
Dynamic Knobs for Responsive Power-Aware Computing

Henry Hoffmann∗ Stelios Sidiroglou∗ Michael Carbin Sasa Misailovic
Anant Agarwal Martin Rinard

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

{hank,stelios,mcarbin,misailo,agarwal,rinard}@csail.mit.edu

ABSTRACT
We present PowerDial, a system for dynamically adapting applica-
tion behavior to execute successfully in the face of load and power
fluctuations. PowerDial transforms static configuration parameters
into dynamic knobs that the PowerDial control system can manip-
ulate to dynamically trade off the accuracy of the computation in
return for reductions in the computational resources that the appli-
cation requires to produce its results. These reductions translate
directly into performance improvements and power savings.

Our experimental results show that PowerDial can enable our
benchmark applications to execute responsively in the face of power
caps that would otherwise significantly impair responsiveness. They
also show that PowerDial can significantly reduce the number of
machines required to service intermittent load spikes, enabling re-
ductions in power and capital costs.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability, and ser-
viceability

General Terms
Performance, Reliability, Experimentation

Keywords
Accuracy-aware Computing, Power-aware Computing, Self-aware
Systems

1. INTRODUCTION
Many applications exhibit a trade-off between the accuracy of the

result that they produce and the power and/or time that they require
to produce that result. Because an application’s optimal operating
point can vary depending on characteristics of the environment in

∗Henry Hoffmann and Stelios Sidiroglou contributed equally to the
research presented in this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASPLOS’11, March 5–11, 2011, Newport Beach, California, USA.
Copyright 2011 ACM 978-1-4503-0266-1/11/03 ...$10.00.

which it executes (for example, the delivered computational capac-
ity of the underlying computing platform), developers often pro-
vide a static interface (in the form of configuration parameters) that
makes it possible to choose different points in the trade-off space
for different executions of the application. Configured at startup,
the application operates at the selected point for its entire execu-
tion.

But phenomena such as load fluctuations or variations in avail-
able power can change the optimal operating point of the appli-
cation as it is executing. Static configuration leaves the applica-
tion with two unappealing choices: either continue its execution
at a suboptimal point in the trade-off space (potentially impairing
properties such as responsiveness to users) or terminate its current
execution and restart at a new operating point (and incur service
interruptions as it drops its current task and restarts).

1.1 Dynamic Knobs and Adaptive Response
We present a new system, PowerDial, for dynamically adapting

the behavior of running applications to respond to fluctuations in
load, power, or any other event that threatens the ability of the un-
derlying computing platform to deliver adequate capacity to satisfy
demand:

• Dynamic Knob Insertion: PowerDial uses dynamic influ-
ence tracing to transform static application configuration pa-
rameters into dynamic control variables stored in the address
space of the running application. These control variables are
made available via a set of dynamic knobs that can change the
configuration (and therefore the point in the trade-off space
at which it executes) of a running application without inter-
rupting service or otherwise perturbing the execution.

• Dynamic Knob Calibration: PowerDial explores the un-
derlying accuracy versus performance trade-off space (orig-
inally available via the configuration parameters) to charac-
terize the accuracy and performance of each dynamic knob
setting. It uses a quality of service (QoS) metric to quantify
the accuracy of each setting.

• Dynamic Knob Control: PowerDial is designed for appli-
cations that are deployed to produce results at a target fre-
quency (with performance measured as the time between re-
sults). It uses the Application Heartbeats framework [25] to
dynamically monitor the application. A control system based
on Heartbeats is used to maintain performance [35]. When
the performance either drops below target (i.e., the time be-
tween results exceeds a given threshold) or rises above tar-
get (i.e., the time between results drops below the threshold),
the PowerDial system uses the calibrated dynamic knobs to
move the application to a more appropriate point in its trade-
off space (the new point may, for example, give up some

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/9318538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

accuracy in return for increased performance and decreased
power consumption). The goal is to maximize accuracy while
preserving responsiveness in the face of fluctuations in the
capabilities of the underlying computing platform.

1.2 Summary of Experimental Results
We evaluate the ability of PowerDial to control the behavior of

four benchmark applications (the x264 video encoder, the body-
track human body tracking application, the swaptions financial anal-
ysis application, and the swish++ search engine) dynamically in
environments with fluctuating load and power characteristics. Our
results show:

• Trade-Off Space: All of the applications exhibit a large vi-
able trade-off space — three of the applications (x264, body-
track, and swaptions) can execute from four to six times faster
than their baseline (which defines the default quality of ser-
vice) with acceptable quality of service losses. swish++ can
execute approximately 1.5 times faster than its baseline (at
the cost of dropping lower-ranked search results).

