
Maintaining a Large Matching and a Small Vertex Cover

Krzysztof Onak
∗

MIT
konak@mit.edu

Ronitt Rubinfeld
†

MIT and Tel Aviv University
ronitt@csail.mit.edu

ABSTRACT
We consider the problem of maintaining a large matching
and a small vertex cover in a dynamically changing graph.
Each update to the graph is either an edge deletion or an
edge insertion. We give the first randomized data structure
that simultaneously achieves a constant approximation fac-
tor and handles a sequence of K updates in K · polylog(n)
time, where n is the number of vertices in the graph. Pre-
vious data structures require a polynomial amount of com-
putation per update.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and Networks; F.2.2 [Analysis

of Algorithms and Problem Complexity]: Nonnumeri-
cal Algorithms and Problems; G.2.2 [Graph Theory]: Graph
Algorithms

General Terms
Algorithms

Keywords
dynamic algorithms, data structures, maximum matching,
vertex cover

1. INTRODUCTION
Suppose one is given the task of solving a combinatorial

problem, such as vertex cover or maximum matching, for
a very large and constantly changing graph. In this setting,
it is natural to ask, does one need to recompute the solution
from scratch after every update?

∗Supported by NSF grants 0732334 and 0728645.
†Supported by NSF grants 0732334 and 0728645, Marie
Curie Reintegration grant PIRG03-GA-2008-231077, and
the Israel Science Foundation grant nos. 1147/09 and
1675/09.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’10, June 5–8, 2010, Cambridge, Massachusetts, USA.
Copyright 2010 ACM 978-1-4503-0050-6/10/06 ...$10.00.

Such questions have been asked before for various com-
binatorial quantities—examples include minimum spanning
tree, shortest path length, min-cut, and many others (some
examples include [3, 2, 6, 15, 8, 14]). Classic works for
these problems have shown update times that are sublin-
ear in the input size. For the problem of maximum match-
ing, Sankowski [13] shows that it can be maintained with
O(n1.495) computation per update (n is the number of ver-
tices in the graph), which for dense graphs is sublinear in
the number of edges.

For very large graphs, it may be crucial to maintain the
maximum matching with much faster, even polylogarithmic,
update time. Note that this may be hard for maximum
matching, since obtaining o(

√
n) update time, even in the

case when only insertions are allowed, would improve on the
30-year-old algorithm of running time O(m

√
n) due to Mi-

cali and Vazirani [11], where m is the number of edges in
the graph. Therefore, some kind of approximation may be
unavoidable. Following similar considerations, Ivković and
Lloyd [7] give a factor-2 approximation to both vertex cover
and maximum matching, by maintaining a maximal match-
ing (which is well known to give the desired approximation
for maximum matching and minimum vertex cover). Their
update time is nevertheless still polynomial in n. More pre-
cisely, it is O((n+m)0.7072), which is o(n) for sparse graphs.

In this paper, we concentrate on the setting in which
slightly weaker, but still O(1), approximation factors are
acceptable, and in which it is crucial that update times be
extremely fast, in particular, polylogarithmic in the graph
size.

1.1 Problem Statement and Our Results
Recall that in the maximum matching problem, one wants

to find the largest subset of vertex disjoint edges. In the
vertex cover problem, one wants to find the smallest set of
vertices such that each edge of the graph is incident to at
least one vertex in the set.

Our goal here is to design a data structure that handles
edge removals and edge insertions. The data structure pro-
vides access to a list of edges that constitute a large matching
or a list of vertices that constitute a small vertex cover. We
assume that we always start with an empty graph, and n is
known in advance.

The main result of the paper is the following:

There is a randomized data structure for maxi-
mum matching and vertex cover that

(a) achieves a constant approximation factor,

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/9321845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(b) runs in

O

„
min{K, n2} · log n · log 1

δ
+ K · log2 n

«

time for a fixed sequence of K updates with
probability 1 − δ.

Furthermore, the first step in our presentation is a deter-
ministic data structure for vertex cover. The data structure
keeps a vertex cover that gives an O(log n) approximation
to the minimum vertex cover. The amortized update time of
the data structure is O(log2 n). Though the approximation
factor achieved by this algorithm is relatively weak, the algo-
rithm may be of independent interest because of its relative
simplicity and efficient update time.

1.2 Overview of Our Techniques
We present our main result in two stages.

A Deterministic O(log n)-Approximation Data Struc-

ture: We construct a data structure that makes use of
a carefully designed partition of vertices into a logarithmic
number of subsets. The partition is inspired by a simple dis-
tributed algorithm of Parnas and Ron [12]. In [12], the first
subset in the partition corresponds to removing vertices of
degree approximately n. The second subset corresponds to
removing vertices of degree close to n/4 from the modified
graph. In general, the i-th subset is a set of vertices that are
approximately n/4i−1 in the graph with all previous subsets
of vertices removed. Finally, after a logarithmic number of
steps, the remaining graph has no edges. This implies that
the union of all subsets removed so far constitutes a vertex
cover. For each of the removed subsets, it is easy to show
that the subset size is bounded by O(VC(G)), where VC(G)
is the size of the minimum vertex cover. Hence the total
vertex cover is bounded by O(VC(G) · log n).

