
Concurrent Data Representation Synthesis

Peter Hawkins
Computer Science Department, Stanford

University
hawkinsp@cs.stanford.edu

Alex Aiken ∗

Computer Science Department, Stanford
University

aiken@cs.stanford.edu

Kathleen Fisher †

Computer Science Department, Tufts
University

kfisher@eecs.tufts.edu

Martin Rinard
MIT Computer Science and Artificial Intelligence

Laboratory
rinard@csail.mit.edu

Mooly Sagiv
Tel-Aviv University

msagiv@post.tau.ac.il

Abstract
We describe an approach for synthesizing data representations
for concurrent programs. Our compiler takes as input a program
written using concurrent relations and synthesizes a representation
of the relations as sets of cooperating data structures as well as the
placement and acquisition of locks to synchronize concurrent access
to those data structures. The resulting code is correct by construction:
individual relational operations are implemented correctly and the
aggregate set of operations is serializable and deadlock free. The
relational specification also permits a high-level optimizer to choose
the best performing of many possible legal data representations
and locking strategies, which we demonstrate with an experiment
autotuning a graph benchmark.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Abstract data types,
Concurrent programming structures, Data types and structures; E.2
[Data Storage Representations]

Keywords Synthesis, Lock Placement

1. Introduction
Consider the problem of implementing concurrent operations on
a directed graph. We must decide how to represent the graph as a
collection of data structures, perhaps using a lookup table mapping
each node to the set of its adjacent nodes. We will need to pick
concrete representations for both the lookup table (e.g., a concurrent
hashmap) and the adjacency sets (e.g., linked lists). We must also
decide how concurrency will be realized. We could add our own

∗ This work was supported by NSF Grant CCF-0702681 and Stanford’s
Army High Performance Research Center.
† The views expressed are those of the author and do not reflect the official
policy or position of the Department of Defense or U.S. Government. Distri-
bution Statement A (Approved for Public Release, Distribution Unlimited)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’12, June 11–16, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1205-9/12/06. . . $10.00

synchronization using locks and/or we could use a concurrent
container data structure to implement the lookup table, the sets
of adjacent nodes, or both.

Assume for the moment that we decide both containers will be
concurrent. We must of course ensure there is enough synchroniza-
tion to avoid harmful races, but not so much that we either limit
scalability or introduce deadlocks. Using off-the-shelf concurrent
containers can simplify this task, but even using concurrent con-
tainers for both data structures does not automatically imply that
high-level graph operations that touch both structures (such as in-
serting or removing an edge from the graph) are correct. In fact,
recent work in bug detection for concurrent programs has shown that
programmers frequently fail to use standard concurrent containers
correctly, especially when they must compose multiple concurrent
operations [20].

On the other hand, it may be more efficient to have only the
top-level lookup table be concurrent and use non-concurrent data
structures for the sets of adjacent nodes—if it is very infrequent
that threads try to access the same node simultaneously the extra
overhead of a concurrent data structure for the adjacency sets won’t
be worthwhile. This design has different correctness requirements
and would likely result in a different choice of where to place
any needed synchronization to guarantee correctness. The right
answer to the decision of whether to use a concurrent or non-
concurrent data structure for the adjacency sets likely depends on
the typical workload and it will be difficult to modify the interlinked
synchronization and data structures if we decide later that the graph
should be implemented differently.

In this paper we present an approach to synthesizing concurrent
data representations, meaning that from a high-level specification
of data we produce both the concrete data structures and the corre-
sponding synchronization to implement the specification. In our ap-
proach, programs are written using concurrent relations (Section 2),
a generalization of standard concurrent collections to relations with
a concurrent interface to perform insertions, deletions, and lookups
of tuples. Our compiler automatically synthesizes all aspects of the
data representation, including the choice of data structures and how
they interact, the number and placement of locks to guard access
to those data structures (including, for example, whether locking
should be fine-grain or coarse-grain), an order in which locks can
be acquired to guarantee deadlock freedom, and all of the code to
correctly manage the interplay of the data structures and synchro-
nization.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/9318545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

By specifying a program’s access to data using concurrent
relations and avoiding a premature commitment to a particular
representation, much of the low-level detail of programs is removed,
making them easier to read and maintain, while simultaneously
making it much easier to change the implementation if desired.
Furthermore, concurrent relations give a high-level and pointer-
free specification of data, which is good for compilers, because
the compiler is now free to choose the concrete representation of the
data without the usual requirement that it first perform a complex and
usually brittle pointer analysis. Programs written using relational
data specifications are simpler, correct by construction, and can be
automatically optimized in ways that are out of reach of compilers
for languages with traditional data structure definitions.

Beginning with Cohen and Campbell [5] researchers have inves-
tigated how to compile programs written using relations as the main
(and sometimes only) aggregate form of data into low-level data
representations. Our method builds on two recent results (Section 4):
we use the decompositions of Hawkins et al. [12] to describe how
relations can be decomposed into a set of cooperating data structures,
and we use the theory of lock placements [13] to describe the space
of possible locking strategies. Our specific contributions are:

• We introduce concurrent relations, a generalization of standard
concurrent container data structures to containers of tuples, with
concurrent operations to insert, remove, and query relations
(Section 2).
• The selection of data structures is subtler than in the non-

concurrent case, because there is the added dimension of using
concurrent container structures, which may or may not require
additional synchronization depending on the relational specifi-
cation, and, in addition, different concurrent containers provide
varying guarantees about the safety of concurrent access. We
give a taxonomy of containers and their properties relevant to
concurrent data representation synthesis (Section 3).
• We extend the relational decomposition language [12] to support

concurrent relations. Just as the original decomposition language
describes how to assemble a representation of a relation from a
library of container data structures, concurrent decompositions
describe how to compose concurrent and non-concurrent data
structures together with locks to implement a concurrent relation
primitive (Section 4.1).
• We show how to integrate lock placements [13], which describe

a space of possible locking strategies on data structures, with the
problem of selecting the data structures themselves. The choice
of data structures and lock placements is done in such a way that
the resulting code is guaranteed to ensure the serializability of
relational operations (Section 4.2).
• We adapt and generalize the problem of selecting a good im-

plementation of the relational primitives, called query planning,
to concurrent relations (Section 5). One of the major issues is
ensuring deadlock freedom, which we accomplish by selecting
a global lock ordering that all relational operations obey by con-
struction. Deadlock is not addressed in the previous work on
lock placements [13].
• The optimal decomposition depends on the usage patterns of the

data structure and the target machine. We present results from a
full implementation, which includes an autotuner that allows us
to discover a good combination of both locks and container data
structures automatically for a training workload. We perform an
evaluation of a concurrent graph benchmark, showing that the
best data representation varies with the workload, and thus it is
important to have the flexibility to easily alter the representation
of concurrent data (Section 6).

2. Concurrent Relations
We advocate a view in which programmers write programs that oper-
ate on relations and a compiler selects the concrete representation of
the relations. A relational specification is a set of column names C
together with a set of functional dependencies ∆. Functional depen-
dencies (FDs) specify which columns are uniquely determined by
other columns. For example, we can represent the edges of a directed
graph as a relation with three columns: src (source node), dst (des-
tination node), and weight, together with a functional dependency
src, dst→ weight, which specifies that every edge of the graph has
a unique weight. The relational specification is a contract between
the client of our compiler and the generated code: If the client obeys
the functional dependencies, then the compiler guarantees that the
generated code preserves the semantics of the relational operations.

Values, Tuples, Relations We assume a set of untyped values v
drawn from a universe V that includes the integers (Z ⊆ V). A
tuple t = 〈c1: v1, c2: v2, . . . 〉 maps a set of columns {c1, c2, . . . }
to values drawn from V. We write dom t for the columns of t. A
tuple t is a valuation for a set of columns C if dom t = C. A
relation r is a set of tuples {t1, t2, . . . } over identical columns C.
We write t(c) for the value of column c in tuple t. We write t ⊇ s
if the tuple t extends tuple s, that is t(c) = s(c) for all c in dom s.
We say tuple t matches tuple s, written t ∼ s, if the tuples are equal
on all common columns. Tuple t matches a relation r, written t ∼ r,
if t matches every tuple in r. A tuple t is a key for a relation r if the
columns dom t functionally determine all columns of r.

