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Abstract. For debugging OWL-DL ontologies, natural language expla-
nations of inconsistencies and undesirable entailments are of great help.
From such explanations, ontology developers can learn why an ontol-
ogy gives rise to specific entailments. Unfortunately, commonly used
tableaux-based reasoning services do not provide a basis for such expla-
nations, since they rely on a refutation proof strategy and normalising
transformations that are difficult for human ontology editors to under-
stand. For this reason, we investigate the use of automatically generated
justifications for entailments (i.e., minimal sets of axioms from the on-
tology that cause entailments to hold). We show that such justifications
fall into a manageable number of patterns, which can be used as a basis
for generating natural language explanations by associating each justifi-
cation pattern with a rhetorical pattern in natural language.

Keywords: OWL, Justifications, Natural Language Explanation

1 Introduction

Since being endorsed as a standard language for encoding ontologies in 2004,
OWL (Web Ontology Language) has been used increasingly in developing sig-
nificant domain ontologies such as the gene ontology1 and the SNOMED CT
ontology2. Building such ontologies requires a significant amount of effort and
expertise. To simplify the development task, graphical editing tools have been de-
veloped [9, 6] linked to tableaux-based reasoners [12, 10] which compute implicit
statements (i.e. entailments) and inconsistencies that follow from axioms in the
ontology. When inconsistencies occur or entailments appear to be undesirable,
ontology developers need to understand them in order to debug the ontology, so
some kind of explanation would be helpful. However, tableaux-based reasoning
services do not provide a basis for generating explanations, because they depend
on a refutation proof strategy and normalising transformations which are un-
intuitive to humans [2]. For example, it is unnatural to explain the entailment
C v ∃R.D (i.e. every individual in class C must have at least one R relation to
an individual in class D) with reference to the subsumption (C u ∀R.¬D) v ∅.

Recently several research groups have explored ways of computing justifica-
tions for entailments and inconsistencies in OWL-DL ontologies [8, 11, 5, 4]. A

1 See http://www.geneontology.org/
2 See http://www.ihtsdo.org/snomed-ct/
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justification for an entailment is a minimal set of axioms, drawn from the ontol-
ogy, that is sufficient for the entailment to arise [7]. For logicians, a justification
is a helpful explanation of an entailment as it pinpoints precisely the axioms that
cause the entailment to hold [7]. Human domain experts, however, require fur-
ther explanation of the meaning of each axiom and the inference process linking
axioms to the entailment. Let us give an example.

Table 1 shows a sample justification for the entailment ‘milli is a Pre-
fixOrUnit ’ from the units3 ontology, which contains about 500 axioms. The jus-
tification has four axioms, presented here in OWL Functional Syntax. To help
human domain experts, we might provide an explanation such as the following:

milli is a PrefixOrUnit because (a) milli is Prefix, and (b) every Prefix
is a PrefixOrUnit. Statement (a) can be inferred from axioms 1, 3 and
4; in words, milli is a Prefix because we know from axioms 1 and 4 that
milli meter has as prefix only a Prefix, and from axiom 3 that milli meter
has as prefix milli. Statement (b) can be inferred from axiom 2.

The main aim of this paper is to show that automatically generated justifications
do provide a good basis for generating explanations such as the one given above.
The main problem we address is that the number of different justifications is in
theory unlimited. This, at first sight, prevents development of a manageable set
of rhetorical patterns in natural language for expressing justifications. We will,
however, show that given certain abstractions, the justifications from a large
collection of OWL-DL ontologies do belong to limited set of patterns.

We proceed as follows. In Section 2, we present the formulation of two types
of patterns for justifications, specific and abstract. Next, in Section 3, we describe
an empirical study of justification patterns from a corpus of 191 OWL-DL on-
tologies. Section 4 discusses the results of the study, and Section 5 concludes.