The main idea behind our data structure is to modify the
partition of Parnas and Ron in order to allow efficient main-
tenance of this partition, under edge insertions and dele-
tions. While this is not possible in the partition of Parnas
and Ron, it is possible in our relaxed version of it. As edges
are inserted and removed, we want to move vertices between
subsets. In order to determine whether to move a vertex,
we associate a potential function with every vertex, and we
allow a vertex to jump from one set to another only if it has
collected enough potential. To do this, we set two thresh-
olds τ1 < τ2 for each subset. A vertex can move into the
subset from a subset corresponding to a lower degree if its
number of neighbors in a specific graph is at least τ2. Then
the vertex can move back to a subset corresponding to a
lower degree only if the number of edges decreases to τ1 in
the same graph. A slight technical difficulty is presented
by the fact that moving vertices may increase the potential
of other vertices. We overcome this obstacle by carefully
selecting constants in the potential function so that the po-
tential of the vertex that moves is spent on increasing the
potential of its neighbors.

A Randomized O(1)-Approximation Data Structure:

In this case, we redesign the partition, building upon the pre-
vious one. In the process of defining the partition, whenever
we remove a large subset W of vertices of degree approxi-
mately n/4i, we also show the existence of a matching M
which is smaller than W by at most a constant factor. To

build the next set of the partition, we not only remove W
but also all vertices matched in M . In this way we achieve a
matching and a vertex cover of sizes that are within a con-
stant factor of each other. Therefore, both give a constant
factor approximation to their respective optimal solutions.

Efficient maintenance of the new partition is more in-
volved, as we are sometimes forced to recompute a match-
ing. This can happen, for instance, when many edges in the
matching are deleted from the graph. Unfortunately, the
creation of a new matching is expensive, since we have mod-
ified the set of the vertices matched in M that are deleted to-
gether with W . If the edges in the matching are deleted too
quickly, we have to create a new matching often, in which
case we do not know how to maintain small update time.
Fortunately, by picking a large random matching, we can
ensure that it is unlikely that many edges from the match-
ing get deleted in a short span of time. Thus, by the time
the matching gets deleted, we are likely to have collected
enough potential to pay for the creation of a new matching.

1.3 Other Related Work
A sequence of papers [5, 10, 16, 4] considers computing a

large matching or a large weight matching (in the weighted
case) in the semi-streaming model. The stream is a sequence
of edges, and the goal of an algorithm is to compute a large
matching in a small number of passes over the stream, using
O(n · logO(1) n) space, and preferably at most polylog(n)
update time. Results in this model correspond to results for
dynamically changing graphs in which only edge insertions
occur, except that the matching is only output once, at the
end of the processing. To the best of our knowledge, it is not
known how to achieve a better approximation factor than 2
in one pass for the maximum matching problem.

Lotker, Patt-Shamir, and Rosén [9] show how to maintain
a large matching in a distributed network.

2. PRELIMINARIES
We assume that all the necessary simple set operations

(insert, remove, find, . . .) on ordered sets of size t can be
implemented in O(log t) time. A number of tree based dictio-
naries (AVL trees, red-black trees, etc.) have this property
(see for instance the textbook of Cormen et al. [1]). We also
assume that the first s items in a set can be accessed in O(s)
time, which can usually easily be achieved by augmenting a
given data structure with additional links.

Throughout the paper, α is a fixed integer greater than
1. We write kα to denote ⌊logα n⌋ + 2. Moreover, VC(G)
is the minimum vertex cover size in G, and MM(G) is the
maximum matching size in G.

2.1 Basic Facts

Fact 1. Let G be a graph, and let M be a matching in
G. Then, VC(G) ≥ |M |.

Lemma 2. Let G be a graph of maximum degree d. Let
V ′ be a subset of vertices such that every vertex in V ′ has
degree between d/γ and d. The following holds:

• There is a matching M of size at least |V ′|/(4γ) with
each edge incident to a vertex in V ′.

• |V ′| ≤ 4γ · VC(G).

Proof. There are at least X
def

= d|V ′|
2γ

edges incident to

vertices in V ′. Each such edge is adjacent to at most Y
def

=
2(d−1) other such edges. This implies that G has a matching
of size at least X/(Y + 1) ≥ |V ′|/(4γ). By Fact 1, |V ′| ≤
4γ · VC(G).

2.2 Simple O(d)-Update-Time Data Structure
We now describe a straightforward data structure for main-

taining a maximal matching in a graph of maximum degree
bounded by d. To the best of our knowledge, the data struc-
ture was first described by Ivković and Lloyd [7].

For every vertex, the data structure maintains informa-
tion indicating whether it is matched. Whenever an edge
is inserted, the data structure checks if its endpoints are
matched or not. If none of them are, the edge is added to
the matching. Whenever an edge e in the maximal matching
is removed, the data structure checks whether the remaining
matching may be extended by adding edges incident to the
endpoints of e. To do this, the data structure goes over O(d)
edges that were adjacent to e, and greedily tries to extend
the matching with each of them.

