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Abstract

In radiation environment (e.g., space, nuclear reactor), electronics can fail due to
bitflips in the flipflops of integrated circuits. A common solution is to triplicate
the flipflops and connect their outputs to a voter. If one of the three bits is flipped,
then the voter outputs the majority value and tolerates the error. This method is
called triple modular redundancy (TMR).

TMR can cause about 300% area redundancy. An alternative way is error de-
tection with on-demand recomputation, where the recomputation is done by re-
peating the failed processing request to the processing circuit. The computation
is done in consecutive transactions, which we call transaction-based processing.

We implemented and evaluated the aforementioned alternative approach us-
ing parity checking on the Microsemi ProASIC3 FPGA, which is often used in space
applications. The results show that parity-based error detection with our system
recovery approach can save up to 54% of the area overhead that would be caused
by the TMR, and achieve in most circuits slightly better timing results than TMR
on ProASIC3. This area saving can be the key for fitting the application to a space-
constrained chip.

Zusammenfassung

In einer Strahlungsumgebung wie im All oder in der Ndhe eines Atomreaktors
kénnen elektronische Gerate durch Bitkipper in den Flipflops integrierter Schal-
tungen ausfallen. Eine gangige Methode gegen die Bitkipper ist triple modular
redundancy (TMR), bei der jedes Flipflop der Schaltung dreifach instanziiert wird
und die Ausgange der Flipflops zu einem Voter angeschlossen werden. Falls eins
von den drei Bits gekippt wird, dann gibt der Voter den Majoritatswert aus und
toleriert somit diesen Fehler.

TMR kann etwa 300% Flachenaufwand verursachen. Eine alternative Metho-
deist Fehlerdetektion mit anschlieBender Neuverarbeitung derletzten Daten. Die
Neuverarbeitung der Daten wird durch die Wiederholung der letzten Datenverar-
beitungsanfrage zur Schaltung realisiert. Die Verarbeitung der Daten erfolgt durch
nacheinanderfolgende Transaktionen und diese Art von Datenverarbeitung nen-
nen wir transaktions-basierte Datenverarbeitung in dieser Arbeit.

Wir haben die obenerwidhnte Methode implementiert und bewertet, wobei wir
als Fehlerdetektionsmethode Paritatsprifung eingesetzt haben. Die Bewertung
erfolgte auf dem FPGA Microsemi ProASIC3, das bei Avionikanwendungen sehr
verbreitet ist. Die Ergebnisse zeigen, dass unsere Methode bis zu 54% des Fla-
chenaufwands einsparen kann, der sonst vom TMR verursacht ware. Andererseits
kann unsere Methode in den meisten Schaltungen etwas besseres Timing als TMR
erzielen. Die Flacheneinsparung kénnte maf3geblich fiir die Implementierung ei-
ner Anwendung auf einer begrenzen Chipflache sein.
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Chapter1

Introduction

Electronics for airborne and space systems, called avionics, must often be pro-
tected fromionizing radiation in and coming from space. Inthe absence of ashield
like the magnetic field of the earth, high energy particles can traverse through the
digital circuit fabric and cause bitflips in the flipflops of a circuit.

Also terrestrial computing systems at sea level are exposed to some amount
of radiation, but the probability that a bit in a flipflop is flipped is relatively low
compared to higher attitudes in atmosphere or space. Still, as more bits can be
stored on the same chip area, the computing systems at sea level also show signs
of bitflips.

Where some of the induced bitflips can vanish unnoticed by the computing sys-
tem, some bitflips canlead to arestart or freeze of a system. Thisis notanissueifa
personal computer restarts, but this should not happen with a critical system like
a server which tracks financial transactions or a computer, which guides a space
vehicle. Such systems must be dependable and be able to tolerate possible threats
in their working environment, e.g., component failure due to aging or high energy
particles present in space striking through system components.

Dependable computers often use modular redundancy against component fail-
ures. Modular redundancy means that a moduleis present many times that failure
of a module can be tolerated by switching to the redundant modules. If the effect
of a threat is permanent, i.e., a component cannot be used after a failure, then a
system with n equal components can tolerate up ton — 1 component failures.

In contrast, ifathreatis only temporary, e.g., by recovering a failed component
by a restart, there is no need to include many redundant modules. A well-known
fault tolerance approach against temporary module failures is the triple modular
redundancy (TMR), which provides a straightforward error detection and recov-
ery approach by triplicating a module and connecting the modules to a voter en-
tity, and the voter entity selects the trusted output. For instance, a majority voter
outputs yes if two of the modules output yes and one no by trusting the major-
ity. Consequently, TMR can tolerate a failure of a single module and enables the
continuation of the service. Still, while one module is in failure, module recovery

1



2 CHAPTER1. INTRODUCTION

must be initiated to avoid a failure of the system (consisting of these three mod-
ules), because a second module failure will cause a system failure.

The idea of TMR can also be applied on components of avionics. Digital se-
quential circuits which are part of avionics also often implement TMR. If TMR is
implemented solely on the flipflops, it is called local TMR (LTMR). In LTMR, for
every application flipflop in the circuit two redundant flipflops are created, which
store the same bit as the application flipflop. The outputs of these three flipflops
are then connected to a majority voter.

The LTMR approach has the advantage of built-in error detection and recov-
ery: If a flipflop bit is flipped during a clock cycle, then this bit error is masked by
the voter. In the next cycle, the flipped flipflop will be overwritten with the correct
bit coming from the combinatorics, leading to the recovery from the erroneous
state of the flipflop.

LTMR can be easily applied on a circuit and is often applied using commercial
available software tools. Unfortunately, LTMR comes at a significant cost of ad-
ditional space for redundant flipflops. Additionally, redundant flipflops can also
account for excess power consumption.

On space-and power-constrained applications, an alternative is to apply an er-
ror detection approach instead of LTMR, because error detection generally incurs
less resources than error correction.

A circuit which implements error detection can only flag an error, but cannot
correct erroneous data, or recover itself from an erroneous state. In this situation,
this circuit can be recovered externally from the failure state by another system
component and the last processing request to this circuit can be retried. In this
work, we propose this approach, and call it error detection-based fault tolerance
and will be abbreviated as EDFT.

In chronological order, EDFT involves the following actions:

« the detection of the error
- system recovery on the circuit using isolation and error handling

« error detection and system recovery on the user application retrying thelast
processing request to the circuit

The last action can be carried out by a request and response-based processing
protocol between two systems. In this work, this processing technique is called
transaction-based processing.

The three actions of EDFT can be implemented by different approaches. To
evaluate EDFT in detail and compare to the state of the art, not only generic spec-
ifications but also concrete implementation of EDFT’s components are needed.
In the next section, we will present a data processing architecture, on which EDFT
can be applied. With the help of this example architecture, we will describe the
EDFT’'s components more in detail and then evaluate EDFT by using the concrete
implementations.
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fault-tolerant | link ' links
FPGA |«—|subsystem
processor !

data handling subsystem

Figure 1.1: Overview of the reference processing architecture. Processor commu-
nicates with other subsystems through the FPGA.

1.1 Application on a processing architecture

In this section, we describe a reference model of an on-board data handling unit
(OBDH) for satellites [Tre+14]. Using this example architecture we will briefly ex-
plain in the following section how EDFT is implemented. The detailed implemen-
tation will be discussed in the following chapters. Moreover, this particular imple-
mentation will also be used for comparing EDFT with state of the artin the follow-
ing chapters.

First, we describe an overview of the system, then the target circuit, and finally
the communication protocol between the processor and the circuit.

1.1.1 Overview

Figure 1.1shows an overview of the architecture. The OBDH subsystem comprises
of two main processing modules: a processor and an FPGA. The processor runs
the mission software, which involves communicating with different subsystems
on-board of the space system. The communication is done through the FPGA,
which acts as an interface component and implements the various communica-
tion interfaces needed by the subsystems (e.g., UART, CAN). We assume that the
processor, the communication line between the processor and the FPGA, and the
subsystems are sufficiently protected against soft errors.

1.1.2 FPGA Design

From the processor point of view, the FPGA is a remote memory bus, where the
implemented link interfaces are memory-mapped. The processor utilizes these
interface modules by reading and writing the respective memory areas.

The simplified FPGA model consists of three functional blocks: sequential cir-
cuits A, B, and C as shown in figure 1.2. Circuit A serves the memory access re-
quests from the processor to circuit B, which issues memory accesses on circuit C
and finally returns the datato the processor using the FIFO interface of circuit A. In
figure 1.3, circuit B is described as a finite state machine (FSM). Circuit B reads the
memory access request packets sent by the processor from the FIFO and trans-
forms them in memory accesses for circuit C. Circuit C with a memory block inside
resembles the memory-mapped interfaces. The memories transfer one word per
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— -
FIFO <'—reizt:n ) address
circuit — circuit [+—data memory circuit
A dat B —readen.
FIFO e .
L +—writeen.—] —write en.

Figure 1.2: Excerpt from the FPGA design. Circuit B must be hardened by design.
Other circuits are immune to soft errors.

parse ! ! send
start —
header response

read
RAM

Figure 1.3: Simplified state diagram of circuit B, which parses the remote memory
packets sent by the mission software (i.e., the processor)

cycle. Circuit A and Cincluding the FIFOs and RAM are assumed to be sufficiently
protected against soft errors (e.g., by LTMR and error correcting and detecting
code). Circuit B must be hardened by design.

The FIFOs and the memory need a single clock cycle for reading or writing a
single word, thus the data flow to the memories can be controlled with a single
word granularity.

1.1.3 Communication Protocol

The communication protocol between the processor and the FPGA is visualized in
figure 1.4. The protocol consists of two kinds of messages: request and response,
which both make up a single transaction.

The processor sends memory access requests for a specific address or address
interval to the FPGA and the FPGA (more precisely, circuit B) answers with the ac-
cording response: A read request is responded with read data and a write request
is acknowledged after the write operation. Every request is acknowledged with a
response and a second request cannot be sent before the response to the first re-
quest has been received. If the FPGA does not respond after a timeout, e.g., due
to a soft error, the last request is repeated.

The communication protocol can send one word per cycle and the messages
can be composed of multiple words. The validity of a single message is dependent
on the last word sent. If the last word flags an error or is not present after a time-
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Figure 1.4: Sequence diagram of the communication protocol, which is based on
transactions. A transaction consists of a request (req) and a response (resp). The
left diagram shows a normal sequence: every request is followed by a response.
On the right, the behavior in case of an error in the FPGA is visualized: if still no
response after a timeout is received, the last transaction is repeated.

FIFO data > address
_,C}Dt_—read en. circuit [+——data
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error
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|
error
Y
system
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Figure 1.5: Design from figure 1.2 with error detection-based fault tolerance
(EDFT) applied on circuit B

out, then all the words until the last valid packet are discarded. Consequently,
in case of an error, already transmitted words of a packet are discarded and the
transaction fails.

1.1.4 Hardening

Now, we describe how EDFT can be applied on the reference architecture. Fig-
ure 1.5 shows EDFT hardware components attached to the target circuit. If a bit
in circuit B flips, then the error signal is activated by the error detection module.
The error signal activates the error handling module, which immediately masks
the target circuit’s outputs to isolate the circuit. While the circuit stays in isolated
state, the error handler recovers circuit from the erroneous state by activating the
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reset signal of circuit B.

As circuit B was reset, no valid response could be sent. Consequently, the last
request to circuit B is repeated according to the communication protocol and the
processing can continue.

Compared to the state-of-the-art approach TMR, EDFT has alower area (thus
also power) overhead, which can be the key factor to fit an application on a space-
constrained chip. The critical path overhead is similar to TMR, so the hardened
application can run at similar clock frequencies. Compared to TMR, EDFT requires
a software component which retries a failed transaction, which should not have a
significant overhead.

From the theoretical perspective, the concepts used by EDFT are not novel ap-
proaches. Still, this work contributes to the existing work by:

« applying EDFT on a real processing architecture
+ evaluating EDFT using a state-of-the-art FPGA for space applications

+ evaluating EDFT analytically and experimentally using placed-and-routed
circuits

+ describing the automatic application of EDFT using a parity-based approach.

1.2 Next chapters and background work

After we have shown an overview of EDFT using an example, in next chapters
we will discuss it more in detail. First, some preliminaries important for under-
standing EDFT will be handled in chapter 2. The chapter 3 will address the related
work. Then, chapter 4 analyzes an example implementation of the error detection
module: parity-based error detection. A possible drawback of parity-based error
detection is the timing impact. In chapter 5, we propose a pipelining approach
which can alleviate this impact. The remaining components of EDFT - error han-
dling and transaction-based processing will be discussed in chapter 6. Finally, we
will conclude the work by giving some recommendations regarding testing of an
EDFT-applied system, summarizing important points of the work and giving some
suggestions for the future work.

The following publications make up the background work for the following
chapters:

» [AF15b] introduces the idea of EDFT in general, which was already done in
section 1.1.

« in [AF15c] we give a first insight to the performance of EDFT using parity-
based error detection by comparing our approach with LTMR analytically.
Synthesis results using a real circuit is gathered in [AF15a]. These contribu-
tions make up part of chapter 4.
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+ the work for pipelined parity approach in chapter 5 originates from [AF16b].

+ [AF16a]is anextended version of [AF15a] and provides a more detailed spec-
ification, and fault tolerance analysis of transaction-based processing. The
contributions in this work were used in chapter 6.
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Chapter2

Preliminaries

We begin this chapter by introducing general goals and concepts in dependable
computing. In section 2.2 discuss about transient effects in digital circuits, in sec-
tion 2.3 about our fault model. In section 2.4, we give an overview of techniques
for achieving fault tolerance against bitflips in flipflops of a digital circuit. In sec-
tion 2.5, we give additional information about FPGAs for radiation environment,
as our evaluations in next chapters and the implementation of our work is based
on an FPGA. Section 2.6 is dedicated to the FPGA that we used in our evaluations,
the ProASIC3. After the introduction of these concepts and background informa-
tion, in section 2.7, we present our proposed approach more in detail.

2.1 Concepts of dependable computing

Some terms or common concepts used in this work regarding fault tolerance, e.g.,
fault, error, fault handling, error handling, can have different meanings in differ-
ent fields of science or even different perceptions by different persons in the same
field. Because of this reason, we give the definitions of some terms and common
concepts of fault tolerance that are used in this work. The definitions are based on
the well-known work [Avi+04], which compiles the common terms and concepts
belonging to dependable and secure computing. The terms and concepts intro-
ducedin [Avi+04] are very broad and we will confine us to the terms and concepts
relevant to this work and give examples by applying these terms and concepts on
systems used in embedded computers and digital circuits.

In what follows, we first introduce the terms important for the concept of de-
pendability, fault tolerance and soft error. Then, we present the means for achiev-
ing dependability and fault tolerance of a system.

9
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o]

Figure 2.1: A system consists of components. A component itself is a system too.

component II

2.1.1 Systems and threats to dependability

A system is an entity that interacts with other entities. A system can deliver ser-
vices to other systems in its environment via its use interfaces and can receive ser-
vices from other systems. For instance, an onboard data handling system (OBDH)
on a space satellite stores and periodically transmits gathered data during a mis-
sion to earth, and also handles the communication between other systems on a
satellite. The OBDH delivers a data communication service to the systems on-
board the satellite and a housekeeping data transmission service to the satellite
operator on earth. Note that a satellite operator and thus a human can also be
abstracted as a system. A use interface of the OBDH can be a software module for
decoding the data packets received from other systems, if we observe the OBDH
from the software point of view. On the other hand, from the hardware point of
view OBDH, a plug mounted on the case of the data handling system would be the
use interface. It is obvious that a system can be perceived differently in different
abstraction levels.

A system consists of one or more components, which contribute to the ser-
vice delivered by the system. A system is a recursive term, a component of a sys-
tem is also a system itself. For instance, the circuit board component carrying the
main processor chip of an OBDH is itself a system which interacts with other circuit
boards inside the OBDH enclosure. The main processor chip is a system which can
run software and process data as a service, consisting of the circuit die and the chip
pins. The circuit on the die consists of digital and analog circuitry, where the digi-
tal circuitry consists of combinational and sequential logic elements. A flipflop as
asequential element can also be abstracted as a system which can store a Boolean
value as a service.

A dependable system tries to deliver a correct service to its users, but there
are threats against the service delivery. A service failure is an event that causes
a transition to a system state, where the system cannot deliver its service to the
users on its use interface in an expected way and the failure leads to an incorrect
service. A failure is caused by one or more errors inside the system. An erroris a
deviation from the correct system state, which canlead to a system failure, but not
every deviation from the correct system state must end up in a failure. A system
service has an external state, which determines how the service is delivered at the
use interface. The rest of the system state is defined by the internal state. Only
a deviation from the correct external service state can be perceived by the user,
and thus is a failure. Consequently, an error in a system must propagate (through
components) and change the external system state to cause a failure. A fault is
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|
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system

Figure 2.2: Illustration of a system delivering services to a user. The total system
state controls how the services are delivered to the user. The total system state
consists of the internal and external state. The part of the total system state which
can be observed by the user is the external state, the remaining partis the internal
state. The arrow shows the flow of information.

the cause of an error. A fault can be internal or external. A fault must be active
that it can cause an error. During the time period when a fault does not lead to
an error, the fault is dormant. Note that a failure in a system component does not
have to cause a system failure, but this failure can cause an error in a neighboring
system component which in turn can activate an error in the external service state
and cause a system failure. The concepts discussed until now are illustrated in
figures 2.1, 2.2, 2.3, and 2.4.

Imagine a data processing circuit that receives a memory access request at its
use interface, accesses a memory circuit according to the memory access request
and transmits a response to the user. A correct service is delivered, if the circuit
accesses the memory correctly and responds according to the request. A write ac-
cess request to a (normally) not used address causes an assertion of both the read
and write enable signals of the memory, and no write operation can be executed in
return. Let this behavior due to a buginthe synthesizable hardware description of
the data processing circuit due to a wrong reasoning of a developer. In this case,
the wrong reasoning is an error of the developer, which have caused a dormant
faultin the circuit. Note that according to [Avi+04], a human can be acomponent
of a system, and thus a human can also be modeled as a system. Only if the men-
tioned particular write access request happens, this dormant development fault
sets a flipflop in the circuit, which in turn activates the read signal of the memory
circuit and leads to the failure.

The same error can be caused by an external fault. Assume that this circuit is
operated in space and the circuit is not sufficiently protected against the energetic
particles present at the operated orbit, e.g., by not using a chip with radiation-
hardened flipflops. Then, the energetic particle, which traverses through the cir-
cuit and induces enough charge to flip the flipflop bit controlling the read enable
signal, is an external fault. The bitflip event in the flipflop is an error. In most
cases, this bit gets overwritten with a correct value by a predecessor flipflop, and
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fault

fault

error failure

Figure 2.3: Fault, error and failure concepts illustrated on the system from fig-
ure 2.2. An error is a deviation from the correct system state. If the error happens
in the external state of a service delivered by the system, thus can be observed by
the user, then it is a failure. An error can be caused internally or externally.

provider system user system

Figure 2.4: Error propagation between systems. A provider failure can be fault
from the perspective of a user and cause an error in the user system.
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the bit error is corrected until a memory write request is received. In other cases,
it causes a failure.

Faults which are continuously present in time are called permanent faults, oth-
erwise we talk of transient faults. For instance, imagine a power transistor was
solderedincorrectlytoacircuitboard and atransistor pinis detached dueto strong
vibrations during thelaunch of aspace satellite. Thisis a permanent fault, because
aninspection and repairis generally not part of a satellite mission. Anotherimpor-
tant fault source is the radiation in space. Radiation can cause permanent faults
in circuits, if a circuit is exposed to radiation long enough that physical structures
on a die are damaged irreparably. The flipflop bitflips due to radiation which can
be overwritten in the next clock cycles are in contrast transient faults.

Some faults can be activated systematically in a determinable way, these are
hard faults. Hard in this context means that a fault do not seem to change its reac-
tion and stays “hard”, when a determined input stimulus is applied on the system.
If the fault seems to be activated sporadically, then we talk of a soft fault. Gener-
ally, soft faults can only be reproduced under very complex and rare internal and
external conditions. A hard fault in the context of our example data processing
circuit, would be the development bug in the circuit, which easily gets activated
when a particular stimulus is applied to the system. On the other hand, if the fault
was not activated during the verification of the circuit due to an insufficient verifi-
cation coverage and only happens a single time in a month during the operation,
we talk of a soft fault. Note that hard and soft are terms about the fault activation
reproducibility and is dependent on the perception of a fault.

[Avi+04] identifies fault classes which are divided into three major groupings:
development, physical, and interaction faults. Development faults are caused dur-
ing engineering phase of a system. Physical faults are faults which are caused on
the hardware. Interaction faults arise due to faults at the use interface of systems
mainly by humans or generally by interference between systems. These group-
ings are overlapping, i.e., one fault can belong to two groupings, for instance an
insufficient verification coverage can lead to a physical development fault.

The authorsidentify that there are no transient development faults. Due to the
similarity between the perceptions of soft development faults and transient phys-
ical faults, which cannot be easily reproduced, these two categories are bundled
as intermittent faults. This classification is illustrated in figure 2.5. Errors caused
by intermittent faults are called soft errors. If an error present in the system is not
noticed, then the error is latent, otherwise detected.

Note that the research community involved in the fault tolerance for mission-
critical digital systems mostly uses the terms soft error for temporary upsets, and
hard error for permanent errors in electronics due to electromagnetic radiation
[Nicl1], [BSV11, ch. 3], [KCROG, ch. 1], [Petll, ch. 2]. The difference between the
meanings of hard and soft in fault tolerance community can be seenin figures 2.5,
2.6, and 2.7. The errors are caused by various single event effects (SEE), which we
introduce separately in section 2.2.
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fault f !
. —— permanent ‘
persistence L T A )

fault activation (-
reproducibility \
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Figure 2.5: Due to similarity between soft development faults and transient physi-
cal faults, these are bundled as intermittent faults. Figure adapted from [Avi+04].

T Yy

intermittent
soft error
fault

Figure 2.6: Soft errors are caused by intermittent faults. This definition of soft
error in [Avi+04] differs from the definition commonly used in the fault tolerance
community (figure 2.7).

error ‘ |
I
persistence '

Figure 2.7: The meanings of soft and hard in fault tolerance community. Com-
pared to the taxonomy in [Avi+04] illustrated in figures 2.5 and 2.6, fault tolerance
community usually uses the terms hard and soft for error persistence.
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Even we will not use the terms hard and soft as described in [Avi+04], other
fault tolerance concepts presented from [Avi+04] are generally used in fault tol-
erance community.

2.1.2 Means for dependability

In last subsection, we introduced the concepts of fault, error and failure, which
are three main threats to dependable computers. It is obvious that faults are the
source for errors as well as failures. Consequently, the concepts for the means for
ensuring dependability are based on the word fault and are called:

« fault avoidance (goal: fault-free system)

- fault prevention

- fault removal
« fault acceptance (goal: living with faults)

- fault forecasting

- fault tolerance

Fault prevention happens mostly during development phase of a system and
aimsto avoid generation of faults by enabling more robust development processes.
For instance, there are coding styles or standards for hardware descriptions used
inavionics, whichlimitthe use of some codinglanguage constructs or coding tech-
niques which maylead to faultsin code. [CPB10] compiles some guidelines for the
hardware description language (HDL) VHDL.