Table 1. Justification for the entailment ClassAssertion(PrefixOrUnit,milli) in OWL
Functional Syntax

No Axiom

1 ClassAssertion(UnitDerivedByScaling,milli meter)
2 EquivalentClasses(PrefixOrUnit,ObjectUnionOf(Prefix,Unit))
3 ObjectPropertyAssertion(hasPrefix,milli meter,milli)
4 SubClassOf(UnitDerivedByScaling,ObjectAllValuesFrom(hasPrefix,Prefix))

2 From Justifications to Justification Patterns

Justifications for entailments of OWL-DL ontologies can be very diverse, for four
reasons. First, although the size of a justification is usually small compared with

3 See http://sweet.jpl.nasa.gov/ontology/units.owl
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that of an ontology, it may still contain dozens of axioms: an empirical experi-
ment on a corpus of OWL-DL ontologies shows variations from 1 up to 40 [8].
Secondly, justifications may contain many different types of axioms; currently,
OWL-DL allows about 30 axiom functors and 17 class constructors — and these
class constructors can be nested indefinitely. Thirdly, even when justifications
use the same axiom types and class constructors, their argument distribution
may differ. The first two justifications in Table 2, for example, have similar size
and structure, but different argument arrangements (2-3-1 in the first, 3-1-2 in
the second). Finally, since axioms in justifications are taken without modification
from those asserted by ontology builders, they might include superfluous parts.
For instance, in the justification ‘d’ in Table 2, the expression ObjectSomeVal-
uesFrom in axiom 3 makes no contribution to the entailment; we only need to
infer from this axiom that ConductionFibres v Myocardium.

Table 2. Justifications of the abstract pattern CLASS-INCLUSION-CHAIN

No Entailment Justification

a WaterBody 1.EquivalentClasses(PlanetaryStructure,EarthRealm)
v 2.EquivalentClasses(WaterBody,BodyOfWater)
PlanetaryStructure 3.SubClassOf(BodyOfWater,EarthRealm)

b DrySeasonDuration 1.EquivalentClasses(Event,Duration)
v 2.EquivalentClasses(Occurrence,Event)
Occurrence 3.SubClassOf(DrySeasonDuration,Duration)

c LongWaveRadiation 1.EquivalentClasses(ElectromagRadiation,ElectromagWave)
v 2.EquivalentClasses(InfraredRadiation,LongWaveRadiation)
ElectromagWave 3.SubClassOf(InfraredRadiation,ElectromagRadiation)

d PurkinjeFibres 1.EquivalentClasses(CardiacMuscle,Myocardium)
v 2.EquivalentClasses(ConductionFibres,PurkinjeFibres)
CardiacMuscle 3.EquivalentClasses(ConductionFibres,ObjectIntersectionOf(

Myocardium,
ObjectSomeValuesFrom(hasSpecificFunction,Conduction))

Given the diversity of justifications, there might be some doubt as to whether
we can find a generic set of rules for mapping them to rhetorical patterns in natu-
ral language. Fortunately, the empirical study we report here shows that in prac-
tice most justifications conform to a smaller number of common patterns, some
patterns more frequent than others. Moreover, many patterns contain other pat-
terns within them, which leads to the possibility of representing these patterns
in a more abstract way. To investigate these patterns, we analyse justifications
at two levels of abstraction: specific and abstract. Specific patterns for justifica-
tions retain all axioms and class functors, but abstract over atomic terms; this is
done by substituting names of entities (i.e. classes, individuals, properties, . . . )
by alpha-numeric identifiers. Specifically, names of atomic classes are replaced
by capital letters A, B, . . . , those of individuals by i0, i1, . . . , those of object
properties by r0, r1, . . . , and those of data properties by d0, d1, . . . Specific
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patterns of all justifications in Table 2 are presented in Table 3; since patterns
a and c are exactly the same, they can be amalgamated.