We use the standard notation of relational algebra. Union (∪),
intersection (∩), set difference (\) have their usual meanings. The
operator πC r projects relation r onto a set of columns C. A relation
r has a functional dependency (FD) C1 → C2 if any pair of tuples
in r that are equal on columns C1 are also equal on columns C2.

Relational Operations We provide four atomic operations for
creating and manipulating concurrent relations. In the following
specification we represent relations as ML-style references to a set
of tuples: ref x creates a new reference to x, !x retrieves the current
value of x, and x← y sets the current value of x to y.

empty () = ref ∅
remove r s = r ← !r \ {t ∈ !r | t ⊇ s}

query r s C = πC{t ∈ !r | t ⊇ s}
insert r s t = if @u. u ∈ !r ∧ s ⊆ u then r ← !r ∪ {s ∪ t}

Informally, empty () creates a new empty relation. Operation
remove r s removes tuples matching s; in practice, our implementa-
tion requires that s is a key for the relation. Operation query r s C
returns columns C of all tuples in r matching tuple s.

The most interesting operation is insert r s t, which inserts a
new tuple x, where x is the union of the columns of tuples s and t,
into a relation r, provided there is no existing tuple in r matching s.
We require that s and t have disjoint domains. Insert generalizes the
put-if-absent operation provided by standard concurrent key-value
maps: put-if-absent(k,v) inserts value v into the map if no other
value is already associated with key k, and would be written

insert r 〈key: k〉 〈value: v〉
Insert operations may violate functional dependencies, and it is the
client’s obligation to ensure functional dependencies are observed.
The form of the insert operation allows clients to test whether
functional dependencies will be satisfied by a new tuple even in
the presence of concurrent updates.

The relational compiler ensures that the implementations of the
relational operations are linearizable [15] (equivalently serializable,
since the relational operations are single operation transactions on
a single object). Operations on an object are linearizable if every

Data Structure Concurrency-safety

L/L L/W S/W W/W
L/S
S/S

HashMap yes no no no
TreeMap yes no no no
ConcurrentHashMap yes yes weak yes
ConcurrentSkipListMap yes yes weak yes
CopyOnWriteArrayList yes yes yes yes

Figure 1. Concurrency safety properties of selected containers from
the JDK. Possible operations are lookup (L), scan (S), or write
(W). For an operation pair α/β, concurrently executing operations
α and β on a container is either unsafe (“no”), safe but only weakly
consistent (“weak”), or both safe and linearizable (“yes”).

operation appears to take place atomically at a single point in time
in between its invocation and response.

Continuing with our graph example, we create a new, empty
graph relation r0 using the empty () operation. Inserting an edge

insert r0 〈src: 1, dst: 2〉 〈weight: 42〉
results in a new relation r1 = {〈src: 1, dst: 2, weight: 42〉}. A
subsequent insertion

insert r1 〈src: 1, dst: 2〉 〈weight: 101〉
leaves the relation unchanged, because relation r1 already contains
an edge with the same src and dst fields.

We can retrieve the dst and weight fields corresponding to
the successors of node 1 in a relation r using the operation
query r 〈src: 1〉 {dst,weight}, and finally we can delete edges
with a dst of 2 using the operation remove r 〈dst: 2〉.

3. A Taxonomy of Concurrent Containers
Decompositions describe how to implement concurrent relations as
a combination of both concurrent and non-concurrent data structures.
Before diving into the details of the decomposition language (Sec-
tion 4), we first describe the concurrency properties of the container
data structures found in the wild, which form the building blocks of
concurrent decompositions.

Container Interface A container is a data structure that imple-
ments an associative key-value map interface consisting of read op-
erations lookup(k) and scan(f), and a write operation write(k, v).

• The lookup operation lookup(k) returns the value associated
with a key k, if any.
• The scan operation scan(f) iterates over the map, and invokes

the function f(k, v) once for each key k and its associated value
v in the map. A scan may or may not return the entries of the
map in sorted order.
• The write operation write(k, v) sets the value associated with a

key k to v. Here v is an optional value, in the style of ML. If v
is Some w, then the operation updates the value associated with
key k to w, whereas if v is None, representing the absence of
a value, then any existing value associated with k is removed.
The write operation subsumes operations to insert, update, and
remove entries from a map.

3.1 Concurrency Safety and Consistency
We next discuss two related properties of containers, concurrency
safety, which describes whether it is safe for two operations to occur
in parallel, and consistency, which characterizes what a container

guarantees about the possible orders of events in a concurrent
execution. Figure 1 lists the concurrency safety and consistency
properties of a selection of Java containers from the JDK; as we
show, containers differ greatly in their support for concurrency.

Concurrency Safety For a given data structure, we say a pair of
operations α/β is concurrency-safe if two threads may safely exe-
cute operations α and β in parallel with no external synchroniza-
tion. A container is concurrency-safe if all pairs of operations are
concurrency-safe. Concurrency safety is strictly a statement about
the correct usage of the interface of a data structure; it is irrelevant
how the data structure guarantees safety internally, whether by locks,
atomic instructions, or by some other means.

Consider the data structures described in Figure 1. Almost
all data structures support parallel read operations; for example
concurrent threads may safely read or iterate over a Java HashMap
in parallel without synchronization. Exceptions exist; for example,
it would not be safe for threads to perform concurrent reads of a
splay tree because splay tree read operations rebalance the tree.

Only a few containers permit write operations in parallel
with other operations. For example, it is unsafe to read from
or write to a HashMap object while another thread is writing
to the same HashMap. By contrast a ConcurrentHashMap or a
CopyOnWriteArrayList allow concurrent lookup and write oper-
ations, or pairs of concurrent write operations. On a concurrency-
safe container, such as a ConcurrentHashMap, the lookup and
write operations are linearizable even in the absence of any exter-
nal concurrency control. For concurrency-unsafe operations, such
as reading a splay tree, linearizability is the responsibility of an
external concurrency control primitive, such as a lock.

The scan operation, however, behaves differently. Even many
containers that allow iteration in parallel with mutation do not guar-
antee that iteration is linearizable. We identify two different pos-
sibilities. Some containers, such as ConcurrentHashMap provide
weakly consistent concurrent iteration; that is, concurrent iteration
is safe, but may or may not reflect inserts and removals that oc-
cur in parallel with the iteration. Iteration over a weakly-consistent
container may not be linearizable, that is, the result of the iteration
may not correspond to the set of entries present in the container at
any instant in time. Conversely for containers that provide snapshot
iteration, such as a CopyOnWriteArrayList, iteration behaves as
if it operated over a linearizable snapshot of the container.

4. Concurrent Decompositions
The concurrent decomposition language describes how to assemble
container data structures into representations of relations that support
concurrent serializable transactions that implement the various
relational operations. By combining concurrent and non-concurrent
data structures with locks we can build a representation of a relation
with strong concurrency guarantees, even if the constituent data
structures themselves have limited support for concurrency.

We extend the relational decomposition language [12] to support
concurrent operations from multiple threads. Two key ideas underlie
safe and scalable concurrent decompositions: leveraging existing
concurrent containers (Section 4.1) to the full extent possible,
and supplementing containers with locks as necessary to ensure
the safety and serializability of concurrent transactions over the
complete decomposition (Section 4.2).

As a focus of this paper is extending decompositions to support
concurrency, we first review the definition of decompositions.