It is easy to show that the matching held by the data
structure is maximal. It can be used for obtaining a 2-
approximation of both the minimum vertex cover (use the
endpoints of edges in the matching) and the maximum match-
ing (use the maximal matching itself). The Insert oper-
ation takes O(1) time, and the Delete operation requires
O(d) time.

3. WARMUP: DETERMINISTIC
O(log n)-APPROXIMATION FOR VERTEX
COVER

3.1 A Sequential Algorithm
Consider first the sequential Algorithm 1. The algorithm

is a modification of a simple distributed algorithm for vertex
cover that was used by Parnas and Ron [12].

Algorithm 1: A sequential O(log n)-approximation al-
gorithm for vertex cover

Input: graph G, integer α > 1
kα := ⌊logα n⌋ + 21

Gkα
:= G2

for i := kα downto 1 do3

Vi := {vertices of degree ≥ αi−1 in Gi}4

∪ {arbitrary subset of vertices of degree5

in [αi−2, αi−1) in Gi}6

Gi−1 := Gi with vertices in Vi removed7

return
Skα

i=1 Vi8

Lemma 3. Let α be an integer greater than 1. The size of
each set Vi in Algorithm 1 is bounded by 4α2 VC(G). Algo-
rithm 1 computes a vertex cover of size ≤ 4α2 · kα · VC(G).

Proof. The algorithm repeatedly removes vertices and
their adjacent edges from the original graph, and adds the
removed vertices to the cover. To see that the algorithm
computes a vertex cover, note that the final graph G0 has
no edges, which means that all edges of G have been covered
by the output of the algorithm.

Let i be any integer between 1 and kα. The maximum
degree of Gi is bounded by αi. By Lemma 2, |Vi| ≤ 4α2 ·
VC(Gi) ≤ 4α2 · VC(G). This implies that the size of the
cover returned by the algorithm is at most kα·4α2 VC(G).

3.2 The Data Structure
We design a data structure that keeps a partition of ver-

tices into a logarithmic number of sets Vi, 0 ≤ i ≤ kα. The
partition is one that could potentially be created in an exe-
cution of Algorithm 1. We refer to sets Vi as buckets. The
sets Vi with i > 0 are sets of vertices removed in consec-
utive executions of the loop of Algorithm 1, and V0 is the
set of vertices that are not removed from the graph by the
algorithm. For i > 0, each Vi consists of vertices that at
the time of removal, have degree between αi−2 and αi. The
union of Vi over i > 0 is the current vertex cover.

For every vertex v, we maintain the following variables:

index[v]: the index of the set Vi that contains v.

neighbors[v, j] for j ≥ index[v]: the set of neighbors of v
that that belong to Vj .

below[v, j] for j ≥ index[v]: the total number of all neigh-
bors of v in sets V0 through Vj .

lower-neighbors[v]: the set of neighbors of v that belong
to Vi for i < index[v].

We call the collection of vertices involving v the structures
of v.

Initially, the graph is empty, so all sets of neighbors are
empty, and index[v] = 0 and below[v, j] = 0 for all v and j.

We maintain the following invariants for each vertex v
after each update to the graph:

• To ensure that v’s bucket number index[v] is not too
high, i.e., that it has enough edges to nodes in lower
buckets, we ask that if index[v] > 0, then below[v,

index[v]] > αindex[v]−2 .

• On the other hand, to ensure that v’s bucket number
is not too low, i.e., that it should not have been placed
in a higher bucket, we ask that for each i ∈ {index[v]+
1, . . . , kα}, below[v, i] < αi−1.

Note that if this is the case, then the sets Vi, 1 ≤ i ≤ kα

defined as Vi = {v ∈ V : index[v] = i} could potentially be
created by the non-deterministic Algorithm 1.

As a result of edge removals and insertions, the invariants
may no longer hold. We first design a procedure Resta-

bilize that given a set of vertices for which the invariant
may not hold (we call such vertices dirty), attempts to fix
the partition given by index[·]. As long as there is a dirty
vertex v, the procedure does the following.

• If there is an i > index[v], such that below[v, i] ≥
αi−1, the procedure sets index[v] to the highest such
i. (This could happen if many edges adjacent to v
have been added to the graph, or if many edges have
been deleted from v’s neighbors that were previously
in higher buckets than the i-th, causing them to be
demoted to lower buckets.)

Let t and t⋆ be the new and old value of index[v],
respectively. The move of v from Vt⋆

to Vt may inval-
idate the invariant for neighbors of v in buckets Vt to

Vt⋆−1. Therefore, the procedure marks all of them as
dirty.

Next, the procedure updates neighbors[u], below[u, ·],
and lower-neighbors[u] for all neighbors u of v in
buckets V0 through Vt. Then the procedure updates
the structures for v as well. Note that updating all
the structures takes at most O(below[v, t] · log n) time,
because this requires at most a constant number of set
operations per each of the neighbors in consideration,
and for each vertex u, the array below[u, ·] can be up-
dated in O(kα) = O(log n) time.

Finally, the procedure marks v as no longer dirty.

