
Managing Performance vs. Accuracy Trade-offs With Loop
Perforation

Stelios Sidiroglou Sasa Misailovic Henry Hoffmann
Martin Rinard

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

{stelios,misailo,hank,rinard}@csail.mit.edu

ABSTRACT
Many modern computations (such as video and audio encoders,
Monte Carlo simulations, and machine learning algorithms) are de-
signed to trade off accuracy in return for increased performance.
To date, such computations typically use ad-hoc, domain-specific
techniques developed specifically for the computation at hand.

Loop perforation provides a general technique to trade accu-
racy for performance by transforming loops to execute a subset
of their iterations. A criticality testing phase filters out critical
loops (whose perforation produces unacceptable behavior) to iden-
tify tunable loops (whose perforation produces more efficient and
still acceptably accurate computations). A perforation space explo-
ration algorithm perforates combinations of tunable loops to find
Pareto-optimal perforation policies. Our results indicate that, for a
range of applications, this approach typically delivers performance
increases of over a factor of two (and up to a factor of seven) while
changing the result that the application produces by less than 10%.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability, and ser-
viceability
General Terms
Performance, Reliability, Experimentation
Keywords
Profiling, Loop Perforation, Quality of Service

1. INTRODUCTION
Many computations are designed to produce approximate re-

sults. Lossy video encoders, for example, are designed to give up
perfect fidelity in return for faster encoding and smaller encoded
videos [38]. Machine learning algorithms are designed to produce
probabilistic models that capture some, but not all, aspects of phe-
nomena that are difficult (if not impossible) to model with complete
accuracy [15]. Monte-Carlo computations use random simulation
to deliver inherently approximate solutions to complex systems of
equations that are, in many cases, computationally infeasible to
solve exactly [18].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

This paper presents and evaluates a technique, loop perforation,
for generating new variants of computations that produce approx-
imate results. These variants occupy different points in the under-
lying performance vs. accuracy tradeoff space. Our results show
that perforating appropriately selected loops can produce signifi-
cant performance gains (up to a factor of seven reduction in overall
execution time) in return for small (less than 10%) accuracy losses.
Our results also show that the generated variants occupy a broad
region of points within the tradeoff space, giving users and systems
significant flexibility in choosing a variant that best satisfies their
needs in the current usage context.

1.1 Loop Perforation
Loop perforation transforms loops to execute a subset of their

iterations. The goal is to reduce the amount of computational work
(and therefore the amount of time and/or other resources such as
power) that the computation requires to produce its result. Of course,
perforation may (and in our experience, almost always does) cause
the computation to produce a different result. But approximate
computations can often tolerate such changes as long as they do
not unacceptably reduce the accuracy. Our implemented system
uses the following techniques to find effective perforations:

• Criticality Testing: It perforates each loop in turn, executing
the perforated computation on representative inputs to filter
out critical loops whose perforation causes the computation
to produce unacceptable results, crash, increase its execu-
tion time, or execute with a memory error. Filtering out such
critical loops enables the subsequent perforation space ex-
ploration algorithm to focus on the remaining tunable loops
that respond well to loop perforation.
• Perforation Space Exploration: It explores the space of

variants generated by perforating combinations of tunable
loops together. Our implemented system supports both ex-
haustive and greedy search algorithms. The result of the ex-
ploration is a set of Pareto-optimal variants, each of which
maximizes performance for a specific accuracy loss bound
when run on representative inputs.

1.2 Experimental Results
We evaluate our implemented system on applications from the

PARSEC benchmark suite [6]. Our results show that the perfora-
tion space exploration algorithm can find perforations that deliver
significant performance increases for five of the seven applications.
Specifically, our performance measurements show that the perfo-
rated applications can run as much as seven times faster than the
original applications while producing outputs that differ by less
than 10% from the corresponding outputs of the original appli-
cations. Our results also show that the perforation space explo-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/9318542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ration algorithm finds effective perforations — our evaluation of
the source code of the applications indicates that the final perfo-
rations are appropriate for a wide range of inputs (and not just the
training and production inputs used in the experimental evaluation).

1.3 Scope
Applications that interact well with loop perforation have some

flexibility to change the result that they produce (subject, of course,
to accuracy requirements). They also contain some underlying
source of redundancy that enables them to produce an acceptable
result even after discarding parts of their computation. Applica-
tions that process sensory data such as video, audio, and images
often have both the redundancy and the flexibility required for loop
perforation to work well. Other classes of applications include
Monte Carlo simulations, information retrieval and machine learn-
ing computations, and the wide variety of scientific and economics
computations for which the important consideration is producing
an output within an acceptable precision range. Our results show
that loop perforation can often improve the performance of all of
these kinds of applications while preserving acceptable accuracy.

We acknowledge that many computations (for example, compil-
ers, databases, and operating systems) may have hard logical cor-
rectness requirements that leave them with little or none of this
kind of flexibility. We therefore do not claim that loop perfora-
tion is a universally applicable technique. Our experimental results
show, however, that when the computation is amenable to loop per-
foration (and many of our benchmark applications are), loop per-
foration can be surprisingly effective at improving the performance
while maintaining acceptable accuracy.

1.4 Why Loop Perforation Works
We have identified local computational patterns that interact well

with loop perforation [24, 32, 25]. Examples include the Sum pat-
tern (which computes the sum of a set of numbers) and the Argmin
pattern (which computes the index and value of a minimum ar-
ray element). An analysis of these patterns delivers a probabilistic
guarantee that (under appropriate assumptions) the perforated com-
putation is highly likely to produce a result that is close to the result
that the original computation would have produced [24, 25].

While many of the perforated loops in our benchmark applica-
tions are instances of these patterns, they are also embedded as
components within a larger application. Because the probabilistic
analysis does not address how the effect of the perforation propa-
gates through the application as a whole (which may either amplify
or dampen it), it provides, at best, only a partial explanation for
why it is acceptable to perforate these loops.

In this paper we identify global computational patterns that in-
teract well with loop perforation. Analyzing the interaction be-
tween these patterns and the local perforated computations, we can
understand why loop perforation works well for the application as
a whole (and not just for the local computations embedded within
the application). We identify the following global patterns (see Sec-
tion 7 for more details):

• Search Space Enumeration: The application iterates over
a search space of items. The perforated computation skips
some of the items, returning one of the items from the re-
maining part of the search space.
• Search Metric: The application uses a search metric to drive

a search for the most desirable item from a set of items:
– Selection: A selection metric quantifies the desirability

of each item encountered during the search.
– Filtering: A filtering metric determines if the search

should remove the item from a set of active items.

– Termination: A termination metric determines if the
search should terminate, either because an acceptable
item has been found or because the likelihood of find-
ing a more desirable item appears to be small.

Perforating a search metric computation produces a new, less
accurate but more efficiently computable metric. The effect
is that the perforated search may return a less desirable but
still acceptable item.
We note that some applications use the same metric for more
than one purpose. In this case the metric is a combined se-
lection, filtering, and/or termination metric.
• Monte-Carlo Simulation: The application performs a Monte-

Carlo simulation. The perforated computation evaluates fewer
samples to produce a (potentially) less accurate result more
efficiently.
• Iterative Improvement: The application repeatedly improves

an approximate result to obtain a more accurate result. The
perforated computation performs fewer improvement steps
to produce a (potentially) less accurate result more efficiently.
• Data Structure Update: The application traverses a data

structure, updating elements of the data structure with com-
puted values. The perforated computation skips some of
the elements, leaving the previous values in the skipped ele-
ments.

Successful perforations exploit computations that are partially
redundant at both the local (loop) and global (application) level.
This redundancy often appears when computations process multi-
ple items to obtain a single result. For example, a computation that
searches a set to find the most desirable item is partially redundant
when the set contains similar items — searching only a subset of
the items is likely to produce an item that is close to the most de-
sirable item in the set.