• Power Capping: Systems often respond to power caps (re-
ductions in the delivered power imposed, for example, in re-
sponse to cooling system failures) by dynamic voltage/fre-
quency scaling (DVFS) (reducing the frequency and voltage
at which the system operates [51]). The ensuing reduction in
the delivered computational capacity of the system can make
it difficult or impossible for applications to continue to de-
liver responsive service.
Our results show that PowerDial enables applications to adapt
effectively as a power cap (which reduces the processor fre-
quency from 2.4 GHz to 1.6 GHz) is first imposed, then
lifted. When the power cap is imposed, PowerDial preserves
responsiveness by moving the applications to new Pareto-
optimal points with less computational demands and slightly
lower quality of service. When the power cap is lifted, Pow-
erDial restores the original quality of service by moving the
applications back to the baseline.

• Peak Load Provisioning: Systems are often provisioned to
service the peak anticipated load. Common workloads often
contain intermittent load spikes [10]. The system therefore
usually contains idle machines that consume power but per-
form no useful work.
Our results show that PowerDial can reduce the number of
machines required to successfully service time-varying work-
loads. When a load spike overwhelms the ability of the sys-
tem to service the load with the baseline application config-
uration, PowerDial preserves responsive performance by dy-
namically reconfiguring the application to use less computa-
tion to produce (slightly) lower quality results. Specifically,
our results show that PowerDial can make it possible to re-
duce (by a factor of 3/4 for x264, bodytrack, and swaptions
and by a factor of 1/3 for swish++) the number of machines
required to provide responsive service in the face of inter-
mittent load spikes. The system provides baseline quality of
service for the vast majority of tasks; during peak loads, the
system provides acceptable quality of service and (at most)
negligible performance loss.

PowerDial is not designed for all applications — it is instead de-
signed for applications that 1) have viable performance versus QoS
trade-off spaces and (as is evident in the availability of appropri-
ate configuration parameters) have been engineered to operate suc-
cessfully at multiple points within those spaces and 2) operate in
contexts where they must satisfy responsiveness requirements even

in the face of fluctuations in the capacity of the underlying comput-
ing platform. In this paper we focus on fluctuations in power and
load, but PowerDial can enable applications to adapt dynamically
to any change that affects the computational capacity delivered to
the application.

1.3 Contributions
This paper makes the following contributions:

• Dynamic Knobs: It presents the concept of dynamic knobs,
which manipulate control variables in the address space of a
running application to dynamically change the point in the
underlying performance versus quality of service trade-off

space at which the application executes.
• PowerDial: It presents PowerDial, a system that transforms

static configuration parameters into calibrated dynamic knobs
and uses the dynamic knobs to enable the application to op-
erate successfully in the face of fluctuating operating condi-
tions (such as load spikes and power fluctuations).

• Analysis and Instrumentation: It presents the PowerDial
analysis and instrumentation systems, which dynamically an-
alyze the application to find and insert the dynamic knobs.

• Control: It presents the PowerDial control system, which
uses established control techniques combined with a novel
actuation strategy to automatically maintain the application’s
desired performance while minimizing quality of service loss.

• Resource Requirements: It shows how to use dynamic knobs
to reduce the number of machines required to successfully
service peak loads and to enable applications to tolerate the
imposition of power caps. It analyzes the resulting reduc-
tions in the amount of resources required to acquire and op-
erate a computational platform that can successfully deliver
responsive service in the face of power and load fluctuations.

• Experimental Results: It presents experimental results char-
acterizing the trade-off space that dynamic knobs make avail-
able in our benchmark applications. It also presents results
demonstrating PowerDial’s ability to enable automatic, dy-
namic adaptation of applications in response to fluctuations
in system load and power.

2. DYNAMIC KNOBS
Dynamic knobs are designed for applications that 1) have static

configuration parameters controlling performance versus QoS trade-
offs and 2) use the Application Heartbeats API [25] (our system can
automatically insert the required API calls, see Section 2.3). These
applications typically exhibit the following general computational
pattern:

• Initialization: During initialization the application parses
and processes the configuration parameters, then computes
and stores the resulting values in one or more control vari-
ables in the address space of the running application.

• Main Control Loop: The application executes multiple it-
erations of a main control loop. At each iteration it emits
a heartbeat, reads the next unit of input, processes this unit,
produces the corresponding output, then executes the next it-
eration of the loop. As it processes each input unit, it reads
the control variables to determine which algorithm to use.

With this computational pattern, the point in the performance
versus QoS trade-off space at which the application executes is
determined by the configuration parameters when the application
starts and does not change during its execution. A goal of Power-
Dial, as illustrated in Figure 1, is to augment the application with

the ability to dynamically change the point in the trade-off space at
which it is operating. At a high level, PowerDial accomplishes this
goal as follows:
• Parameter Identification: The user of the program identi-

fies a set of configuration parameters and a range of settings
for each such parameter. Each combination of parameter set-
tings corresponds to a different point in the performance ver-
sus QoS trade-off space.