• Otherwise, if index[v] > 0, and below[v, index[v]] ≤
αindex[v]−2, the procedure decreases index[v] by one.
(This could happen if many edges adjacent to v have
been deleted, or if many edges are added to v’s neigh-
bors that were previously in lower buckets than v,
causing them to jump to higher buckets.)

Let t be the new value of index[v]. The move of v
can affect the invariant for neighbors of v in sets V0

through Vt−1, so the procedure marks all of them as
dirty.

The procedure also updates neighbors[u], below[u, ·],
and lower-neighbors[u] for all neighbors u of v in
buckets V0 to Vt+1. Next it does the same for the struc-
tures of v. In total, this takes O(below[v, t + 1] · log n)
time, since at most a constant number of set opera-
tions per each of the neighbors in consideration is nec-
essary, and for each of them below[·, ·] can be updated
in O(kα) = O(log n) time.

In this case, the procedure does not change the status
of v. It still remains dirty, since the procedure may
have to decrease index[v] further1.

• If none of the previous cases occurred, v is already in
the right bucket, and there is no need to move it. The
procedure marks the vertex as no longer dirty.

It is not immediately clear that the above procedure Resta-

bilize always stops. We show that this is the case in Sec-
tion 3.3.

It is easy to implement operations Insert and Delete that
are responsible for inserting and removing an edge by using
Restabilize. It suffices to modify first the corresponding
below[u, ·], neighbors[u, ·], and lower-neighbors[u] for each
of the edge’s endpoints u (this can be done in O(log n) time),
mark the endpoints as dirty, and run Restabilize to fix the
partition of vertices if necessary.

3.3 Complexity Analysis

Theorem 4. The amortized complexity of the operations
Insert and Delete in the deterministic data structure is
O(log2 n) for α = 4.

Proof. The use the following potential function. The
potential of a vertex v equals

Φ(v)
def

= Φ1(v) + Φ2(v),

1One could immediately decrease index[v] to the right value,
but it is easier to analyze the complexity of this version of
the procedure.

where

Φ1(v)
def

= 0,

if index[v] = 0,

Φ1(v)
def

= 8 · min

max
n

αindex[v]−1 − below[v, index[v]], 0
o

,

αindex[v]−1 − αindex[v]−2

ff

for index[v] > 0, and

Φ2(v)
def

= 12 ·
kαX

i=index[v]+1

max
n
below[v, i] − αi−2, 0

o
.

Φ1(v) corresponds to losing neighbors. When v loses suf-
ficiently many of them, there is enough potential to pay for
decreasing index[v]. Φ2(v) is related to the number of neigh-
bors u with index[u] > index[v]. We only increase index[v]
if there are sufficiently many of them, and then Φ2(v) pro-
vides enough potential to conduct the operation. For the
initial empty graph, all Φ(v) = 0.

Each unit of the potential corresponds to O(log n) com-
putation. Inserting or removing an edge can only change
the potential of the endpoints of the edge, and the change
is bounded by O(kα), because each of O(kα) terms can
only change by a constant. We show that fixing the in-
variant of the data structure, i.e., executing the procedure
Restabilize, is almost entirely paid for by potentials of
vertices. More precisely, we show that the amortized com-
plexity of Restabilize is the number of vertices that are
initially marked as dirty times O(log n). Assuming this, the
amortized cost of both Insert and Delete is O(kα · log n) =
O(log2 n).

Consider the case when Restabilize increases index[v]
for a vertex v. If this happens, index[v] becomes t such that
below[v, t] ≥ αt−1. We can use up to 12·

`
below[v, t] − αt−2

´

units of the potential of v. This comes from the decrease in
Φ(v), and more precisely in Φ2(v). Once index[v] is set to
t, Φ1(v) becomes 0, and Φ2(v) only equals

kαX

i=t+1

max
n
below[v, i] − αi−2, 0

o
.

Restabilize updates structures for all neighbors u of v
such that index[u] ≤ t. It also marks some of them as
dirty, and the potential has to pay also for checking later
whether the invariant holds for them. This costs at most
O(log n) · below[v, t], that is, below[v, t] units of potential.
Additionally, modifying index[v] can result in decreasing
below[u, index[u]] for some of the same neighbors u of v.
The potential, therefore, has to pay another 8 · below[v, t]
units to compensate for the change in Φ1(u) for those neigh-

bors. The total expense can be bounded by

below[v, t] + 8 · below[v, t]

= 9 · below[v, t]

below[v, t] − αt−2
·

`
below[v, t] − αt−2

´

≤ 9 · αt−1

αt−1 − αt−2
·

`
below[v, t] − αt−2´

=
9α

α − 1
·

`
below[v, t] − αt−2

´

= 12 ·
`
below[v, t] − αt−2

´
,

which is not more than the available budget.
Consider now the other case when Restabilize decreases

index[v] by one for a vertex v. Let t be the new index[v],
i.e., the old index[v] minus one. Note that the old Φ1(v)
equals 8 · (αt − αt−1). Restabilize updates structures for
at most αt−1 neighbors u of v, and it also marks some of
them as dirty. This costs at most αt−1 units of potential
together with checking later whether the invariant holds for
them. Moving v may also increase below[u, t] by one for all
of them, and this may increase their potential Φ2. The total
increase is at most 12 ·αt−1 units of potential. Furthermore,
the new potential Φ1(v) can still be positive, but it can be
bounded by 8·(αt−1−αt−2). Finally, we pay 1 for reverifying
if the invariant holds for v after the modification of index[v].
The total expense is bounded by

αt−1 + 12 · αt−1 + 8 · (αt−1 − αt−2) + 1

≤
„

13

α − 1
+

8

α
+

1

αt − αt−1

«
· (αt − αt−1)

≤
„

13

3
+ 2 +

4

3

«
· (αt − αt−1) ≤ 8 · (αt − αt−1),

which is the old Φ1(v).