We note that many of our applications perform inherently ap-
proximate computations, for example because they work with ap-
proximate models of reality or because exact solutions are too ex-
pensive to compute. In such cases perforation may make an already
approximate computation even more approximate.

1.5 Uses of Loop Perforation
Potential uses of loop perforation include:

• Performance Enhancement: Guided by the parameters of
the tradeoff space, a user can select a desired level of per-
formance that provides acceptable accuracy. Or the user can
select a desired accuracy, then use loop perforation to maxi-
mize the delivered performance.
• Energy Savings: Because loop perforation can reduce the

computation required to produce an acceptable result, and
computation translates directly into energy consumption, loop
perforation can reduce the energy required to produce the re-
sult. Moreover, for real-time computations, loop perforation
may free up the time required to enable additional synergistic
energy-saving optimizations such as voltage scaling [28].
• New Platforms or Contexts: Applications often come tuned

for use in a specific context or computational platform (for
example, desktop machines). Loop perforation can support
effective redeployment onto a new platform (for example,
mobile devices) or into a new context with different perfor-
mance or accuracy requirements.
• Dynamic Adaptation: Our implemented compiler can gen-

erate code that can dynamically move between different vari-
ants as the computation executes [16]. This capability en-
ables the construction of control systems that use loop perfo-

ration to dynamically adapt application behavior to satisfy
real-time deadlines in the face of changes (such as clock
speed changes, load variations, or processor loss) in the un-
derlying computational platform [16].
• Developer Insight: A developer can examine the perforation

to gain insight into where it is possible to trade accuracy for
increased performance [26]. The developer may then choose
to accept the perforated computation as is, use the perforated
computation as a starting point for further optimization, or
use the perforation to identify computations that are suitable
targets for manual optimization.

1.6 Contributions
This paper makes the following contributions:

• Loop Perforation: It presents and evaluates loop perfora-
tion as an automatic technique for generating multiple vari-
ants of approximate computations, with the different variants
occupying different points in the underlying performance vs.
accuracy tradeoff space.
• Criticality Testing: It presents a criticality testing algorithm

that identifies tunable loops that respond well to perforation.
• Perforation Space Exploration: It presents and evaluates

exhaustive and greedy algorithms for exploring the perfora-
tion space to find a set of Pareto-optimal perforations.
• Experimental Results: It presents experimental results for

applications from the PARSEC benchmark suite. These re-
sults show that loop perforation can deliver significant per-
formance improvements (the perforated applications run up
to seven times faster than the original applications) while
maintaining accurate execution (the results from the perfo-
rated applications differ by at most 10% from the original
results).
• Global Patterns: It identifies and analyzes global compu-

tational patterns (for example, loops that combine multiple
partially redundant values and searches driven by perforat-
able metrics) that interact well with loop perforation. These
patterns explain why loop perforation works well for our
benchmark applications and can serve as a foundation for the
broader application of loop perforation across a large range
of applications.

We have previously proposed the use of loop perforation for
quality of service profiling to help developers find suitable man-
ual optimization targets [26]. This paper presents a new critical-
ity testing methodology for identifying perforatable loops, a new
methodology for exploring a perforation space with multiple loop
perforation rates, experimental results that characterize the induced
performance vs. accuracy tradeoff space for a broad range of perfo-
ration rates and inputs (including results that characterize how well
results from training input generalize to previously unseen produc-
tion inputs), and an identification of specific global computational
patterns that work well with loop perforation, including an expla-
nation of why loop perforation is applicable to these patterns. To-
gether, these results support the use of loop perforation as an opti-
mization in its own right rather than simply as a profiling technique.

2. PERFORATION TRANSFORMATION
We implement loop perforation within the LLVM compiler frame-

work [20]. The perforator works with any loop that the existing
LLVM loop canonicalization pass, loop-simplify, can convert into
the following form:

for (i = 0; i < b; i++) { ... }

In this form, the loop has an unique induction variable (in the
code above, i) initialized to 0 and incremented by 1 on every it-
eration, with the loop terminating when the induction variable i
exceeds the bound (in the code above, b). The class of loops that
LLVM can convert into this form includes, for example, for loops
that initialize an induction variable to an arbitrary initial value, in-
crement the induction variable by an arbitrary constant value on
each iteration, and terminate when the induction variable exceeds
an arbitrary bound.

The loop perforation transformation takes as a parameter a loop
perforation rate r, which represents the expected percentage of loop
iterations to skip. Interleaving perforation transforms the loop to
perform every n-th iteration (here the perforation rate is r = 1-1/n).
Conceptually, the perforated computation looks like (see [16] for a
more detailed treatment):

for (i = 0; i < b; i += n) { ... }

All of the experimental results in this paper use interleaving per-
foration. Our implemented perforator can also apply truncation
perforation (which skips a contiguous sequence of iterations at ei-
ther the beginning or the end of the loop) or random perforation
(which randomly skips loop iterations) [16].

3. ACCURACY METRIC
The accuracy metric measures the difference between an output

from the original program and a corresponding output from the per-
forated program run on the same input. We decompose the metric
into two parts: an output abstraction, which maps an output to
a number or set of numbers, and an accuracy calculation, which
measures the difference between the output abstractions from the
original and perforated executions. The output abstraction typically
selects relevant numbers from an output file or files or computes a
measure (such as peak signal to noise ratio) of the quality of the
output. Many approximate computations come with such quality
measures already defined and available (see Section 5).

The accuracy calculation computes the metric acc as a weighted
mean scaled difference between the output abstraction components
o1, . . . , om from the original program and the output abstraction
components ô1, . . . , ôm from the perforated program [31]:

acc =
1
m

m∑
i=1

wi

∣∣∣∣∣oi − ôi

oi

∣∣∣∣∣ (1)

Here each weight wi captures the relative importance of the ith
component of the output abstraction. Note that the closer the ac-
curacy metric acc is to zero, the more accurate the perforated pro-
gram. We often report accuracy metrics as percentages.

4. PERFORATION EXPLORATION
The loop perforation space exploration algorithm takes as in-

put an application, an accuracy metric for that application, a set
of training inputs, an accuracy bound b (a maximum acceptable ac-
curacy metric for the application), and a set of perforation rates (in
our experiments, 0.25, 0.50, 0.75, and 1 iteration). The algorithm
produces a set S of loops to perforate at specified perforation rates.

4.1 Criticality Testing
The criticalility testing algorithm (Algorithm 1) starts with a set

of candidate loops L and perforation rates R. L consists of the loops
(identified by profiling) that account for at least 1% of the executed
instructions (with a cutoff after the top 25 loops). In general, per-
forating a candidate loop may cause the program to crash, gener-
ate unacceptable output, produce an infinite loop, or decrease its

Algorithm 1 (Criticality Testing) Find the set of tunable loops P in
A given training inputs T and accuracy bound b

Inputs:
A - an application
T - a set of representative inputs
b - an accuracy bound
L - a set of candidate loops for perforation
R - a set of perforation rates

Outputs: P - a set of tunable loops and perforation rates for A
given b and T

P = ∅
for 〈l, r〉 ∈ L × R do

Let A〈l,r〉 be A with l perforated at rate r
for t ∈ T do

Run A〈l,r〉 on t, record speedup spt and accuracy acct
sp = (

∑
t∈T spt)/||T || ; acc = (

∑
t∈T acct)/||T ||

if acc < b ∧ sp > 1 then
for t ∈ T do

Run A〈l,r〉 using Valgrind to find Errt (memory errors)
if
⋃

t∈T Et = ∅ then
P = P ∪ {〈l, r〉}

return P

performance. Algorithm 1 is designed to find and remove such
critical loops from the set of candidate loops. The algorithm per-
forates each loop in turn at each of the specified perforation rates,
then runs the perforated program on the training inputs. It filters
out a loop if its perforation 1) fails to improve the performance (as
measured by the speedup sp, which is the execution time of the
perforated application divided by the execution time of the original
unperforated program running on the same input), 2) causes the ap-
plication to exceed the accuracy bound b or, 3) introduces memory
errors (such as out of bounds reads or writes, reads to uninitialized
memory, memory leaks, double frees, etc.). If the memory error
causes the execution to crash on some input t, its accuracy loss acct

is ∞. The result of criticality testing is the set of tunable loops
P = {〈l0, r0〉, . . . , 〈ln, rn〉}, where 〈li, ri〉 specifies the perforation of
loop li at rate ri.