Fault removal happens during development and operation phase of a system.
For instance, verification during HDL development is carried out to remove the
faults in the code. The faults in the HDL code are also called bugs. During oper-
ation, fault removal is mainly done during system maintenance. Maintenance is
an external countermeasure and a maintenance follows a failure or is done peri-
odically as preventive means. Due lack of physical access, a physical fault removal
is not practicable for space satellites, but a fault in the system software can be re-
moved for instance by removing the fault and reuploading to the satellite.

Fault forecasting tries to foresee faults by evaluating the system behavior. The
evaluation can be done during development as well as in operation. For instance
as part of the quality assurance for satellite systems a fault detection, isolation
and recovery (FDIR) is prepared by analyzing the fault sources in the system and
checking the presence of the means against the faults.

Fault tolerance tries to avoid system failures during operation with the help
of fault tolerance techniques. If the use environment of a dependable system in-
cludes external faults, then fault avoidance is not practicable and this system must
implement fault tolerance and/or fault forecasting.
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2.1.3 Fault tolerance

From the four means for dependability, the fault tolerance is the key concept for
this work and will be described more in detail.
[Avi+04] uses the following classification for fault tolerance techniques:

 error detection

- concurrent detection

- preemptive detection
+ recovery

- error handling

* compensation
* rollback
* rollforward
- fault handling
* diagnosis
* isolation
* reconfiguration

* reinitialization

Error detection is the localization of errors in the system state. We speak of con-
current detection or concurrent error detection (CED) if the error detection can
be carried out continuously. Some examples are comparators for duplex systems
or error detecting codes for registers in circuits, which are active continuously in
time. An overview of CED techniques against bitflips will be handled in subsec-
tion 2.4.3 more in detail.

Preemptive detection takes place outside the actual operation window of a
system. This means that the component delivering the the service is paused and
the tester component is active in the system. An example is the checking the in-
tegrity of data in the random access memories on a circuit after power-on, to pre-
vent a failure during data processing.

System recovery or simply recovery is the reaction to a detected error and tries
to create a system state which is free of errors (error handling), and undertakes
actions that the faults do not cause any errors (fault handling).

The first error handling technique is the compensation. Compensation masks
the erroneous part of the system state, if sufficient redundancy for the system
state is present. For instance, if the state machine of a circuit is encoded using
Hamming-code, then single bit errors can be compensated by this system.

Rollback tries to go back to a error-free system state. This technique has the
advantage of restoring a prior state of the system with minimal data and time
loss and restarting processing from this state, especially if the system needs high
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amount of time to reach this state again. But this advantage comes at the cost of
extra space for saved system states, which are also called checkpoints. If a roll-
back is not possible, rollforward can be tried. Compared to an old, saved state,
rollforward restores a new error-free system state. Imagine a data processing cir-
cuit which periodically stores checkpointsina memory. Subsequently, aradiation-
induced bitflip happens in the state machine, which gets detected due to one-hot
encoding. First, a rollback is tried, but the checkpoint is too old to restore. As
fallback, rollforward is tried by resetting the state machine and the start state is
restored.

Diagnosis is the evaluation of an error to find out the fault that led to the error.
Diagnosis normally happens in complex systems, when the cause of an error is not
obvious, where an error can be caused by along chain of threats.

Isolation keepsthe faultin adefined area by means oflogical or electrical mask-
ing with the aim that the fault does not affect neighboring systems by propagating
through the system boundaries. Forinstance, if a bit erroris detected in a sequen-
tial circuit, then circuit’s outputs can be logically masked to avoid propagation of
erroneous data to neighboring circuits.

Reconfiguration involves reassigning of tasks to spare components in the sys-
tem. For instance, a data processing system with numerous identical processing
components can reassign a task from a failed processing component to another.

Finally, reinitialization means arestart of the system, bringing the system back
toitsinitial state. In case of a complex hardware, this is mostly achieved by turning
the system off and on again. In case of a sequential circuit this equals to a reset of
the circuit.

A rollback or rollforward is usually followed by fault handling, especially if a
hard fault is expected in the system. For instance, let some data read from a flash
memory block has a bit error. The error is corrected with the help of Hamming
code, but the error handling determines that it is a hard fault. So, fault handling
proceeds and marks the damaged area in the flash memory that this area is not
used in future, otherwise the hard fault (the damaged flash cell) can be reacti-
vated again and cause another error. In this example error recovery is done by
compensation and isolation.

Fault handling can also precede error handling, if fault handling can react faster
than error handling. Forinstance, assume a sequential circuitin radiation environ-
ment. During operation the circuit detects an error using parity. As the system
was designed for radiation environment, the system assumes this is a soft error.
Error handling is done using rollforward by a reset in the component, where the
error is detected, but the reset takes many clock cycles. So, the system isolates
the component that the error does not propagate to other components, by im-
mediately logically masking the primary outputs that can propagate the error, for
instance the control signals like write enable in memory interfaces. This isolation
is called fault isolation, because if an error propagates to the neighboring system,
it is an external fault from the neighboring system’s perspective. Note that this
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Figure 2.8: EDFT applied reference architecture labeled according to the taxon-
omy in [Avi+04]

example reflects the idea behind our recovery technique in chapter 6. In this case
fault tolerance is achieved by concurrent error detection with on-demand system
recovery, where fault handling (isolation) is done before error handling (rollfor-
ward).

Error detection and system recovery is also abbreviated as detection and re-
covery.

Figure 2.8 shows error detection-based fault tolerance (EDFT) applied on the
reference processing architecture from section 1.1, which is labeled according to
the taxonomy we introduced in this section.

2.2 Transient effects on sequential circuits

This work concentrates on the transient bit errors in the flipflops of sequential cir-
cuits, which are mainly caused by radiation. Although we have introduced many
terms and concepts for dependability in last sections, we will further introduce
terms used in fault tolerance against radiation-induced errors. These are impor-
tant for understanding our fault model in this work. Different works on fault tol-
erance can have different working terms and we will present the definitions intro-
duced in [Petll, ch. 2], but also add some remarks on the use of these terms in
fault tolerance community.
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Alocal effect caused on a system by interaction of a single energetic particle is
called a single event effect (SEE). Other (not caused by only a single particle) ra-
diation effects are due to cumulative dose of these particles on along term, e.g.,
total ionizing dose, which can affect the circuit performance inlong term. An SEE
can result inlocal corruption of information stored in a node, which is called a sin-
gle event upset (SEU). In other words, an SEU is a corrupted electrical state. An
upset in turn can result in transient, permanent, or static errors.

Transient errors are visible as deviations from the normal signal state in alim-
ited time interval generally less than the duration of a clock cycle, for instance a
transient peak on the output of a circuit gate that lasts only a fraction of the clock
cycle duration.

Permanent errors are mostly caused by damage on circuit components, e.g.,
a destroyed power transistor due to radiation. These errors are also called hard
errors. Permanent errors are not the motivation of this work.

Static errors, which are caused by transient errors getting latched by the cir-
cuit, can be corrected by, e.g., a reset, and these errors are also called soft errors.
Soft errors often happen in the memory elements in form of bitflips and if uncor-
rected, these may propagate through the circuit and may lead to a system failure.
Nevertheless, there are many inherent structures on a circuit, which prevent the
radiation-induced faults from causing errors. These structures are latching win-
dow of sequential components, as well as electrical- and logical-barriers of com-
binational components [Lid+94].

Note that according to the taxonomy in [Avi+04], a soft error can be caused by
soft permanent faults or transient faults, which is a more broad definition. In fault
tolerance community, soft errors are usually transient bit errors, which are caused
by SEEs, and which can be recovered from by a reset. As this work is motivated
by radiation-induced transient faults in flipflops, we will refer to the bit errors by
using the term soft error, same as how the fault tolerance community calls it.

Moreover, the term transient error introduced formerly is usually called single
event transient (SET) in fault tolerance community, but [Petl1] does not use this
term at all. Also, the term SEU is used in [Pet11] in a more general context making
the transient pulses on a net an SEU, so these transient pulses on electrical nets
are seen as a corrupted electrical state. Even the definitions make sense in their
context, in fault tolerance community, these two terms are mostly used as follows:

+ SEU as bitflips in memory components
+ SET as transient pulses on combinational nets

As working terms, we will use SET for transient voltage pulses on a circuit net,
and SEU or bitflip for flipped bit in a flipflop, as these terms are more common in
the fault tolerance community.

Figures 2.9 and 2.10 summarize the discussion about different terms used in
[Petl1] and fault tolerance community.
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Figure 2.9: Classification of SEUs according to [Petll]. [Petll] does not use the
term SET.
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Figure 2.10: Compared to [Petll], the terms SET and SEU are used to differenti-
ate the effects on combinational on sequential elements. These terms will also be
used in this work as working terms.

2.3 Fault model used in this work

The motivation of this work is to recover a sequential circuit from the erroneous
state caused by the bitflips in flipflops, and bitflips can be caused by various ways.
In this section, we describe the faults that we are hardening our system against.

SEUs and SETs are the most common functional transient radiation faults that
happen on the gate level. An SET can happen on every net of a circuit and can be
seen as a transient voltage pulse on a net. If such a change happens on a data
net and then latched by a flipflop, this transient can lead to a bitflip in the flipflop.
But an SET can also happen directly on a net inside the flipflop itself and possibly
flip the state of the flipflop. An upset of the flipflop bit due to a single energetic
particle is called an SEU.

Bitflips due to SETs are rarer than SEUs, because:

+ a striking particle must induce enough energy on a circuit net to cause an
SET, which depends on the electrical capacitance of the regarding net

+ the combinatorics must pass the SET to the input of a flipflop to have the
chance to be registered

+ the SET must be effective during the time window when a sequential ele-
ment is transparent that the SET gets registered
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With shrinking feature sizes, the electrical capacitance of circuits nets decrease,
which increases the error rate due to both SETs and SEUs. With increasing fre-
qguencies, especially the probability that an SET gets registered increases. There-
fore the errors due to SETs are frequency dependent.

An SET, and thus also an SEU, are asynchronous events by nature. If an SET
occurs during setup or hold times of an flipflop, this can lead to metastability and
thus to aindeterminable state of the flipflop. An SET can be detrimental on global
nets like clock or reset but also on shared data nets.

A recommended fault tolerance strategy against an SET is to triplicate global
signals or to use temporal redundancy by introducing delay elements, which intro-
duce signal delays that are longer than the maximum duration of a voltage pulse
caused by an SET and compare a net with its delayed value. On the other hand,
space redundancy like LTMR is used against an SEU on flipflops [Ber0O8]. Conse-
quently, a sufficient fault tolerance strategy against functional errors should ac-
commodate both temporal and space redundancy.

In this work, we focus only on SEUs which occur directly inside the flipflops,
and not on shared nets, which can cause multiple bitflips. Our fault modelis based
on the following assumptions:

+ only SEUs happen

» SEUs happen on a discrete time domain

+ SEUs happen synchronously to the circuit clock
Consequently:

« the faults appear as single bitflip errors

+ an SEU happens inside a single clock cycle and it is not relevant where an
SEU happens inside a clock cycle

« if an SEU happens during a clock cycle, then the error is only observable in
the next clock cycle and subsequent cycles

We focus only on SEUs, because most of the evaluations in this work are based
on the the well-known FPGA for space applications, the ProASIC3. According to
[PGGI11], bitflips caused in ProASIC3’s flipflops are mainly due to SEUs. ProASIC3
is discussed in section 2.6 more in detail.

With feature sizes further decreasing, one would expect that the errors due to
SETs increase compared to the errors caused by SEUs. Recent technology nodes
show an opposite behavior. Forinstance, [GSZ09] states that the error rate due to
combinational elements is below 30% of error rate caused by sequential elements
at 32 nmfeature size, even it was predicted that the contribution of combinational
and sequential elements should be equal at this technology node. [Sei+12] states
that the error rate of 22 nm technology shows very small increase in error rate due
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to combinational SETs compared to sequential SEUs and notes that the error rate
due combinational SETs remain below the projections in earlier publications.

We assume that SEUs happen on a discrete time domain and synchronously to
the circuit clock, because an analysis on a continuous time domain depends on the
path delays of a routed circuit, and on the setup- and hold-times of the flipflops.

2.4 Fault tolerance techniques against SEUs

The fault tolerance against SEUs can be implemented at various abstraction levels
of a computing system, e.g.:

+ fabrication process level
+ chiplayoutlevel

+ logiclevel

« architecture level

+ software level

- algorithmlevel

Some fault tolerance techniques are based on combination of techniques present
on many abstraction levels. For example, a software component reacts to an ex-
ception which was caused by the arithmetic unit of a processor.

Atthelowestlevel of abstraction, a digital circuit can be made fault-tolerant by
selecting special materials or a special chip manufacturing process. Hardening at
this level is usually called radiation hardening by process (RHBP). When the chip
manufacturing process is fixed, we arrive at the design level. Design means using
the available building blocks to create a system, where the building blocks usually
start at transistors can go to individual software modules and further. Harden-
ing a system at design level is also called radiation hardening by design (RHBD).
RHBD depends strictly on the wise use of components that the designer has ac-
cess to. For instance an FPGA circuit designer can only use the building blocks of
the chosen FPGA, namely the configurable logic blocks (CLB) and the routing in-
frastructure (also called interconnect). It is noteworthy that some systems which
are not explicitly hardened can still show an inherent fault tolerance against radi-
ation. [Blal2] calls this kind of hardening by luck radiation hardening by serendip-
ity (RHBS).

Now, we will traverse through various abstractionlevels and give example fault
tolerance techniques at each level.

Implementing a system at a high abstraction level can be less time consuming
and can come atlower costs due to reuse of existing solutions. This saving also ap-
plies to fault tolerance. For instance, implementing fault tolerance at the software
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level provides more flexibility and it is usually cheaper compared to the incorpo-
ration of a special chip manufacturing process, as manufacturing a custom chip
creates high costs compared to software. Therefore, many systems for deploying
in radiation environment are implemented using broadly available, i.e., commer-
cial chips along with RHBD. This rule can be also repeated at other abstraction
levels: It is usually cheaper to use commercially, broadly available systems than a
system for a niche market, or to develop it from scratch.

Nevertheless it is important to state that the advantage of implementing fault
tolerance in higher levels is not always true. RHBD has also its limits, and depen-
dent on the mission requirements, the designer must implement fault tolerance
additionally at lower levels. A remarkable example is hardening against the total
ionizing dose (TID) in space, which can slowly degrade the performance of a dig-
ital circuit through the mission time. At the application level of an FPGA usually
thereis no way to harden against TID, and hardening against TID effects is usually
achieved at the process level [Blal2]. Another example is system level TMR. For
instance, first it may seem trivial to triplicate an on-board computer for a satellite
for fault tolerance, but the voting and the system recovery in case of an error or
failure still needs a significant portion of engineering work and may not be cheap
as using two on-board computers with fault tolerance implemented at lower ab-
straction levels.

In the next subsections, we present an overview of fault tolerance techniques
against SEUs at various abstraction levels.

TMRis awell-known technique, which can be implemented on various abstrac-
tion levels of a system. Our evaluations in the coming chapters are based on TMR
implemented on logic level, therefore this technique will be discussed in its own
subsection.

Last but not least, it is noteworthy that we discuss in this section only about
fault tolerance against SEUs, because most our fault model is based on SEUs (see
section 2.3). Generally, a digital circuit for a mission-critical application in space
should also pay attention not only to other radiation effects, but also incorpo-
rate additional means to ensure dependability in various abstraction levels, e.g.,
fault removal, fault forecasting, fault prevention, which we discussed in subsec-
tion2.1.2.

2.4.1 Fabrication process level techniques

Fault tolerance at the fabrication process level or shortly process level resembles
the means used in the respective chip manufacturing process. Usually, chips are
manufactured in fabs using commercial very-large-scale integration (VLSI) pro-
cesses which are aimed at high yields and low costs. For applications with spe-
cial needs, other manufacturing processes can be used. For instance radiation-
hardened processes incorporate dense delay elements like resistors and capaci-
tors that can be used in the feedback path of latches. These resistors and capac-
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itors can then increase the delay of the feedback path and protect against SEUs.
Usually, commercial processes do not provide this kind of dense delay elements,
so obtaining a similar feedback path with a commercial process could be impossi-
ble or with additional area penalties.

Another example for a process level fault tolerance technique is using silicon
on insulator (SOI) technology in the wafer manufacturing process. [Col04, part
8.3.2] discusses the use of SOl in circuits for radiation environments and states
that memories based on SOI technology have a lower soft error rate than their
counterparts, which are based on the conventional CMOS (complementary metal-
oxide-semiconductor) technology. For example, a comparison of SEU cross sec-
tion (the number of SEUs in a specific radiation test normalized by the total num-
ber of irradiated particles and total memory bits, i.e., a normalized error rate) be-
tween an SOl and conventional PowerPC processor with similar feature size shows
that cross section of the SOI processor is about one magnitude lower than the
cross section of the conventional counterpart [Iro+03].

2.4.2 Chiplayoutlevel techniques

Chip layout level resembles the drawing of polygons, vias, transistors, use of cells,
gates, and floorplanning to create a chip. At the low level, a chip designer can re-
duce the SEU vulnerability for instance by layouting in such a way that a sufficient
critical chargeis ensured. A higher critical charge resultsin alower SEU vulnerabil-
ity, because a striking energetic particle has to bring then more energy to neutral-
ize this charge and cause a voltage level that represents the opposite logic level,
namely a bitflip. [Blal2] discusses some RHBD techniques at the chip layout level
not only limited to hardening against SEUs.

A well-known RHBD technique at chip layout level is dual interlocked state
cell (DICE) for memory elements [CNV96]. DICE is based on space redundancy
and is implemented as follows: A standard SRAM memory cell is based on one
bistable element. Basically, DICE introduces three additional bistable elements
which are chained in aloop, see figure 2.11. Every bistable element has two neigh-
boring bistable elements, which can isolate their neighbors from each other de-
pendent on the memory state. So, if there is an SET on one of the bistable ele-
ments, this transient is not propagated to other elements. When the transient ef-
fect has ended, the feedback from the neighboring bistable element restores the
state of the corrupt element. Usually, a standard SRAM cell is based on 6 transis-
tors and DICE uses 12 transistors, so DICE has an area overhead of 1. For instance
DICE cells are included in many space-grade FPGAs like Atmel ATF280F, Aeroflex
UT6325 and Xilinx Virtex-5QV [Ber12].

Radiation susceptibility of the DICE can be further improved by using a differ-
entlayout approach called LEAP [Kel+10]. According to [Kel+10], LEAP-DICE im-
proves the error rate of DICE and conventional flipflop by a factor of 5 and 2000,
respectively. Additionally, LEAP-DICE flipflops are less susceptible to multiple bit-
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Figure 2.11: The left figure shows a bistable element, i.e., one bit memory ab-
stracted by two inverters. On the right, a DICE cell is depicted, which consists of
four bistable elements that are chained in aloop.

flips caused by a single particle.

2.4.3 Logiclevel techniques

Logic level techniques work mainly on the bit level can be applied on various ab-
straction levels that work with bits.

Error detecting codes and error detecting and correcting codes are based on
the bit level redundancy. The aim of these codes is to achieve better results than
duplication in case of error detection, and triplication in case of error detection
and correction. In digital circuits, they are used in online testing [NZ98] and con-
current error detection (CED). Some examples against bit corruption are parity,
dual-rail, m-out-of-n, and arithmetic code for error detection, and Hamming, BCH,
and Reed-Solomon code for error correction.

Many concurrent error detection (CED) is based onlogiclevel techniques. CED
is based on error detection during the normal operation of a system. CED is usu-
allyimplemented by an additional checker circuit, which checks an invariant prop-
erty of the target system [NZ98]. Note that CED can also be implemented on var-
ious other system state properties like temperature and power, but in this work
we confine us to the techniques relevant against bitflips.

In parity checking (called parity-based error detection (PBED) in this work), a
parity bit is added to every data word being stored, e.g., by XORing the data bits
and storing the result along with the data word. Upon reading the data word, the
parity is calculated again, compared to the stored parity value and in case of a mis-
match, an error signal is asserted. Subsequently, an error handler can react and
initiate a system recovery scheme. Parity checking is used for instance in the level
1cache ofthe processors of the IBM S/390 G5 system [SG99] and on the execution
unit registers of a SPARC processor [And+03].

Error correcting codes add enough redundancy to data to enable correcting of
bit errors. Hamming code is commonly used in circuits to encode memory data.
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Even it can also be used for hardening the registers in a circuit, simple replication
of registers is preferred (e.g., triplication and voting), because replication has less
impacts on the critical path of a circuit. Some techniques are based on arithmetic
properties of special functional units. For instance residue codes are based on the
following equality:

(z-y) mod m = ((x mod m) - (y mod m)) mod m

Modulo for binary numbers can be efficiently implemented by calculating modulo
of single bits and summing them. This principle is for instance used in a multiply
unit of a SPARC processor [And+03].

If a circuit has only bitflips in one direction, i.e., only one to zero, or zero to one,
then a sum code can be used. In sum code, the number of ones or zeros are coded
in binary and attached to the information word. So, an information word with n
bits has [log,(n + 1)] checkbits. This code is also called Berger code [Ber61].

2.4.4 Triple modular redundancy onlogic level

A well-known RHBD technique which can be used at most abstraction levelsis the
triple modular redundancy (TMR). The principle of TMR originates from 1960s
[Arm61; LV62]. In TMR one module is triplicated and the outputs of the three
modules are input to a voter, which outputs the majority value. A module in this
sense can be anything from a whole system to a small functional block or simply a
gate.

In coming chapters, we will evaluate our proposed fault tolerance technique
and this evaluation includes also a comparison to the state-of-the-art hardening
technique TMR on aflash-based FPGA. Due to this reason, we present some com-
mon TMR techniques applied on the application level of an FPGA.

There are various TMR techniques based on the reliability requirements of a
circuit. Following list depicts a list of TMR techniques for FPGAs according to
[Ber08], which can be applied at the application level of an FPGA. These prin-
ciples can also be applied to digital circuits:

» local TMR
« distributed TMR
« global TMR

Inlocal TMR (LTMR), a combinational net being registered by a flipflop is con-
nected to two additional flipflops and the outputs of the three flipflops are con-
nected to a majority voter. The distributed TMR additionally triplicates the com-
binational data paths, so the combinatorics including the majority voter is also
triplicated. Finally, the global TMR takes also transient effects on clock nets into
account and triplicates the clock net, where every clock net supplies one partic-
ular flipflop of a triplicated data path. Local, distributed, global TMR and their
differences are illustrated in figures 2.12, 2.13 and 2.14.
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Figure 2.12: Application of local triple modular redundancy on user logic
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Figure 2.13: Distributed TMR triplicates every data path. So, every data path for
combinatorics requires its own majority voter compared to LTMR, where the data
path for combinatorics is shared.
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Figure 2.14: Global TMR additionally triplicates the clock lines for each data path
compared to DTMR
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LTMR protects against SEUs, but if an SET on combinatorics is latched by a
flipflop, it leads to an SEU. With increasing circuit frequency, the latching proba-
bility also increases. DTMR makes the SEUs due to SETs frequency independent,
but SETs can still happen on global clock nets and affect many flipflops at once.
Global TMR solves this problem by additionally triplicating the clock lines.

In this work, only bitflips in flipflops are considered. Consequently, the LTMR
is used as the compared TMR technique in our evaluations.