4. RANDOMIZED O(1)-APPROXIMATION
We now describe a new data structure that maintains

an O(1) approximation for maximum matching and vertex
cover. The data structure handles a sequence of ℓ updates
in ℓ · polylog(n) time. In Section 4.1, we describe a new
method of creating a partition of the vertices along with the
properties that the partition satisifies. In Section 4.2, we
describe how to generate a matching and vertex cover from
the partition and bound the approximation factor. In Sec-
tion 4.4, we give the implementation details which allow one
to maintain the partition along with the required properties
through the successive updates. In Section 4.5, we describe
the amortized analysis of the update time.

In the following description, we use sufficiently large pos-
itive constants C1, C2, and CT. We require that C2 ≪ C1

and C2 ≪ CT. As before, we assume that the α we use
equals 4. Recall also that kα = ⌊logα n + 2⌋, that is, kα =
O(log n).

4.1 The new partition and its properties
As in the partition of Algorithm 1, we partition the ver-

tices into a logarithmic number of sets. We remove a set of
vertices at each of logarithmically many phases based on the
degrees of the vertices being considered. However, whereas
in Algorithm 1, only high degree vertices were removed at
each phase, here we may remove additional vertices. In the
following, we mainly focus on describing differences from the
partition constructed by Algorithm 1.

Let ∆
def

= 2+⌈logα 2kα⌉. For all i ∈ {1, . . . , kα}, recall that
Gi is the graph remaining in the i-th loop of Algorithm 1,
and Vi is the set of vertices of Gi. We define Ei as the edges
incident to vertices in Vi in graph Gi. The new partition
differs as follows:

1. We stop partitioning the graph when i ≤ ∆ (i.e., step
3 of Algorithm 1 is changed to “for i := kα to ∆ + 1”).
The graph G∆ has degree bounded by α∆ ≤ 2α3kα =
O(log n), and we use the simple data structure of Sec-
tion 2.2 to maintain a maximal matching M⋆ in that
graph. Each update costs O(log n).

2. For each i > ∆, we select a set Vi in the same way
as in Algorithm 1. Each i > ∆ is either heavy or
light. In general, when |Vi| is sufficiently large, then i is
heavy, and when |Vi| is sufficiently small, then i is light,
but there is a range of |Vi| for which either alternative
may be the case. In Section 4.4, we describe how the
choice is made so that we can bound the amortized
complexity of the data structure.

For each i > ∆, one of the following two is the case in
the partition:

heavy i: Apart from Vi, the partition also identifies
a set of vertices V ′

i , and a matching Mi ⊆ Ei

such that |Mi| ≥ |Vi ∪ V ′
i |/C1, and each edge in

Mi connects vertices in Vi ∪ V ′
i . Gi−1 is created

by removing not only vertices in Vi, but also those
in V ′

i . Vi∪V ′
i is a part of the current approximate

vertex cover.

light i: A given i can only be light if |Ei| ≤ CT ·αi. In
this case, we create Gi−1 by removing only ver-
tices in Vi. Vi is a part of the current approximate
vertex cover.

4.2 Approximating the Maximum Matching
and the Minimum Vertex Cover

We now describe how the above partition is used to main-
tain a constant-factor approximation to both the maximum
matching and the minimum vertex cover.

The current matching and the current vertex cover kept
by the data structure are the following:

• At the end of every Insert and Delete operation, we
compute a matching Mlight that matches at least one
vertex in Vi for each light i with non-empty Vi. We
pick one vertex from each such Vi. There are at most
kα such vertices, and each of them has degree greater
than α∆/α2 ≥ 2kα. This means that considering them
in any order and going over the list of their neigh-
bors, we eventually find a neighbor that has not yet
been matched. This way, we get a matching of size at
least half the number of light i. The whole procedure
takes at most O(log2 n) time, because we consider at
most O(log2 n) vertices, and for each of them we check
whether it is already matched in Mlight.

We write Mheavy to denote the union of all Mi for i
heavy. Note that Mheavy ∪ M⋆ is a matching as well.
Combining Mheavy ∪ M⋆ with Mlight gives a graph of
degree at most 2, and we use the simple data structure

of Section 2.2 to maintain a matching fM of size at

least 1
2

max{|Mlight|, |Mheavy|+|M⋆|}. fM is the current
matching.

• The current vertex cover eV is the union of all Vi for
i > ∆, V ′

i for heavy i > ∆, and the vertices matched
in M⋆.