4.2 Perforation Space Exploration Algorithms
We next present two algorithms (exhaustive and greedy) for ex-

ploring the performance vs. accuracy tradeoff space of perforated
programs.

Exhaustive Exploration Algorithm. The exhaustive perforation
space exploration algorithm starts with the set of tunable loops,
then exhaustively explores all combinations of tunable loops l at
their specified perforation rates r. The algorithm executes all com-
binations on all training inputs and records the resulting speedup
and accuracy. It also runs each combination under Valgrind [27],
discarding the combination if Valgrind detects a memory error. We
use the results to compute the set of Pareto-optimal perforations in
the induced performance vs. accuracy tradeoff space. A perforation
is Pareto-optimal if there is no other perforation that provides both
better performance and better accuracy.

This approach is feasible for applications (such as those in our
set of benchmarks) that spend most of their time in relatively few
loops. If exhaustive exploration is infeasible, it is possible to ei-
ther use the greedy algorithm or drop enough of the least time-
consuming tunable loops to make exhaustive exploration feasible.
Hybrid approaches are also possible.

Greedy Exploration Algorithm. Algorithm 2 uses a greedy strat-
egy to search the loop perforation space to produce, for a given ac-
curacy bound b, a set of loops and corresponding perforation rates

Algorithm 2 (Greedy Exploration) Find a set S of loops to perfo-
rate in A given training inputs T and accuracy bound b

Inputs:
A - an application
T - a set of representative inputs
b - an accuracy bound
P - a set of tunable loops generated by Algorithm 1

Outputs: S - a set of loops to perforate in A given b

P′ = { 〈l, r〉 | 〈l, r〉 ∈ P ∧ ∀p, score〈l,r〉 ≤ score〈l,p〉}
S = ∅
for 〈l, r〉 ∈ P′ in sorted order according to score〈l,p〉 do

C = S ∪ {〈l, r〉}
Let AC be A with all loops in C perforated
for t ∈ T do

Run AC on t, record speedup spt and accuracy acct
sp = (

∑
t∈T spt)/||T ||; acc = (

∑
t∈T acct)/||T ||

if acc < b ∧ sp > 1 then
for t ∈ T do

Run AC using Valgrind to find Errt (memory errors)
if
⋃

t∈T Et = ∅ then
S = C

return S

S = {〈l0, r0〉, . . . , 〈ln, rn〉} that maximize performance subject to b.
The algorithm uses a heuristic scoring metric to prioritize loop/per-
foration rate pairs. The scoring metric for a pair 〈l, r〉 is based on
the harmonic mean of terms that estimate the performance increase
and accuracy loss of the perforated program:

score〈l,r〉 =
2

1
sp〈l,r〉 − 1

+
1

1 −
acc〈l,r〉

b

(2)

where sp〈l,r〉 and acc〈l,r〉 are the mean speedup and accuracy metric
(respectively) for the 〈l, r〉 perforation over all training inputs and
b is the accuracy bound. In comparison to other heuristic functions
based on arithmetic mean or geometric mean, this harmonic mean
based metric requires a much higher performance increase to select
the loop that causes a small increase in accuracy loss.

The algorithm first computes a set of pairs P′. For each tunable
loop l, P′ contains the pair 〈l, r〉, where r maximizes score〈l,r〉. It
then sorts the pairs in P′ by score〈l,r〉. The algorithm maintains a
set S of 〈l, r〉 pairs that can be perforated together without violating
the accuracy bound b. At each step, the algorithm produces a new
version of the application with the loops in S ∪ 〈l, r〉 perforated. If
the additional perforation of 〈l, r〉 keeps the overall accuracy within
b, the algorithm adds the pair 〈l, r〉 into S . Note that for each loop l,
this algorithm considers only its best perforation rate r (according
to score〈l,r〉).

5. BENCHMARKS AND INPUTS
We evaluate loop perforation using a set of benchmark appli-

cations from the PARSEC 1.0 benchmark suite [6]. These appli-
cations were chosen to be representative of modern and emerging
workloads for the next generation of processor architectures. We
collect all results using a cluster of Intel x86 servers with dual 3.16
GHz Xeon X5460 quad-core processors.

We use the following applications: x264, bodytrack, swaptions,
ferret, canneal, blackscholes, and streamcluster. Together these
benchmarks represent a broad range of application domains includ-
ing financial analysis, media processing, computer vision, engi-
neering, data mining, and similarity search. For each benchmark
we acquire a set of evaluation inputs, then pseudorandomly par-

Benchmark Training Inputs Production Inputs Source
x264 4 HD videos of 200+ frames 12 HD videos of 200+ frames PARSEC & xiph.org [1]
bodytrack sequence of 100 frames sequence of 261 frames PARSEC & additional input provided by benchmark authors
swaptions 64 swaptions 512 swaptions PARSEC & randomly generated swaptions
ferret 256 image queries 3500 image queries PARSEC
canneal 4 netlists of 2M+ elements 16 netlists of 2M+ elements PARSEC & additional inputs provided by benchmark authors
blackscholes 64K options 10M options PARSEC
streamcluster 4 streams of 19K-100K data points 10 streams of 100K data points UCI Machine Learning Repository [2]

1: Summary of Training and Production Inputs

tition the inputs into training and production inputs. We use the
training inputs to drive the loop perforation space exploration al-
gorithm (Section 4) and the production inputs to evaluate how well
the resulting perforations generalize to unseen inputs.

Table 1 summarizes the sources of the evaluation inputs. For
each application, the PARSEC benchmark suite contains “native”
inputs designed to represent the inputs that the application is likely
to encounter in practical use. With the exception of streamclus-
ter, we always include these inputs in the set of evaluation inputs.
For many of the benchmarks we also include other representative
inputs, typically to increase the coverage range of the evaluation
set, to promote an effective partition into reasonably-sized training
and production sets, or to compensate for deficiencies in the native
PARSEC inputs.

The PARSEC benchmark suite also contains the following bench-
marks: facesim, dedup, fluidanimate, freqmine, and vips. We do
not include freqmine and vips because these benchmarks do not
successfully compile with the LLVM compiler. We do not include
dedup and fluidanimate because these applications produce com-
plex binary output files. Not having deciphered the meaning of
these files, we were unable to develop meaningful accuracy met-
rics. We do not include facesim because it does not produce any
output at all (except timing information).
x264. This media application performs H.264 encoding on raw
video data. It outputs a file containing the raw (uncompressed) in-
put video encoded according to the H.264 standard. The output ab-
straction for the accuracy metric extracts the peak-signal-to-noise
ratio (PSNR) (which measures the quality of the encoded video)
and the bitrate (which measures the compression achieved by the
encoder). The accuracy calculation (see Section 3) weights each
component equally (with a weight of one). If the reference de-
coder fails to parse the encoded video during training, we record
an accuracy metric of 100% and reject the perforation. This accu-
racy metric captures the two most important attributes of a video
encoder: the quality of the encoded video and the compression
achieved through the encoding. The native PARSEC input contains
only a single video. We therefore augment the evaluation input set
with additional inputs from xiph.org [1].
Bodytrack. This computer vision application uses an annealed par-
ticle filter to track the movement of a human body [12]. It produces
two output files: a text file containing a series of vectors repre-
senting the positions of the body over time and a series of images
graphically depicting the information in the vectors overlaid on the
video frames from the cameras. The output abstraction extracts the
vectors that represent the position of the body. In the accuracy cal-
culation, the weight of each vector is proportional to its magnitude.
Vectors which represent larger body parts (such as the torso) there-
fore have a larger influence on the accuracy metric than vectors that
represent smaller body parts (such as forearms).