4.1 Decompositions
A decomposition describes how to represent a relation as a combi-
nation of primitive container data structures. A decomposition is a
static description of the heap, similar to a type. We use a graphical

notation for decompositions isomorphic to the let-binding notation
in the literature [12]. Figure 2(a) shows a decomposition of a filesys-
tem directory tree relation, based on the directory entry cache in the
Linux kernel. The relation has three columns parent, name, and
child and obeys a functional dependency parent, name → child.
Each ‘parent’ directory entry has zero or more ‘child’ directory
entries, each with a distinct file ‘name’.

Formally, a decomposition d̂ is a rooted, directed acyclic graph,
consisting of a set of vertices V = {u, v, . . . } and a set of edges
drawn from V × V . A decomposition has a unique source vertex
ρ with no incoming edges. All vertices must be reachable from the
source vertex.

Each node v of a decomposition has an associated “type” A .
B, written v: A . B. Intuitively, A is the set of columns whose
representation is specified by paths from the root node to v, and B
is the residual set of columns represented by the subgraph reachable
from v. Each edge uv of the decomposition has an associated set of
columns cols(uv), and a choice of container ds(uv) the compiler
should use to implement the edge.

In Figure 2(a), the edge ρx from the root indicates that the
relation is implemented by a TreeMap from each parent value
to the residual relation of all (name, child) pairs for that parent.
Recursively, this subrelation is implemented by another TreeMap
from name to the child directory (edge xy). Finally, the functional
dependency guarantees that the child directory is a singleton tuple
and is implemented by its single value (edge yz). This structure
(a map from parents to the set of child directory names) enables
efficient iteration over the children of a directory, which is useful
when, for example, unmounting a filesystem. To enable efficient
directory lookup the decomposition also includes a global hashtable
mapping (parent, name) pairs to child objects (edge ρy).

We assume that decompositions are adequate [12], that is de-
compositions are capable of representing all relations satisfying the
relational specification. The adequacy conditions imply that for ev-
ery edge uv where u:A.B and v:C.D we haveC ⊇ A∪cols(uv).

Decomposition Instances The run-time (dynamic) counterpart of
a decomposition d̂ is a decomposition instance d, which represents a
particular concrete relation. Each node v:A.B in a decomposition d̂
has a set of instances {vt} where dom t = A, each corresponding to
an object in memory. Each edge uv of a decomposition has a set of
edge instances {uvt}, where if u:A.B then dom t = A∪cols(uv).
If u: A . B and dom t ⊃ A, we write ut to denote the node
instance uπA t; similarly if dom t ⊃ A ∪ cols(uv) we write uvt
to denote uvπA∪cols(uv) t. A formal characterization of well-formed
decomposition instances and an abstraction function that maps well-
formed decomposition instances back to the relations they represent
can be found in the literature [12].

Figure 2(b) depicts an instance of the decomposition of Fig-
ure 2(a) representing the relation containing 3 directory entries:

{ 〈parent: 1, name: ‘a’, child: 2〉 ,
〈parent: 2, name: ‘b’, child: 3〉 ,
〈parent: 2, name: ‘c’, child: 4〉}.

4.2 Logical Locks, Transactions, and Serializability
Locks Given a decomposition d, we compile each relational op-
eration into a transaction tailored to d. For safety and consistency
transactions must acquire locks that protect the invariants upon
which a transaction relies. By “lock” we mean a class of pessimistic
synchronization primitives that may be held by a transaction in ei-
ther of two different modes, namely shared or exclusive. A lock
may, but need not, permit multiple transactions to hold shared access
simultaneously; however if a transaction holds exclusive access to
a lock the lock must not allow any other transaction to hold either
shared or exclusive access.

(a) (b)
ρ

x

y

z

{parent} ρ {parent,
name}

ρ
{name} x

{child} y

ρ0

x1 x2

y1 y2 y3

z1 z2 z3

2 1

‘c’ ‘b’
‘a’

2,‘c’
1,‘a’

2, ‘b’

4 3 2

Figure 2. (a): A decomposition representing a directory tree rela-
tion with three columns {parent, name, child} and (b): an instance
of decomposition (a). Each edge of the decomposition is labeled
with a set of columns {· · · }, together with the label of the node
whose lock protects instances of that edge (Section 4.3). Each edge
of the instance is labeled with a valuation for the corresponding
decomposition edge’s columns. Solid edges indicate a TreeMap,
dashed edges represent a ConcurrentHashMap, and dotted edges
represent singleton tuples.

Logical Locks To ensure that transactions are serializable, the data
in decomposition instances are protected by logical locks. We asso-
ciate a distinct logical lock with every edge uvt of a decomposition
instance. Logical locks protect the state, either presence or absence,
of an edge instance. If a transaction observes the presence or ab-
sence of an edge it must hold shared access to the corresponding
logical lock, and if a transaction adds or removes an edge it must
hold exclusive access to the corresponding logical lock. Logical
locks are defined for every possible edge instance, irrespective of
whether the edge is actually present in a particular decomposition
instance or not.

For now, we leave the implementation of each logical lock uvt
abstract. In Section 4.3, we implement logical locks using a smaller
set of physical locks attached to the nodes of a decomposition in-
stance. By placing restrictions on the possible mappings from logical
locks to physical locks we can ensure that containers (concurrent or
not) and compositions of containers are used safely.

Two-Phase Locking Protocol Each transaction consists of a se-
quence of locks, reads, writes, and unlocks of the edges of a decom-
position instance. The purpose of introducing logical locks is that
by having a distinct lock for every edge (including edges that are
absent) we are able to state a very simple and obviously correct
protocol for transactions on decomposition instances. To ensure
consistency of transactions, we use a standard two-phase locking
protocol on logical locks:

• Transaction operations must be logically well-locked; that is, if a
transaction observes the state (either present or absent) of an edge
instance uvt via a lookup or scan operation then it must hold
shared access to the logical lock of uvt, and if a transaction adds,
removes, or updates an instance edge uvt via a write operation
then it must hold exclusive access to the logical lock of uvt.
• Transactions must be logically two-phase, that is, transactions

must be divided into a growing phase during which logical locks
are acquired and a shrinking phase during which logical locks
are released. All lock acquisitions must precede all lock releases.

It is a classic result that well-locked and two-phase transactions
are serializable [10].

4.3 Physical Locks and Lock Placements
By associating a unique logical lock with every edge instance we can
use a simple two-phase locking protocol to ensure that transactions
are serializable. Such an approach would be impractical, however.

(a)
ρ

u

v

w

ρsrc

ρdst

ρweight

(b)
ρ

u v

w

x

y

z

ρsrc ρdst

udst vsrc

wweight yweight

(c)
ρ

x y

z

w

xsrc ydst

xdst ysrc

zweight

Figure 3. Three concurrent decompositions for a directed graph re-
lation: (a) a “stick”, with a single coarse lock around non-concurrent
data structures, (b) a “split” decomposition, with locks at different
granularities, and (c) a “diamond”, with a mixture of speculatively-
locked concurrent data structures and non-concurrent data structures.
Solid edges indicate TreeMap containers, dashed edges represent
ConcurrentHashMap containers, and dotted edges represent sin-
gleton tuples. Each edge is labeled with a set of columns on the left
and the associated lock placement on the right.

Each edge instance corresponds to a entry in a container in the
heap, and it would often be too slow to actually use locks at such a
fine granularity, not to mention the practical problem that there are
infinitely many logical locks defined for container entries that are
absent. Further, as shown in Figure 1, in practice different containers
have different levels of support for safe concurrency, and so while
we must use locks to protect some containers from all concurrent
accesses, in other cases we can rely on the container to mediate
concurrent access. Finally, since we treat container implementations
as black boxes, we have no way to attach locks to the edge instances
directly.

Instead of literally maintaining one lock for every possible edge
instance, we implement logical locks using a smaller set of physical
locks attached to instances of nodes in a decomposition. We describe
the correspondence between logical and physical locks using a lock
placement [13], which is a mapping from the set of logical locks
onto the set of physical locks. Many logical locks may map onto the
same physical lock, and acquiring a physical lock corresponds to
taking all of the corresponding logical locks. By choosing different
lock placements we can describe different granularities of locking.
Since physical locks are attached to node instances, in general there
may be an unbounded number of physical locks.