Presented TMR techniques detect and correct a single bit error on an flipflop
locally using a majority voter, hence the TMR can be automatically applied on top
of a circuit. This makes TMR functionally transparent to the rest of the system,
consequently the circuit mostly does not require a redesign before mapping to an
FPGA.

2.4.5 Architecturelevel

Architecture or micro-architecture resembles the specificimplementation of a pro-
cessor, including how the pipeline is structured, how many cores are integrated,
how is the cache organized.

Fault tolerance techniques at architecture level try to exploit the flexibility pro-
vided at thislevel. Forinstance, instructions can be checked for integrity or threads
can be run multiple times to detect errors.

Modular redundancy approach is also used to detect and correct errorsin func-
tional units of a processor core. For example, IBM S/390 G5 processor uses dupli-
cated instruction-fetch and -execution units in the pipeline. If the outputs are the
same then the recovery unit places the new state for the pipeline in a buffer. If
an error is detected, then the instruction is retried, if the error repeats, then the
processor halts [SG99].

Modular redundancy causes at least 100% overhead. Alternative approaches
use abstracted information of an application to monitor the pipeline. Forinstance,
the static control- and data-flow graph of an application binary can beloaded into
a monitoring unit, which checks then for error during runtime [MBS08].

2.4.6 Softwarelevel

Software approaches generally work on the instruction level by augmenting the
compiled binary with additional instructions for checking the control- and data-
flow of an application. Well-known techniques are runtime software assertions,
control- and data-path checking, and instruction duplication. Some techniques
will be discussed in chapter 3 in detail.

The main advantage of software approachesis the flexibility due to higherlevel
of abstraction. The application developer can use this flexibility to implement the
fault tolerance needed by a specific application.

The downside of software-only approaches is the limited error rate improve-
ment. For example, a software application on a processor with LEAP-DICE hard-
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ened flipflops can achieve an error-rate improvement factor up to 5000, where a
software-only approach based on duplicated instructions can achieve only up to
38 [Che+16b].

2.4.7 Algorithmlevel

The algorithmlevel techniques exploit the characteristics of a specificalgorithmto
check the integrity of intermediate or end results. For this purpose, the algorithm
is augmented with additional checks and recovery.

For instance, [HA84] detects and corrects errors in matrix computations by
augmenting the operands with additional checksums and distributes the compu-
tations to multiple processing units to avoid single point of failure.

The difference of algorithm- to software-level is that algorithmlevel techniques
are application specific, which is also the main disadvantage.

2.5 FPGAs used in mission-critical applications

Field-programmable gate arrays (FPGAs) are often utilized in space avionics due
to their processing efficiency, reprogrammability, and extensible interface capa-
bilities; providing flexibility for a range of mission requirements.

FPGAs store the software for their circuit programming information, i.e., con-
figuration, in the configuration memory. Currently, the commercially available
FPGAs used in mission-critical applications use the following types of configura-
tion memory:

« SRAM
+ flash
+ antifuse

The majority of the off-the-shelf FPGAs are SRAM-based. Known companies
for SRAM-based FPGAs are Xilinx, Altera, Siliconblue (acquired by Lattice Semi-
conductor in 2011) and Atmel. Most of the commercially-available FPGAs man-
ufactured by these companies are not designed for space. Although it is possi-
ble to use some of the ordinary (not mission-critical applications) FPGAs in non-
crucial experimental payloads in space, for mission-critical applications like on-
board data handling unit, space-grade FPGAs are preferred. Some SRAM-based
FPGAs for space are Virtex-5QV (also referred as single event immune reconfig-
urable FPGA (SIRF)), Virtex-4QV designed by Xilinx, and ATF280F, ATFEE560 (two
ATF280Fs with two EEPROMs in a package) designed by Atmel. All the men-
tioned FPGAs but the Virtex-4QV have built-in fault tolerance against radiation-
induced faults and usually no further hardening on application-level (e.g., apply-
ing TMR at the netlist level) is needed [Xilil4; Atmel5a; Atmel5b].
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Table 2.1: Number of SEUs in a circuit with 5000 flipflops and 8 Kib memory dur-
ing a one year mission in L2 orbit under 1/cm? shielding for different FPGAs based
on a fault model. Data taken from [BSV11, ch. 7].

device conf. mem. RAM FF
Virtex-4QV 344430 3747 2188
RTPE3000L (RT ProASIC3) 0 62 4
ATF280F ~0 ~0 ~0

The flash- and antifuse-based FPGAs were brought to market by Actel, which
was acquired by the semiconductor company Microsemi in 2010. Another manu-
facturer of antifuse-based FPGAs is Aeroflex. The antifuse and flash memories
have lower vulnerability to radiation-induced faults compared to SRAM, there-
fore FPGAs based on these memory technologies are popular in radiation envi-
ronment. Another advantage is the instant availability of the FPGA application
after powerup, because the configuration does not have to be loaded from an ex-
ternal memory compared to SRAM-based FPGAs. Moreover, SRAM-based FP-
GAs need usually external non-volatile configuration memory to be additionally
deployed on the system board or in the chip package (e.g., ATFFE560 FPGA).
Last but not least, antifuse and flash memories consume less power than SRAM,
because SRAM is volatile, in other words, energy is needed to keep the data on
SRAM. Some popular space-grade FPGAs from Microsemi are RTAX [Micrl5b],
RT ProASIC3 [Rez10] and RTG4 [Micrl6]. Aeroflex provides the antifuse-based
FPGA UT6325 [Aerol3].

RTAX is antifuse-based and was the main FPGA choice for space applications
before the space-grade flash- and SRAM-based FPGAs were available. The fact
that this FPGA is available more than ten years ([Wan04]) gives RTAX also an ad-
ditional advantage of heritage. This is contradictory to the short life cycle of com-
mercial digital circuits, but heritage of components is one of the key factors in
space that can be seen as on-field testing of a component and contributes to the
trust attributed to the component.

The most important drawback of antifuse- and flash-based FPGAs is that they
often do not provide much resources as their SRAM-based counterparts. In the
sparsely populated area of space-grade FPGAs, Microsemi recently introduced
the FPGA RTG4 with comparable resources, though. Another drawback is the lim-
ited reprogrammability compared to SRAM. Antifuse-based FPGAs are one-time
programmable and flash memories have usually a limited program/erase cycle.

Table 2.1 compares vulnerabilities of three different FPGAS: one FPGA with
built-in fault tolerance (ATF280F), and two FPGAs that have to be hardened on
the application level, SRAM-based Virtex-4QV and flash-based RTPE3000L.
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2.6 Microsemi ProASIC3 FPGA

In our evaluations we use a popular off-the-shelf flash-based field-programmable
gate array (FPGA) for mission-critical applications, the ProASIC3. ProASIC3 FPGA
family was introduced back in 2005 [Mor05] by the company Actel. In the follow-
ing years, other family products based on the same architecture with additional
features like more interfaces and low-power were introduced, especially the RT
ProASIC3. RT stands for radiation-tolerant. RT ProASIC3 (also called RT3P) is
based on alow-power product (A3PL) andis available (introduced in 2010 [Rez10],
commercially available since 2012 [EEJo012]) in an airtight (hermetically-sealed)
ceramic package and is tested against military standards. The flash-based config-
uration memory and the availability of a special chip package for extreme environ-
ments as well as additional testing against military standards (RT ProASIC) makes
ProASIC3 very popular for mission-critical applications like aerospace.

As mentioned in section 2.5, heritage is a key factor in mission-critical appli-
cations. Even the ProASIC3 architecture dates back to 2005 and its space-grade
packageis available since 2010, itis still state-of-the-art for space missions [VSC15;
Tre+14].

Usually, FPGAs realize a given application by using the building blocks avail-
able on the chip, namely configurable logic blocks (CLB). In ProASIC3, the CLBs
can be either configured as a flipflop or three-input look-up table (LUT), which is
contrary to popular CLB architectures where a CLB can simultaneously be config-
ured a flipflop and LUT.

ProASIC3 is based on a semiconductor process with 130 nm feature size. Ac-
cording to irradiation tests on RTPE3000L [PGG11], the direct SEU effects inside
the flipflops are more significant compared to the SETs on combinational compo-
nents latched by the flipflops. Due to the same reason, [PGG11] observed that
hardening against SETs using filters on the flipflop inputs (ANDing the delayed
and undelayed flipflop input signal) does not have any significant effect on the er-
ror rate of the irradiated circuit.

2.7 Error detection-based fault tolerance

After the introduction of fault tolerance concepts, we present our approach more
in detail.

In our approach, the target system that has be hardened can be abstracted
as two systems. The first one is hardware, i.e., is implemented as a circuit, and
provides a service. The second one is the user, which can be both hardware or
software. Figure 2.15 visualizes these two systems.

On hardware, detection of an error requires space or time redundancy, but
often less redundancy resources than both detection and correction. If the re-
sources on a device are scarce and costly, then implementing a local error cor-
rection scheme can become a hurdle. In this case, system recovery can be done
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service service

user provider
(SW or HW) (HW)

unhardened system

Figure 2.15: Abstract model of the reference architecture presented in section 1.1

by recomputation, e.g., by retrying the last processing request in software or ad-
ditional circuit buffering the last request. Issuing a non-local error correction re-
quires more recovery time than a local correction, beginning from the detection
until the hardware is recovered from the erroneous state and recomputation is
done. Nevertheless, if the error rate of the system is low, then an on-demand sys-
tem recovery can be practicable.

After an error, a module must be recovered to an operational state. Often,
this is done by resetting the module to its initial state. This in turn leads to a loss
of the processing context that must be brought back, which involves periodically
backing up the processing context, i.e., checkpointing. If the processing context
does not contain any information which is needed for a long time, i.e., when a
module regularly falls back to a defined state, then the overhead of checkpoint-
ing in the circuit may be eliminated by reissuing a processing request. Examples
for such a module are a protocol converter or simply a module which exchanges
data between two modules after reformatting data. These modules do not have
to store an information for a long time and have a defined state after a chunk of
dataoratransactionis processed. The example circuit B that was presented in fig-
ure 1.1 falls also in this category, as it only exchanges data between two modules
and moves to its initial state after a request is processed. If an error occurs during
processing of a request, then the error handler can reset the processing module
and flag an error to the processor that a processing request can be reissued, i.e.,
software-based retry. Alternatively, instead of flagging, the request can be reis-
sued after a nonresponsive timeout. In this case, the time penalty caused by an
error is negligible, if the FPGA SEU rates during a mission due to space radiation
are low.

We refer to this technique as error detection-based fault tolerance (EDFT) in
this work. We evaluated EDFT using parity-based error detection, circuit reset,
and circuit isolation on the service provider side, and transaction-based process-
ing ontheservice userside. Figure 2.16 shows EDFT applied on the system already
shown in figure 2.15. EDFT’s components will be presented and evaluated sepa-
rately using example implementations in next chapters.
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Figure 2.16: EDFT applied on the system in figure 2.15. The components are clas-
sified according to [Avi+04]
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Chapter 3

Related work

In section 2.4, we gave an overview of fault tolerance techniques at different ab-
straction levels. In this chapter, we discuss close related work.

An important contribution of this work is that it evaluates a concrete imple-
mentation of parity-based error detection with recomputation on a known FPGA
for space applications. To the best of our knowledge, there is no workin literature,
which evaluates a similar fault tolerance technique on a similar device. So, we will
present related work from a more general perspective.

Ourwork proposes a hybrid approach by combining fault tolerance at software
and hardware level to use the advantages of high-level and low-level fault toler-
ance techniques. We will present first a well-known software-level fault tolerance
approach, then a work showing the limits of software approaches. Finally, we dis-
cuss amore general and recent work, which combines well-known fault tolerance
techniques from various levels to achieve a system fault tolerance in terms of area,
timing, power, and error detection improvement.

3.1 Error detection by duplicated instructions

EDDI’s fault model is based on single bitflips in a processor. EDDI tries to detect
the errors which happen during program execution by executing the instructions
twice on two different sets of general purpose registers and program memory ad-
dresses. The error detection happens before executing a branch or store instruc-
tion. EDDI is applied as follows.

Firstly, a instruction dependency graph for the program is generated, which
shows the data dependencies between particular instructions and plays an im-
portant rule in instruction scheduling. Then, using the sequenced instructions,
the storeless basic block graph (SBB) of the program is constructed. First let us
explain the concept of basic block.

The concept basic block is well-known in compiler design. It defines asequence
ofinstructions, whereitis always guaranteed that every instructionin the sequence

35
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Figure 3.1: Storeless basic block (SBB) construction. The well-known concept of
basic block is augmented by the property storeless, because the error detection is
done before a branch or store instruction in EDDI.

will be executed before the coming instructions in the sequence. Put differently,
a basic block can only be entered by a jump to the first instruction, and exited by
using the last instruction in the sequence without any jumps to the instructions
between the first and last instruction. Examples for the last instruction in a basic
block are jump, branch, and return instructions.

EDDI augments the basic block concept by adding the storeless property, be-
cause the error detection happens prior to a branch or store instruction. SBB con-
struction is illustrated in figure 3.1.

The fault model of EDDI is based on bitflips in memory such as registersin the
processor, program and code memory. To detect the bitflips in registers and pro-
gram memory, these are partitioned in master and shadow sections. The instruc-
tions of the user program are limited to the master components. For illustration,
see figure 3.2.

Then, the instructions are duplicated, and transformed such that the dupli-
cated instructions operate on the shadow registers and memory, see figure 3.3
for illustration. The duplicated SBB is then added to the dependency graph.

Afterinstruction duplication, the instructions for error detection areintroduced
into the dependency graph. The instruction compares the registers which decide
the outcome of a branch instruction, or which will be stored in memory, and jumps
to system recovery code in case of a mismatch. See figure 3.4.

Finally, the scheduling is carried out. The instructions must be scheduled such
that the error detection probability is high. For instance, if the master and shadow
(duplicated) instructions are interleaved, i.e., if a shadow instruction always fol-
lows a master instruction, this leads to an error detection probability of about 0.5
for bitflips causing unintentional jumps in code. In case of interleaved instruc-
tions, if the unintentional jump is to a master instruction, then both the master
and shadow instructions will operate on the same data values and the comparison
at the end of an SBB will not yield an error. The solution presented in [OSMO02] is
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Figure 3.2: Partitioning of general purpose registers and program memory
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Figure 3.3: Instructions of the user program are duplicated and transformed to
operate on the shadow registers and memory
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branch if(reg,iz > 0)

to SBBi,master

branch if(reg, > 0)
to SBBi,shadow

compare instruction

branch if(reg, # regsiz)
to system recovery

Figure 3.4: Error detection is done before a branch or store instruction. For this
purpose, the register which decides a branch or will be stored in memory is com-
pared to its shadow.

to have two master instructions at the beginning of an SBB.

There are also other errors which can go undetected, but they are not covered
here. The error detection coverage is dependent on the application. [OSM02]
states an error detection coverage of about 0.98 to 0.99 for EDDI according to
fault injection experiments. The same measure for unhardened programs varies
from 0.93 to 0.54.

EDDI causes an execution time overhead due to duplicated instructions and
added comparisons, which should be greater than 1. But the authors’ are moti-
vated by a superscalar processing architecture, where EDDI can be used to maxi-
mize instruction level parallelism.

EDDI’s execution time overhead is also application dependent and varies be-
tween 0.45 and 1.14 on a superscalar processor which can issue four instructions
per cycle.

Duplication technique can also be implemented on source code level, e.g, du-
plicating the variables and operations on the variables in C code and comparing a
variable with its duplicate whenever a variable is used like in figure 3.5 [Reb+99].
This approach lowers the error detection coverage and also yields a worse execu-
tion overhead.

A recovery procedure must be implemented in EDDI, but [OSMO02] do not give
any details about the recovery procedure nor if the recovery was included in the
evaluation.

It is also important to note that the fault injection was done only on the code
section of the program. Fault injection on the flipflop level can lead to less error
detection rate, e.g., [Che+16b] states an error coverage of 0.86.

Moreover, [Che+16b] notes that reading and comparing the values after stor-
ing them to memory (store-readback) can lead to a higher error detection cover-
age.
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user program hardened program

int a, b,
a_dupl, b_dupl;

a = b+5;
a_dupl = b_dupl+b;

if (a != a_dupl)
recovery();

Figure 3.5: Application of the EDDI technique on source code level. Every vari-
able is duplicated. An operation on a variable is repeated on its duplicate. After
avariable is used as a tight operand, the variable is compared to its duplicate. A
recovery procedure handles the error.

3.2 Limitations of software-based techniques

In section 3.1, we discussed EDDI, a well-known software-based fault tolerance
technique, which uses only bitflips on memory elements as the fault model and is
evaluated on a superscalar processor. In this section, we discuss [Aza+11], which
evaluates additional software-based techniques and also includes errors caused
by transients in combinational components. This work also analyzes the fault cov-
erage contribution of the evaluated software techniques one by one.

The compared techniques are:

+ instruction duplication (EDDI)
+ signatures for basic blocks
+ inverted branches

While EDDI concentrates on the data, the latter two techniques try to observe
the control flow by detecting unintentional jumps in the program flow. For in-
stance, an error affecting the program counter can lead to such an error, which
can sometimes cannot be detected by EDDI.

Signatures for basic blocks can be used to observe the program flow. In this
technique, a distinct signature given to every basic block. The signature is loaded
to a global memory resource whenever a basic block is entered, and the signa-
ture is checked, whenever a basic block is exited. This principle is illustrated in
figure 3.6.

The technique inverted branches is based on duplication of branch instruc-
tions for checking whether the branch operation was executed correctly or not.
A branch operation has generally two possible jump positions, either the next ad-
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Figure 3.6: Error detection in the control flow of software by using signatures for
basic blocks. The signature isloaded at the beginning and checked at the end of a
basic block.
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Figure 3.7: Error detection in the control flow of software by duplication of branch
instructions

dress or the branch address, so the duplicate is placed on both potential desti-
nations. Branch instruction duplication and jump to recovery can be fusioned in
one instruction by inverting the branch condition in the branch instruction placed
at the branch address, and leaving the branch condition the same in the next ad-
dress, which should be taken if the branch condition is false. The technique is il-
lustrated in figure 3.7.

Inverted branches can detect a wrong branch decision, because:

« ifthe branch condition should be true, but the program does not branch, the
branch condition in the branch instruction at the next address will be true,
and the program will proceed with recovery

« if the branch condition should be false, but the program does branch, the
inverted branch condition in the branch instruction at the branch address
will be true, and the program will proceed with recovery



3.3. CROSS-LAYER EXPLORATION FOR ARCHITECTING RESILIENCE 41

assuming that the probability that both two sequential branch instructions are af-
fected by an error is low enough that the duplicated branch instruction will detect
the error.

Fault injections on sequential and combinational components of a processor
show a fault coverage of:

+ 0.77t0 0.84 for EDDI
+ 0.04 to 0.09 for signatures for basic blocks
+ 0.01forinverted branches

EDDI can detect most of the injected faults, where the latter two techniques
can not. For all techniques combined, the authors state a fault coverage of 0.79
to 0.88.

The authors state that most of the undetected errors are due to unintentional
jumps from a basic block to the same basic block. So, the authors suggest adding
additional fault tolerance, but state that full fault coverageis unlikely to be reached.

The presented software level techniques are very flexible but their fault cov-
erage is probably insufficient for most mission-critical applications. In our ap-
proach, we propose a hardware error detection approach to catch the errors di-
rectly on the bit level and so reach almost full fault coverage. If multiple bit er-
rors are not allowed, our approach leads to full fault coverage (discussed in sec-
tion 4.2.4).

3.3 Cross-layer exploration for architecting resilience

The work [Che+16a] proposes a fault tolerance framework spanning various ab-
stractionlayers of a system. The framework combines known fault tolerance tech-
niques to find cost-effective, area- and power-efficient combinations.

Compared to the conference publication [Che+16a], the extended eprint ver-
sion [Che+16b] contains details of the parity checking approach, which is impor-
tant as related work and will be discussed separately from the general aspects of
this work.

First we discuss the general aspects, and then parity checking used in this work.

3.3.1 General discussion

The fault model of the work are the single and multiple bitflips on general purpose
processors due to radiation in terrestrial environments. An in-order and a more
complex out-of-order processor are used in the evaluations. The evaluated tech-
niques include some of the techniques that we presented in section 2.4 and in this
chapter, e.g., animproved version of DICE, parity checking and EDDI. Where error
correction techniques can be evaluated alone, the error detection techniques are
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analyzed both alone and by combining with recovery mechanisms for processors,
e.g., instruction retry.

The authors emphasize the importance of an automatized approach forimple-
menting fault tolerance, as fault tolerance is generally implemented on systems
based on experience and common practice. So, they propose a cross-layer fault
tolerance by combining low- and and high-level techniques and picking the com-
bination that provides the error rate improvement needed by a mission.

The framework consists of four components:

reliability analysis using bitflip injection and execution time evaluation using
RTL models and benchmark application

- area, power, energy, clock frequency evaluation by physical synthesis and
layout

aresiliencelibrary consisting of ten error detection and correction techniques
and four system recovery techniques for general purpose processors

+ an evaluation component, which compares the error rate improvements of
different combinations

Compared to the related work presentedin 3.1and 3.2, the authors use a more
detailed classification of erroneous outcomes in the benchmarks:

« silent data corruption (SDC)
» detected but uncorrected error (DUE)

SDC happens if the system cannot detect an error, the system continues process-
ing and the error corrupts the program output. In DUE, the system also cannot
detect the error, but the system crashes and is not usable without human inter-
vention. In context of this work, if the benchmark program terminates normally,
but the program output data differs, this corresponds to an SDC. If the benchmark
program terminates unexpectedly, does not terminate in two times the nominal
execution time, or if the system recovery is not successful after an error is de-
tected, thisisa DUE.

According to the concepts we introduced in section 2.1.1, both SDC and DUE
are failure events from the user perspective, because corrupted program output
and a system crash are likely unwanted events for the user. The severity of these
two failures depend on the service expectation of the user. If the user expects that
the service should run without interruption, then a DUE is a more severe failure.
On the other hand, if an incorrect program output should be avoided, then the
user can favor a DUE instead of an SDC. All in all, a mission-critical system must
not have any failures.

As afault tolerance measure to compare the evaluated techniques, mainly SDC
and DUE improvement are used, where improvement is defined by comparing the
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number of erroneous outcomes of the unhardened and hardened design after a
benchmark run:

number of erroneous outcomes of the unhardened design
number of erroneous outcomes of the hardened design

improvement =

The concepts SDC- and DUE-improvement are better measures for compar-
ing the fault tolerance techniques compared to error detection coverage, because
not all flipflop-bitflips on a processor leads to an SDC or DUE. This means an un-
hardened design can have already an intrinsic error detection coverage, if only the
program output is observed for evaluations. For instance, the authors found out
that about 39% of flipflops in the out-of-order processor design do notlead to an
erroneous outcome during the benchmarks at all.

The flipflops not leading to any erroneous belong to components like branch
prediction or trap register, which do not play a crucial role for the correctness of
the system but performance. In this case, these components can be left unhard-
ened.

The authors advocate the fault model of bitflips in flipflops, as this model is
sufficient enough to reflect the actual behavior of current systems, and test only
for errors at the flipflop level. They additionally mention that injecting faults at
higher levels, e.g., at register or application level, can cause highly inaccurate re-
sults.

For instance, EDDI achieves an SDC improvement factor of about 3 when bit-
flips are injected on the flipflop level, 2 on the register level, and 13 on the appli-
cation level when the bitflips are injected into program variables.