The application requires data collected from carefully calibrated
cameras. The native PARSEC input contains a single sequence of
261 frames. We augment the evaluation input set with another se-
quence of 100 frames. We obtained this sequence from the main-
tainers of the PARSEC benchmark suite.

Swaptions. This financial analysis application uses a Monte Carlo
simulation to solve a partial differential equation that prices a port-
folio of swaptions. The output abstraction simply extracts the swap-
tion prices. The distortion calculation weights the corrected swap-
tion prices equally (with a weight of one). The resulting accuracy
metric directly captures the ability of the perforated application to
produce accurate swaption prices.

Each input to this application contains a set of parameters for
each swaption. The native PARSEC input simply repeats the same
parameters multiple times, causing the application to repeatedly
calculate the same swaption price. We therefore augment the eval-
uation input set with additional randomly generated parameters so
that the application computes prices for a range of swaptions.
Ferret. This application performs a content-based similarity search
of an image database. For each input query image, ferret outputs
a list of similar images found in its database. The accuracy metric
computes the intersection of the sets of images returned by the per-
forated and original versions, divides the size of this set by the size
of the set of images returned by the original version, then subtracts
this number from one. So if both versions return 10 images, 9 of
which are the same, the accuracy is 0.1. We use the 3500 image
queries from the PARSEC benchmark suite.
Canneal. This engineering application uses simulated annealing to
minimize the routing cost of a microchip design. Canneal prints a
number representing the total routing cost of a netlist representing
the chip design; we use this cost as the output abstraction. The
resulting accuracy metric directly captures the application’s ability
to reduce routing costs. The PARSEC benchmark contains only
one large netlist. We obtained additional input netlists from the
maintainers of the PARSEC benchmark suite.
Blackscholes. This financial analysis application solves a partial
differential equation to compute the price of a portfolio of Euro-
pean options. The PARSEC application produces no output. We
therefore modified the application to print the option prices to a
file. The output abstraction extracts these option prices. The dis-
tortion calculation weights these prices equally (with a weight of
one). The resulting accuracy metric directly captures the ability of
the perforated application to compute accurate option prices. The
native input from the PARSEC benchmark suite contains 10 mil-
lion different option parameters. We do not augment this input set
with additional inputs.
Streamcluster. This data mining application solves the online clus-
tering problem. The program outputs a file containing the cluster
centers found for the input data set. The output abstraction extracts
the quality of the clustering as measured by the BCubed metric [3].
The resulting accuracy metric directly captures the ability of the
application to solve the clustering problem. The native PARSEC
input consists of a randomly generated set of points drawn from
a uniform distribution. For this input all clusterings have equal
quality and all clustering algorithms (even the trivial algorithm that
outputs no clustering at all) have identical accuracy. We therefore
use the evaluation input set with more realistic inputs from the UCI
Machine Learning Repository [2].

6. EXPERIMENTAL RESULTS
We next present experimental results for the loop perforation

space exploration algorithms (Section 4) for our benchmark appli-
cations (Section 5). We use the training inputs to drive the ex-
ploration; the result is a set of Pareto-optimal perforations in the
loop perforation space. We then run selected Pareto-optimal perfo-
rations on the production inputs to evaluate how well the training
results generalize to previously unseen inputs.

6.1 Criticality Testing Results
Table 2 presents timing results for the criticality testing runs (Al-

gorithm 1). The table contains a row for each application. The
second column (Accuracy) presents timing results for executions
that measure the speedup and accuracy of different perforations.
The third column (Valgrind) presents timing results for executions
that use Valgrind to find memory errors. Each entry of the form
X(Y) indicates that algorithm considered X different combinations
of perforated loops and that the executions took a total of Y min-
utes to complete. The total execution times range from 6 minutes
for blackscholes to approximately 64 hours for streamcluster, with
other applications requiring significantly less time. It is, of course,
possible to execute different criticality testing runs in parallel on
different machines. We performed all of our runs on eight dual
quad Intel Xenon 3.1 GHz machines (so the wall clock times re-
quired to perform the runs are approximately a factor of eight less
than the total execution times reported in Table 2).

Application Algorithm 1 Total
Accuracy Valgrind Time

x264 500 (108m) 110 (840m) 949m
bodytrack 100 (35m) 47 (1316m) 1351m
swaptions 100 (7m) 16 (108m) 115m
ferret 100 (17m) 40 (53m) 71m
canneal 256 (405m) 60 (540m) 945m
blackscholes 24 (0.5m) 12 (5m) 5.5m
streamcluster 500 (3083m) 17 (782m) 3865m

2: Criticality Testing Statistics for Benchmark Applications

Table 3 summarizes, for each application, the fate of each loop
in the criticality testing algorithm from Section 4.1. Each column
presents results for a given perforation rate (0.25, 0.5, 0.75 and 1
iteration) for an accuracy bound of 10% . The first row (Candidate)
presents the starting number of candidate loops. This number is al-
ways 25 unless the application has fewer than 25 loops that account
for 1% of the executed instructions (see Section 4).

The second row (Crash) presents the number of loops that Algo-
rithm 1 filters out because perforating the loop caused the applica-
tion to terminate with an error. The third row (Accuracy) presents
the number of loops filtered by the algorithm because perforating
the loop caused the application to violate the corresponding accu-
racy bound. The fourth row (Speed) presents the number of remain-
ing loops that Algorithm 1 filters out because perforating the loop
does not improve the overall performance (this typically happens
for tight loops at a 0.25 perforation rate). The fifth row (Valgrind)
presents the number of remaining loops that Algorithm 1 filters out
because their perforation introduces a latent memory error detected
by the Valgrind memcheck tool [27].

6.2 Perforation Space Exploration Results
Figures 1 through 6 present the results of the exhaustive loop

perforation space exploration algorithm. The graphs plot a single
point for each explored perforation. The y coordinate of the point
is the mean speedup of the perforation (over all training inputs).

x264
Filter 0.25% 0.50% 0.75% 1 iter
Candidate 25 25 25 25
Crash 1 1 1 1
Accuracy 6 7 7 6
Speed 16 12 10 11
Valgrind 0 0 1 1
Remaining 2 6 6 6

bodytrack
Filter 0.25% 0.50% 0.75% 1 iter
Candidate 25 25 25 25
Crash 2 5 7 1
Accuracy 1 1 2 2
Speed 12 10 1 1
Valgrind 3 1 6 8
Remaining 7 8 9 13

swaptions
Filter 0.25% 0.50% 0.75% 1 iter
Candidate 25 25 25 25
Crash 3 6 8 0
Accuracy 13 12 13 16
Speed 5 4 2 2
Valgrind 2 2 1 5
Remaining 2 1 1 2

ferret
Filter 0.25% 0.50% 0.75% 1 iter
Candidate 25 25 25 25
Crash 8 12 12 6
Accuracy 13 11 11 17
Speed 0 0 0 0
Valgrind 0 0 0 0
Remaining 4 2 2 2

canneal
Filter 0.25% 0.50% 0.75% 1 iter
Candidate 16 16 16 16
Crash 7 10 10 6
Accuracy 1 1 1 4
Speed 7 4 4 5
Valgrind 0 0 0 0
Remaining 1 1 1 1

blackscholes
Filter 0.25% 0.50% 0.75% 1 iter
Candidate 6 6 6 6
Accuracy 4 4 4 4
Speed 1 1 1 1
Valgrind 0 0 0 0
Remaining 1 1 1 1

streamcluster
Filter 0.25% 0.50% 0.75% 1 iter
Candidate 15 15 15 15
Crash 1 1 2 4
Accuracy 0 0 0 0
Speed 13 11 8 7
Valgrind 0 0 0 0
Remaining 1 3 5 4