Table 3. Specific patterns of justifications in Table 2

No Entailment Justification

a, SubClassOf(A,B) 1.EquivalentClasses(A,C)
c 2.EquivalentClasses(B,D)

3.SubClassOf(C,D)

b SubClassOf(A,B) 1.EquivalentClasses(B,D)
2.EquivalentClasses(C,D)
3.SubClassOf(A,C)

d SubClassOf(A,B) 1.EquivalentClasses(A,C)
2.EquivalentClasses(B,D)
3.EquivalentClasses(C,ObjectIntersectionOf(

D,ObjectSomeValuesFrom(r0,E))

Abstract patterns are based on a deeper abstraction over groups of axioms
which have certain inference steps in common. They have been derived by manual
analysis of specific patterns. For example, although the first two specific patterns
in Table 3 are different, they both infer the subsumption A v B through a chain
of class inclusions (i.e. a chain of EquivalentClasses and SubClassOf relations) on
named classes: A-C-D-B. Therefore, they can both be represented by an abstract
pattern called CLASS-INCLUSION-CHAIN(A,B), which represents a chain of
class inclusions from named class A to named class B with no limitation on the
number of intermediate named classes used in the chain.

In the last specific pattern in Table 3, if we can get the subsumption C v D
from the last axiom, the whole pattern will also belong to the abstract pattern
CLASS-INCLUSION-CHAIN(A,B). Therefore, it would be useful if we can apply
basic transformations on axioms of specific patterns before analysing abstract
patterns to remove superfluous parts. Several basic transformations that can be
applied to axioms of specific patterns are presented in Table 4.

Following the above-mentioned procedure we can formulate two other ab-
stract patterns, namely OBJECT-PROPERTY-DOMAIN(r0,A) and OBJECT-
PROPERTY-RANGE(r0,A). Each pattern represents a set of specific patterns
from which we can infer that class A is the domain or range of the property
r0. Specific patterns for OBJECT-PROPERTY-DOMAIN(r0,A) and OBJECT-
PROPERTY-RANGE(r0,A) collected from our data are shown in Table 5.

3 Method

We have analysed justification patterns in a large corpus of OWL-DL ontologies,
comprising 191 ontologies of varying size, subject and expressivity taken from
the TONES Ontology Repository [1]. This repository is a database of OWL-
DL ontologies designed for use by developers, especially in testing automated
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Table 4. Basic transformations on axioms of specific patterns. <ClassExp> is either
a named class or a complex class expression.

No Input Axiom Inferred Axiom

1 A≡<ClassExp1>u<ClassExp2>u. . . + Av<ClassExp1>
+ Av<ClassExp2>
+ . . .

2 Av<ClassExp1>u<ClassExp2>u. . . + Av<ClassExp1>
+ Av<ClassExp2>
+ . . .

3 A≡<ClassExp1>t<ClassExp2>t. . . + <ClassExp1>vA
+ <ClassExp2>vA
+ . . .

Table 5. Specific patterns for abstract patterns OBJECT-PROPERTY-
DOMAIN(r0,A) and OBJECT-PROPERTY-RANGE(r0,A)

No DOMAIN RANGE

1 ObjectPropertyDomain(r0,A) ObjectPropertyRange(r0,A)

2 EquivalentClasses(A, —
ObjectSomeValuesFrom(r0,Thing))

3 InverseObjectProperties(r0,r1) InverseObjectProperties(r0,r1)
ObjectPropertyRange(r1,A) ObjectPropertyDomain(r1,A)

4 ObjectPropertyDomain(r1,A) ObjectPropertyRange(r1,A)
SubObjectPropertyOf(r0,r1) SubObjectPropertyOf(r0,r1)

5 InverseObjectProperties(r0,r1) InverseObjectProperties(r0,r1)
ObjectPropertyRange(r2,A) ObjectPropertyDomain(r2,A)
SubObjectPropertyOf(r1,r2) SubObjectPropertyOf(r1,r2)

6 ObjectPropertyDomain(r1,A) ObjectPropertyRange(r1,A)
SubObjectPropertyOf(r0,r2) SubObjectPropertyOf(r0,r2)
SubObjectPropertyOf(r2,r1 SubObjectPropertyOf(r2,r1)