Since |fM | ≤ MM(G) ≤ VC(G) ≤ |eV | (see Fact 1), it

suffices to show that |fM | ≥ |eV |/C, for some constant C

to prove that fM and eV are constant factor approximations
to maximum matching and vertex cover, respectively. Note
that

˛̨
˛̨
˛̨

[

light i

Vi

˛̨
˛̨
˛̨ ≤ 2 · α2 · CT · |Mlight|,

˛̨
˛̨
˛̨

[

heavy i

`
Vi ∪ V ′

i

´
˛̨
˛̨
˛̨ ≤ C1 · |Mheavy|,

|{endpoints of edges in M⋆}| ≤ 2 · |M⋆|.
Therefore,
˛̨
˛ eV

˛̨
˛ ≤ 2α2CT · |Mlight| + C1 · |Mheavy| + 2 · |M⋆|

≤ 2α2CT · |Mlight| + 2C1 · (|Mheavy| + |M⋆|)
≤ 2α2C1CT · |Mlight| + 2α2C1CT · (|Mheavy| + |M⋆|)
≤ 4α2C1CT · max{|Mlight|, |Mheavy| + |M⋆|}

= 8α2C1CT · 1

2
max{|Mlight|, |Mheavy| + |M⋆|}

≤ 8α2C1CT · |fM |.

4.3 Selecting a Large Matching Mi of Vi

We now describe how to select a large matching Mi for i
heavy. The lemma states properties of our procedure, which
we will use in the next section.

Lemma 5. Let Gi be a graph of maximum degree αi. Let
n be the number of vertices in Gi. Let Vi be a set of vertices
in Gi, each with degree in [αi−2, αi]. Let Ei be the set of
edges in Gi incident to at least one vertex in Vi, and let
|Ei| ≥ CT · αi.

Let S be the distribution on subsets of Ei created by in-

dependently selecting every edge in Ei with probability p
def
=

1/(C2α
i).

There is an algorithm A that with the following properties:

• A selects a subset E′ of edges from a distribution S ′ on
subsets of Ei such that the statistical distance between
S ′ and S is at most 1/1000.

• The size of E′ is at most 21
20

· p|Ei|.

• With probability 998/1000, A outputs a matching M
that is a subset of E′ and |M | ≥ 9

10
· p|Ei|.

The running time of A is O(|Ei| log n).

Proof. The set E′ is selected as follows. The algorithm
goes over all edges in Ei, and selects each edge indepen-
dently with probability p. If at some point the number of
selected edges reaches 21

20
· p|Ei|, the procedure stops select-

ing new edges. If CT and C2 are large enough, then this
does not happen with probability greater than 1/1000 (via
the Chernoff bound), so the statistical distance between S
and S ′ is at most 1/1000.

Suppose for now that E′ is selected according to S , not
S ′. If C2 is large enough, then the probability that a given

edge in E′ intersects with another edge in E′ is small. Let
M be the set of all those edges in E′ that do not intersect
with other edges in E′. For sufficiently large C2 and CT such
that C2 ≪ CT, the size of M is close to its expectation via
the Chernoff bound, and in particular |M | ≥ 9

10
p|Ei| with

probability 999/1000. Since the statistical distance between
S and S ′ is at most 1/1000, |M | ≥ 9

10
p|Ei| with probability

at least 998/1000, even if E′ is selected from S ′.

4.4 Maintaining the Partition
We now describe how the partition is maintained. As

before the data structure keep a value index[v] for each
vertex v. This time index[v] can only belong to the set
{∆, ∆ + 1, ∆ + 2, . . . , kα − 1, kα}. The value ∆ corresponds
to v remaining in the graph G∆, for which a separate copy
of the simple data structure is kept. Additionally, for each
vertex v with index[v] > ∆, there is an additional Boolean
variable promoted[v]. If v belongs to Vindex[v] in the par-
tition, then promoted[v] = false. Otherwise, if v belongs
to V ′

index[v], then promoted[v] = true. Initially, each j ∈
{∆ + 1, ∆ + 2, . . . , kα − 1, kα} is set to light.

We wish that all vertices v obey the invariant that there
be no j > index[v] such that the number of neighbors u
of v with index[u] ≤ j is at least αj−1. Furthermore, we
require that for v with promoted[v] = false and index[v] >
∆, the number of neighbors u with index[u] ≤ index[v] be

greater than αindex[v]−2. Note that the difference from the
previous data structures is that some vertices, namely those
with promoted[v] = true, do not obey the second invariant.

As before, some vertices will be marked as dirty in the
course of the execution of the algorithm. When an edge
is removed or added, we mark its endpoints as dirty and
update its structures. Then our algorithm considers consec-
utive j starting with kα and goes down to ∆+1. For a given
i > ∆:

1. The algorithm checks if there are dirty vertices v with
index[v] < i such that the number of neighbors u with
index[u] ≤ i is at least αi−1. Those vertices have
index[v] set to i, and the algorithms updates struc-
tures below[v, ·], lower-neighbors[v], and neighbors[v, ·]
for them and for their neighbors u with index[u] ≤ i
accordingly, as we did for the deterministic data struc-
tures. Furthermore, if there are vertices v with index[v] =
i and promoted[v] = true with the same property of
the number of neighbors, the algorithm sets promoted[v] =
false for them. Finally, if there are vertices v with
index[v] = i, promoted[v] = false, and the number
of neighbors u with index[u] ≤ i is at most αi−2, the
algorithm sets index[v] = i − 1 and updates all the
structures accordingly, also marking specific neighbors
as dirty whenever necessary.