Physical Locks To each node v in a decomposition we attach a
set of physical locks {v0, v1, . . . }. If there is only a single physical
lock attached to a node we simply write v for both the node and its
unique physical lock.

Lock Placements A lock placement ψ is a function mapping
the logical lock associated with each edge onto a physical lock
on a node that implements it. We define lock placements on the
(static) decomposition which we extend to (dynamic) decomposition
instances in the obvious way; if a lock placement ψ maps the logical
lock on edge e to the physical lock on node v, then at runtime the
compiler maps the logical lock on edge instance et onto the physical
lock on node instance vt.

Recall the directed graph example from Section 2. The relation
in question has three columns {src, dst,weight} related via the
functional dependency src, dst → weight. Figure 3 shows three
possible decompositions, each with a different choice of data struc-
tures and lock placements.

Figure 3(a) uses a coarse-grain lock placement

ψ1(e) = ρ for all edges e,

which protects all edges of the decomposition using a single lock at
the root ρ. Since there is only one instance of the root node ρ in any

decomposition instance, the same lock is used to protect everything.
Further, since the logical locks of all edge instances are mapped
to the same physical lock ρ, the lock serializes access to the entire
decomposition data structure, ensuring that each (non-concurrent)
TreeMap is only accessed by one transaction at a time.

Figure 3(b) depicts a fine-grain locking strategy decomposition
in which each edge is protected by a lock at its head (i.e., objects
in a container are protected by a single lock on the container itself),
using the lock placement

ψ2(αβ) = α for all edges αβ.

Edges ρu and ρv are protected by a lock at ρ, whereas edges uw,
vy, wx and yz are protected by locks at u, v, w and y, respectively.

Both of the example lock placements described so far use a single
lock to protect all the entries in each container. Figure 3(c) makes
use of speculative locking (Section 4.5), one of two extensions which
allow different dynamic instances of an edge in the same container
to be protected by different locks. We defer further discussion of
this example to Section 4.5.

Well-Formed Lock Placements We require that all lock place-
ments satisfy the following conditions:

• The lock placementψ(uv) of each edge uv either must dominate
the edge’s source vertex u or be equal to v. (The latter case
occurs in the speculatively-placed locks of Section 4.5.) By
definition this condition ensures that the lock placement for
an edge lies on every path from the root of the decomposition
including that edge. This condition ensures the instance of the
node ψ(uv) named by the lock placement is unique for each
edge instance uvt. The domination requirement also simplifies
query planning (Section 5), since it ensures that a query plan will
always encounter the necessary locks for each edge no matter
how the edge is reached.
• All edges between an edge and its lock placement share the

same placement. That is, fix any edge uv and take any edge
xy in a path in the decomposition from ψ(uv) to u. Then we
have ψ(xy) = ψ(uv). This requirement ensures that if a lock
protects an edge, then the lock also protects the path from the
lock to that edge, thereby ensuring that if we hold a lock then
the set of edges protected by that lock cannot change.

Logical Lock Implication Since we implement logical locks by
mapping them onto a smaller set of physical locks, a transaction
cannot acquire logical locks directly. Instead, a transaction must
acquire physical locks that imply access to the logical locks that the
transaction requires.

We say that a set of physical locks P held by a transaction imply
exclusive or shared access, respectively, to the logical lock of edge
instance uvt under lock placement ψ if:

• the transaction holds exclusive or shared access, respectively, to
the corresponding physical lock, that is, ψ(uv)t ∈ P , and
• the mapping between the logical lock to the corresponding

physical lock is stable, that is, there exists a path wt from the
root of the decomposition instance to ut such that the transaction
holds shared access to every edge in wt.

The stability criterion means that a physical lock only covers a
logical lock if the transaction also holds locks that guarantee that
the logical lock does in fact correspond to that physical lock;
if not, a concurrent transaction might alter the heap and change
the association between logical and physical locks. For example,
consider a concurrent hashtable where the elements of each hash
bucket are guarded by a lock. If a transaction moves an element v
from bucket b1 to bucket b2 the lock guarding access to v changes,
and any transaction that was concurrently accessing v by acquiring

the lock on b1 no longer holds the correct lock for v for the lock
placement. Thus, in the presence of updates that can change the
structure of the heap, it is not sufficient to just hold the locks L
guarding access to the particular data, but it is also necessary to hold
locks on whatever portion of the heap structure guarantees that L
remains the correct set of locks to hold!

Since lock placements are defined using a decomposition struc-
ture, for locking using a placement to be well-defined we must ensure
that transactions always yield heap states that are valid instances
of the corresponding decomposition. One of the benefits of data
representation synthesis is that we are guaranteed that the operations
emitted by the compiler preserve the decomposition structure by
construction.

4.4 Lock Striping
Lock striping is a technique for boosting the throughput of a transac-
tion by using a set of locks instead of a single lock. Consider again
the decomposition of Figure 3(b), in which the lock placement maps
the logical lock on each edge to a physical lock at the source of the
edge. While this lock placement ensures safe and consistent transac-
tions, by protecting each container with a single lock we serialize
access to containers, and hence we cannot make effective use of
concurrent containers such as ConcurrentHashMap. To leverage
concurrent containers we can partition the elements of the container
into a number of stripes, each with its own lock.

For example, in Figure 3(b), rather than mapping all instances
of edges ρu and ρv to a single physical lock at node ρ, we can use
k physical locks ρ0, . . . ρk−1. We then use a lock placement that
stripes the logical locks attached to instances of ρu and ρv across
the k physical locks:

ψ3(e, t) =

ρi if e = ρu, i = t(src) mod k

ρi if e = ρv, i = t(dst) mod k

αt otherwise, where e = αβ

(1)

The lock placement takes as input an edge e annotated with a tuple t;
the fields of tuple t are used to select one of the k physical locks at ρ.
If we do not know the relevant tuple fields in advance, for example if
we want to iterate over the container, we can always conservatively
take all k locks.

Lock striping is only applicable for containers that are concur-
rency-safe. For a concurrency-unsafe container, such as a TreeMap,
we are limited to at most one lock for the entire container to ensure
that no two threads access the container concurrently.

By increasing the value k we can reduce lock contention to
arbitrarily low levels, at the cost of making operations such as
iteration that access the entire container more expensive.

4.5 Speculative Lock Placements
When striping logical locks across physical locks, as the number of
physical locks k increases in the limit each container entry has
its own individual lock. Rather than preallocating locks for an
unbounded number of objects, we can achieve this limiting case
more efficiently by using a technique called speculative locking
[13], motivated by transactional predication [3]. Speculative locking
lazily constructs a unique physical lock for each logical lock.

The key to speculative locking is the identity of the lock that
protects an edge instance depends on the state of the edge instance
itself. We map the logical lock to a distinct physical lock for each
edge instance present in a container by placing the lock in the node
that is the target of the edge instance. For serializability the lock
placement must also be defined for edge instances that are absent
from the decomposition, not just those edges that are present. Since
we cannot place locks for non-existent edge instances at the target

of the edge, instead we map the logical locks for absent edges onto
physical locks at the edge’s source.

Up to this point, we have required that the lock guarding an
edge e appear on all paths from the root before e is reached. For
speculative locks, this invariant does not hold—we do not know
what lock to acquire until we have reached the object we wish to
protect. The key is that it is safe to perform unlocked reads of a
concurrency-safe container to guess the identity of the lock that
we should acquire. Since the container is concurrency-safe, reading
without holding a lock is safe, however we have no guarantees that
any information that we read will remain stable. Once we have
guessed and acquired a lock, we can check to see if our guess was
correct. There are two possibilities — either we guessed correctly,
in which case we already held the lock that protects the edge and
our read was stable, or we guessed incorrectly, in which case the
edge must point somewhere else. In the latter case we can release
the lock we guessed and try again. While speculatively acquiring
a lock is not physically two-phase, a transaction can be viewed as
acquiring logical locks in a two phase manner [13].