The authors mention dual and triple modular redundancy (DMR, TMR) at the
architecture level, but do not evaluate them due to their high overhead of about
200% and 300% in area and power.

High-level techniques at the software and algorithm level do not provide an
SDC improvement of more than 38 and therefore they propose augmenting low-
level techniques at the circuit and logic level.

The framework found out that a combination of algorithm-based fault toler-
ance, parity, LEAP-DICE and architectural recovery approach can achieve an SDC
improvement factor of 50 with about 1% area, 2% power, and 3% energy overhead
for the in-order processor. So, they conclude that new approaches aim for better
error rate improvements than the particular techniques used in this combination.

3.3.2 Parity checking

The authors use parity checking for flipflops as a circuit-level error detection tech-
nique. Pipelining and flipflop grouping for parity checking is also discussed.

In parity checking, parity bitis calculated fora group of flipflops. In their method-
ology, flipflop group size (in our work, we call this cluster size) can be 16 or 32 bits,
as the authors experimentally determined that these two group sizes lead to the
lowest resource costs. Parity checking is implemented for a flipflop group size of
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32 flipflops. If this technique does not meet the timing of the original design, then
the group size of 16 along with parity pipelining is used.

The authors do not present any algorithm details about how the pipelining is
implemented on the design. Based on the presented figure in the work, we as-
sume that this is traditional pipelining which can lead to error detection latency.
In our pipelining approach in chapter 5, we use a different approach based on se-
qguential distance.

In parity checking, flipflops can be grouped in various ways. The authors eval-
uated the following heuristics for creating the flipflops groups:

» fixed group size

+ sorted by vulnerability

+ sorted by flipflop locations
+ sorted by timing slack

Their evaluations show that grouping the flipflops by theirlocations and using the
former methodology (use group size of 32 flipflops, if timing not met, use group
size of 16 with pipelining) yielded the most area-efficient and power efficient re-
sult with an overhead of 11% and 23%, respectively.

Sorting by locations was done by using the hierarchy in the design. Flipflops
belonging to a processor component, e.g., instruction fetch, were grouped to-
gether. Note that we used the place and route results for grouping the flipflops
in the design.

In technology nodes featuring very small feature sizes, a single particle strike
canalso account for multiple bitflips. To cope with this threat, in their parity check-
ing approach the authors enforce that two flipflops in the same parity group are
not adjacent, and also try to maximize the average distance between the flipflops
in the same parity group.



Chapter 4

Parity-based error detection

In previous chapters we introduced error detection-based fault tolerance (EDFT).
The error detection block in EDFT simultaneously checks for any bit errors in the
target circuit. For this purpose a concurrent error detection approach can be used.
To allow a more precise evaluation of the EDFT, a concrete error detection ap-
proach must be chosen. We chose parity checking approach for this purpose.

Our evaluationis in this chapter is based on a commercially available FPGA for
mission-critical applications using benchmarks circuits. We also provide an au-
tomatized implementation of parity-based error detection. Even parity checking
is a well-known technique, our work enable a more precise evaluation, and com-
plex comparison of two different fault tolerance approaches - EDFT and LTMR.

In this chapter, we first present the idea behind parity-based error detection
and provide the specification of our implementation in section 4.1. Using this
specification and the reference processing architecture introduced in section 1.1,
we give an analytical evaluation of PBED in section 4.2 and compare with the state
of the art approach LTMR. In section 4.3, we do the comparison using synthesis
results based on various circuits. Finally, section 4.4 presents the automatic ap-
plication of PBED.

4.1 Concept

Parity checking is the most basic error detection technique and it is well-known
[NZ98]. Parity can detect an odd number of bit errors in a data word by adding a
parity bit to the data word so that the number of 1-bits in the word is even (even
parity) or odd (odd parity). Upon reading the data word along with the parity bit,
the parity is calculated again, compared to the used parity property (even or odd)
and in case of a mismatch, an error signal is asserted. Subsequently, an error han-
dler can react and initiate a recovery scheme to correct the error.

Now, we will describe the implementation details of our parity checking ap-
proach for sequential circuits and we will refer to our implementation as parity-
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based error detection (PBED). A circuit which must be hardened will be called tar-
get circuit.

In PBED, application flipflops in the target circuit are partitioned into clusters
and for each cluster one parity flipflop is introduced. This problem can be formu-
lated as follows:

« Fr={f?,..., f2} isthe set of n application flipflops in the target circuit

« C*={C%,...,C2 }isthe set of m flipflop clusters, which is a partitioning of
F?, where:
- Ucaeca = F2
CiNC2=0fori#j
- G <k

- kisthe number of flipflops in a cluster

The partitioning C? is then altered to include the parity flipflops:
« FP ={f7,..., fP }isthe set of m parity flipflops, where:

« CP = {CF,Ch, ... CP }isthe set of m flipflop clusters which are hardened
by parity, where

- CY =CrU{f}

-ff=ffeffe o 3 for even parity

- fP= 1@ o - @ f1forodd parity
- {f. =07

- @isthe XOR operator

Inthefollowing, we also include the XOR gates for parity generation and check-
inginthe flipflop cluster for convenience. Figure 4.1 shows the genericimplemen-
tation of the error detection in a single cluster clustergp in detail. One cluster con-
sists of k application flipflops FF,, one parity flipflop FF, and two XORs: one for
parity generation and one for parity checking. Note that even the whole block is
named as clustergp, only the XORs and the FF,, belong to the error detection mod-
ule as visualized in figure 1.5.

Normally, a PBED-hardened circuit contains many clusters. To generate the
error signal for the whole circuit, the cluster signals must be reduced to a single
error signal. The straightforward approach for reducing the cluster error signals
is to OR these signals as shown in figure 4.2. This approach will be abbreviated as
direct PBED.

Note that there is an extended version of this approach, which reduces the
cluster error signals using a pipelining approach, which will be covered and an-
alyzed independently in the following chapter 5. This chapter is only about the
direct PBED approach, therefore the short abbreviation PBED will only refer to
direct PBED here.



4.1. CONCEPT 47

clustergp

errorq

|
|
|
|
!
!
|
|
|
T
|
|

Figure 4.1: Parity-based error detection in asingle cluster. A single error detection
cluster clustergp houses k application flipflops (FF,) and one parity flipflop (FF,).
The (even) parity is calculated by XORing & inputs to the FF,s and the data in-
tegrity is checked by XORing k + 1 flipflop output signals in the clustergp. The
error signal errorg is active in case of an odd number of bit errors.

Circuitpgep direct

/«\-\Pobare
PI clustergp S error
error | handling

PO

Figure 4.2: PBED-hardened circuit with direct cluster error signal reduction. The
errorg signals (figure 4.1) are reduced by using a single logical OR gate to the sig-
nal ‘error’, which is then input to the error handler. The primary output of the
bare (i.e., unhardened) circuit is also input to the error handling module for iso-
lation of the circuit (refer to section 6.1 for more details).



48 CHAPTER 4. PARITY-BASED ERROR DETECTION

4.2 Analytical evaluation

Like most error detection techniques applied on design-level, also PBED intro-
duces redundancy to the circuit and thus affects the circuit area and critical path.
In this section, we will evaluate these circuit impacts analytically and compare
them to LTMR. Moreover, we will analyze the multiple bit error susceptibility of
PBED and LTMR. The goal of this analysis is to get first theoretical limits before
we proceed with the experimental evaluation.

The following subsections are structured as follows: We will first describe the
prerequisites for the analysis. Then, the critical path delay and circuit area over-
head impacts of both approaches will be analyzed and compared. Finally, we will
discuss about the multiple bit susceptibility.

4.2.1 Prerequisites

The circuit analysis will be done by a hypothetical synthesis of the PBED-hardened
circuit for the Microsemi flash-based FPGA ProASIC3, i.e., the primitives of the
ProASIC3 will be used as building blocks. In ProASIC3 architecture, every config-
urablelogic block (CLB) can be configured either as a three-input LUT or a flipflop.

Microsemi ProASIC3 [Micr15a] is chosen because it is state of the art for space
missions (e.g., [VSC15; Tre+14]) and it is commercially available in a special inte-
grated circuit package for space environment. ProASIC3’s broad availability and
space provenance makes it more reasonable to do the synthesis on this FPGA than
using a custom ASIC design kit.

Note that in this chapter we confine the evaluation only to the error detection
block to provide an independent analysis of EDFT's components. Nevertheless,
we assume that the error output of the error detection module is connected to a
flipflop in the error handler to enable a more precise analysis of the critical path
impact.

Many of the following comparison parameters are dependent on:

+ the size of one cluster s, where sq > 2
- the total cluster count in the target circuit cq.

Consequently, the measurement parameters will be determined only by using the
flipflop count in the target circuit - the combinatorics will be arbitrary in this anal-
ysis. According to the figure 4.3, sq¢ = k + 1 and ¢cq = m.

The parameters will be determined for sg < 3% and Cd =X 3Y,wherez,y € N,
which fits into the ProASIC3 architecture with three-input LUTs. This selection of
input parameters makes the most timing-efficient use of the FPGA area for a spe-
cificlogic depth. With the increasing value of s4 and cq more LUTs are needed for
parity generation and the reduction of cluster error signals, respectively. With in-
creasing number of LUTs on a critical path, longer delay is introduced on this path.
However, the additional delay is only proportional to the logarithm of s4 and cq.
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Figure 4.3: Direct PBED with labeled components for analysis. m = c¢q error de-
tection clusters are connected to the error signal reduction gate OR,4c. pg and o
stand for parity-generation and -check, respectively.

Consequently, the critical path of a benchmark circuit only changes for different
values z,y € N, leading to such selection of sq and ¢y values. This behavior is
visualized in figure 4.6.

To differentiate the comparison parameters of circuit with different harden-
ing techniques, the parameters of the bare circuit (i.e., target circuit, hardening
not implemented) are labeled with the subscript .. and the parameters of the
circuits with LTMR and PBED with | 1mr and pgep, respectively. An overhead in a
measurement parameter by the applied technique is labeled with the subscript .

For the analysis of the critical path delay, interconnect delays are not consid-
ered. The interconnect delays depend significantly on the CLB placing and clock-
ing resource utilization in an FPGA, which makes a general analysis not feasible.
Nevertheless, these analytical values will be compared with experimental values
in section 4.3.

4.2.2 Critical path delay

The critical path delay ¢,i; limits the maximum frequency of a circuit and increases
with additional serial logic on the critical path. In what follows, we first determine
LTMR’s then PBED's critical path delay, and then compare them.

LTMR

In LTMR, every bit must be decoded by a majority voter (MAJ3) before it is propa-
gated to the combinational logic, which causes an extra delay. Consequently the
actual critical path delay tcrit bare is extended by the propagation delay of the ma-
jority voter. The subscript 4 stands for propagation delay.

Lerit+ LTMR = tpd,MAI3 (4.1)

Figure 4.4 visualizes the critical path overhead caused by the LTMR.
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Figure 4.4: The critical path overhead of the LTMR visualized. Critical paths of
the bare and LTMR applied circuit are denoted as tcrit bare aNd tcrit, L.TMR. Note that
even t literally denotes the maximum time duration that a flipflop output sig-
nal requires to reach another flipflop, in this figure, ¢;: denotes the path that this
critical flipflop output signal travels.

PBED
In PBED, there are two critical path candidates:

1. the actual critical path plus the overhead added serially by PBED, i.e., the
critical path of the bare circuit plus the parity generation path, tcit peep 1

2. anewly created parallel path by PBED, the parity check and the cluster error
signal reduction path, tcit peeD 2

These two paths are visualized in figure 4.5.

The first path delay can be calculated as follows: The parity has to be gener-
ated before the combinational signals are registered. The propagation delay of
the gate XOR, is called #p4 xoR,, -

terit+,PBED,1 = pd,XORp, (4.2)

The second path ¢t peep 2 consists of the XOR,. and OR 4.
terit,PBED,2 = Tpd XOR,c T+ Tpd,OR (4.3)

The gates XOR,., XORpg and OR4c can have more than three inputs, so they
will be synthesized as a tree of LUTs on the ProASIC3. The synthesis of a gate with
Sinput iNputs to a tree with a depth of d is shown in figure 4.6.

The propagation delay generated by a gate with an input size sjypyt is called
tpd(gate, sinput) and can be calculated by determining the depth d of the tree and
multiplying it with the propagation delay of the respective three-input macro (e.g.,
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Figure 4.5: The two critical path candidates in direct PBED, ¢t pgep,1 and
torit,peED,2. Note that ¢t peeD 1 is generated by adding the critical path overhead
of PBED t.it+ peep,1 to the existing critical path of the target circuit ¢t pare While
trit, PBED,2 IS Newly generated by PBED.

Sinput
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L

35t
LUT —LUT [
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depth 1 d—1 d

Figure 4.6: The figure shows how a gate with input size of sjnpyt is mapped to an
FPGA architecture with three-input LUTs. After mapping, a LUT tree with a depth
of d = [logs Sinput | is created. Note that if sinpyt is not a power of three, then not
all the leafs of the tree exist.
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OR3 for an OR gate), as the interconnect delays are not considered:

tpd (gate, Sinput) = dgate ' tpd,macro

(4.4

= |—]093 5input-‘ . tpd,mac’ro

With eq. 4.4, the propagation delays of the three defined gates can be calculated:

tpd XOR,, = [1093(5a — 1)] - tpd xOR3 (4.5)

Lod XOR,e = 1093 5d1] - tpd xOR3 (4.6)

tpd,0Rq = [1093 cal - tpd,0R3
CFF,bare (4.7)
= []093 [7“ - tpd,OR3

Scl

With equations 4.5 to 4.7, we can finally calculate the critical paths for PBED
by only using our input parameter variables sq and cgr pare-

Thecritical path delays it peeD,1 and tcrit peED 2 have theinput parameter vari-
ables sgq and cer pare. The remaining input parameters, i.e., gate propagation de-
lays, are assumed to be constant values. Propagation delay of the macros are de-
pendent on environment factors like the temperature, but we assume a constant
environmentin our analysis. Consequently, only sq and cgr pare limit the maximum
frequency of the circuit.

In ProASIC3, at ajunction temperature of 70°C and worst-case supply voltage
114V, tpq ma33, and t,q xor3 are 1.09 ns, and 1.37 ns respectively [Micrl5a]. The
propagation delay ¢,4 or3 Was neither available in the datasheet or macro library
documentation. We assume the value of t,q orz = 0.777 ns, which is taken from
the timing report of a layouted netlist which uses the primitive OR3. With these
data the critical path caused by the flipflops and combinational elements can be
calculated for various sq and crr pare Parameters.

Comparison

Table 4.1 shows the critical path delays ¢cit+ 1 and ¢t 2 for various values of the in-
put parameter (z,y). The parameters sq and cgf pare are determined using (z, y),
where sq = 37, cluster count ¢q = 3Y and flipflop countin the bare circuit cer pare =
(sa — 1) - cq. With increasing depth of XOR,g, tcrit+,1 grows for PBED, i.e., every
time when sq reaches a higher power of 3. The additional path delay ¢+ 1 of
LTMR is independent of the input parameters. For sq¢ = 3 LTMR and PBED have a
similar critical path overhead. PBED has additionally the ¢t 2, which grows with
increasing depth of XOR,c and OR,4 gates.
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terit+,1 (ns) terit,2 (ns)
(I, y) Scl Ccl CFF,bare LTMR PBED PBED

(1,2) 9 18 1.09 137 2.92
(1,3) 27 54 1.09 137 3.7
(1,4) 81 162 1.09 137 4.48

3
3
3
22) 9 9 72 1.09 274 4.29
9
9

(2,3) 27 216 1.09 274 5.07
(2,4) 81 648 1.09 274 5.85

(3.2) 27 9 234 1.09 411 5.66
(3.3) 27 27 702 1.09 411 6.44
(3,4) 27 81 2106 109 411 7.22

Table 4.1: Critical path impacts of LTMR and PBED for different numbers of appli-
cation flipflops in the circuit and cluster sizes

Compared to the tqitt peep 1. Which is always relative to the existing critical
path tcrit bare: terit,PBED 2 iS generated in parallel to the bare circuit. Due to this rea-
son, Lt peED 2 Stays uncritical up to a certain depth of parity check and reduction
gates.

4.2.3 Circuit area overhead

Assuming that the circuit area is proportional to the CLB count, we define the pa-
rameter Area as the CLB count. For comparison, we are interested in the area
overhead Area, i.e., the CLB overhead cc 5, :

Areay = ccipy (4.8)

In ProASIC3 architecture, every CLB can be either configured as an flipflop or LUT.
Then, the circuit area overhead can be calculated by adding the count of addition-
ally introduced LUTs and flipflops:

CCLB+ = CLUT+ + CFF+ (4.9)

LTMR

Inthe LTMR applied circuit, the flipflops are triplicated, i.e., two redundant flipflops
are added for each application flipflop:

CFF+,LTMR = 2 * CFF bare (4.10)

LTMR requires one LUT for each application flipflop as voter:

CLUT+,LTMR = CFF bare (4.11)
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In total, the area overhead for LTMR is:

Area | TMR = CCLB4,LTMR = 3 - CFF bare (4.12)

PBED
In PBED, for each cluster one parity flipflop is needed:
CFF+,PBED = Cd (4.13)

XORpg-, XORpc- and OR,4-gates consist of LUTs:

CLUT+,PBED = Cal(CLUTXOR,, + CLUT,XOR,c) + CLUT,OR (4.14)

As shown in figure 4.6, a gate with sjnp,t inputs creates a tree, so the needed
maximum LUT count for a tree of depth d can be determined by the following for-
mula, assuming that every new level of the tree introduces 3¢ LUTs at maximum.
A gate with sinpy is symbolized as gates,,, in the following.

dga'tasinput -
CLUT,gatesinput,max = Z 3
=0 (4.15)
1 .d
— — . 3 gute*“input — 1
L )

Using the formula for depth d = [logy sinput | (figure 4.6):

1 )
CLUT,gatesinput,max = 5 . (3“093 Sinput | _ 1) (416)

If Sinput is @ power of 3 (in case of XOR,. and OR,4.), then the equation can be
further simplified:

Sinput ; 3m’x cN — 3“093 Sinput | = Sinput
1 (4.17)

— CLUT,gatesinput = 5 . (Sinput - 1)

If Sinput + 1 is a power of 3 (in case of XOR,), the same amount of LUTs are
required. This is due to the fact that in one cluster, a gate with sj,p,t inputs in this
case will contain a single two-input LUT with the rest being three-input LUTs. As-
suming no logic optimization like logic packing, atwo-and a three-input LUT both
occupy one CLB, thus the same area.

Sinput 1 1 ; 3,2 eN = 3“093 sioput| = Sinput 1 1
j (4.18)

- CLUT,gai&eSinput = 5 * Sinput

The logical gates XORp, and OR4c have an input size of k£ + 1 = sq = 3* and
m = cq = 3Y, respectively (cf. subsection 4.2.1 and figure 4.3) and are assumed to
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have an input size which is a power of 3. So, with eq. 4.17, cLyt xor,. and cLuT,0R
can be determined.

rdc

1

Sinput XOR,: = Sd == CLUTXORy = 3 ° (sa—1) (4.19)
1

Sinput,0Rge = Ccl == CLUT.ORgc = 5 - (ca—1) (4.20)

Thelogical gate XOR4 has as input size of k = sq — 1 = 3% — 1. Consequently,
sinput + 1 is a power of 3. So, with eq. 4.18, cuyr xor,, can be determined.

1
Sinput XORpg = S — 1 == CLUT XOR,, = 3 (sa—1) (4.21)

By using the LUT counts of XORy, OR;4c and XOR4 from the last three equa-
tions, the LUT overhead of PBED in eq. 4.14 can be rewritten:

CLUT+,PBED = Cd(CLUTXOR,, + CLUTXOR,.) *+ CLUT,OR 4 (4.14 revisited)

1 1 1
CLUT+,PBED = Cd (5 “(sa—1)+ 3 (sa — 1)) + §(Cd -1)

1 (4.22)
= Ccl(scl - 1) + §(Ccl - 1)
Finally, with eq. 4.9, 4.13 and 4.22, total area overhead for PBED equals to:
1
Areay pgep = ca + ca(sa — 1) + §(Ccl -1)
Ccl 1
_ _ _ - 4.23
Cd + CaSa — ¢a + B B ( )

1
= cd(sd + 5) —0.5
CFF bare iS @ Main input parameter, therefore it is better to rewrite cq using crr pare:

1
AT@ClJﬁpBED = CFFbare (Sc] + *) —0.5 (4.24)
Scl — 1 2

Comparison

Table 4.2 shows the area overhead Area, and area overhead caused by a single
application flipflop Area; : crr pare for various values of sq and crr pare parame-
ters. Area overhead Area is related to cgr pare instead of the whole circuit includ-
ing combinatorics, because the area overhead is only dependent on cr pare and
the combinatorics LUT count is arbitrary.

PBED leads to an area overhead of circa 1.7 LUTs per application flipflop for
sa = 3. Theareaoverhead of PBED decreases with increasing sq and ¢ to approx-
imately 1.1 LUTs per application flipflop. The LTMR area overhead is independent
of the input parameters. Overall, sq = 3 is a reasonable choice for saving signif-
icant amount of FPGA resources and at the same time for having as little impact
on the critical path as possible. If the maximum frequency is not important, then
higher sq values can be the choice.
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Table 4.2: Area impacts of LTMR and PBED for different numbers of application
flipflops in the circuit and cluster sizes

Areay Areay : CFF pare

(,y) Sa ca Crrpare LTMR PBED LTMR PBED

12 3 9 18 54 31 3 1.72
13 3 27 54 162 94 3 174
14 3 81 162 486 283 3 175
22) 9 9 72 216 85 3 118
23) 9 27 216 648 256 3 1.19
(24) 9 81 648 1944 769 3 1.19
(3.2) 27 9 234 702 247 3 1.06
(33) 27 27 702 2106 742 3 1.06
(3,4) 27 81 2106 6318 2227 3 1.06

4.2.4 Multiple bit error susceptibility

LTMR and PBED techniques both are immune against one bitflip in a clock cycle,
but not against multiple- and even-number of bit errors in one cluster, respec-
tively. In this section, we will compare the LTMR and PBED regarding multiple bit
error susceptibility by calculating the probability that an error cannot be detected
in the circuit.

We assume that every flipflop in LTMR and PBED is updated in every clock cy-
cle with a correct value, otherwise the bitflips can accumulate and lead to uncor-
rectable errors.

If a single particle travels through the circuit, then it can cause single or multi-
ple bit errors dependent on the amount of energy transferred to the circuit and the
size of the IC structures. In this analysis, we assume that the CLBs are far enough
from each other to consider bitflips as independent events and all the flipflops
have the same bitflip probability. In the following, we use p as the bitflip prob-
ability of one flipflop in one clock cycle.

In what follows, we calculate the probability for an undetectable multiple bit
error in a hardened circuit under the former assumptions. The probability for a
multiple bit error is abbreviated as puge.

LTMR

We apply the definition of a cluster also on LTMR and define an LTMR cluster as
the group of three flipflops after triplication. So, if two or three bits flip in a cluster
during a clock cycle, then this cluster outputs a wrong value. If i is the number of
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bits flipped in a cluster:

3
3\ . »
PMBEQLTMR = ) (z )pl(l -p)?°”

=2 ( (4.25)
=3p*(1—p) +p°
_ 3p2 . 2p3

There is one cluster for each application flipflop. So there are cr pare LTMR clus-
ters in total. For an undetectable error, at least one LTMR cluster must have an
undetectable number of bitflips.