2. If i is heavy:

The algorithm checks if the old matching is large enough,
and if not, the algorithm deletes it, and computes a
new matching. More specifically, if it is no longer
the case that |Mi| ≥ |Vi ∪ V ′

i |/C1, the algorithm goes
over all v with index[v] = i and promoted[v] = true.
For each such v, we set promoted[v] to false. More-
over, for those v with the number of neighbors u with
index[u] ≤ i at most αi−2, we set index[v] = i−1 and
mark them as dirty.

If now |Ei| is at most CT · αi, we make i light. Oth-
erwise, we use the procedure of Lemma 5 to select a
new matching Mi. We set V ′

i to the set of vertices
matched by Mi that do not belong to Vi. As long
as |Mi| < 9

10
|Ei|/(C2α

i), we keep repeating the pro-
cedure of Lemma 5 until we succeed. For well cho-
sen constants, 9

10
|Ei|/(C2α

i) ≥ |Vi ∪ V ′
i |/C1, since

C1 ≫ C2. Finally, for endpoints v of edges in the new
Mi that have index[v] < i, we set index[v] = i and
promoted[v] = true, and update all the structures for
them and their neighbors accordingly, marking some
of them as dirty.

3. If i is light:

If |Ei| > CT · αi, we make i heavy and construct Mi

in the same way as for heavy i.

Otherwise, if |Ei| ≤ CT · αi, and we do nothing.

4.5 Complexity Analysis
We use almost the same potential functions for vertices as

before. The only difference is that we multiply all potentials
by a constant factor so that when an edge is inserted into
some set Ei or removed from it, we can pass one unit of
potential to a special fund. We will use this fund to pay for
the cost of recomputing matchings Mi. We will show that
with large probability the fund deficit is small.

Whenever the data structure artificially moves a vertex
v, creating or destroying some V ′

i , one has to cover the cost
associated with changing index[v]. In the deterministic data
structure the cost of moving vertices around was covered by
the collected potential. Here, we have to find another source
of funding.

Suppose that we want to create a matching Mi for a heavy
i. We run the algorithm of Lemma 5, charging its run-
ning time to the fund. If Mi is sufficiently large, we spend
O(|Vi|αi) units of potential from the fund on moving vertices
in V ′ from other buckets (where the constant hidden in the
big O notation is very small). Later, moving vertices in V ′

back to their buckets will cost approximately the same, so
we can assume that we charge this cost to the fund in ad-
vance. If Mi that has been generated is too small and the
data structure has to rerun the process generating Mi, we
say that we lose.

The matching Mi is relatively large compared to |Vi ∪V ′
i |

right after we create it. The matching requires recomputa-
tion if it becomes relatively small compared to |Vi∪V ′

i |. For
this to happen, at least one of the following two must be the
case:

• A constant fraction of edges in Mi have been removed
from Ei.

• The number of vertices in Vi must have grown by a
constant factor.

Consider first the latter case. Since each new vertex in Vi

contributes to the special fund at least αi−1 units of po-
tential, it is easy to set constants so that we can afford to
pay for moving vertices in V ′

i (if their number is sufficiently
small, which is the case if C2 is large) and for the initial
execution of the algorithm of Lemma 5, which requires only
Θ(|Vi|αi) units of potential. We can also set the constants
in the data structure such that in fact, we are left with a

surplus of potential. We make sure that we collect a lot of
potential. We say that we win in this case.

The former case requires probabilistic analysis, which we
now describe. Recall that a well chosen Mi is at least a 4/5-
fraction of a subset E′ of edges Ei. Therefore, to delete at
least half the edges of the initial Mi, one has to delete at
least a 2/5-fraction of E′. We claim that with probability
at least 3/4, one has to delete at least a 1/100-fraction of
Ei in order to delete a 2/5-fraction of E′. We now sketch a
proof of this claim.

Suppose to the contrary that one can delete at
least a 2/5-fraction of E′ by deleting at most a
1/100-fraction of Ei with some probability greater
than 1/4. Then, given how E′ is selected in
Lemma 5, one can delete at least |Ei|/(5C2α

i)
edges of E′′ with probability at least 1/4−1/100
(for well chosen constants) by selecting a subset
of Ei of size |Ei|/100, where E′′ is created by in-
dependently selecting each edge of Ei with prob-
ability 1/(C2α

i). Expressing the last sentence in
a slightly different way, the sum of |Ei|/100 in-
dependent variables Xj is at least |Ei|/(5C2α

i)
with probability at least 24/100, where each Xj

is 1 with probability 1/(C2α
i), and 0, otherwise.

Using the Chernoff bound, one can show that this
is not the case for well chosen constants.

The claim implies that with probability at least 3/4, we
collect a lot of potential before a large fraction of Mi gets
deleted, and also in this case, we say that we win. Otherwise,
when the edges are deleted very quickly, we say that we lose.