7 ObjectPropertyRange(r1,A) —
SubObjectPropertyOf(r0,r1) —
SymmetricObjectProperty(r1) —
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reasoning techniques. Currently, the repository consists of 218 ontologies from a
wide range of sources; however, 27 are either inconsistent, faulty, or incompatible
with both the Pellet and FaCT++ reasoners. Since at this stage we focus only
on explaining justifications for possibly undesirable entailments in consistent
ontologies, we ignore these ontologies here. The size of ontologies in our corpus
ranges from 1 to 233,582 axioms. We have developed a Java-based program to
compute and analyse justification patterns, relying on the Pellet and FaCT++
reasoners for computing entailments, and on a program developed by Kalyanpur
and Horridge [8] for computing justifications for each entailment. In addition,
the OWL API package [3] was employed to parse the structure of axioms.

Justifications can be distinguished by the nature of their entailments. Cur-
rently, we focus on just three types of entailment, namely class assertion (i.e.,
ClassAssertion(<Class>,<Individual>)), class subsumption between two named
classes (i.e., SubClassOf(<Class>,<Class>)), and class unsatisfiability (i.e. Sub-
ClassOf(<Class>,Nothing)). For each ontology in the corpus, our program be-
gins by computing all entailments of these types; then for each entailment we
compute up to 10 different justifications. (We decided to compute at most 10
justifications for each entailment, partly to reduce processing time, and partly
because most entailments have fewer than 10 justifications.)

To automatically compute specific patterns for justifications, justifications
were first converted to OWL Functional Syntax. Then, within each justification,
we replaced every occurrence of an entity URI by an alpha-numeric identifier
drawn from a small standard set, as illustrated in the previous section. Sort-
ing algorithms were then performed both at axiom and argument levels, before
and after every substitution, to make sure that similar justifications would have
the same specific patterns. Justifications having common specific patterns were
grouped, and their frequencies calculated by two different measures: (a) occur-
rences of the justification pattern across all ontologies (called ‘justification fre-
quency’), and (b) the number of ontologies in which the pattern occurred at
least once (called ‘ontology frequency’). Ontology frequency is a more stable
measure since it is relatively unaffected by differences in ontology size — a pat-
tern could occur in very few ontologies, but have a high justification frequency
because these ontologies were very large. These two measures of frequency were
also used for abstract patterns, which were tabulated manually from the data
for specific patterns.

4 Results

Table 6 shows the overall results of our study. Among 191 ontologies in the cor-
pus, only 108 ontologies have at least one non-empty justification4. We collected
over 76,000 non-empty justifications, more than 90 percent of which contain
seven or fewer axioms. There are approximately 2,800 specific patterns that all

4 For a top-level class A that was not explicitly described as a sub-class of Thing, an
entailment A v Thing would be generated. The justification for this entailment is
an empty set. We ignored these justifications.
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justifications conform to, which is much smaller than the total number of justi-
fications. However, specific patterns are not strongly focussed. Tables 7, 8 and
9 in the Appendix section show the top ten specific patterns for each entailment
type ordered by ontology frequency then justification frequency; as can be seen,
these cover at most one-third of all cases. We now consider each entailment type
separately.

Table 6. Distribution of justifications and specific patterns

Entailment Type Justification Ontology Specific
Frequency Frequency Patterns

ClassAssertion(<Class>,<Individual>) 44875 (58.9%) 41(38.0%) 452 (16.3%)
SubClassOf(<Class>,<Class>) 29211 (38.3%) 106(98.1%) 1660 (59.9%)
SubClassOf(<Class>,Nothing) 2135 (2.8%) 43(39.8%) 659 (23.8%)

TOTAL 76221(100.0%) — 2771(100.0%)

4.1 Abstract Patterns for Class Assertion Justifications

A justification for a ClassAssertion(A,i0) entailment first locates an individual
i0 in some class B, then shows that B is a sub-class of A. If the first step happens
to locate i0 directly in A, then the second step is unnecessary. Similarly, if the
second step finds that A is equivalent to class Thing then the first step is no
longer needed. In general, the second step is obviously reducible to the problem
of justifying a subsumption relationship between two classes. Table 10 shows
abstract patterns and their corresponding frequencies over the whole data set.
Patterns are listed in three groups sorted by ontology frequency: (i) first step
only, (ii) second step only, and (iii) both steps.