CFF,bare

CFF,bare i i
DMBE,LTMR = E ( ; )pleIBE,cl,LTMR(l_pMBE,cI,LTMR)CFF’bare ¢ (4.26)
i=1

It is easier to calculate the complement of this event, which simplifies the sum.
So, we calculate the probability that LTMR works without any undetected error.
This means all of the LTMR clusters have detectable number of bitflips. Then, we
subtract the complementary event from 1.

0
CFF,bare ; .
PueLTMR = 1 — Z ( ; )pﬁABE,d,LTMR(l — DMBE,d,LTMR) FFbere "

=0 (4.27)
=1— (1 — pmeE,a,L.TMR) "o

-1 (1 _ 3]?2 + 2p3)CFF,bare

PBED

In a PBED cluster, (positive) even number of bitflips cannot be detected.

Scl
Scl ; —3
PMBECPBED = ) ( Zc )pz(l —p)

i=2,
i=2n,neN

ot (5g)pPn (1 —p)ra?n sa=2j,j €N
a1 o
= X Go)p?r (1 —p)m2n
+3, G =p)? sa=2j+1,j€N

(4.28)

Analogous to LTMR, for an undetectable error, at least one of ¢q PBED clusters
must have an undetectable number of bitflips in one clock cycle. Butlikein Like in
eq. 4.27, itis easier to calculate the complementary event.

Cal

Cd ; —i

PMBE,PBED = Z < ; ) mee,a,peep (1 — PMBE,a,peeD) "
=1

0 (4.29)

:1_2 i

=0

=1— (1 — pmsE,a,pBED)
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Table 4.3: Comparison of LTMR and PBED regarding multiple bit error probability
of one cluster pmge,a and whole circuit puge

PMBE,dl PMBE
(z,y) sa ca CFF bare LTMR PBED LTMR PBED

(1,2) 9 18 4.84e-36 4.84e-36 8.71e-35 4.35e-35
(1,3) 27 54 4.84e-36 4.84e-36 2.6le-34 1.3le-34
(1,4) 81 162  4.84e-36 4.84e-36 7.84e-34 3.92e-34

3
3
3
22) 9 9 72 4.84e-36 5.8le-35 3.48e-34 5.23e-34
9
9

(2,3) 27 216  4.84e-36 5.8le-35 1.05e-33 1.57e-33
(2,4) 81 648  4.84e-36 5.8le-35 3.14e-33  4.7e-33

(3.2) 27 9 234 4.84e-36 5.66e-34 1.13e-33  5.1e-33
(3.3) 27 27 702  4.84e-36 5.66e-34 3.4e33 1.53e-32
(3,4) 27 81 2106 4.84e-36 5.66e-34 1.02e-32 4.59e-32

Comparison

Assuming one year mission in the second Lagrangian point (L2 orbit, 1.5 million
km away from the earth), under 1/cm? shielding, a programmed circuit with 5000
flipflops on an RTPE3000L FPGA has four SEUs [BSV11, ch. 7]. If this circuit runs
at 20 MHz, then p can be calculated by:

p = 4/5000/365/24/60/60/(20 x 10°8)

4.30
~127 x 10718 (4.30)

Table 4.3 shows a comparison of multiple bit error probabilities for various sq
CFF bare Parameters. The multiple bit error probability of one cluster pmgg o should
be lower for the PBED, as PBED can detect an odd number of bit errors. The cal-
culation does not show any differences for pmge . because the assumed bit error
rate p is very low and multiple bit errors greater than two practically do not hap-
pen.

For sq = 3, pmgee of PBED is approximately half of the LTMR’s. When the cluster
size sq for PBED increases, then pyge of PBED also increases - at sq = 27, pmge of
PBED is approximately five times of LTMR’s.

4.3 Experimental evaluation

After the analytical evaluation, we provide experimental results, which allows a
more precise evaluation of PBED. For experiments, we used:

+ an FSM design, which was replicated various times to analyze the impact of
PBED on circuit-timing and -area for various input circuit areas in detail but
with a fixed circuit type.
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+ 199T benchmark circuits, which allows to assess the PBED impacts on vari-
ous circuit types.

The temperature and supply voltage settings for the timing analysis of the lay-
outed circuits are the same as in the analytical evaluation (junction temperature
of 70°C and worst-case supply voltage 1.14 V).

The evaluations are also based on the comparison with LTMR like in the ana-
lytical comparison.

LTMR and PBED were applied using the synthesis tool Synplify and a newly-
implemented tool which generates the PBED circuitry on top of an RTL design (in-
troduced in section 4.4), respectively. This tool and thus the experiments have pa-
rameters like cluster size range, placer try count and partitioning try count. These
parameters along with the tool will be introduced in section 4.4. In what follows,
we only give brief description of these parameters.

The circuits were synthesized using Synplify with automatic constraining, which
maps the design with different clock constraints to achieve the highest clock fre-
quency possible. The output netlists were then layouted (in other words placed
and routed) using Designer from Microsemi. Every synthesized circuit were lay-
outed ten times with different seeds (i.e., placing try count = 10) and the layout
with the best timing was picked for the results.

For PBED, we varied the cluster size from 2 to 9 and partitioned the flipflops
according to theirlocation in the layouted bare circuit. The partitioning technique
does not always find the optimal solution. Therefore the partitioning is repeated
partitioning try count times and the best solution was chosen. In all experiments
we used partitioning try count = 100. The partitioning uses layout data (coordi-
nates of the cell placements) of the layouted bare circuit netlist, for this purpose
the layout data of the bare circuit with the best timing out of the four placed de-
signs were used.

4.3.1 Finite state machine (FSM) circuit

In this subsection, we present synthesis results using an implementation of the
FSM circuit shown in the reference processing architecture (figure 1.3). To get
various circuit sizes, we instantiated this FSM multiple times. To not exhaust the
input-output ports of the FPGA due to excessive number of instantiations, which
would make the circuit unplaceable on the FPGA, we connected the circuit out-
puts to a demultiplexer.

The circuits were synthesized for the ProASIC3 with the smallest available area,
the A3P250. We chose an area-constrained FPGA to compare the performance
LTMR and PBED additionally at a high utilization of the FPGA.

The following synthesis results show the circuit input parameters:

+ circuitname (circ.), which corresponds to the FSM circuit instantiation count

« PBED cluster size (sq) for PBED-hardened circuits
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and the circuit output parameters for the bare, LTMR applied and PBED applied
circuits after synthesis:

- flipflop count cr
- totalarea A
« critical path delay it

The parameters are for the bare (ba), LTMR applied (LT) and PBED applied (PB)
circuit. Using the output parameters, we derived the following comparison pa-
rameters:

+ the overheads caused by the hardening techniques on the respective output
parameters of the bare circuit, which are marked by the plus symbol in the
subscript (1), e.g., A4 peep = Apg — Aba

- areaoverhead ofthe respective hardeningtechnique per application flipflop
Ay
CFF,ba

« area overhead ratio PBED to LTMR %
+,LT

We did not normalize the area overhead using the whole area, because both
LTMR and PBED harden directly the flipflops of the circuit. So, area overhead is
mainly dependent on the number of flipflops.

Note that in ProASIC3 architecture, every CLB can be either configured as a
flipflop orlookup table (LUT). Consequently, in this work, circuit area A is defined
as the total count of flipflops and LUTs in the synthesized circuit.

We first do our evaluation by fixing the cluster size at 3. Table 4.4 shows an
excerpt of the obtained parameters from the synthesis results and the table 4.5
shows the derived parameters.

Firstly, we analyze the table 4.4. The FSM has 25 flipflops, which was instanti-
ated up to 43 times, until the bare circuit could not be fit into the FPGA. In circuits
where the FSM was replicated, one of the 25 FFs is always synthesized away in the
replica FSMs, because the synthesizer bound a particular primary output net of all
the replicas having always the same value to the same flipflop. The FSMs have the
same input and are connected to a demultiplexer. Consequently, the circuit with
a single instantiated FSM has 25 flipflops, and with with every instantiated FSM
25 — 1 = 24 additional flipflops are added to the circuit. This rule does not always
apply, because as the design gets bigger, some cells may have to drive a higher
amount of other cells, which are called high fanout cells. If the synthesizer en-
counters a sequential or combinational cell with a high fanout, then this cell gets
replicated to divide the fanout on two cells. The replication is needed because a
cell output has amaximum currentit can drive, hence alimited fanout. The circuits
where a flipflop replication happens are for instance 12 and 25, in these cases 25
additional flipflops are added compared to the last circuit.
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Table 4.4: Synthesis results for multiple instantiations of the FSM circuit. The crit-
ical path for LTMR (LT), PBED (PB) and bare (ba) do not exist for circuits > 26,
> 30, and > 42, respectively, because the place-and-router could not route or fit
these circuits into the FPGA due to excessive circuit area. For these circuits, the
critical path delays (¢it) are marked with minus (-). Flipflop count and area for
PBED-hardened circuit 43 do not exist, as the PBED tool requires a placed and
routed bare circuit, but bare version of circuit 43 cannot be placed and routed.

CFF A terit (NS)
circ. ba LT PB ba LT PB  ba LT PB
1 25 75 40 144 218 190 796 9.61 9.51
2 49 147 76 299 444 388 854 10.26 9.72
3 73 219 111 406 670 585 8.40 10.32 10.05
4 97 291 147 546 891 783 8.40 10.35 10.44
5 121 363 183 674 1107 971 8.46 10.45 10.52
6 145 435 219 831 1361 1186 8.43 10.52 10.84
7 169 507 255 975 1586 1387 8.47 10.43 10.67
8 193 579 291 1070 1772 1545 8.39 10.81 11.06
9 217 651 327 1198 1993 1730 8.54 10.86 11.37
10 241 723 363 1328 2202 1920 8.13 10.59 11.59
11 265 795 399 1494 2442 2145 8.66 10.73 11.64
12 290 867 436 1659 2725 2367 8.70 10.78 11.87
13 314 939 472 1833 2978 2600 8.69 10.99 11.98
14 338 1011 508 1967 3172 2796 8.65 10.66 11.96
15 362 1083 544 2101 3411 2988 8.50 10.88 12.37
16 386 1155 580 2315 3701 3262 8.71 11.04 12.53
17 410 1227 616 2383 3857 3387 8.64 11.09 12.47
18 434 1299 652 2547 4092 3609 8.12 10.76 13.04
19 458 1371 688 2638 4316 3758 8.41 10.83 12.54
20 482 1443 724 2786 4566 3969 8.38 10.88 12.95
21 506 1515 760 2923 4787 4163 8775 11.21 13.02
22 530 1587 796 3089 5035 4392 838 11.09 1294
23 554 1659 832 3248 5266 4613 8.66 10.99 13.46
24 578 1731 870 3420 5495 4841 873 11.28 13.27
25 603 1803 906 3542 5753 5020 873 11.09 13.51
26 627 1875 942 3712 5987 5248 874 1135 1412
27 651 1947 978 3872 6223 5470 8.89 - 13.65
30 723 2163 1086 4282 6881 6060 8.93 - 14.00
31 747 2235 1122 4399 7137 6236 9.02 - -
42 1012 3027 1519 6092 9722 8569 8.88 - -
43 1036 3099 - 6287 9952 - - - -
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Table 4.5: Derived parameters for the FSM circuit using the synthesis results in
the table 4.4. The last row shows the average (avg.) value of the last five derived
parameters.

CFF+ Ay terity (Ns) chL

circ. LT PB LT PB LT PB LT PB ﬁ:tﬁ
1 50 15 T4 46 165 154 296 184 0.62
2 98 27 145 89 171 118 296 182 0.61
3 146 38 264 179 192 165 3.62 245 0.68
4 194 50 345 237 196 2.04 356 244 0.69
5 242 62 433 297 198 2.05 358 245 0.69
6 290 T4 530 355 2.09 242 366 245 0.67
7 338 86 611 412 196 220 3.62 244 0.67
8 386 98 702 475 241 267 3.64 246 0.68
9 434 110 795 532 232 283 3.66 245 0.67
10 482 122 874 592 246 346 3.63 246 0.68
11 530 134 948 651 2.07 298 358 246 0.69
12 577 146 1066 708 2.09 317 3.68 244 0.66
13 625 158 1145 767 231 329 365 244 0.67
14 673 170 1205 829 201 331 357 245 0.69
15 721 182 1310 887 239 387 362 245 0.68
16 769 194 1386 947 232 382 359 245 0.68
17 817 206 1474 1004 245 384 3.60 245 0.68
18 865 218 1545 1062 264 492 356 245 0.69
19 913 230 1678 1120 242 413 3.66 245 0.67
20 961 242 1780 1183 250 457 3.69 245 0.66
21 1009 254 1864 1240 2.46 4.27 3.68 245 0.67
22 1057 266 1946 1303 271 456 3.67 246 0.67
23 1105 278 2018 1365 233 480 3.64 246 0.68
24 1153 292 2075 1421 254 453 359 246 0.68
25 1200 303 2211 1478 235 4778 3.67 245 0.67
26 1248 315 2275 1536 2.61 538 3.63 245 0.68
27 1296 327 2351 1598 - 476 3.61 245 0.68
30 1440 363 2599 1778 - 5,07 359 246 0.68
31 1488 375 2738 1837 - - 3.67 246 0.67
42 2015 507 3630 2477 - - 359 245 0.68

43 2063 - 3665 - - - 3.54 - -

avg. 3.59 242 0.67
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Compared to the fixed additional number of flipflops after an additional in-
stantiation of the FSM, a repeating pattern in the additional number of combina-
tional cells cannot be recognized. This is probably due to the heuristics used in
optimizations on combinational cells (LUTs).

The place-and-router could fit 26 LTMR-hardened, 30 PBED-hardened and 42
not-hardened (bare) FSMs into the FPGA.

Now, we look at the derived values. The derived values include the overheads
inarea (cprs, A4 ) and critical path (¢crit+- ), as well as the normalized area overhead
( Ay ) and the area overhead ratio between PBED and LTMR (%) for compari-

CFF,ba
son.

In average, LTMR causes an area overhead per application flipflop of 3.59, and
PBED 2.42. The area overhead ratio is 0.67, so PBED saves 33% of the area over-
head caused by LTMR.

Comparison of the average area overhead values with the analytical results
in table 4.2 shows that the experimental values differ. The difference is about
3.59 — 3 = 0.59in case of LTMR and 2.42 — 1.75 = 0.67. This difference is caused
by the remapping of enable flipflops to pairs of a multiplexer and a flipflop. This
remapping ensures that the flipflop is updated in every clock cycle, which in turn
avoids the accumulation of bitflipsin PBED or LTMR cluster. In section 4.4, enable
flipflop conversion is discussed more in detail.

The area overheads of the circuits 1 and 2 stand out. These two circuits have
significantly lower area overhead per flipflop than other circuits, for instance 2.96
for LTMR. The reason is again the enable flipflop conversion, but in this case the
conversion happened during the synthesis of the bare circuit.

In ProASIC3 architecture, the CLBs can be either configured as a three-input
LUT or flipflop. An enable flipflop with a clear/preset input requires a four inputs
(clock, clear/preset, data input, and data enable), and in this case the clear/preset
input must be connected to a global routing path. Most sequential circuits have
a reset input net, which is connected to most flipflops in the circuit, so normally
apart from the clock signals also the reset signals with high fanout are routed us-
ing global routing paths in ProASIC3, and this is not a significant restriction in de-
signs with common clear/preset inputs for the flipflops. If the clear/preset input
of an enable flipflop is not connected to a net with a high fanout (dependent on
the settings) by the synthesizer, then this enable flipflop is converted to a multi-
plexer, and three-input flipflop (with clock, clear/preset, and data input) by the
layout tool. This conversion is analogous to the enable flipflop conversion men-
tioned earlier. In the opposite case, if a net has a high fanout, then the layout
tool promotes this net to a global resource and the net is routed using the limited
global routing resources.

In circuits 1 and 2, all the enable flipflops (15 and 30, respectively) are con-
verted to three-input flipflop and multiplexer pairs already during the synthesis of
the bare circuit, because the net connected to the clear/preset inputs of the enable
flipflops does not have enough fanout to be promoted to a global resource. This
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in turn increased the area of the bare circuit and decreased the area overhead per
application flipflop to values similar to the achieved in the analytical results in ta-
ble 4.2 (3for LTMR, 1.7 for PBED), 2.96 and 1.84 in case of circuit1and 2.96 and 1.82
in circuit 2. The empirical values for PBED are higher than the analytical results,
because we assumed an optimal utilization of the CLBs in the analysis. Beginning
from circuit 3, the required fanout by the synthesizer is achieved by the clear/pre-
set net and the clear/preset net uses a global route on the FPGA. So, the enable
flipflops do not have to be converted, require only one tile, and the enable flipflop
conversion only occurs during the hardening by LTMR and PBED.

Although it is possible to avoid the conversion of enable flipflops also in bare
versions of the circuits 1 and 2 by promoting the reset/preset nets manually to
global resources, we chose an approach where we tried to work with as much de-
fault settings in the synthesis and layout tools as possible.

In conclusion, the area overhead of PBED and LTMR is highly dependent on
the use of enable flipflops in the circuit. The obtained analytical results regarding
the area overhead can only be achieved in a circuit without enable flipflops.

The critical path overhead for PBED in the synthesis resultsis for circuit 1 nearly
the same as in the analytical evaluation (see table 4.1), tcrit+ 1, analytical = 1.37ns ~
1.54NnS = tcrit+ experimental- With increasing circuit size the critical path overhead
increases, which can be better seen in figure 4.7 with absolute values and in fig-
ure 4.8 with overhead values.

By looking into the critical path details in the timing reports of the layouted
circuits, we observed that in PBED-hardened versions of circuits 1 to 4 and 6, the
critical path is caused by the parity generation (¢cit+ 1, figure 4.5) and in the rest of
the circuits, the path caused by the OR-tree (it 2, figure 4.5) becomes the critical
path.

In PBED-hardened circuits, the growth of the critical path overhead decreases
with the circuit size, and the graph has alogarithmic shape. The reason is that the
circuit size is linearly proportional to the flipflop count, but the critical path of the
OR-tree increases logarithmically (see equation 4.7).

The critical path overhead of most of the LTMR-hardened circuits stays be-
tween 1.5 ns and 3 ns. LTMR needs only local routing, therefore the timing over-
head is fairly constant.

The former analytical timing results in table 4.1 differ significantly from the
experimental results of most circuits, because we did not incorporate the rout-
ing delays in our analytical evaluation. For instance, circuit 7 with 169 application
flipflops has tqit2 = 4.48ns + 0.777ns = 5.257 (because 162 < 169 < 486 ac-
cording to the analytical results in table 4.1, and tgit2(z, y + 1) = taie2(z,y) +
tpd,0r3). The critical path in the experimental results is 10.67 ns, so the routing
makes about half of the whole critical path. In case of LTMR-hardened circuits,
the ratio is similar: 1.09 ns without routing versus 1.5 to 3 ns with routing.

The increasing area has minimal impact on the critical path of the bare circuit.
This is due to the low complexity of the FSM circuit and their isolation from each
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Figure 4.7: Critical path delay data for the FSM circuits plotted from table 4.4. The
x-axis shows the area of the bare circuit (Apare) in number of FPGA CLBs. The y-
axis shows the absolute critical path delay (¢.it) of the bare and hardened circuits
in the plot in ns. Every point represents a successfully routed circuit and points
belonging to the PBED-, LTMR-hardened or bare circuits are connected by aline,
respectively. Beginning from Apae > 3872 CLBs, the points do not exist for LTMR-
hardened circuits, as these could not be fit into the FPGA.
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Figure 4.8: Critical path delay overhead data for the FSM circuits plotted from ta-
ble 4.5. The x-axis shows the area of the bare circuit (Apare) in number of FPGA
CLBs. The y-axis shows the critical path overheads (¢it+ ) of the LTMR-and PBED-
hardened circuits relative to the critical path of the bare circuit in ns. The rest is
similar to figure 4.7.
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other, which does not need long routing paths.

A longer critical path leads to a negative maximum frequency impact on the
circuit, therefore PBED-hardened circuit can achieve alower frequency than LTMR
ifthe circuitthat hasto be hardened includes more than 975 CLBs and 169 flipflops
(circuit 7 in table 4.4).

Until now, the evaluation was for a fixed cluster size of 3. Now, we present
results with cluster sizes from 2 to 9 to analyze the impact of the cluster size on
the critical path and area overhead. The figures 4.9 and 4.10 illustrate the area
and critical path overheads for all circuits, respectively.

For small circuits (e.g., circuits 1 to 6, up to 145 application flipflops), increas-
ing the cluster size also increases the critical path overhead, because in small cir-
cuits the parity generation is on the critical path, and the parity generation path
grows logarithmically for greater cluster sizes (see equation 4.5).

For other circuits, the critical path overhead stays similar for different cluster
sizes, but a decrease is noticeable in the critical path overhead of most circuits,
if the cluster size of 3 is chosen instead of 2. Allin all, the critical path overhead
variation over cluster size stays under 1 ns for circuits 8 to 30 (approximately more
than 200 application flipflops, and 1000 CLBs according to table 4.4).

If welook at the area overhead ratio of PBED and LTMR, we see that the graph
shape is similar for all of the circuits. The circuits 1 and 2 have less overhead, be-
cause the enable flipflops were already converted in the bare version of the circuit,
as discussed at the beginning of this section.

The decay in the graphs continues until the cluster size of 6, at which there is
a local maximum. So, the cluster size of 6 should be avoided. For relatively big
circuits (from circuit 8 upwards), cluster size of 9 can be selected without any sig-
nificant compromise on the critical path overhead and thus on the maximum fre-
quency.

Finally, table 4.6 summarizes the minimum and maximum values for the de-
rived values. The upper bound for the critical path overhead stays between 5 to
6 ns and the lower bound for the same parameter increases slightly up to 2.44 ns.
The upper and lower bound are caused by the biggest and smallest circuits, re-
spectively. We observe that greater cluster size does only affect relatively small
circuits.

Atthe highest experimented cluster size of 9, PBED can achieve and area over-
head of 1.33, and can save up to 55% of the area overhead caused by the LTMR.

4.3.2 199T circuits

We applied LTMR and PBED also on the 199T benchmark circuits, which are part
of the ITC'99 benchmark circuits distributed by the CAD group at Politecnico di
Torino. The circuits are introduced in [CRSOO0] and their VHDL descriptions can
be obtained from [CADP16]. These RT-level circuits have only one clock signal, do
not have any internal memories other than flipflops and are synchronous.
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Figure 4.9: Critical path overhead delay (¢its) for PBED hardened FSM circuits
with cluster sizes (sg) varying from 2 to 9. A single PBED cluster corresponds to a
group of one parity bitand sq—1 application flipflops. The critical path overheadis
relative to the bare circuit. Every point corresponds to a placed and routed circuit.
The lines connect ¢t pg values for a particular circuit. The point for the circuit
22(sq = 2) does not exist, because it could not be fit into the FPGA.
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Figure 4.10: Area overhead (A_) per application flipflop (cht ) for PBED hard-
ened FSM circuits with cluster sizes varying from 2 to 9. Every point corresponds
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Table 4.6: Minimum and maximum values for derived parameters for PBED hard-
ened FSM circuits for various cluster sizes (sq)

sa terits (ns) . L
2 0.22-555 233-298 0.79-0.84
3 118-550 1.82-2.46 0.61-0.69
4 140-5.62 153-218 0.52-0.61
5 154-555 143-2.07 0.48-0.58
6 177-5.63 145-2.08 0.49-0.58
7 211-542 139-2.03 0.47-0.57
8 244-560 131-197 0.44-0.55
9 244-566 135-196 0.46-0.55

In the benchmark package (itc99-poli2-vhd.tar.xz, version 7 Sept. 2014), addi-
tional circuits are available, which are bl4 1, bl5 1, bl7 1, b18 1, b19 1, b20 1,
b21 1, b22_1and b30. These circuits are not included in our evaluation, because
all from this list but the b30 are minor modified versions of the original circuits,
and b30 was not a compilable circuit description. Moreover, the parametric cir-
cuit b16 was not available in the package, even it is documented in [CRSOOQ].