Summarizing, we win with probability at least 2/3, in
which case we collect a lot of potential (a large constant
times the invested potential), which goes to the fund. We
lose with probability at most 1/3, and in this case, the oper-
ation is paid by the fund. Consider a logarithmic number of
ranges [2j , 2j+1) corresponding to different sizes of |Ei| that
may appear in the data structure. For a given range, we
can assume that whenever we play, we lose at most C · 2j ,
for some constant C, and we win at least 10 · C · 2j . We
initially provide the fund with enough potential to pay for

the first t⋆
def

= C′ · log log n

δ
times we play the game, for every

j of interest, where C′ is a sufficiently large constant. Then,
the probability that we ever spend more than we gain for
a given j is bounded by δ

2 log n
. To prove this, it suffices to

give an upper bound pt on the probability that we spend
more than win in t games. Using the Chernoff bound, one
can show pt’s such that pt+1 ≤ pt · c, for t ≥ t⋆, where c is a
constant in (0, 1). Using the Chernoff bound again, one can
show that if C′ is sufficiently large, pt⋆

≤ (1−C) δ
2 log n

, andP∞
t=t⋆

pt ≤ δ
2 log n

. So by the union bound, the probability
that we ever spend more than we gain for any j is bounded
by δ.

Recall that K is the total number of graph operations,
which gives a bound on the maximum size of Ei that can
appear. The above analysis implies that for every j such
that 2j ≤ n2 and K ≥ 2j , we can subsidize the fund with
O(2j · log log n

δ
) units of potential to make sure that with

probability 1− δ, the fund’s balance is always non-negative.
In total, the aid for the fund is bounded by O(min{K, n2} ·
log log n

δ
). Therefore, the total potential P spent by the al-

gorithm can be bounded by

P = O

„
min{K, n2} · log log n

δ
+ K · log n

«

= O

„
min{K, n2} · log 1

δ
+ K · log n

«

with probability 1−δ. Recall that each unit of potential cor-
responds to O(log n) computation. Other operations, which
include computing Mlight and combining the three match-
ings, do not take more than O(log2 n) time per update to
the graph. Summarizing, we prove the following claim.

Corollary 6. For any sequence of K updates, the ran-
domized data structure runs in

O

„
min{K, n2} · log n · log 1

δ
+ K · log2 n

«

time with probability 1 − δ, where δ ∈ (0, 1).

5. OPEN PROBLEMS
The two main questions left open by our paper are:

• Our approximation factors are large constants. How
small can they be made with polylogarithmic update
time? Can they be made 2? Can the approximation
constant be made smaller than 2 for maximum match-
ing?

• Is there a deterministic data structure that achieves
a constant approximation factor with polylogarithmic
update time?

6. REFERENCES
[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and

C. Stein. Introduction to Algorithms, Second Edition.
The MIT Press and McGraw-Hill Book Company,
2001.

[2] D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic
graph algorithms. CRC Press, 1997.

[3] D. Eppstein, Z. Galil, G. F. Italiano, and
A. Nissenzweig. Sparsification—a technique for
speeding up dynamic graph algorithms. J. ACM,
44(5):669–696, 1997.

[4] L. Epstein, A. Levin, J. Mestre, and D. Segev.
Improved approximation guarantees for weighted
matching in the semi-streaming model. In STACS,
2010.

[5] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and
J. Zhang. On graph problems in a semi-streaming
model. Theor. Comput. Sci., 348(2-3):207–216, 2005.

[6] M. R. Henzinger and V. King. Randomized fully
dynamic graph algorithms with polylogarithmic time
per operation. J. ACM, 46(4):502–516, 1999.

[7] Z. Ivković and E. L. Lloyd. Fully dynamic maintenance
of vertex cover. In WG, pages 99–111, 1993.

[8] P. N. Klein and S. Subramanian. A fully dynamic
approximation scheme for shortest paths in planar
graphs. Algorithmica, 22(3):235–249, 1998.

[9] Z. Lotker, B. Patt-Shamir, and A. Rosén. Distributed
approximate matching. In PODC, pages 167–174,
2007.

[10] A. McGregor. Finding graph matchings in data
streams. In APPROX-RANDOM, pages 170–181,
2005.

[11] S. Micali and V. V. Vazirani. An O(
p

|V | · |E|)
algorithm for finding maximum matching in general
graphs. In FOCS, pages 17–27, 1980.

[12] M. Parnas and D. Ron. Approximating the minimum
vertex cover in sublinear time and a connection to
distributed algorithms. Theor. Comput. Sci.,
381(1-3):183–196, 2007.

[13] P. Sankowski. Faster dynamic matchings and vertex
connectivity. In SODA, pages 118–126, 2007.

[14] M. Thorup. Fully-dynamic min-cut. In STOC, pages
224–230, 2001.

[15] M. Thorup. Worst-case update times for fully-dynamic
all-pairs shortest paths. In STOC, pages 112–119,
2005.

[16] M. Zelke. Weighted matching in the semi-streaming
model. In STACS, pages 669–680, 2008.