Speculative lock acquisition differs from the well-known but
broken double-checked locking idiom in two key ways—firstly,
we always acquire a lock and recheck reads under that lock, and
secondly we require that concurrent containers are linearizable, that
is, with semantics analogous to a Java volatile field.

For example, the decomposition depicted in Figure 3(c) uses
a mixture of both speculative and non-speculative locking — in
particular, the locks that protect edges ρx and ρy are placed at the
target of each edge on nodes x and y respectively. To take a lock on
an edge instance ρxt a transaction must first speculatively lookup
entry t in the map without locking, acquire the lock on ρ or xt if the
edge instance is absent or present, respectively, and then verify that
the correct lock was taken. The data structure implementing edge
ρx is a ConcurrentHashMap, which is concurrency-safe, so it is
safe to speculatively read an edge without holding its lock.

ψ4(e, t) =

ut if e = ρu, et is present
ρi if e = ρu, et is not present, i = t(src) mod k

vt if e = ρv, et is present
ρi if e = ρv, et is not present, i = t(dst) mod k

αt otherwise, where e = αβ

5. Query Planning and Lock Ordering
In Section 4 we introduced concurrent decompositions, which
describe a relational specification using both concurrent and non-
concurrent containers in combination with locks. In this section we
show how to compile the relational operations of Section 2 into code
tailored to a particular concurrent decomposition.

Existing work [12] described how to compile relational opera-
tions in a non-concurrent context. There are two additional compli-
cations we must deal with when generating concurrent implemen-
tations of relational operations—we must ensure that a transaction
takes the locks that protect the decomposition edges it touches, and
we must ensure that transactions are deadlock-free.

5.1 Deadlock-Freedom and Lock Ordering
A common strategy for ensuring that a set of concurrent transactions
is deadlock-free is to impose a total order on locks. If all transactions
acquire locks in ascending lock order, then we are guaranteed that
concurrent transactions are deadlock-free.

We ensure deadlock-freedom for concurrent decomposition op-
erations by imposing a total lock order on the physical locks of
a decomposition; it is the responsibility of the query planner to
generate code that respects this order.

q ::= x | let x = q1 in q2 | lock(q, v) | expressions

unlock(q, v) | scan(q, uv) | lookup(q, uv)

Figure 4. Concurrent query language. We only show the fragment
necessary for implementing query operations.

All query plans must obey a single static order on all possible
physical locks of a decomposition. The precise set of physical
locks in existence may change as we allocate and deallocate node
instances, but the relative order of any given pair of physical locks
never changes during runtime. We order physical locks firstly on a
topological sort of the decomposition nodes to which they belong.
We order different instances of the same node lexicographically on
the values of the key columns. Finally, we order the physical locks
attached to each node instance by number.

For example, consider the decomposition of Figure 3(c). We fix
a topological order of the nodes, say

ρ < x < y < z < w;

meaning that all locks attached to ρ are ordered before all locks
attached to instances of x, and so on. We lift the topological order
on nodes to a total order on node instances

ρ < xs0 < xs1 < · · · < yt0 < yt1 < · · · ,
where the tuple sequences (si) and (ti) are in lexicographic order.
Finally, since there may be more than one physical lock per node
due to lock striping, we lift the total order on node instances to a
total order on physical locks:

ρ0 < ρ1 < · · · < x0s0 < x1s0 < · · · < x0s1 < x1s1 · · · .
As an aside, it is necessary that we totally order the physical

locks of a decomposition, not the logical locks; a query only acquires
physical locks directly and it is the order of those physical locks that
is pertinent to deadlock.

5.2 Query Language
Once we have fixed a total order on the physical locks of a decom-
position, the query planner must generate well-locked, two-phase
code that respects the lock order for each possible query.

A key requirement of a query plan is that it must make explicit
which locks to acquire and in which order. The query trees in the
literature [12] are not suitable for reasoning about locks since they
have no notion of sequencing of expressions.

In the concurrent setting, we extend query trees to a fragment
of a strict, impure functional language, shown in Figure 4. The let-
binding construct of the concurrent query language can describe the
order of execution of operations with side-effects, in particular lock
and unlock operations. A query expression q is one of: a variable ref-
erence x, let-binding let x = q1 in q2, a lock acquisition lock(q, v),
a lock release unlock(q, v), an edge lookup lookup(q, v), or an
edge iteration scan(q, v). We discuss the semantics of expressions
shortly.

Query States Evaluating any expression in the query language
yields a set of query states. A query state is a pair (t,m) of a
tuple t containing a subset of the relation’s columns, together with a
mapping m from decomposition nodes v to the corresponding node
instance vt. If a vertex v with type v:A.B appears in the domain of
m, tuple t must contain sufficient columns such that vt is uniquely
defined, that is, A ⊆ dom t.

Query Expressions We now describe the semantics of each query
expression. Variable lookup and variable binding are standard. Let
bindings also allow us to sequence operations with side effects, such

as locks; we use a don’t-care variable let _ = q1 in q2 to denote
executing q1 just for its side effects, discarding its return value, and
then executing q2.

A lock acquisition lock(q, v) acquires the physical locks associ-
ated with the instance of node v in each query state in set q. Like
all expressions in the query language, lock acts on a set of query
states q, locking the instance of physical lock v in each element of
the set. The lock operation must acquire locks in accordance with
the lock order. While the query planner always produces the query
plans with lock expressions in correct node order, the lock operator
must sort node instances into the correct lexicographic order before
acquiring locks. The counterpart unlock(q, v) unlocks the instances
of node v in the set q; unlike the lock operation the unlock operation
does not need to enforce sorted order on its arguments.

Recall that for each node instance ut an edge uv in a decomposi-
tion corresponds to a container data structure that maps a set of key
columns cols(uv) to a set of node instances of vt′ . The operation
scan(q, uv) iterates over the contents of the container, returning
the natural join of the input query states q together with the entries
of the map. If the query states in q contain a superset of the key
columns cols(uv), we can instead use the more efficient operation
lookup(q, uv), which looks up the particular entry vt in the con-
tainer. Both the lookup and scan operations require that the input
query states contain an instance of the source vertex u.

For example, suppose we wanted to iterate over all of the tuples
of a directory entry relation represented using the decomposition of
Figure 2(a) under a coarse lock placement which places all locks at
the root node (ψ(e) = ρ for all e). One possible query plan is:

1: let _ = lock(a, ρ) in
2: let b = scan(scan(a, ρy), yz) in
3: let _ = unlock(a, ρ) in
4: b

(2)

The query plan takes as input a variable a, consisting of a singleton
query state containing the location of the decomposition root ρ. The
query plan first locks the unique instance of the root vertex ρ in set
a (line 1), and then iterates over instances of the edge ρy from the
root vertex in set a (line 2, scan(a, ρy)); the iteration yields a set of
query states that contain instances of node y together with valuations
of the parent and name fields. For each such query state, we then
iterate over the singleton instances of edge yz (line 2, scan(· · ·, yz)),
yielding a valuation for the child field; we store the resulting set of
query states as a set b. We release the acquired locks (line 3), and
return our final query states b (line 4).

To make the execution concrete, suppose we execute the query
plan (2) on the decomposition instance of Figure 2(b). The query
plan receives the input query state a = {(〈〉 , {ρ 7→ ρ0})} as
input, which contains the location of the decomposition root but
no valuations for relation columns. The lock statement acquires
the lock attached to ρ0, which is the unique instance of ρ in set a.
Evaluation of the expression scan(a, ρy) in line 2 yields states{

(〈parent: 1, name: ‘a’〉, {ρ 7→ ρ0, y 7→ y3})
(〈parent: 2, name: ‘b’〉, {ρ 7→ ρ0, y 7→ y2})
(〈parent: 2, name: ‘c’〉, {ρ 7→ ρ0, y 7→ y1})

}
.