4.2 Abstract Patterns for Class Subsumption Justifications

A justification for a SubClassOf(A,B) entailment can either show that class B
is equivalent to class Thing, or that A is subsumed by B using chains of class
inclusions or many other properties. Table 11 shows abstract patterns and their
corresponding frequencies. Patterns are listed in two groups: (i) normal class
subsumption patterns and (ii) B is equivalent to Thing.

4.3 Abstract Patterns for Class Unsatisfiability Justifications

Abstract patterns and corresponding frequencies for class unsatisfiability justi-
fications can be found in Table 12 in the Appendix.
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5 Conclusion

Our study of over 76,000 non-empty justifications from a corpus of 191 ontologies
empirically confirms the hypothesis that a manageable number of justification
patterns can cover most justifications. In particular, we found that although
specific patterns based on the size and structure of justifications are not strongly
focussed, we were able to find focussed abstract patterns based on recurring
inference steps.

Regarding the problem of generating natural language explanations of justi-
fications for OWL-DL ontologies, the study is helpful in at least three ways:

– it confirms the feasibility of an approach which relies on a relatively small
set of justification patterns,

– it provides a set of basic transformations on axioms to reduce superfluous
parts in justifications, and

– it identifies significant inference steps that should be helpful in automati-
cally constructing rhetorical patterns for explaining justifications in natural
language.
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Appendix: Tables for Specific and Abstract Patterns

Table 7. Top 10 specific patterns for the entailment ClassAssertion(A,i0). SubClassOf
axioms are presented in logic notation due to space limitation.

No Specific Pattern Ontology Justification
Frequency Frequency

1 ClassAssertion(B,i0) 31(75.6%) 2566 (5.7%)
B v A

2 ClassAssertion(B,i0) 26(63.4%) 2571 (5.7%)
B v C v A

3 ObjectPropertyAssertion(r0,i0,i1) 17(41.5%) 2626 (5.9%)
ObjectPropertyDomain(r0,A)

4 ObjectPropertyAssertion(r0,i1,i0) 17(41.5%) 1880 (4.2%)
ObjectPropertyRange(r0,A)

5 ClassAssertion(B,i0) 16(39.0%) 1927 (4.3%)
B v C v D v A

6 ObjectPropertyAssertion(r0,i0,i1) 14(34.1%) 2513 (5.6%)
ObjectPropertyDomain(r0,B)
B v A

7 ClassAssertion(B,i0) 12(29.3%) 1324 (3.0%)
B v C v D v E v A

8 ClassAssertion(B,i0) 12(29.3%) 265 (0.6%)
EquivalentClasses(A,objectUnionOf(C,D))
B v E v F v C

9 ClassAssertion(B,i0) 12(29.3%) 222 (0.5%)
EquivalentClasses(A,objectUnionOf(B,C)

10 ClassAssertion(B,i0) 12(29.3%) 188 (0.4%)
EquivalentClasses(A,B)

Total — 16082(35.8%)
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Table 8. Top 10 specific patterns for the entailment SubClassOf(A,B). SubClassOf
axioms are presented in logic notation due to space limitation.