Synthesis of the circuits were carried out the same way as in subsection 4.3.1,
but this time we used the ProASIC3 FPGA with the highest area resources, the
A3PE3000L. Table 4.7 shows the synthesis results for PBED cluster size of 3 and
the table 4.8 shows the derived parameters.

Of all benchmark circuits only the hardened b19 cannot be layouted on the
used FPGA for both LTMR, and PBED for cluster sizes lower than 4, so b19 does
not have any timing data on tables 4.7 and 4.8.

Circuits with alow number of flipflops have an overhead per application flipflop
ofabout3incaseof LTMR andlessthan2in case of PBED duetothe enable flipflop
conversion already done in the bare circuit, which we discussed in last subsection.
In the rest of the circuits, the area overhead per application flipflop shown in ta-
ble 4.8 goes up to 3.82 in case of the circuit bl4 for LTMR, and 2.68 in case the
circuit bO4 for PBED.

The area overhead value of 3.82 shows that LTMR theoretically can have an
area overhead per application flipflop of 4, if the bare circuit flipflops are only en-
able flipflops. The reason is as follows. An additional multiplexer for the enable
flipflop conversion is needed for every application flipflop, so the area overhead
is3+ 1 = 4. The same rule also applies to PBED, and the analytical results for the
area overhead per application flipflop for PBED in table 4.2 can increase by 1.

As this additional overhead is needed by both of the hardening techniques, it
is better to look at the area overhead ratio PBED to LTMR over the bare circuit
flipflop count, which is shown in figure 4.11.

Figure 4.11 shows that for bare circuits with more than 60 flipflops, the area
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Table 4.7: Synthesis results for 99T benchmark circuits. The results are ordered
by the bare circuit area. See subsection 4.3.1for the description of the parameters

and abbreviations used in the table.

CFF A terit (NS)
cir. ba LT PB ba LT PB ba LT PB
b02 4 12 8 14 26 23 4.59 6.24 5.14
b01 10 30 17 27 58 47 L4.46 6.18 5.83
b06 8 24 13 32 56 47 550 7.20 6.67
b08 21 63 33 9 153 130 10.49 1226 11.86
b03 31 90 48 97 185 155 8.20 1022 9.13
b09 28 84 43 100 182 152 9.66 11.43 10.70
b10 24 72 38 103 175 149 675 856 7.86
b13 56 168 85 152 333 274 814 9.89 9.07
b0O7 44 132 67 178 308 259 13,57 15.65 14.84
bil 35 105 54 256 359 319 1712 18.62 18.16
bO4 66 198 100 338 589 515 23.81 2570 25.71
b05 41 108 64 395 490 468 2459 26.48 25.64
b12 122 357 184 551 1005 878 1630 1789 16.84
bl4 216 645 325 3484 4310 4060 4747 51.49 50.14
bl5 437 1278 659 4501 5999 5545 3370 36.09 35.22
b20 435 1290 655 7649 9281 8806 45.70 49.56 49.31
b21 432 1290 650 7771 9419 8925 4456 48779 48.63
b22 622 1839 937 11177 13496 12826 4520 49.35 49.11
bl7 1390 4026 2093 13493 18286 16868 34.23 37.02 36.01
bl8 3219 9207 4867 34576 45473 42493 46.69 49.11 49.45
bl9 6384 18417 9644 61165 83037 76869 49.59 - -
0.75 -
0.73
Appg 0.7
AT 68 -
0.65 -
0.63

- ‘1“0

S0

1000
bare circuit flipflop count (cg¢)

Figure 4.11: Area overhead ratio PBED (sq = 3) to LTMR for all 199T circuits plot-
ted over the flipflop count in the bare circuit. The x-axis is drawn in logarithmic

scale.
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Table 4.8: Derived parameters using the 199T synthesis results in the table 4.4.
The last row shows the average (avg.) value of the last three derived parameters.

CFF+ Ay terit+ (NS) C?FL
cir. LT PB LT PB LT PB LT PB ﬁ*’PB
+oLT
b02 8 4 12 9 165 0.55 3.00 225 0.75
b01 20 7 31 20 172 138 310 200 0.65
b06 16 5 24 15 169 117 3.00 188 0.63
b08 42 12 62 39 177 136 295 186 0.63
b03 59 17 88 58 2.02 092 284 187 0.66
b09 56 15 82 52 177 104 293 186 0.63
b10 48 14 72 46 181 111 3.00 192 0.64
b13 112 29 181 122 176 093 323 218 0.67
b07 88 23 130 81 208 127 295 184 0.62
bil 70 19 103 63 150 104 294 180 0.61
b04 132 34 251 177 189 191 380 268 071
b05 67 23 95 73 190 1.05 232 178 0.77
b12 235 62 454 327 160 054 372 268 0.72
bl4 429 109 826 576 4.02 267 382 267 O0.70
b15 841 222 1498 1044 239 152 343 239 0.70
b20 855 220 1632 1157 3.86 362 375 266 0.71
b21 858 218 1648 1154 423 4.07 3.81 267 0.70
b22 1217 315 2319 1649 416 391 373 265 071
bl7 2636 703 4793 3375 2.80 178 345 243 0.70
bl8 5988 1648 10897 7917 242 275 339 246 0.73
b19 12033 3260 21872 15704 - - 343 246 0.72
avg. 3.27 224 0.68
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Figure 4.12: Critical path overhead delay (¢t ) for every 199T circuit and harden-
ing type, sorted according to bare circuit area. Plot template same asin figure 4.8,
but the x-axis is drawn in logarithmic scale.

overhead ratio is between 0.7 and 0.73. The rest of the circuits have an area over-
head ratio between 0.6 and 0.65 with the exception of two circuits, the bO5 and
b02. b05 and b02 make up the two peaks in figure 4.11.

The circuit bO5 has an area overhead for LTMR of 2.32, which is extraordinary
low for LTMR. As this circuit has a bare circuit flipflop count of 41, the LTMR area
overhead should be near 3. The reason for the extraordinary low area overhead
is that five flipflops have to be replicated during synthesis of the bare circuit, be-
cause they have a high fanout. LTMR triplicates the flipflops and connects their
outputs to a majority voter, so during synthesis of the LTMR-hardened circuit, in-
stead of flipflops, majority voters get replicated. Therefore, the LTMR-hardened
b05 has (41 — 5) x 3 = 108 flipflops. The extraordinary low area overhead for
LTMR results in a high area overhead ratio of 0.77, which is one of the peaks in
figure 4.11.

The bare version of the circuit bO2 has alow flipflop count of four, three of them
have clear inputs and one has preset input. As PBED only adds flipflops with the
same clear/preset signal to a cluster (see section 4.4), three clusters are created
in this case, which in turn creates three parity flipflops with parity-generation and
-check circuitry. With the additional flipflop for the error output, PBED causes the
high overhead of 2.25 and area overhead ratio of 0.75, which makes up the second
exceptional peak in figure 4.11. For circuits with a low flipflop number but many
not fully-utilized clusters, PBED results in a high area overhead.

Now, we look at the critical path. Figure 4.12 shows the critical path overhead
delay for PBED is in all circuits but in b18 lower than LTMR. In critical path details
we observed that in all off the 99T circuits the parity generation path causes the
critical path and not the error signal reduction path. This is the reason why ¢t
for PBED in figure 4.12 does not increase with increasing circuit area like in the
synthesis results of the replicated FSMs in figure 4.8.

Until now, the evaluation was for a fixed cluster size of 3. Now, we present
results with cluster sizes from 2 to 9 to analyze the impact of the cluster size on
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Table 4.9: Minimum and maximum values for derived parameters for PBED hard-
ened 199T circuits for various cluster sizes (sq)

Ay Ay e
CFF ba At

-0.34-193 231-3.19 0.77-1.00
0.54-4.07 178-2.68 0.61-0.77
0.56-5.06 1.50-239 0.50-0.65
0.85-5.49 1.41-230 0.48-0.62
1.08-5.61 1.37-236 0.47-0.62
125-6.49 1.36-224 0.46-0.62
0.93-713 1.24-226 0.42-0.61
0.86-6.91 1.27-223 0.43-0.59

Scl terit+ (ns)

O© 0030 U »~»WN

the critical path and area overhead. The figures 4.13 and 4.14 illustrate the critical
path- and area-overheads for all circuits, respectively.

As the critical path of all the circuits is caused by the parity generation path,
the critical path increases in most circuits with increasing cluster size. The reason
is that more inputs to the XOR gate for parity generation creates more routing
delay and more CLBs.

Compared to the critical path overheads in the FSM circuits, the cluster size
has a noticeable effect on the critical path overhead. This is probably due to the
regularity of the FSM circuits, as they were created by simple replication of a base
circuit. Most of the 199T circuits are standalone circuits, and this makes the rout-
ing of the clusters more difficult. Consequently, there is a tradeoff between the
critical path overhead of the circuit and the area overhead.

The form of the area overhead ratio plot is similar for most of the circuits, with
the exception of b02 and bO5. The decay is visible until cluster size 5. At 6 alo-
cal peak is present, followed by a slow decay. The plots of the bigger circuits, the
two bottom plots in figure 4.14, are positively shifted in y-axis compared to the
smaller circuits. This shows that the PBED has more area overhead in bigger cir-
cuits compared to LTMR. For example, the circuits in the second plot, bO9 to bll,
have an area overhead ratio between 0.5 and 0.6, where the circuits in the third
and fourth plots, bO4 to b18, have an area overhead ratio of 0.6.

Finally, table 4.9 summarizes the minimum and maximum values for the de-
rived values. The upper bound for the critical path overhead is caused by the b19,
which could not be layouted for the cluster sizes 2 and 3, so the upper bound for
the cluster sizes 2 and 3 differ from the rest.

According to the table 4.9, PBED can save up to 58% of the LTMR area over-
head. The upper bound for the area overheads is caused by the circuit bO5, there-
fore they differ significantly to the upper bounds in the FSM circuits.
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Figure 4.13: Critical path overhead delay (¢its ) for PBED hardened 199T circuits
with cluster sizes (sg). Plot template same as figure 4.9. The points for the circuits
b19 do not exist, because these could not be placed and routed.
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Figure 4.14: Area overhead (A ) per application flipflop (C’:‘FL) for PBED hard-
ened 99T circuits with cluster sizes varying from 2 to 9. Plot template same as

figure 4.10.
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4.4 Automatic application

PBED can be applied on-top of a technology-level netlist using an automatic tool.
The tool is for Microsemi ProASIC3 FPGA primitives and is available at [Ayd16].
The pseudo code of the direct PBED application programis showninalgorithm 4.1.

Data: technology-level netlist, placing try count, cluster size, partitioning
try count
Result: direct PBED applied technology-level netlist
1 fort = 1to placing try count do

2 placer seed = t;

3 place the netlist using the placer tool in Designer;

4 route the placed netlist using the router tool in Designer;
5 end

6 pick the routed netlist with the shortest critical path;

7 extract flipflop coordinates from the picked routed netlist;

8 foreach flipfliop do

9 if has enable input then

-
o

‘ eliminate enable input;
end
if has negated output then

‘ eliminate negated output;
end

[ <
A W N =

15 categorize according to clock- and reset-signal;

16 end
Algorithm 4.1: Application of direct PBED to a technology-level netlist p.1

We used various third-party tools for our tool. For the technology-level netlist
processing, the circuit description needs to be parsed and a new circuit description
must be generated. We used Verilog-Perl [Sny16] for this purpose. The place-and-
router tool Designer from Microsemi can output two-dimensional coordinates of
the primitives after a place-and-route run. We used this information for partition-
ing. We explain the algorithm more in detail in what follows.

A proper partitioning of the flipflops can have a significant impact on the tim-
ing of the routed circuit. Forinstance, if two application flipflops which are very far
from each other are put into the same cluster, then the input nets to the XOR for
parity generation (XORpg) will have longer routes than in the case of two neigh-
boring flipflops. These long routes in turn can pose a higher critical impact on
the critical path. For this reason, before altering the technology-level netlist, we
gather the physical information about the application flipflopsin lines from 1to 7.

As the placing and routing process is usually based on heuristics, we run the
place-and-router multiple times (placing try count in line 1) with different seeds.
In this work, we used placing try count = 8 for the experiments. The placer and
router tool optimizes for the best timing, i.e., the shortest critical path.
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Data: technology-level netlist, placing try count, cluster size, partitioning
try count
Result: direct PBED applied technology-level netlist
if location-aware partitioning then
foreach flipflop category do
unclustered flipflops = flipflopsinthis flipflop category;
clusters with min. distance = (;
man. total distance = 00 ;
clusters for thistry = (;
total distance for thistry = 0;
for ¢ = 1 to partitioning try count do
while there are unclustered flipflops do
cluster = new cluster;
master = pick arandom flipflop;
push master to cluster;
while there are unclustered flipflops and cluster is not full
do
neighbor = pick the nearest unclustered flipflop to
master;
push neighbor to cluster;
total distance for thistry + = distance between
master and neighbor;
end
push cluster to clusters for thistry;

end
if total distance for thistry < min. total distance then
min. total distance = total distance for thistry;

clusters with min. distance = clusters for this try;
end

end

use clusters with min. distance as partitioning;
end
else // random partitioning
foreach flipflop category do
unclustered flipflops = flipflopsinthis flip flop category;
while there are unclustered flipflops do
cluster = new cluster;
while there are unclustered flipflops and cluster is not full do
random flipflop=pop from unclustered flipflops;
push random flipflop to cluster;
end

end

end
end
foreach cluster do
add parity-generation and -check circuitry;
end
reduce cluster error signals to a single error signal;

Algorithm 4.2: Application of direct PBED to a technology-level netlist p.2



78 CHAPTER 4. PARITY-BASED ERROR DETECTION

(e} o
|
Tl

E

Figure 4.15: Conversion of a flipflop with enable input to a basic flipflop with mul-
tiplexer. This is done to be able to update the flipflop content in case of a bitflip.

At the end of the runs, we select the run with the best timing and use this run
for flipflop location extraction. A primitive on ProASIC3 can be located by a two-
dimensional coordinate.

At line 8, we begin processing the technology-level netlist. All the flipflops
which have an enable input or a negated output must be replaced with a basic
flipflop with clock input, data input, data output, and reset input if applicable.
See figure 4.15 for a visualization. Note that this conversion must also be done
in LTMR. This conversion or remapping is called two tile implementation by the
layout tool, because the multiplexer and flipflops require one tile (i.e., CLB) each.
The elimination of the negated output strictly requires an additional tile, but usu-
ally this negation is propagated to the gates connected to the flipflop output and
does not create additional area overhead.

In the two tile implementation, the multiplexer emulates the enable behavior
by switching between the output of the flipflop and the input data which must be
fed to the flipflop when enable signal is active. This is crucial, because an enable
flipflop is not updated in every cycle, but only when the enable input is activated.
If a soft error happens on enable flipflops, these errors can eventually accumulate
and are undetectable for even numbers of bitflips in a cluster.

In the next step, the flipflops are categorized according to cluster size, and
clock and reset signals of flipflops. The flipflops in a cluster must be sensitive to
the same clock signal and edge. Furthermore, all the flipflops in a cluster must
have the same reset type: all active-low or -high. These constraints enable the
connection of the parity flipflop to the same clock and reset signal of the applica-
tion flipflops in the cluster.

The loop beginning at line 19 carries out the partitioning of the flipflops. The
partitioning creates flipflop clusters with a constant size for each flipflop category
by using the physical information about the application flipflops gathered inlines
1to7.

The clusters are created around a master flipflop, where neighboring flipflops
are picked from the list of unclustered flipflops list by the distance to the mas-
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ter flipflop (loop at line 26). As distance, the two-dimensional Euclidean distance
without square root is used:

distance = (Imaster - zneighbor)z + (ymaster - yneighbor)2 (4.31)

New clusters are created until there are no unclustered flipflops left.

This approach does not find the solution with the minimal distance sum over
all clusters, therefore we repeat the partitioning manytimes (loop atline 25), which
is determined by the input parameter partitioning try count. For the experiments
in this work, we set this parameter to 1000, i.e., partitioning try count = 1000.

As the figure of merit for each partitioning, we use the sum of all distances
between neighboring and master flipflops in all clusters (line 33), which is called
total distance for this try in the algorithm. For each flipflop category, we pick the
partitioning with the minimum total distance (if block at line 37).

The partitioning of the flipflops was done on the technology-netlist level, be-
cause the layout tool does not provide any programming interface to implement
the partitioning inside the layout tool.

Instead of location-aware partitioning, random partitioning can be used. In
this case, the clusters are filled with random flipflops without respecting their lo-
cation (else block at line 44.)

After the partitioning is completed, the parity-generation and -check circuitry
is added to every cluster. The error signals of all clusters are then reduced to a sin-
gle error signal. This signal is added as an additional primary output to the netlist.

Our partitioning solution is an approximate solution. The partitioning prob-
lem can be solved with k-means clustering with a fixed cluster size and the k-means
clustering problem is NP-hard [MNV12]. For our tool we need partitioning with
fixed cluster sizes, so we decided to implement a simple heuristic as a proof of
concept.

In the following, we will analyze the computational complexity of the algo-
rithm. For this purpose, we introduce the following variables:

+ crr number of all flipflops in the netlist

* ccat Number of flipflop categories

« cat; i'th flipflop category

* cfr,; number of flipflops in category cat;

* sq cluster size

* CFF,i,mst NuMber of master flipflops in category cat;

* CFF,i,und,; Number of unclustered flipflops in category cat; before j'th itera-
tion

* Cparttry Partitioning try count (constant)
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* Cplacetry Placing try count (constant)

In the following, we analyze the time complexity of the algorithm dependent
on the number flipflops cgr in the circuit.

Theloop inlines from1to 5is run cpjacetry times but depends on the third-party
place-and-route tool, therefore the time complexity cannot be estimated. Line 6
picks from cpjacetry routed netlists the one with maximum frequency and can be
processed in cparttry Steps, which is constant. Line 7 is done by a third-party parser
and islinear to the components present in the circuit netlist. Lines 8 to 16 iterates
over all flipflops in cgr steps, because categorizing a flipflop means adding it to
an array which includes only flipflops belonging to this category. Theloop inlines
from 19 to 43 will be analyzed beginning from the next paragraph. The loop in
lines from 56 to 58 iterates over all clusters and applies parity-generation and -
check circuitry, which in turn iterates over all flipflops in a cluster. So, the loop
in lines from 56 to 58 can be processed in cgr steps. Line 59 iterates over all the
cluster error signals and ORs them, which also corresponds to cgf steps.

The loop from 19 to 43 iterates over all flipflop categories, and partitions the
flipflops in a category cparttry times in lines from 25 to 41. For each partitioning,
clusters are generated in lines from 26 to 36. For each master flipflop in a cluster,
sa — 1 nearest flipflops are picked, which means iterating over all the unclustered
flipflops in the current category.

The number of master flipflops in category cat; corresponds to:

st = | | (4.32)
Sdl

For each master flipflop in a category, sq — 1 nearest flipflops are picked in lines

from 30 to 34. Before the first iteration, after the master flipflop for the first clus-

ter has been picked, there are crr ; — 1 unclustered flipflops, and before the second

iteration, there are crr ; — sq — 1 unclustered flipflops. So, the number of unclus-

tered flipflops before j'th iteration corresponds to:

CFFiund,j = CFFi — (J — 1)sa — 1 (4.33)

The master flipflops are picked randomly, thus the partitioning for each flipflop
category is done cparttry times. So, the number of comparisons corresponds to:

Ccat CFF,i

Z(Cparttry : Z(CFF,i,mst : CFF,i,uncl,j)) (434)

i=1 j=1

After we have developed the number of steps in general form, we can carry on
with best- and worst-case analysis.

In best case, every single flipflop belongs to another category, and no compar-
ison needs to be done:

Ceat = CFF = CFF,und,j — 0 (4.35)
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Figure 4.16: Impact of location-aware partitioning on the critical path of FSM cir-
cuits. In this plot, critical path overhead delay (¢t ) for every FSM circuit hard-
ened with PBED for both with location-aware and random partitioning (part.) are
shown, sorted according to bare circuit area. The x-axis is drawn in logarithmic
scale.

In this case, only thelines from 32 to 40 are executed, which are processed in O(1)
time. So, in best case the partitioning is accomplished in cpartiry - cFr Steps, which
corresponds to Q(cg).

In worst case, there is only one flipflop category, and the partitioning is done
iN Cparttry - C2¢ Steps, which corresponds to O(cZ).

Thelines other than theloop inlines 19 to 43 are processed in cfr steps, so the
time complexity of the algorithm is determined by the loop inlines 19 to 43.

For the evaluation of our location-aware partitioning approach, we synthe-
sized the PBED-hardened FSM and 199T circuits using cluster size of 3 both with
location-aware and random partitioning. The results are plotted in figures 4.16
and 4.17.

Contrary to our expectations, location-aware partitioning does not always re-
sult in a better timing. In case of the FSM circuits (figure 4.16), the critical path
difference is less than 1 ns, and in case of the 99T circuits, less than 1.5ns. The
number of sequential elements for a PBED-hardened circuit does not differ for
both partitioning techniques, and the difference between the number of LUTs is
less than 5. We cannot observe any significant impact of the location-aware par-
titioning. For the best timing, both partitioning techniques should be tried. For
our experimental evaluations in this work, we synthesized the PBED-hardened cir-
cuits with both partitioning techniques and have picked the design with the best
timing.
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Figure 4.17: Impact of location-aware partitioning on the critical path of 199T cir-
cuits. Critical path overhead delay (¢t ) for every 199T circuit hardened with
PBED for both with location-aware and random partitioning (part.) are shown,
sorted according to bare circuit area. The x-axis is drawn in logarithmic scale.



Chapter 5

Pipelined cluster error signal
reduction

In the previous chapter, we introduced PBED with direct cluster error reduction,
which can have negative impact on the circuit critical path and thus on the tim-
ing. In this chapter, we show an alternative approach based on pipelining of the
cluster error signal reduction. The following sections are structured similar to the
PBED chapter with the exception of the analytical evaluation section. The ana-
lytical comparison was done to assess the theoretical limits of direct PBED and
pipelined PBED is only evaluated using synthesis results.

In the following sections, we first introduce the pipelined PBED. Then, we
present the experimental evaluation and finally discuss the automatic application
of this PBED approach.

5.1 Concept

PBED reduces the cluster error signals to a single circuit error signal. In circuits
with numerous flipflops, this can create along error detection path. Alternatively,
a long error detection path can be broken into shorter paths by using inherent
pipeline structures in a circuit. A data processing circuit, e.g., an instruction pro-
cessor, utilizes many stages to process an instruction before it is evaluated. This
latency introduced by a circuit can be exploited for error detection on the module
level.