Applying the expression scan(· · ·, yz) in line 2 yields the states{
(〈parent: 1, name: ‘a’, child: 2〉, {ρ 7→ ρ0, y 7→ y3 z 7→ z3})
(〈parent: 2, name: ‘b’, child: 3〉, {ρ 7→ ρ0, y 7→ y2 z 7→ z2})
(〈parent: 2, name: ‘c’, child: 4〉, {ρ 7→ ρ0, y 7→ y1 z 7→ z1})

}
which we store as set b. Finally, we unlock the lock at ρ0 and return
the entries of b as the query result.

Query plan (2) was not the only possible query plan, even under
the same decomposition and lock placement. Another possible query

plan uses edges ρx and xy instead of the edge ρy.

1: let _ = lock(a, ρ) in
2: let b = scan(scan(scan(a, ρx), xy), yz) in
3: let _ = unlock(a, ρ) in
4: b

(3)

Now suppose we want to make the same query on the same
decomposition, under the lock placement shown in Figure 2(a), in
which a lock on every node protects the edges with their source
at that node. The equivalent of query plan (3) under the new finer-
grained lock placement is:

1: let _ = lock(a, ρ) in
2: let b = scan(a, ρx) in
3: let _ = lock(b, x) in
4: let c = scan(b, xy) in
5: let _ = lock(c, y) in
6: let d = scan(c, yz) in
7: let _ = unlock(c, y) in
8: let _ = unlock(b, x) in
9: let _ = unlock(a, ρ) in

10: d

(4)

Query Planner To pick a good implementation for each query,
the compiler uses a query planner that finds the query plan with
the lowest cost as measured by a heuristic cost estimation function.
The concurrent query planner is based on the non-concurrent query
planner described in the literature [12]; like the non-concurrent
query planner, the concurrent query planner enumerates valid query
plans and chooses the plan with the lowest cost estimate.

The main extension for concurrency is the query planner must
only permit queries that acquire and hold the right locks in the
right order. Internally the query planner only considers plans with
two phases, a growing phase consisting of a sequence of lock,
scan, and lookup statements, and a shrinking phase containing a
matching sequence of unlock statements in reverse order; such
plans are trivially two-phase. To ensure that queries acquire the
correct locks in the correct order, we extend the definition of query
validity to require that lock statements in a query plan appear in the
decomposition node lock order, and that lookup and scan operations
must be preceded by a lock of the corresponding physical lock.

As in the non-concurrent case, we reuse the query planning
infrastructure to compile mutation operations. Code for mutations is
generated by first constructing a concurrent query plan that locates
and locks all of the edges that require updating; the code generator
then emits code that uses the query results to perform the required
updates, just as in the non-concurrent case, sandwiched between the
growing and shrinking phases of the query plan.

Query Expression Compilation Each query expression evaluates
to a set of query states. Internally we compile each query expression
into an iterator over query states. We compile let-bindings by
evaluating the right-hand side of the binding and storing the results
into a temporary set of query states; subsequent references to a
bound variable compile to iterations over the stored state set.

In general the lock statement must sort the locks that it acquires.
However, in some cases the set of locks may already be in the correct
order, so it is superfluous to sort them. For example, consider the
acquisition of the locks on node b in query 4 (line 3). Edge ρx is
represented by a TreeMap in the decomposition, which stores its
entries in sorted order; a scan over the edge will therefore yield
entries in sorted order, which coincides with the correct lock order.
Conversely, if edge was represented using a HashMap then iteration
would return entries in an unpredictable order, so the code would
have to sort the locks before acquiring them. The compiler uses a
simple static analysis to detect lock statements where it can avoid
sorting.

6. Experimental Evaluation
We have developed a prototype implementation of concurrent data
representation synthesis, targeted at the Java virtual machine. The
prototype is implemented as a Scala [18] compiler plugin; relations
and relational operations are translated into Scala ASTs, which the
Scala compiler backend converts to JVM bytecode. In this section
we evaluate the performance of the resulting implementation.

6.1 Autotuner
A programmer may not know the best possible representation for
a concurrent relation. To help find an optimal decomposition for
a particular relational specification, we have implemented an auto-
tuner which, given a concurrent benchmark, automatically discovers
the best combination of decomposition structure, container data
structures, and choice of lock placement.

Existing work [12] described an autotuner capable of identifying
a good decomposition in the absence of concurrency. We extend the
idea of autotuning to a concurrent setting.

To enumerate decompositions, the autotuner first chooses an
adequate decomposition structure, exactly as for the non-concurrent
case [12]. Next, the autotuner chooses a well-formed lock placement;
every edge of a decomposition needs a corresponding physical lock.
Finally the autotuner chooses a data structure implementation for
each edge. If the chosen lock placement serializes access to an
edge, the autotuner picks a non-concurrent container, whereas if
concurrent access to a container is permitted by the lock placement
then the autotuner chooses a concurrency-safe container.

6.2 Evaluation
We evaluate the generated code using a synthetic benchmark mod-
eled after the methodology of Herlihy et. al [14] for comparing
concurrent map implementations, extended to the more general con-
text of a relation. We fix a particular relational specification, together
with a set of relational operations. For any given choice of decom-
position, the benchmark uses k identical threads that operate on
a single shared relation. Starting from an initially empty relation,
each thread executes 5× 105 randomly chosen operations. We plot
the total throughput of all threads in operations per second against
the number of threads to obtain a throughput-scalability curve. By
varying the distribution of relational operations we can evaluate the
performance of the relation under different workloads.

For our benchmarks we use the directed graph relation described
in Section 4.3, together with four relational operations, namely find
successors, find predecessors, insert edge, and remove edge. The
find successor operation chooses a random src value and queries the
relation for the set of all dst,weight pairs corresponding to that src.
The find predecessor operation is similar but chooses a random dst
and queries for src,weight pairs. The insert edge operation chooses
a random src,dst,weight triple to insert into the relation; to ensure
that the relation’s functional dependency is not violated we use the
compare-and-set functionality of the insert operation to check that
no existing edge shares the same src,dst parameters. Finally the
remove operation chooses a random (src, dst) tuple and removes
the corresponding edge, if present.

We performed our experiments on a machine with two six-core
3.33Ghz Intel X5680 Xeon CPUs, each with 12Mb of L3 cache, and
48Gb memory in total. Hyperthreading was enabled for a total of 24
hardware thread contexts. All benchmarks were run on a OpenJDK
6b20 Java virtual machine in server mode, with a 4Gb initial and
maximum heap size. We repeated each experiment 8 times within
the same process, with a full garbage collection between runs. We
discarded the results of the first 3 runs to allow the JIT compiler
time to warm up; the reported values are the average of the last 5
runs.

0 5 10 15 20 25

0

2

4

6

8

10

·103

Number of Threads

T
hr

ou
gh

pu
t(

op
s/

se
c)

Operation Distribution: 70-0-20-10

0 5 10 15 20 25

0

2

4

6

8

·103

Number of Threads

T
hr

ou
gh

pu
t(

op
s/

se
c)

Operation Distribution: 35-35-20-10

0 5 10 15 20 25

0

5

10

15

·103

Number of Threads

T
hr

ou
gh

pu
t(

op
s/

se
c)

Operation Distribution: 0-0-50-50

0 5 10 15 20 25

0

5

10

15

·103

Number of Threads

T
hr

ou
gh

pu
t(

op
s/

se
c)

Operation Distribution: 45-45-9-1

Stick 1 Stick 2 Stick 3 Stick 4 Split 1 Split 2 Split 3
Split 4 Split 5 Diamond 0 Diamond 1 Diamond 2 Handcoded

Figure 5. Throughput/scalability curves for a selection of decompositions. Each thread performs 5× 105 random graph operations. Each
graph is labeled x-y-z-w, denoting a distribution of x% successors, y% predecessors, z% inserts, and w% removes. “Stick” decompositions
are structurally isomorphic to Figure 3(a) but have different choices of data structures and lock placements, similarly “split” to Figure 3(b), and
“diamond” to Figure 3(c).