No Specific Pattern Ontology Justification
Frequency Frequency

1 EquivalentClasses(B,objectUnionOf(A,C)) 47(44.3%) 440 (1.5%)

2 EquivalentClasses(A,objectIntersectionOf( 31(29.2%) 1553 (5.3%)
B,objectSomeValuesFrom(r0,C)))

3 EquivalentClasses(B,objectUnionOf(A,C,D)) 31(29.2%) 226 (0.8%)

4 EquivalentClasses(B,objectUnionOf(A,C,D,E)) 28(26.4%) 238 (0.8%)

5 ObjectPropertyDomain(r0,B) 27(25.5%) 284 (1.0%)
SubClassOf(A,objectSomeValuesFrom(r0,C))

6 EquivalentClasses(A,C) 23(21.7%) 2527 (8.7%)
C v B

7 A v C v B 23(21.7%) 457 (1.6%)

8 EquivalentClasses(B,objectUnionOf(A,C,D,E,F)) 20(18.9%) 204 (0.7%)

9 EquivalentClasses(B,C) 18(17.0%) 3663(12.5%)
A v C

10 EquivalentClasses(A,objectIntersectionOf(B,C)) 18(17.0%) 63 (0.2%)

Total — 9655(33.1%)



Justification Patterns for OWL DL Ontologies 11

Table 9. Top 10 specific patterns for the entailment SubClassOf(A,Nothing). SubClas-
sOf axioms are presented in logic notation due to space limitation.

No Specific Pattern Ontology Justification
Frequency Frequency

1 DisjointClasses(B,C) 9(20.9%) 16(0.7%)
A v B
A v D v E v C

2 DisjointClasses(B,C) 8(18.6%) 16(0.7%)
A v D v B
A v E v C

3 FunctionalDataProperty(d0) 8(18.6%) 8(0.4%)
A v B v . . . v F
A v G v . . . v J
SubClassOf(F,dataHasValue(d0,l0))
SubClassOf(J,dataHasValue(d0,l1))

4 FunctionalDataProperty(d0) 8(18.6%) 8(0.4%)
A v B v . . . v F
A v G v . . . v L
SubClassOf(F,dataHasValue(d0,l0))
SubClassOf(L,dataHasValue(d0,l1))

5 FunctionalDataProperty(d0) 8(18.6%) 8(0.4%)
A v B v . . . v G
A v H v . . . v N
SubClassOf(G,dataHasValue(d0,l0))
SubClassOf(N,dataHasValue(d0,l1))

6 FunctionalDataProperty(d0) 8(18.6%) 8(0.4%)
A v B v . . . v H
A v I v . . . v N
SubClassOf(H,dataHasValue(d0,l0))
SubClassOf(N,dataHasValue(d0,l1))

7 DisjointClasses(B,C) 6(14.0%) 26(1.2%)
A v C
A v D v B

8 DisjointClasses(B,C) 6(14.0%) 15(0.7%)
A v D v B
A v E v F v C

9 DisjointClasses(B,C) 5(11.6%) 25(1.2%)
A v D v E v B
A v D v F v C

10 DisjointClasses(A,B) 5(11.6%) 13(0.6%)
A v C v D v E v B

Total — 143(6.7%)
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Table 10. Abstract patterns for ClassAssertion(A,i0) entailment and corresponding
frequencies. Patterns are listed in three groups as illustrated in Section 4.1.

Abstract Pattern Ontology Justification
Frequency Frequency

(i) First Step Only

ObjectPropertyAssertion(r0,i0,i1) 17(41.5%) 2655 (5.9%)
OBJECT-PROPERTY-DOMAIN(r0,A)

ObjectPropertyAssertion(r0,i1,i0) 17(41.5%) 1908 (4.3%)
OBJECT-PROPERTY-RANGE(r0,A)

DataPropertyAssertion(d0,i0,l0) 10(24.4%) 905 (2.0%)
DataPropertyDomain(d0,A)

ClassAssertion(B,i1) 9(22.0%) 87 (0.2%)
CLASS-INCLUSION-CHAIN(B,C)
ObjectPropertyRange(r0,A)
SubClassOf(C,ObjectHasValue(r0,i0))