Forexample, ifamemory write instruction takes five cycles before correspond-
ing memory signals are activated and the data word is written, then it is sufficient
to handle a bitflip in this particular instruction five cycles later - in other words, in
the same cycle when this word is written to memory. In this work, this approach is
called PBED with pipelined cluster error signal reduction and will be abbreviated
as pipelined PBED in the following.

83
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Figure 5.1: PBED with pipelined cluster error signal reduction: top view on a hard-
ened circuit with d + 1 stages
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-

Figure 5.2: PBED with pipelined cluster error signal reduction: single stage with
neighbor stages

In contrast to direct PBED, in pipelined PBED, flipflops are grouped according
to their sequential distance dseq to any primary output of the circuit. dseq is defined
as the minimum number of cycles that a bit needs to be visible at PO. For example,
a FF whose outputis a PO of the circuit has dseq = 0. flipflops with dseq = d belong
to a particular error detection stage, which is named stageg,. These stages are
visualized in figure 5.1.

Theinner structure of astageisshownin figure5.2. Analogoustodirect PBED,
the flipflops are grouped in clusters within a stage. Stages contain an error flipflop
FFd, which stores the error signal that is coming from the previous stage, with the
exception of the leftmost stage with the greatest dseq. The error signal of stageg,),
error?, is generated by ORing the buffered error signal from the last stage and the
error signals from the clusters within the stage.

On the one hand, pipelined PBED shrinks the OR-tree for error signal reduc-
tion, which can result in a shorter critical path if the OR-tree is on the critical path.
Onthe other hand, pipelined PBED results in more overhead, stages introduce an-
otherlevel of flipflop category (like reset-,clock-signal) and flipflops from different
categories cannot be clustered together. This can result in more incomplete clus-
ters and thus more area overhead.

5.2 Experimental evaluation

In section 5.1, we saw that pipelined PBED is a timing enhancement on the di-
rect PBED. Hence, the experimental evaluation will show the differences between
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Figure 5.3: Critical path delay overhead (iit1) over bare circuit area (Apare) for
LTMR- and PBED-hardened FSM circuits with PBED cluster size of 3

these two approaches in overall and additionally use the former comparisons with
LTMR from the last chapter.

Same circuits and same experiment conditions from section 4.3 are used in the
following, so the introductions to the evaluations will be omitted and the subsec-
tion willimmediately start with the description and evaluation of the experimental
results.

5.2.1 Finite state machine (FSM) circuit

Table 5.1 shows the synthesis results for the FSM circuits which are hardened by
pipelined PBED with cluster size of 3. The table contains absolute output param-
eters as well as the difference (diff.) to the direct PBED approach.

The area parameters, flipflop count and area do not show a significant differ-
ence (i.e., crr gift, Adif). At least one flipflop is added to every circuit, as the FSM
circuit has two stages and pipelined PBED requires one flipflop for every stage but
the last stage. In some circuits, flipflop count difference raises to three, which is
probably due to optimizations like adding of additional primitives to balance the
load on high fanout nets. The possible overhead due to optimizations also apply
to combinational elements.

The area difference fluctuates more than the flipflop count. Pipelined PBED
introduces stages, which should have a negative impact on area as the cluster er-
ror signals for particular stages are reduced independently. This in turn causes a
non-exhaustive utilization of the three input XOR LUTs and thus more additional
area. But this effectis not clearly observable because the FSM has only two stages.
Allin all, the average and maximum difference for sequential elements and total
area stay below 4 and 10 tiles, respectively.

For all of the circuits, the critical path is shorter. Figure 5.3 plots the critical
path delay overheads of pipelined-, direct-PBED and LTMR over the bare circuit
area for a detailed evaluation.
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Table 5.1: Synthesis results for the FSM circuits hardened by pipelined PBED with
cluster size of 3. Absolute (abs.) values as well as differences (diff.) to the direct
PBED are shown. A positive difference means a higher value for the pipelined
PBED. The last row shows the average values for the differences.

CFF terit (NS)
circ. abs. diff. abs. diff. abs. diff.
1 41 1 191 1 929 -0.21
2 77 1 389 1 9.64 -0.09
3 112 1 585 0 10.02 -0.04
4 148 1 783 0 10.29 -0.15
5 184 1 970 -1 1031 -0.21
6 220 1 1186 0 1045 -0.39
7 256 1 1389 2 10.50 -0.16
8 292 1 1544 -1 10.61 -0.45
9 328 1 1731 1 10.78 -0.60
10 364 1 1921 1 11.01 -0.58
11 400 1 2142 -3 1119 -0.46
12 437 1 2365 -2 1115 -0.72
13 475 3 2603 3 1149 -0.48
14 511 3 2800 4 11.48 -0.48
15 547 3 2989 1 1164 -0.73
16 583 3 3264 2 1161 -0.92
17 619 3 3386 -1 1179 -0.69
18 655 3 3613 4 11.85 -1.19
19 689 1 3761 3 1183 -0.70
20 725 1 3970 1 1201 -0.94
21 763 3 4168 5 1214 -0.88
22 799 3 4395 3 1226 -0.68
23 835 3 4609 -4 1242 -1.04
24 873 3 4842 1 1261 -0.66
25 908 2 5021 1 1248 -1.03
26 944 2 5244 -4 12.63 -1.48
27 980 2 5472 2 1254 -111
28 1015 1 5619 -8 1291 -1.00
29 1052 2 5850 9 1299 -1.38
30 1087 1 6051 -9 13.07 -0.92
31 1123 1 6236 0 - -

avg. 1.83 0.02 -0.68
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Table 5.2: Minimum and maximum values for derived parameters for PBED hard-
ened FSM circuits for various cluster sizes (sq)

Ay Ay e
CFF ba At

0.06-4.42 231-2.97 0.78-0.84
110-4.23 1.84-246 0.62-0.69
1.28-425 155-218 0.52-0.61
1.67-4.54 149-211 0.50-0.58
1.88-455 151-210 0.51-0.59
225-471 139-2.04 0.47-0.57
235-510 1.41-1.98 0.48-0.55
225-513 139-196 0.47-0.54

Scl Lerit+ (ns)
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For the bare circuit areas greater than 500 CLBs, the critical path overhead is
improved by 0.5 to 2 ns, but LTMR has still about 1 to 2 ns less critical path over-
head. For circuit area less than 500, all hardening techniques lead to similar re-
sults.

We omit detailed results for each circuit and cluster sizelike we did in section 4.3,
because pipelining does not significantly change the impact of cluster size. In-
stead of detailed results, table 5.2 summarizes the minimum and maximum values
for the derived values for each cluster size.

5.2.2 199T circuits

Table 5.3 shows synthesis results for 199T circuits hardened by pipelined PBED
with cluster size of 3.

Inall circuits the flipflop count difference to the direct PBED is greater than the
total stage count without the last stage (crr gift. >= Cstage — 1), Which supports the
plausibility of the resulted flipflop count.

Pipelined PBED can result in shorter critical path, but not always. The critical
path delay difference to direct PBED is less than 1.25 ns. Figure 5.4 shows the crit-
ical path delay of the hardened circuits sorted according to the bare circuit area. In
most cases PBED results in a shorter critical path than LTMR. The exceptions are
the circuits b18 and b21, in which pipelined-PBED results in a longer critical path
than the LTMR.

Like in subsection 5.2.1, we omit detailed analysis by each cluster size and cir-
cuit and minimum and maximum values for the derived parameters for each clus-
ter size in table 5.4, as the pipelining does not change the impact of cluster size
variation.

Finally, we analyzed the relative flipflop count over the stages in 199T circuits.
Figure 5.5 shows the relative flipflop count in percent for a particular circuit.

We observe that in most circuits about half of the flipflops have a distance of
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Table 5.3: Synthesis results for 199T circuits hardened by pipelined PBED with
cluster size of 3. Additionally, in the last column the total stage count (cstage) gath-
ered by the PBED toolis printed. For the remaining parameters conferto table 5.1.

CFF A terit (NS)
circ. abs.  diff. abs. diff. abs. diff.  cCstage
b02 9 1 23 0 556 0.42 1
bO1 19 2 49 2 585 0.01 2
b06 15 2 48 1 637 -0.30 1
b08 35 2 133 3 1155 -0.30 2
b03 55 7 160 5 912 -0.00 5
b09 55 12 161 9 979 -0.91 8
b10 40 2 151 2 782 -0.04 2
b13 a0 5 277 3 912 0.05 3
b0O7 69 2 258 -1 1487 0.03 2
bll 58 4 322 3 1724 -0.92 2
bO4 104 4 516 1 2498 -0.73 4
b05 65 1 470 2 2561 -0.02 1
b12 189 5 881 3 16.68 -0.16 4
bl4 328 3 4062 2 49.05 -1.09 2
bl5 664 5 5549 4 3440 -0.82 3
b20 658 3 8808 2 4873 -0.58 3
b21 653 3 8930 5 49.16 0.53 3
b22 940 3 12827 1 4927 0.16 3
bl7 2099 6 16867 -1 3632 031 5
b18 4872 5 42495 2 50.69 1.25 5
b19 9649 5 76864 -5 - - 5
avg. 3.90 2.05 -0.16
4
3.
by (nS) | ~— LTMR
~+~ direct PBED with sq = 3
1- —~ pipelined PBED with sq = 3
100 1,000 10,000

bare circuit area (Ap,)

Figure 5.4: Critical path delay overhead (iit1) over bare circuit area (Apare) for
LTMR- and PBED-hardened circuits with PBED cluster size of 3
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Figure 5.5: The distribution of flipflops over the stages for every 199T circuit.
stage? is a stage with a sequential distance of d to the primary output of the circuit.
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Table 5.4: Minimum and maximum values for derived parameters for PBED hard-
ened 199T circuits for various cluster sizes (sq)

Ay At e
CFF,ba Ayq ot

-0.44-151 231-3.20 0.79-1.01
0.12-460 1.82-270 0.62-0.79
-0.01-9.34 156-250 0.55-0.75
0.30-11.32 1.46-234 0.50-0.75
0.52-6.60 150-2.42 0.51-0.75
0.60-5.95 154-2.41 0.52-0.75
0.49-6.38 1.41-232 0.48-0.75
0.33-7.01 1.36-230 0.46-0.75

Sl terit+ (ns)

O© 0030 U &~ WN

one cycle to the output. Although this allows for a pipelining in cluster error sig-
nal reduction, a more homogeneous distribution of the flipflops should result in
better timing for pipelined PBED.

5.3 Automatic application

Also pipelined PBED can be automatically applied to a technology-level netlist.
Ourtool that we introduced in the last chapter also supports pipelined PBED. The
pseudo code of the pipelined PBED application programis shownin algorithm 5.1.
Comparedtothedirect PBED approach, in pipelined PBED, the sequential dis-
tance to PO dseq of every flipflop must be determined. For this purpose, a flipflop-
only dataflow graph is generated by setting the POs as sink vertexes and exploring
how the flipflops are connected to each other and to the primary output by us-
ing breadth-first search in the loop at line 7+1. While traversing, the flipflops are
annotated with dseq po, to each single PO. Subsequently, the minimum of these
dseq,p0, S is determined at line 14+1, which corresponds to dseq to the output:

dseq = n;'zn dseq,POi (5.1)

In the next step (line 15), the flipflops are put to clusters like in direct PBED,
but cluster generation in pipelined approach additionally respects the sequential
distancetothe primary output, that not only the flipflops with the same clock edge
and reset are allowed to be in the same cluster, but also with the same sequential
distance.

Then, the clusters are generated. In theloop atline 45+1, the clusters are put
into error detection stages with respective sequential distance to the primary out-
put. Finally, the stages are interconnected.

In the following, we analyze the time complexity introduced by the pipelined
PBED approach when compared to the direct approach. For this purpose, we in-
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Result: pipelined PBED applied technology-level netlist

7+1 foreach primary output (PO) do
742 build a flipflop dataflow graph with this PO as sink vertex and
annotate the flipflops with sequential distance to this PO;

7+3 end
8 foreach flipflop do

14+1 determine min. sequential distance to output;
15 categorize according to ... and min. sequential distance to output;
16 end

59 red ] anal il ignat:

s59+1 for sequential distance (dseq)=maxto O do

5942 put clusters with dseq to a new stage;

59+3 reduce cluster error signals to a single error signal;

59+4 merge the error signal from the previous stage;

5945 add an error flipflop to the stage;

59+6 end
Algorithm 5.1: Application of pipelined PBED to a technology-level netlist.
Only the differences to algorithm 4.1 are shown. Added lines are labeled as
1 + a, which means a'th line added after the {'th line from algorithm 4.1.
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troduce following variables additional to the variables that we introduced in sec-
tion 4.4:

+ ¢yt number of all LUTs in the netlist

* cpo humber of primary outputs in the netlist

* dseq,max Maximum sequential distance in the netlist
« cq number of clusters in the circuit

Theloopinline 7+1 does a breadth-first search on a connected graph (the netlist)
for each primary output. Firstly, we do the worst case analysis. A dense con-
nected graph can be processed in O(n?) time, where n is the number of vertexes.
So, building the flipflop data-graph for all primary outputs corresponds to O(cpo -
(cLut +crF)?). Generally, most of the components of the netlist are traversed after
some of the primary outputs have been processed, and the connectivity informa-
tion (i.e., the neighbors of a flipflop) can be cached. Therefore, the time complex-
ity can be reduced to O((cLut + crr)?). In best case, we have a sparse graph, which
corresponds to Q(c Lyt + cpr). If we assume that ¢yt = const - g, the time com-
plexity can be reduced to O(cg;) and Q(cge).

Theline 14+1 corresponds to comparison of cpg values, but cpg cannot be de-
termined exactly. If we assume that the number of primary outputs do not ex-
ceed the number of flipflops in the circuit, the line 15 can be processed in O(cgg)
and (1) time. These lines are processed for each flipflop, so they correspond to
cre - (cer + 1) steps and to O(cZp) and Q(ce).

Theloop inline 45+1 includes operations which iterate over the clusters, that
have a specific sequential distance. So, in total, this loop iterates over all flipflop
clusters, and is processed in cq steps. In worst case, every flipflop belongs to a
different category, and in best case to the same category. This corresponds to
O(CFF) and Q(].)

Time complexity of the direct PBED approach corresponds to O(cZ;) and Q(cre),
whichwas discussedin section 4.4. We see that the time complexity isnot changed
by the additional steps introduced by the pipelined PBED approach.



Chapter 6

Transaction-based processing
& recovery

In previous chapters, we presented and evaluated the error detection part of EDFT.
A fault-tolerant system should provide end-to-end reliability, i.e., after error de-
tection, the system should recover itself from the erroneous state. As shown in
figure 6.1, the rest of EDFT is based on:

 system recovery in the target circuit

- circuit isolation

- circuit reset
« detection and recovery in the user component
- transaction-based processing

System recovery reacts to a detected error and ensures a system state without
errors. Due to error detection-only (parity) approach instead of error-correcting
codes in our approach, it is not possible to compensate an error immediately and
recover the system. Instead, recovery is done by circuit isolation (fault masking),
and circuit reset (rollforward). Transaction-based processing is for error detection
and system recovery in the user component.

Inthe next sections, we first present and evaluate the system recovery compo-
nents for the target circuit, and then for the user component. Finally, we discuss
their automatic application.

6.1 Recoveryin the target circuit

System recovery in the target circuit consists of the circuit isolation and circuit re-
set components. Like PBED, system recovery can be implemented in a transpar-
ent fashion to the target circuit as shown in figures 6.2 and 6.3.

93



94 CHAPTER 6. TRANSACTION-BASED PROCESSING & RECOVERY

! user LT
3 (SW or HW) circuit
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recovery | processing —  error detection
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recovery

|| circuit error handling
| reset by rollforward
|| circuit ||| faulthandling
' | isolation | | by isolation

component

EDFT applied system

Figure 6.1: EDFT applied on the reference architecture (Figure 2.8 reused)

We present the two components in detail in subsections 6.1.1 and 6.1.2.

6.1.1 Circuitisolation

The goal of isolation is that an error in the target circuit does not propagate to the
rest of the system. As the circuit recovery can take multiple clock cycles (e.g., an
asynchronous reset over multiple clock cycles), an erroneous data word in target
circuit can propagate to neighboring circuits and cause additional errors. Conse-
quently, the reaction latency to an error must be bounded.

Isolation can be achieved, e.g., by stopping the clock for the target circuit (clock
gating) or masking its output signals. In our work, we concentrated on masking.

Generally, circuitinterfaces contain control signals, which control the data flow.
An exampleis the write-enable signal on a memory interface. Aslong as the write-
enable signal is not activated, no data will be transferred to the neighbor circuit.
So, if the circuit interface includes control signals, further resources can be saved
by only masking the control signals like write- and read-enable as shown in fig-
ure 6.3.

An example implementation of the circuit isolation with logical masking of the
control signals is shown in figure 6.4. Aslong as the reset signal is active and the
circuit is being recovered, the output control signals stay masked.
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Figure 6.2: Overview of target circuit’s system recovery components. Pl and PO
stand for primary-input and -output of the target circuit, respectively. The sub-
script  stands for wrapped. Error handling module wraps the target circuit for
recovering and isolating the circuit.
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Figure 6.3: Detection and recovery applied on the reference processing architec-
ture from section 1.1. To save resources, only the control signals are masked. (Fig-

ure 1.5 reused.)
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data
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mask
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Figure 6.4: Example implementation of the system recovery for the target circuit.
When the error signal is active then the control signals are masked to isolate the
circuit logically in the same cycle. In subsequent cycles, the asynchronous reset
signal is hold active and the circuit is reset.

6.1.2 Circuitreset

After an error, the circuit can be in an indeterminable state. The aim of error han-
dling is to put the target circuit to a determined state that data processing can
continue, e.g., to the state at the end of the last successful transaction.

The easiest recovery approach is to put the circuit to the start state by activat-
ing the reset signal, which is feasible if the target circuit always lands on the start
state after one transaction is processed. We chose this approach for our evalua-
tion. In opposite cases, where the circuit is at different states at the beginning of
atransaction, the recovery must concurrently observe the state of the circuit and
recover the circuit to the respective start state.

In figure 6.4, we show an example of an asynchronous reset-based recovery
approach. A shift register enables a reset that is active many clock cycles. The
number of flipflops in the shift register must be chosen such that all flipflops in
the circuit are guaranteed to be reset after the respective number of clock cycles.
Consequently, the size of the shift register ssg is dependent on the longest reset
path to a flipflop (critical reset path ¢t rst), the circuit clock period ¢, and can be
calculated by the following equation:

SR = ’Vﬁcrit,rst-‘ (61)

tak
It is obvious that the circuit reset is a sequential circuit as well and susceptible
to soft errors. Consequently, it must be sufficiently protected due to following
threats:

+ During the initial state of the shift register, one or more bitflips in the latter
flipflops of the shift register activates the reset of the target circuit, which
results in a shorter reset duration.

+ During the active state of the shift register, in other words, when the circuit
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is being reset, one or more bitflips can interrupt the reset of the circuit. In
this case, a bitflip would cause a short reset, which has alow probability due
totherelatively small area of the shift register compared to the target circuit.

In both cases not all flipflops in the circuit are initialized and this can cause a circuit
failure. Consequently, the reset circuit should be hardened by LTMR.

6.2 Transaction-based processing

Many sequential circuits process data by receiving a request and transmitting a
response. Sending a response is not only important for the flow control but also
for detecting an error. Due to the fact that we allow errors in the target circuit
that cannot be corrected immediately, the system environment which utilizes the
target circuit can use transaction-based processing. This gives the environment
the opportunity to repeat the last processing request (i.e., resend the last packet)
after a timeout, if the target circuit cannot send any response due to a recovery
event. Therefore, a system implementing EDFT should incorporate a transaction-
based processing scheme.

In this section, we first present the concept and provide a specification in sub-
section 6.2.1. Using this specification, we show that the system will not fail under
the fault model that we presume in subsection 6.2.2.

6.2.1 Concept

In our previous example in section 1.1, we have proposed a communication proto-
col based on transactions, which is re-shown in figure 6.5. In this example system,
we achieve tolerance against SEUs by collaboration of hardware and software.
The hardware detects an error, stops the transaction and the software retries the
transaction. Compared to error correction on hardware like LTMR, which mostly
occurs in every clock cycle ensuring that an error does not cause data corruption,
abit errorin EDFT canlead to data corruption and hence to an unexpected loss of
processing context in a system, in which this circuit is incorporated. To ensure de-
terministic data processing in this context, the processing for the mission must be
carried out in smaller chunks, each acknowledged by circuit B that no corruption
due to bitflips has taken place. We call this kind of handshaked data processing
transaction-based processing.

In this section, we generalize our approach by providing a system specifica-
tion.

A data processing circuit (cf. circuit B shown in figure 1.1) is a clocked circuit
with internal memory which can transfer a data word in every clock cycle during
processing. Processed data is transferred to or from a buffer memory. A buffer
memory is for instance arandom-access (RAM) or first-in first-out (FIFO) memory,
like two FIFOs and the RAM shown in figure 1.1.

A buffer stores one or many data words. These words can be used in two ways:
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Figure 6.5: Sequence diagram of the communication protocol of our reference
system in section 1.1, which is based on transactions. A transaction consists of a
request (req) and a response (resp). The left diagram shows a normal sequence:
every request is followed by a response. On the right, the error behavior is visual-
ized: if still no response after atimeout is received, thelast transaction is repeated.

data 1Tos-
. . | misc.
— action +~—— processing [+---*

circuit ~——-

Figure 6.6: Data processing circuit receives a request from the transaction buffer
and writes the response after processing. For communicating with other circuits,
miscellaneous buffers are used.

+ asamemory-mapped communication interface, e.g., writing a specificword
to a specific address starts sending UART bits to a peer. A memory location
holding such a word is called an action triggering address. When the com-
munication is completed, a status word indicates if a communication was
successful or has failed.

+ asaninput or output for data processing, e.g., a checksum circuit reads the
input words, processes the checksum and writes checksum words back to
the buffer. We callamemorylocation holding such aword a passive address.

A transaction buffer (cf. the FIFOs in figure 1.1) is always present and used
for getting processing data input and writing back the output. Other buffers can
be present for communicating with other circuits (cf. RAM for memory-mapped
communication interface in figure 1.1 and they are called miscellaneous buffers.
This generalized view on the data processing circuit is visualized in figure 6.6. All
buffers are sufficiently protected against soft errors, for instance by using an error
detection and correction code.

Processing data is sent by a master (cf. processor in figure 1.1) and the sent
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Figure 6.7: An example transaction visualized on cycle level. The processing cir-
cuit (cf. figure 6.6) processes request words and writes the response words back
to the transaction buffer (tb.). During one clock cycle (cycle,;;), one request word
(req, (7)) of arequest (req,,) or one response word (resp,, ()) of a response (resp,,)
can be transferred. During the transaction, also data transfer to/from miscella-
neous buffers (mb.) is possible. i/: input, fo: output, i/o: input or output. Note
that a response does not have to start at ¢ + 1, but may start later.

data is called a request. The data processing circuit processes the request as a
slave and writes the output on the transaction buffer, which is called a response.
Request and response consist of at least one or many consecutive words. A re-
qguest and the response to this request make up a processing transaction. A trans-
action on cycle level is visualized in figure 6.7.

A transaction fails, if the last word of the respective response is not present
in the transaction buffer after a timeout. In this case the respective request is re-
peated. Many consecutive transactions make up a data processing mission.