Figure 5 presents throughput-scalability curves for a selection of
decompositions. We generated 448 variants of the three decomposi-
tion structures shown in Figure 3 using the autotuner, varying the
choice of lock placement, lock striping factor (chosen for simplicity
to be either 1 or 1024), and selection of containers from the options
ConcurrentHashMap, ConcurrentSkipListMap, HashMap, and
TreeMap. For clarity of presentation we selected 12 representative
decompositions that cover a spectrum of different performance lev-
els across the 4 benchmarks; we compare the performance of both
the automatically generated implementations and a hand-written
implementation.

One obvious feature of the results is that the “stick” decomposi-
tions, which are variants of the decomposition shown in Figure 3(a),
perform relatively well for the two workloads (70-0-20-10 and 0-0-
50-50) that consist only of successor, insert, and remove operations.
For the workloads that include finding predecessors (35-35-20-10
and 45-45-9-1), “split” (Figure 3(b)) and “diamond” (Figure 3(c))
perform far better. Finding successors in a stick decomposition is
much more efficient than finding predecessors, which requires iter-
ating over all edges in the graph.

Coarsely-locked data structures scale poorly; three of the decom-
positions shown in the graph (Stick 1, Split 1, Diamond 1) use a
single coarse lock to protect the entire decomposition; each con-

tainer uses a coarsely locked HashMap to represent the top level of
edges in the decomposition, and a TreeMap to represent the second
level of edges. Another decomposition (Split 2) uses striped locks
and concurrent maps on the left side of the decomposition (ρu, uw,
wx), but uses a single coarse lock to protect the other edges of the
graph, leading to similarly poor performance.

Sticks 2, 3, 4 use a striped lock at the root to protect a
ConcurrentHashMap of HashMap containers, a ConcurrentHash-
Map of TreeMap containers, and a ConcurrentSkipListMap of
HashMap containers, respectively; all scale much better than the
coarsely-locked data structures.

Decompositions which do not share nodes between the two
sides of the decomposition outperform decompositions that do. For
example, Split 3 and Diamond 1 both use ConcurrentHashMap
containers to represent the top-level edges and HashMap containers
to represent the second level edges, differing only in the sharing
structure of the decomposition; the split decomposition performs
better in most cases. Split 4 is a variant of Split 3 with TreeMap
containers in place of the HashMap containers. Interestingly, there
is a small but consistent effect where Split 3 is the best choice
for the 35-35-20-10 workload and Split 4 is better for the 45-45-
9-1 workload. Split 5 and Diamond 2 are also similar to Split 3
and Diamond 2, except with ConcurrentSkipListMap containers
in place of ConcurrentHashMap containers; once again, the split
decomposition outperforms the diamond decomposition.

The handcoded implementation (which was written before the
automated experiments) is essentially Split 4, and produces almost
identical results; the difference in performance between the two is
probably due to extra boxing in the generated code that could be
eliminated with improvements to the code generator. But clearly the
automatically generated code is competitive with the hand-written
code but requires much less programmer effort, and unless one was
willing to write many different hand-coded versions, the autotuner
will be able to find variants that outperform any single hand-written
code for particular workload characteristics.

It is interesting to note that diamond decompositions outper-
formed split decompositions in the non-concurrent case [12]; the
result here is reversed for two reasons. The split decomposition pro-
duces less lock contention, since a pair of transactions may query for
successors and predecessors in parallel without interfering with one
another. Much of the benefit for sharing in the non-concurrent case
came from the fact that it is possible to remove an object from the
middle of an intrusive doubly-linked list in constant time. Since it is
impossible to write such intrusive containers in a generic fashion in
the Java type system, we do not gain the advantage of more efficient
removals from shared nodes.

The prominent decrease in throughput evident in Figure 5 when
increasing from 6 to 8 threads is an artifact of the thread scheduler
and the memory hierarchy of the test machine. The test machine
has two six-core CPUs, each with two hardware contexts per core.
The benchmark harness schedules up to the first six threads on
different cores of the same CPU, sharing a common on-chip L3
cache. The harness schedules the next six threads on the second CPU;
when threads are split across two CPUs they must communicate
via the processor interconnect, rather than via a shared on-chip
cache. Communication off-chip is substantially slower than on-chip
communication, producing the “notch” in the graph.

Overall the experiments show the benefits of automatic synthesis
of both data structures and synchronization: sophisticated imple-
mentations competitive with hand written code can be produced
at much lower cost in programmer effort, while at the same time
providing guarantees about the correctness of the implementation of
the high-level concurrent relational program.

7. Discussion and Related Work
Our results touch upon a great deal of previous work in several
distinct domains. For space reasons our survey is necessarily brief.

We build upon previous work in data representation synthesis
for sequential data structures [12] and the general theory of lock
placements [13]. Our contributions beyond previous works include
the extension of the programming interface to concurrent relations,
the integration of different kinds of concurrent and non-concurrent
data structures as building blocks, the extensions needed to integrate
decompositions and lock placements, the redesign of query planning
in the concurrent setting including guaranteeing deadlock freedom,
and a complete implementation and experiments.

As mentioned in Section 1, the idea of compiling programs that
work on relations into specialized data structures originated with [5],
and its various developments [1, 2, 22]. Earlier work explored data
structure selection for sets in SETL [7, 19]. Neither line of work
addresses the synthesis of concurrent data representations.

The closest to our work in spirit is Paraglider [23], which pro-
vides semi-automatic assistance in synthesizing low-level concurrent
algorithms and data structures. Paraglider focuses on the correct
implementation of a single concurrent data structure, while our
work is about assembling multiple concurrent and non-concurrent
data structures into more complex abstractions. Thus, Paraglider is
complementary to our approach, and we could extend our menu of
concurrent building blocks with Paraglider-generated components.

Various authors have investigated techniques for inferring locks
to implement atomic sections [4, 6, 9, 11, 16, 17, 24]. A related
problem is automatically optimizing programs with explicit locking
by combining multiple locks into one [8]. A key part of this class of
work is constructing a mapping from program objects to the locks
that protect them, which is similar to, but more specialized than,
lock placements. This body of work also takes the data structures as
fixed and attempts to infer the needed locks, while we consider the
possible data representations and lock placements simultaneously.

Our system can be viewed as implementing a pessimistic soft-
ware transactional memory [21]. Future extensions of our work
could synthesize optimistic concurrency control primitives in addi-
tion to pessimistic locks. Unlike traditional software transactional
memory systems, which perform on-line dynamic analysis to deter-
mine the read and write sets of transactions, our system performs
much of the same analysis statically, resulting in run-time code with
considerably lower overhead. Furthermore, our approach is able to
automatically change the data structures and granularity of locking
used to improve overall performance. It is also worth noting that
speculative locking was first introduced in the context of advanced
software transactional memory systems [3].

Finally the original paper on two-phase locking made explicit
the idea of locking not just objects, but program predicates [10].
Logical locks are such predicates, which we realize in practice by
mapping logical locks onto physical locks using a lock placement.

8. Conclusion
We have described an approach for synthesizing data representations
for concurrent programs. Beginning with a program written using
high-level concurrent relations, our system automatically selects the
decomposition of the relation into a set of subrelations, chooses
concrete data structures for the sub-relations, and selects a locking
strategy that guarantees all relational operations are both serializ-
able and deadlock free for the chosen representation. Because the
high-level description admits multiple choices for each of these
dimensions (subject to correctness constraints that rule out some
possibilities), programs written in this style describe a space of pos-
sible implementations, a fact that we are able to exploit by using a
combination of static and dynamic techniques to search this space to

find a high-performance implementation. We have described an ex-
tensive experiment on a concurrent graph benchmark, demonstrating
the wide range of possible implementations and their trade-offs.

References
[1] Don Batory and Jeff Thomas. P2: A lightweight DBMS generator.