3: Criticality Testing Results for Individual Loops

1: x264 (exhaustive) 2: Bodytrack (exhaustive) 3: Swaptions (exhaustive)

4: Ferret (exhaustive) 5: Canneal (exhaustive) 6: Streamcluster (exhaustive)

The x coordinate is the corresponding percentage accuracy loss of
the perforation. Green points have accuracy losses below 10%; red
points have accuracy losses above 10%. The blue line in each graph
connects the points from Pareto-optimal perforations (a perforation
is Pareto-optimal if there is no other perforation that provides both
better performance and better accuracy). The pink triangle identi-
fies the perforation that the greedy algorithm produces.

The graphs show that, for these applications, loop perforation is
usually able to increase performance on the training inputs by at
least a factor of two (up to a factor of seven for bodytrack) while
reducing the accuracy by less than 10% (ferret is the exception).
The graphs also illustrate the broad range of points in the perfor-
mance vs. accuracy tradeoff space that the loop perforation space
exploration algorithm is able to find.

The graphs show that the greedy algorithm is able to find points
with good combinations of performance and accuracy, but that these
points are sometimes less than optimal. We attribute this lack of op-
timality, in part, to the fact that the greedy algorithm explores only
one perforation rate for each loop, specifically the highest prior-
ity rate as identified by Equation 2. In some cases this equation
conservatively ranks perforations with low speedup and high ac-
curacy over perforations with higher speedup but lower accuracy
(even though the lower accuracy is still within the accuracy bound).
This is the reason, for example, that the greedy algorithm does not
find a better point for canneal (Figure 5).

Table 4 presents the time required to run the exhaustive and
greedy exploration algorithms. There is a row for each applica-
tion and a column for the exhaustive and greedy algorithms. Each
entry of the form X(Y) indicates that algorithm considered X dif-
ferent perforated versions of the application and that the runs took
a total of Y minutes to complete. As before, the reported times
represent the total computation time for execution on a dual quad
Intel Xeon running at 3.1 GHz. The exhaustive search times range
from 1 minute (for blackscholes) to about 65 hours (for streamclus-
ter). The second column presents the time required to complete the

Application Exhaustive Greedy
x264 3071 (665m) 6 (9m)
bodytrack 5624 (1968m) 14 (33m)
swaptions 32 (9m) 4 (7m)
ferret 255 (43m) 6 (2m)
canneal 2 (12m) 1 (11m)
blackscholes 19 (1m) 3 (0.5m)
streamcluster 639 (3941m) 5 (31m)

4: Exhaustive and Greedy Search Times

greedy exploration algorithm (Algorithm 2). Note that these times
do not include the time required to complete the criticality testing
algorithm (Algorithm 1) — Table 2 presents the time required to
complete this criticality testing algorithm. The greedy algorithm
explores substantially fewer points than and executes in a fraction
of the time of the exhaustive algorithm.

6.3 Training and Production Results
Table 5 presents accuracy and speedup results for selected Pareto-

optimal perforations in the loop perforation space. There is a row
for each application and a group of columns for the training and
production inputs. Each group of columns presents results for the
Pareto-optimal perforation for four accuracy bounds b: 2.5%, 5%,
7.5%, and 10%. Each entry of the form X(Y%) presents the cor-
responding mean speedup X and mean accuracy Y for that com-
bination of application, bound, and input set. With the exception
of ferret, all applications show a reasonable correlation between
training and production results, indicating that the results from the
training inputs generalize well to other inputs.

7. PERFORATION EVALUATION
We next discuss, for each application, our source-code based

evaluation of the tunable loops in Pareto-optimal perforations. Ta-
ble 6 presents data for every loop which is perforated in at least

Application Training Production
2.5% 5% 7.5% 10% 2.5% 5% 7.5% 10%

x264 2.38 (2.5%) 2.66 (5%) 3.17 (6.53%) 3.25 (9.31%) 2.34 (5.15%) 2.53 (6.08%) 3.12 (8.72%) 3.19 (10.3%)
bodytrack 3.44 (2.23%) 6.32 (4.36%) 6.89 (6.19%) 6.89 (6.19%) 2.70 (4.00%) 4.93 (6.12%) 4.811 (6.58%) 4.811 (6.58%)
swaptions 5.08 (1%) 5.08 (1%) 5.08 (1%) 5.08 (1%) 5.05 (0.2%) 5.05 (0.2%) 5.05 (0.2%) 5.05 (0.2%)
ferret 1.02 (0.2%) 1.03 (4%) 1.03 (4%) 1.16 (10%) 1.002 (0.15%) 1.02 (0.23%) 1.02 (0.23%) 1.07 (7.90%)
canneal 1.14 (4.38%) 1.18 (4.43%) 1.913 (7.14%) 1.913 (7.14%) 1.14 (4.38%) 1.14 (4.38%) 1.46 (7.88%) 1.46 (7.88%)
blackscholes 33 (0.0%) 33 (0.0%) 33 (0.0%) 33 (0.0%) 28.9 (0.0%) 28.9 (0.0%) 28.9 (0.0%) 28.9 (0.0%)
streamcluster 5.51 (0.54%) 5.51 (0.54%) 5.51 (0.54%) 5.51 (0.54%) 4.87 (1.71%) 4.87 (1.71%) 4.87 (1.71%) 4.87 (1.71%)

5: Training and Production Results for Pareto-optimal Perforations for Varying Accuracy Bounds

x264
Function Time Type
x264_mb_analyse_inter_p16x16 64.20% SSE / Argmin
x264_pixel_sad_16x16, outer 55.80% SMS+T / Sum
x264_pixel_sad_16x16, inner 54.60% SMS+T / Sum
x264_me_search_ref 25.00% SSE / Argmin
pixel_satd_wxh, outer 18.50% SMS+T / Sum
pixel_satd_wxh, inner 18.30% SMS+T / Sum

bodytrack
Function Time Type
Update 77.00% II
ImageErrorInside, inner 37.00% SME / Ratio
ImageErrorEdge, inner 29.10% SME / Ratio
InsideError, outer 28.90% SME / Sum
IntersectingCylinders 1.16% SMF+SSE

swaptions
Function Time Type
HJM_Swaption_Blocking, outer 100.00% MC /Mean
HJM_SimPath_Forward_Blocking, outer 45.80% DSU
HJM_SimPath_Forward_Blocking, inner 31.00% DSU
Discount_Factors_Blocking 1.97% DSU

ferret
Function Time Type
emd 37.60% SMS+II
LSH_query_bootstrap, outer 27.10% SSE
LSH_query_bootstrap, middle 26.70% SSE
LSH_query_bootstrap, inner 2.70% SSE

canneal
Function Time Type
reload 2.38% DSU

blackscholes
Function Time Type
bs_thread 98.70% –

streamcluster
Function Time Type
pFL, inner 98.50% II
pgain 84.00% SME+T+DSU
dist 69.30% SME+T / Sum
pgain 5.01% SME+T

6: Patterns in Pareto-optimal Perforations

one Pareto-optimal variant with an accuracy loss under 10%. The
first column presents the function in which the loop appears and
(when the loop appears in a loop nest) whether the loop is an in-
ner loop or outer loop of a loop nest. The second column presents
the percentage of time spent in each loop (before perforation). The
third column presents both the global (as discussed in Section 1)
and local (as presented in [25]) computation patterns for the loop.
For example, the entry for the first loop in x264 is SSE/Argmin,
which indicates that the global pattern for the loop is the Search
Space Enumeration pattern, while the local pattern is the Argmin
pattern. Some loops are not an instance of any of the identified
local patterns. In this case we present the global pattern only.
x264. The x264 encoder divides each frame into blocks, then per-
forms the encoding at the granularity of blocks. Motion estimation
attempts to find a block from a previously encoded frame that is

similar to the block that x264 is currently attempting to encode. If
it finds such a block, x264 encodes the delta over this previously
encoded block. Motion estimation consumes the vast majority of
the computation time in x264.