ClassAssertion(B,i1) 8(19.5%) 284 (0.6%)
CLASS-INCLUSION-CHAIN(B,C)
ObjectPropertyAssertion(r0,i1,i0)
SubClassOf(C,ObjectAllValuesFrom(r0,A))

(ii) Second Step Only

CLASS-INCLUSION(ObjectAllValuesFrom(r0,. . . ),B) 1 (2.4%) 1832 (4.1%)
ObjectPropertyDomain(r0,A)
CLASS-INCLUSION-CHAIN(B,A)

(iii) Both Steps

ClassAssertion(B,i0) 32(78.0%) 12375 (27.6%)
CLASS-INCLUSION-CHAIN(B,A)

ObjectPropertyAssertion(r0,i0,i1) 14(34.1%) 9836 (21.9%)
OBJECT-PROPERTY-DOMAIN(r0,B)
CLASS-INCLUSION-CHAIN(B,A)

ObjectPropertyAssertion(r0,i1,i0) 14(34.1%) 1871 (4.2%)
OBJECT-PROPERTY-RANGE(r0,B)
CLASS-INCLUSION-CHAIN(B,A)

DataPropertyAssertion(d0,i0,l0) 11(26.8%) 4187 (9.3%)
DataPropertyDomain(d0,B)
CLASS-INCLUSION-CHAIN(B,A)

ClassAssertion(B,i1) 10(24.4%) 2495 (5.6%)
CLASS-INCLUSION-CHAIN(B,C)
ObjectPropertyAssertion(r0,i1,i0)
SubClassOf(C,ObjectAllValuesFrom(r0,D))
CLASS-INCLUSION-CHAIN(D,A)

ClassAssertion(B,i1) 9(22.0%) 247 (0.6%)
CLASS-INCLUSION-CHAIN(B,C)
ObjectPropertyRange(r0,D)
SubClassOf(C,objectHasValue(r0,i0))
CLASS-INCLUSION-CHAIN(D,A)

Other Patterns — 6193 (13.8%)

TOTAL — 44875(100.0%)
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Table 11. Abstract patterns for SubClassOf(A,B) entailment and corresponding fre-
quencies. Patterns are listed in two groups as illustrated in Section 4.2.

Abstract Pattern Ontology Justification
Frequency Frequency

(i) Normal Patterns

CLASS-INCLUSION-CHAIN(A,B) 83(78.3%) 13459 (46.1%)

CLASS-INCLUSION-CHAIN(A,C) 45(42.5%) 3246 (11.1%)
OBJECT-PROPERTY-DOMAIN(r0,D)
SubClassOf(C,<ObjectPropertyExp>(r0,. . . ))
CLASS-INCLUSION-CHAIN(D,B)

CLASS-INCLUSION(B,ObjectIntersectionOf( 27(25.5%) 1135 (3.9%)
C,<ObjPropExp>(r0,D)))

CLASS-INCLUSION-CHAIN(A,C)
CLASS-INCLUSION-CHAIN(A,<ObjPropExp>(r1,E)))
SubObjectProperty(r1,r0)
CLASS-INCLUSION-CHAIN(E,D)

CLASS-INCLUSION-CHAIN(A,C) 11(10.4%) 5657 (19.4%)
DataPropertyDomain(d0,D)
SubClassOf(C,<DataPropertyExp>(d0,. . . ))
CLASS-INCLUSION-CHAIN(D,B)

CLASS-INCLUSION(B,ObjectIntersectionOf( 5 (4.7%) 405 (1.4%)
C,<ObjPropExp 1>(r0,D)))

CLASS-INCLUSION-CHAIN(A,C)
CLASS-INCLUSION-CHAIN(A,<ObjPropExp1>(r0,E)))
CLASS-INCLUSION-CHAIN(E,<ObjPropExp1>(r0,F)))
TransitiveObjectProperty(r0)
CLASS-INCLUSION-CHAIN(F,D)

DisjointUnion(B,A,. . . ) 1 (0.9%) 118 (0.4%)

(ii) B ≡ Thing

CLASS-INCLUSION(ObjectAllValuesFrom(r0,. . . ),C) 3 (2.8%) 186 (0.6%)
ObjectPropertyDomain(r0,B)
CLASS-INCLUSION-CHAIN(C,B)

Other Patterns — 5005 (17.1%)

TOTAL — 29211 (100.0%)
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Table 12. Abstract patterns for SubClassOf(A,Nothing) entailment and corresponding
frequencies.