Journal of Intelligent Information Systems, 9:107–123, 1997. ISSN
0925-9902. doi: 10.1023/A:1008617930959.

[2] Don Batory, Gang Chen, Eric Robertson, and Tao Wang. Design
wizards and visual programming environments for GenVoca generators.
IEEE Transactions on Software Engineering, 26(5):441–452, May 2000.
ISSN 0098-5589. doi: 10.1109/32.846301.

[3] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun.
Transactional predication: high-performance concurrent sets and maps
for stm. In Proceeding of the 29th ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, PODC ’10, pages 6–15, New
York, NY, USA, 2010. ACM. ISBN 978-1-60558-888-9. doi: 10.
1145/1835698.1835703.

[4] Sigmund Cherem, Trishul Chilimbi, and Sumit Gulwani. Inferring locks
for atomic sections. In Proceedings of the ACM SIGPLAN conference
on Programming Language Design and Implementation, pages 304–
315, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-860-2. doi:
10.1145/1375581.1375619.

[5] Donald Cohen and Neil Campbell. Automating relational operations
on data structures. IEEE Software, 10(3):53–60, May 1993. doi:
10.1109/52.210604.

[6] Dave Cunningham, Khilan Gudka, and Susan Eisenbach. Keep off the
grass: Locking the right path for atomicity. In Laurie Hendren, editor,
Compiler Construction, volume 4959 of Lecture Notes in Computer
Science, pages 276–290. Springer Berlin / Heidelberg, 2008. ISBN
978-3-540-78790-7. doi: 10.1007/978-3-540-78791-4_19.

[7] Robert B. K. Dewar, Arthur Grand, Ssu-Cheng Liu, Jacob T. Schwartz,
and Edmond Schonberg. Programming by refinement, as exemplified
by the SETL representation sublanguage. ACM Transactions on
Programming Languages and Systems (TOPLAS), 1(1):27–49, January
1979. ISSN 0164-0925. doi: 10.1145/357062.357064.

[8] Pedro C. Diniz and Martin C. Rinard. Lock coarsening: Eliminating
lock overhead in automatically parallelized object-based programs.
Journal of Parallel and Distributed Computing, 49(2):218–244, 1998.
ISSN 0743-7315. doi: 10.1006/jpdc.1998.1441.

[9] Michael Emmi, Jeffrey S. Fischer, Ranjit Jhala, and Rupak Majumdar.
Lock allocation. In Proceedings of the 34th annual ACM SIGPLAN-
SIGACT symposium on Principles of Programming Languages (POPL),
pages 291–296, New York, NY, USA, 2007. ACM. ISBN 1-59593-575-
4. doi: 10.1145/1190216.1190260.

[10] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of
consistency and predicate locks in a database system. Communications
of the ACM, 19:624–633, November 1976. ISSN 0001-0782. doi:
10.1145/360363.360369.

[11] Richard L. Halpert, Christopher J. F. Pickett, and Clark Verbrugge.
Component-based lock allocation. In Proceedings of the 16th Interna-
tional Conference on Parallel Architecture and Compilation Techniques,
PACT ’07, pages 353–364, Washington, DC, USA, 2007. IEEE Com-
puter Society. ISBN 0-7695-2944-5. doi: 10.1109/PACT.2007.23.

[12] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly
Sagiv. Data representation synthesis. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 38–49, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0663-8. doi: 10.1145/1993498.1993504.

[13] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly
Sagiv. Reasoning about lock placements. In Proceedings of the
European Symposium on Programming (ESOP), LNCS. Springer Berlin
/ Heidelberg, 2012. To appear.

[14] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A
provably correct scalable concurrent skip list. In Conference On
Principles of Distributed Systems (OPODIS), 2006.

[15] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correct-
ness condition for concurrent objects. ACM Trans. Program. Lang.
Syst., 12:463–492, July 1990. ISSN 0164-0925. doi: 10.1145/78969.
78972.

[16] Michael Hicks, Jeffrey S. Foster, and Polyvios Pratikakis. Lock
inference for atomic sections. In Workshop on Languages, Compilers
and Hardware Support for Transactional Computing, 2006.

[17] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. Autolocker:
Synchronization inference for atomic sections. In Proceedings of the
33rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL), pages 346–358, New York, NY, USA, 2006.
ACM. ISBN 1-59593-027-2. doi: 10.1145/1111037.1111068.

[18] Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dragos, Gilles
Dubochet, Burak Emir, Sean McDirmid, Stéphane Micheloud, Niko-
lay Mihaylov, Michel Schinz, Erik Stenman, Lex Spoon, and Matthias
Zenger. An Overview of the Scala Programming Language, second
edition. Technical Report LAMP-REPORT-2006-001, École Polytech-
nique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 2006.

[19] Edmond Schonberg, Jacob T. Schwartz, and Micha Sharir. Automatic
data structure selection in SETL. In Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL),
pages 197–210, New York, NY, USA, 1979. ACM. doi: 10.1145/
567752.567771.

[20] Ohad Shacham, Nathan Bronson, Alex Aiken, Mooly Sagiv, Martin
Vechev, and Eran Yahav. Testing atomicity of composed concurrent
operations. In Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications
(OOPSLA), pages 51–64, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0940-0. doi: 10.1145/2048066.2048073.

[21] Nir Shavit and Dan Touitou. Software transactional memory. Dis-
tributed Computing, 10:99–116, 1997. ISSN 0178-2770. doi: 10.
1007/s004460050028.

[22] Yannis Smaragdakis and Don Batory. DiSTiL: A transformation library
for data structures. In Conference on Domain-Specific Languages,
pages 257–271, October 1997.

[23] Martin Vechev and Eran Yahav. Deriving linearizable fine-grained
concurrent objects. In Proceedings of the ACM SIGPLAN conference
on Programming Language Design and Implementation (PLDI), pages
125–135, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-860-2.
doi: 10.1145/1375581.1375598.

[24] Yuan Zhang, Vugranam Sreedhar, Weirong Zhu, Vivek Sarkar, and
Guang Gao. Minimum lock assignment: A method for exploiting
concurrency among critical sections. In Languages and Compilers
for Parallel Computing, volume 5335 of Lecture Notes in Computer
Science, pages 141–155. Springer Berlin / Heidelberg, 2008. ISBN
978-3-540-89739-2. doi: 10.1007/978-3-540-89740-8_10.

http://dx.doi.org/10.1023/A:1008617930959
http://dx.doi.org/10.1109/32.846301
http://dx.doi.org/10.1145/1835698.1835703
http://dx.doi.org/10.1145/1835698.1835703
http://dx.doi.org/10.1145/1375581.1375619
http://dx.doi.org/10.1109/52.210604
http://dx.doi.org/10.1007/978-3-540-78791-4_19
http://dx.doi.org/10.1145/357062.357064
http://dx.doi.org/10.1006/jpdc.1998.1441
http://dx.doi.org/10.1145/1190216.1190260
http://dx.doi.org/10.1145/360363.360369
http://dx.doi.org/10.1109/PACT.2007.23
http://dx.doi.org/10.1145/1993498.1993504
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/1111037.1111068
http://dx.doi.org/10.1145/567752.567771
http://dx.doi.org/10.1145/567752.567771
http://dx.doi.org/10.1145/2048066.2048073
http://dx.doi.org/10.1007/s004460050028
http://dx.doi.org/10.1007/s004460050028
http://dx.doi.org/10.1145/1375581.1375598
http://dx.doi.org/10.1007/978-3-540-89740-8_10

	Introduction
	Concurrent Relations
	A Taxonomy of Concurrent Containers
	Concurrency Safety and Consistency

	Concurrent Decompositions
	Decompositions
	Logical Locks, Transactions, and Serializability
	Physical Locks and Lock Placements
	Lock Striping
	Speculative Lock Placements

	Query Planning and Lock Ordering
	Deadlock-Freedom and Lock Ordering
	Query Language

	Experimental Evaluation
	Autotuner
	Evaluation

	Discussion and Related Work
	Conclusion