All of the tunable loops in x264 appear in the motion estimation
computation. Two of these loops (x264_mb_analyze_inter_p16x16
and x264_search_ref) are instances of the Search Space Enumer-
ation global pattern and the Argmin local pattern (which computes
the index and value of the minimum element in an array of ele-
ments [25]). The first (x264_mb_analyze_inter_p16x16) searches
previously encoded reference frames to find a block that is a good
match for the block that x264 is currently encoding. Perforating
this loop causes x264 to search fewer reference frames. The second
(x264_search_ref) is given a single reference frame and searches
within that frame to find a good match. Perforating this loop causes
x264 to consider fewer blocks within the frame.

All of the remaining loops are instances of the Search Metric
for both Selection and Termination global pattern and the Sum lo-
cal pattern (which computes the sum of a set of numbers [25]).
These loops all compute a metric that measures how well the cur-
rent block matches a previously encoded block. Perforating these
loops causes x264 to skip pixels when it computes the metric, pro-
ducing a new, less accurate, but more efficiently computable met-
ric. In addition to using this metric to select the previously encoded
block that is the best match, x264 also uses the metric to decide
when it should terminate the search (within a frame, x264 termi-
nates the search when it fails to find a new desirable block after
a given number of probes). Because the perforated metric makes
fewer distinctions between blocks, perforation will typically cause
the search to terminate with fewer probes.

All of these perforations may cause x264 to choose a less desir-
able previously encoded block as a starting point for encoding the
current block. But because there is significant redundancy in the set
of previously encoded blocks (typically, many previously encoded
blocks are a reasonably good match for the current block), the re-
sults show that x264 is still usually able to find a good block even
after perforation.
Bodytrack. Bodytrack uses an annealed particle filter to track the
movement of specific parts of a human body (head, torso, arms,
and legs) as a person moves through a scene [12]. At each input
video frame bodytrack starts with a probabilistic model of the po-
sition of the body from the previous frame. This model consists of
a weighted set of particles. Each particle consists of a set of angles
between body parts that together specify a body pose. Each parti-
cle is assigned a weight (a likelihood that it accurately represents
the current body pose). The goal of the computation is to com-
pute a new model of the body in the current frame as a weighted
average of the particles. Bodytrack starts with the model from the
previous frame, then refines the model by iterating through mul-
tiple annealing layers. At each annealing layer it processes each
particle to create a representation of the body position and location
as a set of cylinders, each of which represents a specific body part.

It then compares this representation to image processing data from
the current frame, then uses the comparison to update the weight of
the corresponding particle.

The Update loop performs the annealing steps. Because these
steps are designed to improve the accuracy of the model, we iden-
tify this loop as an instance of the Iterative Improvement global
pattern (even though it is possible for an individual step to produce
a slightly less accurate model). Perforating this loop causes body-
track to perform fewer annealing steps and produce a potentially
less accurate model more efficiently.

The ImageErrorInside, ImageErrorEdge, and InsideError loops
compute a metric that characterizes how closely the body pose for
a given particle matches the observed image data. These loops se-
lect a number of sample points along the edges and interiors of
the cylinders that represent the body position. We identify these
loops as instances of the Search Metric for Selection pattern — they
compute values that measure how closely the particle matches the
image data. Two of these loops are instances of the Ratio local pat-
tern (which computes the ratio of two sums [25]). The third is an
instance of the Sum local pattern. Perforating these loops causes
bodytrack to consider only a subset of the sample points when it
computes the metric. The result is a more efficiently computable
but potentially less accurate metric.

The IntersectingCylinders loop iterates over all pairs of cylin-
ders in a given particle to compute if any of the pairs intersect. If
so, bodytrack removes the particle from the model (and may po-
tentially replace it with a new particle). We identify this loop as an
instance of the Search Metric for Filtering pattern because it com-
putes a simple metric (either the particle is valid or invalid). We
also identify this loop as an instance of the Search Space Enumera-
tion pattern because it enumerates all pairs of cylinders. Perforating
this loop causes bodytrack to consider only a subset of the pairs of
cylinders. The result is that bodytrack may consider a particle to be
valid even though it represents an unrealistic body pose. Bodytrack
will therefore keep the particle in the model instead of filtering it
out. Because these particles represent unrealistic positions, they
will typically be given little or no weight in the model and will
therefore have little or no effect on the accuracy. Note that this ef-
fect may actually decrease the performance (although we observed
little or no impact on the performance or accuracy in practice).
Swaptions. Swaptions uses Monte Carlo simulation to price a port-
folio of swaptions. Each iteration of the HJM_Swaption_Blocking
loop computes a single Monte-Carlo sample. Each complete exe-
cution of this loop computes the price of a single swaption. Perfo-
rating this loop causes swaptions to compute each swaption price
with fewer Monte-Carlo samples. Because of the way the compu-
tation is coded, the perforation produces prices that are predictably
biased by the perforation rate. The system therefore uses extrapo-
lation (as described in [31]) to correct the bias.

The HJM_SimPath_Forward_Blocking loop updates the matrix rep-
resenting the path of the forward interest rate. This matrix is later
used to calculate the swaption price. Perforating the computation
leaves the skipped matrix elements at their initial value of 0. The
Discount_Factors_Blocking loop updates a data structure contain-
ing discount factors used to compute the price of the swaptions.
Perforating the computation leaves the skipped elements at their
initial value of 1. Our results show that both of these perforations
have minimal impact on the accuracy of the computation.
Ferret. Given a query image, ferret performs a content-based simi-
larity search to return the N images in its image database most sim-
ilar to the query image. Ferret first decomposes the query image
into a set of segments, extracts a feature vector from each segment,
indexes its image database to find candidate similar images, ranks

the candidate images by measuring the distance between the query
image and the candidate images, then returns the highest ranked im-
ages. The computation has two main phases. The first phase uses
an efficient hash-based technique to retrieve a fixed-length (dou-
ble the number of requested images) list of likely candidate images
from the database. The second phase performs a more accurate
comparison between the retrieved images and the query image.

The LSH_query_bootstrap loops execute as part of the first phase.
The first two loops iterate over lists of images indexed in selected
hash buckets to extract the set of candidate images from the database.
Perforating these loops causes ferret to skip some of these images
so that they are not considered during the subsequent search (these
images will therefore not appear in the search result). We identify
these loops as instances of the Search Space Enumeration pattern
because they iterate over (part of) the search space.

The remaining LSH_query_bootstrap loop finds where to insert
the current candidate image in the fixed-length sorted list of search
results. Perforating this loop may cause the candidate image to
appear in the list out of order. Because the second phase further
processes the images in this list, the final set of retrieved images is
presented to the user in sorted order.