6.2.2 Fault tolerance analysis

The goal of our approach is to ensure that the mission is completed without any
erroneous data in the mission output. In this subsection, we show that our pro-
posed approach meets the fault tolerance goal. Note that data will be corrupted
due to SEUs, but as long as the erroneous data do not propagate from the slave
to the master or other neighboring circuits, it is not an error from the mission per-
spective.

If an SEU happens durina a clock cycle, then a bitflip in a cluster will be ob-
servable in the next clock cycle. EDFT can detect this error and mask the circuit
outputs in the same cycle. At the same time, the recovery is activated and the cir-
cuitis brought to a known state by a reset. Aslong as the circuit is in recovery, the
circuit outputs stay masked. In summary, in EDFT:

« abiterroris detected in the next clock cycle

+ a bit error cannot propagate outside the circuit and eventually cause silent
data corruption

Consequently, if an error is detected during a transaction, the master will not get
a response and subsequently retry the transaction without any data corruption.
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A transaction succeeds or fails as a whole, but the slave processes the data on
every clock cycle. Consequently, the master cannot know the state of a miscella-
neous buffer after an SEU. To avoid this, the master must pay attention to how
the the requests to the slave are built. Although the actual solution is application
dependent, in the following we provide an example approach how the requests
can be built.

If an incomplete or no response is received by the master in the timeout win-
dow, then a recovery procedure by the master is initiated.

If an error happens during processing of a transaction involving only passive
addresses, then the simplest approach is to retry the last request. The reason is:

« after a read request, the state of the miscellaneous buffers do not change

« after awrite request, part of the miscellaneous buffers may change, but this
does not trigger an action. Consequently, the last request can be retried.

In both cases also a readback with partial write request can be issued, if this is less
time-consuming than retrying.

In case of action triggering addresses, if an error happens during processing
of a read transaction, then the simplest approach is the retry of the last request
similar to the above reason. If this is a write action (e.g., triggering a data trans-
mission to a subsystem), then retrying retriggers the last operation, which can be
undesirable and dangerous. In this case, first a read request to the status regis-
ter of the respective memory-mapped interface should be issued to see if the trig-
gered action succeeded or not. Then, a write request can be issued accordingly. It
is obvious that not only the design but also the correct use of the communication
protocol is important for the fault tolerance of the system.

6.3 Experimental evaluation

Inthis section, we evaluate the system impacts of system recovery and transaction-
based processing. System recovery is evaluated in subsections 6.3.1 and 6.3.2 by
its area and timing impacts similar in the last two chapters 4 and 5. Transaction-
based processing is based on recomputation and thus evaluated by its processing
time impact in subsection 6.3.3.

The evaluation of the impacts of transaction-based processing on the hard-
ware and software components is not straightforward, because the transaction
handling depends on the communication protocol between the user and provider
component, which can be arbitrary.

If we assume a bidirectional protocol where the provider component has to re-
ply every request from the user component. In this case, the protocol must be able
to retransmit the last request to the provider component, if there is no response
or the response is negative. In terms of programming resources, this means that
the user program should buffer every request until there is a positive response to
the last request.
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Transaction-based processingis not possible on a protocol wherethe user com-
ponent sends a request to the provider component and assumes that the request
will be processed correctly. This applies to protocols, in which not every request
is responded, and also to unidirectional protocols. In this case, the protocol must
be changed to support responses from the provider component, which can result
in redesigning both user and provider component.

For the evaluation of the system recovery circuit, we took the pipelined PBED
as error detection component and input the error signal to the system recovery
circuit. The system recovery circuit was hardened using LTMR and for the reset
circuit, we chose the reset duration of three cycles for all circuits. As we discussed
in section 6.1.1, only control outputs should be masked to save area. In the FSM
circuits, we indeed masked the control signal outputs. In the 199T circuits, we
masked all the output signals, because there is no detailed documentation avail-
able about the semantics of the primary output signals.

6.3.1 FSM

Table 6.1 shows the area differences (diff.) of the PBED with system recovery com-
ponent compared to the pipelined PBED approach without system recovery for
the cluster size of three. The reset duration of three cycles was realized by a two
bit counter by the synthesizer. This counter triplicated results in six flipflops and
in the evaluation of PBED, we used one flipflop as a placeholder for the system
recovery circuit to include the timing effects of the parity check and OR-tree. Con-
sequently, all circuits have a flipflop difference of five.

The combinational area difference is not directly presented on table 6.1, but
can be obtained by subtracting flipflop count from the area (A — cfr). Combi-
national area difference is caused by majority voters for the triplicated flipflops,
gates for masking of the control signals, and the counter. The area difference fluc-
tuates probably due to optimizations.

System recovery component causes 13 to 25 CLBs for all circuits, therefore the
impact is significant for circuits with relatively small area. We additionally calcu-
lated the area overhead (bare circuit area as reference) per application flipflop and
the area overhead ratio to LTMR approach. In average, the overhead per applica-
tionflipflopisabout 2.5 and EDFT approach saves in average 30% of the overhead
that would be caused by LTMR for cluster size of 3.

The critical path difference to pipelined PBED isless than 2 ns and is about 1 ns
in average. The critical path difference is visualized in figure 6.8. In worst case,
a critical path overhead of about 5 ns is caused, which is about 2.5 ns more than
LTMR.

System recovery does not change the impact of cluster size variation, therefore
we only summarize the minimum and maximum values for the derived parameters
intable 6.2. We see that EDFT can save up to 54% of the area overhead caused by
LTMR with a maximum critical path overhead of 6 ns.
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Table 6.1: Synthesis results for the FSM circuits hardened by pipelined PBED with
cluster size of 3 and system recovery (abbreviated as PPR meaning pipelined
PBED with recovery). Absolute (abs.) values as well as differences (diff.) to the
version without system recovery from chapter 5 (was abbreviated as PP) are
shown. A positive difference means a higher value for the version with system
recovery. The last row shows the average values for the differences.

CFF A terit (NS)

circ. abs.  diff. abs. diff.  abs. diff. % %
1 46 5 205 14 946 017 244 0.82
2 82 5 403 14 994 030 212 0.72
3 117 5 598 13 10.03 0.01 263 0.73
4 153 5 800 17 1031 0.03 262 0.74
5 189 5 987 17 1029 -0.02 2.59 0.72
6 225 5 1204 18 1059 0.14 257 0.70
7 261 5 1403 14 11.09 059 253 0.70
8 297 5 1559 15 1130 069 253 0.70
9 333 5 1745 14 1182 104 252 0.69
10 369 5 1935 14 1179 078 252 0.69
11 405 5 2162 20 1184 066 252 0.70
12 442 5 2385 20 11.82 0.67 250 0.68
13 480 5 2620 17 1232 083 251 0.69
14 516 5 2815 15 1262 114 2.51 0.70
15 552 5 3006 17 1280 116 250 0.69
16 588 5 3280 16 1262 101 250 0.70
17 624 5 3407 21 1275 0.97 250 0.69
18 660 5 3629 16 1312 127 249 0.70
19 694 5 3777 16 1314 131 249 0.68
20 730 5 3985 15 13116 116 249 0.67
21 768 5 4184 16 13.49 135 249 0.68
22 804 5 4409 14 1349 123 249 0.68
23 840 5 4624 15 1342 100 248 0.68
24 878 5 4856 14 1369 108 248 0.69
25 913 5 5038 17 1345 0.97 248 0.68
26 949 5 5268 24 1358 0.95 248 0.68
27 985 5 5490 18 1373 119 249 0.69
28 1020 5 5640 21 13.88 096 248 0.68
29 1057 5 5867 17 1426 126 248 0.68
30 1092 5 6076 25 14.07 1.00 248 0.69
31 1128 5 6253 17 - - 248 0.68

avg. 5.00 18.57 0.83 249 0.70
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Figure 6.8: Critical path delay overheads (¢t ) over bare circuit area (Apare) for
LTMR and both PBED techniques with cluster size of 3. Points for the LTMR-
hardened circuits for Apare > 3750 do not exist, because they did not fit into the

FPGA.

Table 6.2: Minimum and maximum values for derived parameters for PBED hard-
ened FSM circuits with recovery for various cluster sizes (sq)

Sa terity (NS) C;‘:ia 3:7:?
2 0.06-530 231-3.14 0.78-0.96
3 110-538 1.84-2.63 0.62-0.82
4 123-545 155-237 0.52-0.76
5 141-524 1.49-227 0.50-0.72
6 170-535 151-230 0.51-0.69
7 190-555 139-221 0.47-0.68
8 233-5.60 141-211 0.48-0.68
9 225-572 139-218 0.47-0.68
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Figure 6.9: Critical path delay overheads (¢t ) over bare circuit area (Apare) for
LTMR and both PBED techniques with cluster size of 3

6.3.2 199T circuits

The structure of data presented in this subsection (table 6.3, 6.4, figure 6.9) is
similar to the last subsection 6.3.1.

Table 6.3 shows that the flipflop difference is nearly constant at 5 asin the re-
sults of the FSM circuit. Asignificant fluctuation can be observed inthe area differ-
ence compared to the FSM circuit. The reason is that every circuit has a different
number of primary output nets, and we did not only mask the control signalsin the
primary output nets, but all primary output nets. Forinstance, b17 has 98 primary
output nets, which creates a relatively high area overhead due to needed masking
gates. Still, EDFT can save 27% of the area overhead caused by the LTMR in b17.
On the other hand, EDFT can also cause more overhead than LTMR like in rela-
tively small circuits like bO6, which has an area of 64 CLBs. The circuits bO2 and
bO5 also cause more area overhead than LTMR, and the reason for these circuits
was explained in subsection 4.3.2.

The critical path impact can be better analyzed using figure 6.9, which also
plots LTMR and pipelined PBED without system recovery critical path overheads.
In most cases, PBED with and without system recovery have similar critical path
overhead and the EDFT causes less critical path overhead than LTMR. Only b18
and b20 result in alonger critical path than LTMR and the critical path difference
stays below 2 ns in these cases.

Similar to subsection 6.3.1, we only summarize the minimum and maximum
values for the derived parameters and for different cluster sizes in table 6.4. Com-
pared to the minimum and maximum values without recovery in table 5.4, the up-
per bounds for the critical path overheads are not changed for most cluster sizes,
and if changed, the increase is below 1 ns. We see that EDFT can save up to 54%
of the area overhead caused by LTMR.



6.3. EXPERIMENTAL EVALUATION 105

Table 6.3: Synthesis results for 199T circuits hardened by pipelined PBED with
cluster size of 3 and system recovery. For the remaining parameters confer to ta-
ble 6.1.

CFF A terit (NS)
circ. abs.  diff. abs. diff.  abs. diff. %’)::R %
b02 14 5 35 12 569 0.13 5.25 1.75
bO1 24 5 62 13 592 0.08 3.50 113
b06 20 5 64 16 6.66 029 400 133
b08 40 5 147 14 1149 -0.06 267 0.90
b03 60 5 175 15 9.23 0.11 252 0.89
b09 60 5 173 12 964 -015 261 0.89
b10 45 5 168 17 776 -0.06 271 0.90
b13 95 5 296 19 912 0.00 257 0.80
b0O7 74 5 277 19 1490 0.03 225 0.76
bil 63 5 341 19 1835 111 243 0.83
bO4 109 5 536 20 2494 -0.04 3.00 0.79
b05 70 5 507 37 2559 -0.03 273 1.18
b12 194 5 899 18 1701 034 285 0.77
bl4 333 5 4131 69 4987 0.82 3.00 0.78
bl5 669 5 5633 84 3456 0.16 2.59 0.76
b20 663 5 8841 33 51.06 233 2.74 0.73
b21 658 5 8962 32 48.07 -110 276 0.72
b22 945 5 12858 31 48.96 -0.30 270 0.72
bl7 2104 5 16982 115 36.93 0.62 251 0.73
bl8 4877 5 42536 41 50.84 0.14 247 0.73
bl19 9654 5 76923 59 - - 2.47 0.72
avg. 5.00 33.10 0.22 287 0.90

Table 6.4: Minimum and maximum values for derived parameters for PBED hard-
ened 199T circuits with recovery for various cluster sizes (sq)

Ay Ay ps
CFF,ba Apr

-0.44-229 231-575 0.79-1.92
-0.02-5.37 1.82-525 0.62-1.75
-0.01-14.12 1.56-5.25 0.55-1.75
-0.08-11.87 1.46-5.25 0.50-1.75
0.52-714 150-525 0.51-1.75
0.51-6.08 1.54-525 0.52-1.75
0.46-704 1.41-525 0.48-175
0.33-799 136-525 0.46-1.75

Sdl teritt (NS)

O 0030 U ~WN
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| Write transmit buffer (200 words) D timeout

l response

ITrigger transmission (1 word) D timeout

l response

| Wait for 100 cycles |

| Read transmit buffer (55 words) D timeout

l response

Figure 6.10: Simplified flow diagram of one single memory access block. It con-
sists of three transactions. The transactions are retried by the software if there is
no response after the timeout has passed.

6.3.3 Processing time penalty

Compared to local error handling of LTMR, EDFT handles an error by recomputa-
tion. This imposes a processing time penalty on the system. To compare the run-
time performance of LTMR and EDFT under injection of bitflips, we implemented
abitflipinjection tool and a testbench which performs a mission. The mission con-
sists of 100 memory access blocks. Each memory access block consists of three
subsequent memory accesses. One single memory access block is visualized in
figure 6.10. The block starts with a write transaction consisting of 200 words,
which resembles data that should be sent to a subsystem by the FPGA. After the
data are written, the subsystem data transmission is activated by a single word
access. The subsystem responds in a predefined time window of 100 cycles. After
a delay of 100 cycles, the subsystem response consisting of 55 words is read. At
the end of the mission, the time needed for the whole mission is measured.

At every clock cycle, the bitflip injection tool iterates over all flipflops in the tar-
get circuit and flips the flipflop bits according to the given probability p randomly.
Probability p is defined as the bitflip probability per clock cycle for a single flipflop.
The random numbers generated for the bitflip injection are dependent on a seed.
We run the mission for 0 < p < 0.0001, and for one single p, the simulation was
run with 32 different seeds.

In LTMR, the erroris corrected in the same clock cycle, but EDFT requires that
the error is corrected by the software by repeating the failed memory access re-
quest, which in turn causes additional processing delays. Figure 6.11 shows rela-
tive processing time needed by EDFT for the given mission. The processing time of
EDFT is plotted relative to the LTMR processing time, which is constant. For EDFT,
the processing timeincreases with increasing bitflip probability p, as a failed mem-
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relative processing time

2.107° 6-1072
FF bitflip probability per cycle (p)

Figure 6.11: Scatterplot of relative processing time for a given mission. The factor
is relative to the processing time of LTMR.

ory access request must be repeated. The time loss due to retransmission is at
least the time required to transmit the failed request. At higher p, if the bitflip rate
equals to the memory access request rate, the processing time would be infinite.
Therefore, the processing time grows exponentially in respect to p. Note that, at
the simulated p interval, there were no undetected errors (e.g., multiple bitflips in
a PBED cluster) for both techniques.

For comparison, note that, assuming one year mission in the L2 orbit (second
Lagrangian point, about 1.5 million km away from earth) under 1/cm? shielding,
a programmed circuit with 5000 flipflops on a ProASIC RTPE3000L FPGA has
four SEUs [BSV11, ch. 7]. Assuming that this design runs at 20 MHz, then p for
this mission is calculated by dividing the errors per year by the number of cyclesin
one year:

p = 4/5000/365/24/60/60/(20 x 10°)

(6.2)
~13x10°18

Assuming the error rate from eq. 6.2 and transactions with a maximum length
of 103 cycles, make the time penalty per year insignificant.

6.4 Automatic application

6.4.1 Logical masking of control signals

Logical masking of control signals can be easily implemented, if the control sig-
nals of the target circuit primary output are known. The synthesizable VHDL code
in listing 6.1 describes a combinational circuit that masks the input signals, if the
error signal is active.
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Listing 6.1: Example circuit for masking of the control signals

entity signal_masker is

generic (
-— This generic determines how the signal is deactivated
-- in case 'signal_must_be_masked' signal is active.
-- If false, the input control nets are active-low.
SIGNAL_IS_ACTIVE_HIGH : boolean

)

port (
-—- Input --
error : bit;
reset_circuit_is_active : boolean;
signal_input : bit_vector;
-— Output --
signal_masked : out bit_vector

)

end entity;

architecture arch of signal_masker is
signal signal_must_be_masked : boolean;
begin
signal_must_be_masked <=
true when reset_circuit_is_active or error = '1'

else false;

signal_masked <=
(signal_input 'range => '0')
when signal_must_be_masked
and SIGNAL_IS_ACTIVE_HIGH else
(signal_input 'range => '1')
when signal_must_be_masked
and not SIGNAL_IS_ACTIVE_HIGH else
signal_input;

end architecture;
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6.4.2 Reset circuit

The reset circuit can also be automatically implemented by obtaining the critical
reset path after placing and routing the target circuit and using the equation 6.1.
The obtained shift register size equals to the reset duration of the target circuit.
The synthesizable VHDL codeinlisting 6.2 describes a circuit which holds the reset
signal active as long as the error signal is active.

Note that the reset signal rst is not immediately activated if the error signal
is active. By doing so, a combinational loop would be created that can spuriously
reset the circuit during the time window when the combinational signals settle
before they get registered by the flipflops.
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Listing 6.2: Example circuit for asynchronously resetting the target circuit

entity reset_circuit is

generic (
RESET_DURATION: positive := 3;
RESET_SIGNAL_IS_ACTIVE_HIGH : boolean

)
port (
-- Input --
clk, rst . bit;
error : bit;
target_circuit_rst_input : bit;
-— Output --
target_circuit_rst_wrapped : out bit;
reset_circuit_is_active : out boolean
)

end entity;

architecture arch of reset_circuit is
signal counter: natural range O to RESET_DURATION;

-— This circuit should be hardened by LTMR
begin
counter_behavior: process (clk, rst)
begin
if rst then
counter <= 0;
elsif rising_edge(clk) then
if counter = RESET_DURATION then
counter <= 0;
elsif error = 'l1l' or counter > O then
counter <= counter +1;
end if;
end if;

end process;

reset_circuit_is_active <=
true when counter > O

else false;

target_circuit_rst_wrapped <=
'1' when reset_circuit_is_active
and RESET_SIGNAL_IS_ACTIVE_HIGH else
'0' when reset_circuit_is_active
and not RESET_SIGNAL_IS_ACTIVE_HIGH else
target_circuit_rst_input;

end architecture;
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Conclusion

High energy particles can cause bitflips on terrestrial and aerospace electronics.
LTMR is often used as the straightforward approach to harden the flipflops of a
sequential digital circuit for mission-critical applications, but LTMR incurs signifi-
cant area and power overhead.

Nowadays, many applications are implemented on complex systems, which
consist of many components. In such a system, it is advisable to implement a fault
tolerance approach which exploits already available redundancy on more flexible
components and reduces the fault tolerance overhead in scarce and costly com-
ponents. With this motivation, we proposed an error detection-based approach
with recomputation. To make a comparison with LTMR possible, we chose parity-
based error detection (PBED) as the error detection approach.

We started evaluating our approach by showing the limits of the PBED ap-
proach on the ProASIC3 architecture analytically. The analytical comparison re-
vealed that 60% of the area overhead that would be caused by LTMR can be saved
by PBED for cluster size of 3. Additionally, we discussed the two critical path can-
didates for PBED, which are the parity generation path and error signal genera-
tion path.

In experiments, we found out that the particular application can significantly
affect the overhead of PBED and LTMR. The overhead of both approaches was
significantly dependent on the enable flipflops present in the original user circuit,
because these flipflops have to be converted to a D-flipflop with a multiplexer. In
larger circuits, we observed an increasing critical path and attenuated this effect
by pipelining the error signal reduction. This is not a traditional pipelining and
is based on sequential distance of flipflops to the output of the circuit to avoid
adding additional pipelining register on the primary output of the circuit. In 199T
circuits, pipelined-PBED can achieve up to 1ns critical path saving compared to
the direct-PBED approach with small area overhead. We observed that most of
theflipflopsinthe circuits we analyzed have a sequential distance of 1, so pipelined-
PBED cannot save significant critical path.

In a fault-tolerant system, error detection must be used with system recovery.

11
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As system recovery on the target circuit, we used a circuit isolation approach by
immediate masking of the primary outputs, and if available, only the control sig-
nals. During the isolated time, the circuit can be reinitialized using an approach,
which can take multiple clock cycles.

We presume that a communication protocol will exist in a processing architec-
ture with a user and provider system. System recovery on the user side is done
by transaction-based processing. We specified this approach and discussed the
points that will make the protocol between the user and provider fault-tolerant,
and finally carried out a fault tolerance analysis based on our fault model.

Allin all, we see that our end-to-end approach can achieve timing results better
than LTMR in experiments. Our approach can save up to 54% of the area overhead
that would be caused by LTMR and can achieve better timing than LTMR in most
circuits.

Generally, in smaller circuits the area overhead factor can rise above 3, and
LTMRisrecommended for such circuits. But also a mid-sized circuit, where flipflops
with high fanouts exist, can also cause more area overhead than LTMR, as these
flipflops must be replicated in PBED. LTMR already triplicates every flipflop and
no additional replication is needed for high-fanout flipflops. This underlines the
application dependence of our approach’s cost. Still, the less area overhead com-
pared to LTMR may be the key to adopt sufficient functionality in a single chip.

We proposed error detection-based fault tolerance as an alternative to LTMR.
As LTMR is an intrinsic error detecting and correcting technique, a comparison
to an error detection-based technique is not straightforward. To achieve an ac-
curate comparison, we have shown an error detection-based fault tolerance con-
cept including recovery and transaction-based processing and implemented it on
a known FPGA for space applications, which allowed us to achieve an accurate
comparison of the timing and area resources. Moreover, we introduced pipelin-
ing for the error signal generation, which enables better timing.

This work provides a basis for future fault-tolerant data processing architec-
tures that consist of massively parallel processing cores like a modern graphics
processing unit. On such an architecture, it can be sufficient to implement an er-
ror detection-based technique on the processing cores. For processing, a job is
divided into sub-jobs which can be processed in parallel. If a core fails to process
a sub-job, then the processing request is repeated. Additionally, if a core is found
out to have a permanent error, then it can be marked unusable.

We laid the foundations to enable area-efficient data processing for depend-
able spaceborne computing. Through our work, future on-board computers may
provide higher computing performance.
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In radiation environment (e.g., space, nuclear reactor), electronics can fail due to bitflips in
the flipflops of integrated circuits. A common solution is to triplicate the flipflops and connect
their outputs to a voter. If one of the three bits is flipped, then the voter outputs the majority
value and tolerates the error. This method is called triple modular redundancy, (TMR).

TMR can cause about 300% area redundancy. An alternative way is error detection with
on-demand recomputation, where the recomputation is done by repeating the failed processing
request to the processing circuit. The computation is done in consecutive transactions, which
we call transaction-based processing.

We implemented and evaluated the aforementioned alternative approach using parity
checking on the Microsemi ProASIC3 FPGA, which is often used in space applications. The
results show that parity-based error detection with our system recovery approach can save
up to 54% of the area overhead that would be caused by the TMR, and achieve in most
circuits slightly better timing results than TMR on ProASIC3. This area saving can be the key

for fitting the application to a space-constrained chip.
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