherings performed by either robot 1 or 2. Therefore we
set the proposition Gather to be satisfied when either robots
visit their gathering locations, and we set it as the optimizing
proposition (π as in formula (3)). We set the propositions
{R1Gather, R1Upload} and {R2Gather, R2Upload} to be
robot specific since robots gather and upload at different
locations. For both robots, we enforce the rule that, after
each data gathering, the data must be uploaded at the upload
location before another data gathering. This rule can be
specified in LTL as follows:

ϕ = G(R1Gather⇒ X(¬R1Gather U R1Upload))

∧G(R2Gather⇒ X(¬R2Gather U R2Upload)).

Our overall LTL formula in the form of (3) is φ = ϕ ∧
GF Gather.

Running our algorithms on an iMac i5 quad-core com-
puter, we obtain the solutions as illustrated in Fig. 6. For
the case where the weights are in the range {1 . . . 5} the
algorithm ran for 90 seconds, the region transition system

http://hyness.bu.edu/Software.html

(a) (b)

Fig. 6: Simulated team trajectories for the two case studies. (a) and (b)
correspond to the cases where the weights are within the ranges {1 . . . 5}
and {1 . . . 20}, respectively. Robot 1 and robot 2 travel between red and
blue task locations respectively. Regions filled with a solid color are data
gathering locations and regions with a diagonal pattern are upload locations.

R that the OPTIMAL-RUN algorithm worked on had 2337
states and the value of the cost function was 11 time units,
meaning that the maximum time in between data gatherings
was 11 time units. For the case where the weights are in
the range {1 . . . 20} our algorithm ran for 10 minutes, R
had 6191 states and the value of the cost function was 22
time units. Our video submission accompanying the paper
displays the robot trajectories for both cases.

It is interesting to note that, for the case where the weights
are in {1 . . . 20}, the optimal team trajectories have robots
spending extra time entering and exiting some vertices. This
behavior is actually time-wise optimal since it decreases the
maximum time between satisfying instances of the optimiz-
ing proposition, minimizing the cost function.

VI. CONCLUSIONS

In this paper we presented a method for planning the
optimal motion for a team of robots in a common envi-
ronment subject to temporal logic constraints. The problem
is important in applications where multiple robots have to
perform a sequence of operations collectively subject to
various external constraints. We considered temporal logic
specifications which contain an optimizing proposition that
must be repeatedly satisfied. The motion plan that our
method provides is optimal in the sense that it minimizes
the maximum time between satisfying instances of the opti-
mizing proposition.

There are many promising directions for future work. In
particular, we are looking at the case where one allows delays
when robots take transitions. We are also investigating more
realistic robot models such as Markov Decision Processes
(MDPs) and Partially Observable MDPs.

REFERENCES

[1] M. Antoniotti and B. Mishra, “Discrete event models + temporal
logic = supervisory controller: Automatic synthesis of locomotion

controllers,” in IEEE Int. Conf. on Robotics and Automation, Nagoya,
Japan, 1995, pp. 1441–1446.

[2] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of
multiagent motion tasks based on LTL specifications,” in IEEE Conf.
on Decision and Control, Paradise Island, Bahamas, 2004, pp. 153–
158.

[3] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
motion planning and control in polygonal environment,” IEEE Trans-
actions on Robotics, vol. 21, no. 5, pp. 864–875, 2005.

[4] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[5] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
control for temporal logic specifications,” in Hybrid systems: Compu-
tation and Control, Stockholm, Sweden, 2010, pp. 101–110.

[6] M. Y. Vardi and P. Wolper, “An automata-theoretic approach to
automatic program verification,” in Logic in Computer Science, 1986,
pp. 322–331.

[7] G. Holzmann, “The model checker SPIN,” IEEE Transactions on
Software Engineering, vol. 25, no. 5, pp. 279–295, 1997.

[8] S. L. Smith, J. Tůmová, C. Belta, and D. Rus, “Optimal path planning
under temporal logic constraints,” in IEEE/RSJ Int. Conf. on Intelligent
Robots & Systems, Taipei, Taiwan, Oct. 2010, pp. 3288–3293.

[9] L. C. G. J. M. Habets and J. H. van Schuppen, “A control problem for
affine dynamical systems on a full-dimensional polytope,” Automatica,
vol. 40, pp. 21–35, 2004.

[10] C. Belta and L. C. G. J. M. Habets, “Control of a class of nonlinear
systems on rectangles,” IEEE Transactions on Automatic Control,
vol. 51, no. 11, pp. 1749–1759, 2006.

[11] M. Kloetzer and C. Belta, “Automatic deployment of distributed teams
of robots from temporal logic specifications,” IEEE Transactions on
Robotics, vol. 26, no. 1, pp. 48–61, 2010.

[12] M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi, “Multi-robot
motion planning: A timed automata approach,” in IEEE Int. Conf. on
Robotics and Automation, New Orleans, LA, 2004, pp. 4417–4422.

[13] P. Toth and D. Vigo, Eds., The Vehicle Routing Problem, ser. Mono-
graphs on Discrete Mathematics and Applications. SIAM, 2001.

[14] S. Karaman and E. Frazzoli, “Complex mission optimization for
multiple-uavs using linear temporal logic,” in American Control Con-
ference, Seattle, WA, 2008, pp. 2003–2009.

[15] ——, “Vehicle routing problem with metric temporal logic specifi-
cations,” in IEEE Conf. on Decision and Control, Cancún, México,
2008, pp. 3953–3958.

[16] R. Milner, Communication and concurrency. Prentice-Hall, 1989.
[17] P. Gastin and D. Oddoux, “Fast LTL to Buchi automata translation,”

Lecture Notes in Computer Science, pp. 53–65, 2001.
[18] R. Alur and D. Dill, “A theory of timed automata,” Theoretical

computer science, vol. 126, no. 2, pp. 183–235, 1994.
[19] “Graphviz - graph visualization software,” http://www.graphviz.org/.
[20] “LTL2BA,” http://www.lsv.ens-cachan.fr/∼gastin/ltl2ba/index.php.

http://www.graphviz.org/
http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/index.php

	I Introduction
	II Preliminaries
	II-A Transition Systems and LTL
	II-B Timed Automata

	III Problem Formulation and Approach
	IV Problem Solution
	IV-A Dual Transition Systems
	IV-B Construction of the timed automata
	IV-C Construction of the Region Automaton
	IV-D Generating the optimal runs for individual robots

	V Implementation and Case Studies
	VI Conclusions
	References