The emd loop executes as part of the second phase. This loop
computes the earth mover distance metric between the query image
and the current candidate image from the image database. Because
ferret uses this metric to select the most desirable images to return,
we identify the loop as an instance of the Search Metric for Selec-
tion pattern. This metric is also used for the final sorting of the
images according to desirability. Interestingly enough, this search
metric is implemented as an instance of the Iterative Improvement
pattern – it improves the distance estimate until it obtains an opti-
mal distance measure or exceeds a maximum number of iterations.
Perforating this loop creates a new, more efficient, but less accurate
metric. As a result, the program may return a different set and/or
ordering of images to the user.
Canneal. Canneal uses simulated annealing to place and route an
input netlist with the goal of minimizing the total wire length. The
reload loop traverses the state vector for the Mersenne twister ran-
dom number generator to reinitialize the vector. For our set of
inputs, the resulting change in the generated sequence of random
numbers causes canneal to execute marginally more efficiently.
Blackscholes. The experimental results show that it is possible to
perforate the outer loop in bs_thread without changing the output
at all. Further investigation reveals that this loop simply repeats the
same computation multiple times and was apparently added to the
benchmark to increase the workload.
Streamcluster. Streamcluster partitions sets of points into clusters,
with each cluster centered around one of the points. Each cluster-
ing consists of a set of points representing the cluster centers. The
goal is to find a set of cluster centers that minimizes the inter- and
intra-cluster distances. Streamcluster uses a version of the facil-
ity location algorithm to find an approximately optimal clustering.
The algorithm contains a while loop that executes a sequence of
clustering rounds, each of which attempts to improve the clustering
from the previous round. The while loop terminates if a round fails
to generate a clustering with significantly improved cost.

The pFL loop executes once per round. Each iteration of this loop
generates (by adding a randomly chosen new candidate cluster cen-
ter to the current set of cluster centers) and evaluates a new candi-
date clustering. If this candidate clustering improves on the current
clustering, the loop body updates the current clustering (optionally
merging some of the clusters). We identify this loop as an instance
of both the Search Space Enumeration pattern (because it iterates

over a part of the search space of candidate clusterings) and the It-
erative Improvement pattern (because it uses the current clustering
to generate improved clusterings). Perforating the pFL loop there-
fore causes streamcluster to consider fewer candidate clusterings
per round. The result is that streamcluster performs fewer attempts
to improve the clustering before the next round termination check,
which may in turn cause streamcluster to produce a less desirable
clustering more efficiently.

We note that the following comment appears in the source code
above the definition of the constant (ITER) that controls the number
of iterations of the pFL loop:

/* higher ITER --> more likely to get correct number of centers */
/* higher ITER also scales the running time almost linearly */

This comment reflects the fact that the number of iterations of the
pFL loop controls a performance vs. accuracy tradeoff (which is
not exposed to the user of the application). In effect, the perforation
space exploration algorithm rediscovers this tradeoff.

The first pgain loop calculates the partial cost of a candidate
clustering by computing sums of distances between data points and
the new cluster center. It also marks the data points that would be
assigned to the new cluster center. The second pgain loop uses the
computed partial sums to compute the total cost of the candidate
clustering. We identify these loops as instances of the Search Met-
rics for Selection (because the computed costs are used to select
desirable clusterings) and Termination (because the facility loca-
tion algorithm uses this cost as a measure of progress, and stops if
the progress is too small) pattern. Perforating these loops produces
a less accurate but more efficiently computable cluster cost met-
ric. We also identify the first pgain loop as an instance of the Data
Structure Update pattern. Perforating this loop may leave some of
the data points assigned to an old cluster, even though these points
should be assigned to the newly opened cluster.

The dist loop computes the distance between two points. We
identify this loop as an instance of the Search Metric for Selection
and Termination pattern because it is used to compute candidate
clustering costs. It is also an instance of the Sum local pattern.
Perforating this loop causes streamcluster to compute the distance
between points using a subset of the coordinates of the points. The
result is a more efficiently computable but less accurate distance
metric.

8. RELATED WORK
Trading accuracy for other benefits is a well-known technique.

It has been shown that one can trade accuracy for performance [31,
30, 13, 21, 17], robustness [31, 8], energy consumption [13, 9, 34,
31, 17], fault tolerance [9, 34, 31], and efficient parallel execu-
tion [23, 22]. We note that developers have, for years, manually
developed algorithms (most prominently, lossy compression algo-
rithms [36, 7]) that are designed to operate at a variety of points in
a performance vs. accuracy tradeoff space. In this section we focus
on more general techniques that are designed for relatively broad
classes of applications.

Loop Perforation and Task Skipping. As we have earlier dis-
cussed [25], loop perforation [16, 26] can be seen as a special case
of task skipping [31, 30]. The first publication on task skipping
used linear regression to obtain empirical statistical models of the
time and accuracy effects of skipping tasks and identified the use of
these models in purposefully skipping tasks to reduce the amount
of resources required to perform the computation while preserving
acceptable accuracy [31].

The first publication on loop perforation presented a purely em-
pirical justification of loop perforation with no formal statistical,

probabilistic, or discrete logical reasoning used to justify the trans-
formation [16]. The first statistical justification of loop perforation
used Monte Carlo simulation to evaluate the effect of perforating
local computational patterns [32]. The first probabilistic justifica-
tion for loop perforation used static analysis of local computational
patterns and also presented the use of profiling runs on representa-
tive inputs and developer specifications to obtain the required prob-
ability distribution information [24, 25].

Chaudhuri et al. present a program analysis for automatically
determining whether a function is continuous [10]. The reasoning
is deterministic and worst-case. An extension of this research intro-
duces a notion of function robustness, and, under an input locality
condition, presents an approximate memoization approach similar
to loop perforation [11]. For a special case when the inputs form
a Gaussian random walk and the loop body is a robust function,
the paper derives a probabilistic bound to provide a justification for
applying loop perforation.

These previous analyses (with the exception of the empirical task
skipping analysis [31, 30]) all focus on local computations and do
not address the effect of loop perforation on global end-to-end ap-
plication performance and accuracy. The present paper, in contrast,
provides empirical results that characterize the global performance
and accuracy effects of loop perforation for our set of benchmarks.
It also identifies a set of global computational patterns and explains
why these patterns interact well with loop perforation. We antici-
pate that others may be able to identify these or similar patterns in
other applications and use these patterns to justify the application
of loop perforation to these applications.

Multiple Implementations. Researchers have developed several
systems that allow programmers to provide multiple implementa-
tions for a given piece of functionality, with different implemen-
tations potentially occupying different points in the performance
vs. accuracy tradeoff space. Such systems include Petabricks [4],
Green [5], Eon [33], and PowerDial [17]. Petabricks is a paral-
lel language and compiler that developers can use to provide alter-
nate implementations of a given piece of functionality. Green also
provides constructs that developers can use to specify alternate im-
plementations. The alternatives typically exhibit different perfor-
mance and accuracy characteristics. Petabricks and Green both
contain algorithms that explore the tradeoff space to find points
with desirable performance and accuracy characteristics.

Eon [33] is a coordination language for power-aware computing
that enables developers to adapt their algorithms to different energy
contexts. In a similar vein, energy-aware adaptation for mobile ap-
plications [13], adapts to changing system demands by dynamically
adjusting application input quality. For example, to save energy the
system may switch to a lower quality video input to reduce the
computation of the video decoder.

PowerDial exploits multiple implementations without requiring
the developer to explicitly modify the application [17]. Instead,
PowerDial converts existing command-line parameters into data
structures that a control system can manipulate to dynamically adapt
to changes (such as load and clock rate) in the underlying comput-
ing platform.