Abstract Pattern Ontology Justification
Frequency Frequency

DisjointClasses(B,C) 14 (32.6%) 594 (27.8%)
CLASS-INCLUSION-CHAIN(A,B)
CLASS-INCLUSION-CHAIN(A,C)

DisjointClasses(A,B) 12 (27.9%) 55 (2.6%)
CLASS-INCLUSION-CHAIN(A,B)

DisjointClasses(B,C) 9 20.9%) 33 (1.5%)
CLASS-INCLUSION-CHAIN(A,B)
CLASS-INCLUSION-CHAIN(A,C)
SubClassOf(B,dataHasValue(d0,l0))
SubClassOf(C,dataHasValue(d0,l1))
FunctionalDataProperty(d0)

DataPropertyRange(d0,DR0) 3 (7.0%) 40 (1.9%)
CLASS-INCLUSION-CHAIN(A,. . . B . . . )
CLASS-INCLUSION-CHAIN(B,

. . . <DataPropExp>(d0,l1/DR1). . . )
where l1 is not of the type DT0 or DT1 is not DT0

DisjointClasses(B,C) 1 (2.3%) 73 (3.4%)
CLASS-INCLUSION-CHAIN(A,C)
CLASS-INCLUSION(ObjectAllValuesFrom(r0,. . . ),D)
OBJECT-PROPERTY-DOMAIN(r0,B)
CLASS-INCLUSION-CHAIN(D,B)

DisjointClasses(B,C) 1 (2.3%) 58 (2.7%)

CLASS-INCLUSION(ObjectAllValuesFrom(r0,. . . ),D)
OBJECT-PROPERTY-DOMAIN(r0,B)
CLASS-INCLUSION-CHAIN(D,B)

CLASS-INCLUSION-CHAIN(A,E)
EquivalentClasses(E,objectSomeValuesFrom(r1,F))
CLASS-INCLUSION-CHAIN(F,C)

DisjointClasses(B,C) 1 (2.3%) 54 (2.5%)

CLASS-INCLUSION(ObjectAllValuesFrom(r0,. . . ),D)
OBJECT-PROPERTY-DOMAIN(r0,C)
CLASS-INCLUSION-CHAIN(D,C)

CLASS-INCLUSION-CHAIN(A,F)
EquivalentClasses(F,ObjectSomeValuesFrom(r1,. . . ))
ObjectPropertyRange(r1,E)
CLASS-INCLUSION-CHAIN(E,B)

FunctionalObjectProperty(r0) 1 (2.3%) 8 (0.4%)
CLASS-INCLUSION-CHAIN(A,. . . B . . . )
CLASS-INCLUSION-CHAIN(B,

. . . ObjectExactCardinality(n,r0,C) . . . )
where n is not equal to 1

DisjointClasses(A,B) 1 (2.3%) 6 (0.3%)
CLASS-INCLUSION(ObjectAllValuesFrom(r0,. . . ),C)
OBJECT-PROPERTY-DOMAIN(r0,B)
CLASS-INCLUSION-CHAIN(C,B)

DisjointClasses(A,B) 1 (2.3%) 2 (0.1%)
OBJECT-PROPERTY-DOMAIN(r0,B)
CLASS-INCLUSION-CHAIN(A,<ObjPropExp>(r0,. . . ) )

Other patterns — 1212 (56.8%)

TOTAL — 2135 (100.0%)