In contrast to systems such as Petabricks, Green, Eon, and Pow-
erDial, loop perforation can find accuracy vs. performance trade-
offs even when none are directly exposed in the application. Instead
of requiring the developer to provide multiple implementations of
the same functionality or find and annotate potential optimization
opportunities, our system generates and explores a performance vs.
accuracy tradeoff space to find multiple potentially desirable points
in the tradeoff space. Other systems have provided mechanisms
that are designed to allow developers to identify loops that perform

iterative refinement [5, 4]. Loop perforation, in contrast, can au-
tomatically discover instances of a range of computational patterns
that include, but are not limited to, iterative refinement.

Autotuners. Autotuners explore a range of equally accurate im-
plementation alternatives to find the alternative or combination of
alternatives that deliver the best performance on the current com-
putational platform [37, 39, 14]. Researchers have also developed
APIs that an application can use to expose variables for external
control (by, for example, the operating system) [29, 19, 35]. Loop
perforation, in contrast, operates on applications written in standard
languages to find perforations which improve performance while
maintaining acceptable, but not necessarily identical, accuracy.

9. CONCLUSION
Standard approaches for obtaining applications that can trade ac-

curacy in return for enhanced performance have focused on the
manual development of new algorithms for specific applications.
Our results show that loop perforation can effectively augment a
range of applications with the ability to operate at various attractive
points in the tradeoff space, with perforated applications often able
to deliver significant performance improvements (typically around
a factor of two reduction in running time) at the cost of a small
(typically 5% or less) decrease in the accuracy.

We acknowledge that loop perforation is not appropriate for all
applications. But within its target class of applications, results from
our implemented loop perforation system show that it can dramati-
cally increase the ability of applications to trade off accuracy in re-
turn for other benefits such as increased performance and decreased
energy consumption.

10. REFERENCES
[1] Xiph.org.
[2] D. N. A. Asuncion. UCI machine learning repository, 2007.
[3] E. Amigo, J. Gonzalo, and J. Artiles. A comparison of extrinsic

clustering evaluation metrics based on formal constraints. In
Information Retrieval Journal. Springer Netherlands, July 2008.

[4] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,
and S. Amarasinghe. Petabricks: A language and compiler for
algorithmic choice. In PLDI ’09, Jun 2009.

[5] W. Baek and T. Chilimbi. Green: a framework for supporting
energy-conscious programming using controlled approximation. In
PLDI ’10, 2010.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In PACT ’08,
Oct 2008.

[7] K. Brandenburg. MP3 and AAC explained. In AES 17th International
Conference on High-Quality Audio Coding, 1999.

[8] S. Chakradhar, A. Raghunathan, and J. Meng. Best-Effort Parallel
Execution Framework for Recognition and Mining Applications. In
IPDPS, 2009.

[9] L. Chakrapani, K. Muntimadugu, A. Lingamneni, J. George, and
K. Palem. Highly energy and performance efficient embedded
computing through approximately correct arithmetic: A
mathematical foundation and preliminary experimental validation. In
International conference on Compilers, architectures and synthesis
for embedded systems, 2008.

[10] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity analysis
of programs. In POPL ’10.

[11] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour.
Proving Programs Robust. In FSE ’11, 2011.

[12] J. Deutscher and I. Reid. Articulated body motion capture by
stochastic search. International Journal of Computer Vision, 2005.

[13] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile
applications. In SOSP ’99.

[14] M. Frigo and S. G. Johnson. FFTW: An adaptive software
architecture for the FFT. In Proc. 1998 IEEE Intl. Conf. Acoustics
Speech and Signal Processing, pages 1381–1384.

[15] J. Hartigan and M. Wong. A k-means clustering algorithm. Journal
of the Royal Statistical Society C, 28:100–108, 1979.

[16] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and
M. Rinard. Using Code Perforation to Improve Performance, Reduce
Energy Consumption, and Respond to Failures . Technical Report
MIT-CSAIL-TR-2009-042, MIT, Sept. 2009.

[17] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal,
and M. Rinard. Dynamic Knobs for Responsive Power-Aware
Computing. In ASPLOS ’11, March 2011.

[18] M. Kalos and P. Whitlock. Monte Carlo Methods. Wiley-VCH, 2008.
[19] P. Keleher, J. Hollingsworth, and D. Perkovic. Exposing application

alternatives. In ICDCS ’99.
[20] C. Lattner and V. Adve. LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation. In CGO ’04.
[21] J. Meng, A. A. Raghunathan, and S. B. Chakradhar. Exploiting the

Forgiving Nature of Applications for Scalable Parallel Execution. In
IPDPS, 2010.

[22] S. Misailovic, D. Kim, and M. Rinard. Automatic Parallelization
with Statistical Accuracy Bounds. Technical Report
MIT-CSAIL-TR-2010-007, MIT, 2010.

[23] S. Misailovic, D. Kim, and M. Rinard. Parallelizing Sequential
Programs With Statistical Accuracy Test. Technical Report
MIT-CSAIL-TR-2010-038, 2010.

[24] S. Misailovic, D. Roy, and M. Rinard. Probabilistic and Statistical
Analysis of Perforated Patterns. Technical Report
MIT-CSAIL-TR-2011-003, MIT, 2011.

[25] S. Misailovic, D. Roy, and M. Rinard. Probabilistically Accurate
Program Transformations. In SAS ’11, 2011.

[26] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of
Service Profiling. In ICSE, 2010.

[27] N. Nethercote and J. Seward. Valgrind A Program Supervision
Framework. Electronic Notes in Theoretical Computer Science, 2003.

[28] P. Pillai and K. Shin. Real-time dynamic voltage scaling for
low-power embedded operating systems. In SOSP ’01, page 102,
2001.

[29] R. Ribler, J. Vetter, H. Simitci, and D. Reed. Autopilot: adaptive
control of distributed applications. In High Performance Distributed
Computing, July 1998.

[30] M. Rinard. Using early phase termination to eliminate load
imbalances at barrier synchronization points. In OOPSLA ’07.

[31] M. Rinard. Probabilistic accuracy bounds for fault-tolerant
computations that discard tasks. In Proceedings of the 20th annual
international conference on Supercomputing, 2006.

[32] M. Rinard, H. Hoffmann, S. Misailovic, and S. Sidiroglou. Patterns
and statistical analysis for understanding reduced resource
computing. In Onward! ’10.

[33] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D. Corner, and
E. D. Berger. Eon: a language and runtime system for perpetual
systems. In SenSys ’07.

[34] P. Stanley-Marbell and D. Marculescu. Deviation-Tolerant
Computation in Concurrent Failure-Prone Hardware. Technical
Report ESR-2008-01, Eindhoven University of Technology, January
2008.

[35] C. Tapus, I. Chung, and J. Hollingsworth. Active harmony: Towards
automated performance tuning. In Supercomputing, ACM/IEEE 2002
Conference, 2002.

[36] G. Wallace. The JPEG still picture compression standard. IEEE
Transactions on Consumer Electronics, 1991.

[37] R. Whaley and J. Dongarra. Automatically tuned linear algebra
software. In ACM/IEEE conference on Supercomputing (CDROM).

[38] x264. http://www.videolan.org/x264.html.
[39] J. Xiong, J. Johnson, R. W. Johnson, and D. Padua. SPL: A language

and compiler for DSP algorithms. In PLDI ’01.

	Introduction
	Loop Perforation
	Experimental Results
	Scope
	Why Loop Perforation Works
	Uses of Loop Perforation
	Contributions

	Perforation Transformation
	Accuracy Metric
	Perforation Exploration
	Criticality Testing
	Perforation Space Exploration Algorithms

	Benchmarks and Inputs
	Experimental Results
	Criticality Testing Results
	Perforation Space Exploration Results
	Training and Production Results

	Perforation Evaluation
	Related Work
	Conclusion
	References