• Dynamic Knob Identification: For each combination of pa-
rameter settings, PowerDial uses dynamic influence tracing
(which traces how the parameters influence values in the run-
ning application) to locate the control variables and record
the values stored in each control variable.

• Dynamic Knob Calibration: Given a set of representative
inputs and a QoS metric, PowerDial executes a training run
for each input and combination of parameter settings. For
each training run it records performance and QoS informa-
tion. It then processes this information to identify the Pareto-
optimal points in the explored performance versus QoS trade-
off space.

• Dynamic Knob Insertion: PowerDial inserts callbacks that
the PowerDial control system can use to set the control vari-
ables to values previously recorded during dynamic knob
identification, thereby moving the application to a different
Pareto-optimal point in the performance versus QoS trade-
off space. Subsequent iterations of the main control loop will
read the updated values in the control variables to (in effect)
process further input as if the configuration parameters had
been set to their corresponding different settings at applica-
tion startup.

The result is an application that enables the PowerDial control
system to dynamically control the point in the performance versus
QoS trade-off space at which the application executes. In standard
usage scenarios PowerDial is given a target heart rate. If the appli-
cation’s dynamically observed heart rate is slower than the target
heart rate, PowerDial uses the calibrated dynamic knobs to move
the application to a new point in the trade-off space with higher
performance at the cost, typically small, of some QoS. If the ob-
served heart rate is higher than the target, PowerDial moves the
application to a new point with lower performance and better QoS.

Parameter
Identification

Inputs

Original
Program

Output
Abstraction

User Inputs

Dynamic
Knob

Identification

Dynamic
Knob

Calibration

Dynamic
Knob

Runtime
Control

PowerDial System

Dynamic
Application

Output

Figure 1: Dynamic Knob work flow.

2.1 Dynamic Knob Identification
For PowerDial to transform a given set of configuration parame-

ters into dynamic knobs, it must identify a set of control variables
that satisfy the following conditions:

• Complete and Pure: All variables whose values are derived
from configuration parameters during application startup (be-
fore the application emits its first heartbeat) are control vari-
ables. The values of control variables are derived only from
the given set of configuration parameters and not from other
parameters.

• Relevant and Constant: During executions of the main con-
trol loop, the application reads but does not write the values
of the control variables.

PowerDial uses influence tracing [12, 20] to find the control vari-
ables for the specified configuration parameters. For each combi-
nation of configuration parameter settings, PowerDial executes a
version of the application instrumented to trace, as the application
executes, how the parameters influence the values that the appli-
cation computes. It uses the trace information to find the control
variables and record their values, applying the above conditions as
follows:
• Complete and Pure Check: It finds all variables that, before

the first heartbeat, contain values influenced by the specified
configuration parameters. It checks that these values are in-
fluenced only by the specified configuration parameters.

• Relevance Check: It filters out any variables that the ap-
plication does not read after the first heartbeat — the values
of these variables are not relevant to the main control loop
computation.

• Constant Check: It checks that the execution does not write
a control variable after the first heartbeat.

Finally, PowerDial checks that the control variables are consistent,
i.e., that the different combinations of parameter settings all pro-
duce the same set of control variables. If the application fails any
of these checks, PowerDial rejects the transformation of the speci-
fied configuration parameters into dynamic knobs.

For each combination of parameter settings, PowerDial records
the value of each control variable. The PowerDial control system
uses this information to automatically change the values of the con-
trol variables at runtime. Note that because PowerDial uses a dy-
namic influence analysis to find the control variables, it is possi-
ble for unexercised execution paths to violate one or more of the
above conditions. The influence analysis also does not trace indi-
rect control-flow or array index influence. To enable a developer
to (if desired) check that neither of these potential sources of im-
precision affects the validity of the control variables, PowerDial
produces a control variable report. This report lists the control vari-
ables, the corresponding configuration parameters from which their
values are derived, and the statements in the application that access
them. We have examined the reports for all of our benchmark ap-
plications (see Section 4) and verified that all of the automatically
computed control variables are valid.

Our influence tracing system is implemented as a static, source-
based instrumentor for C and C++. It is built on the LLVM com-
piler framework [12, 30] and inserts code to trace the flow of in-
fluence through the values that the application computes. For each
value, it computes the configuration parameters that influenced that
value. The currently implemented system supports control vari-
ables with datatypes of int, long, float, double, or STL vector. It
augments the production version of the application with calls to the
PowerDial control system to register the address of each control
variable and read in the previously recorded values corresponding
to the different dynamic knob settings. This mechanism gives the
PowerDial control system the information it needs to apply a given
dynamic knob setting.

2.2 Dynamic Knob Calibration
In this step, PowerDial explores the performance versus QoS

trade-off space available to the application via the specified con-
figuration parameters. The user provides an application, a set of
representative inputs, a set of specified configuration parameters,
a range of values for each parameter, and a QoS metric. Given

these values, PowerDial produces, for each combination of param-
eter settings, a specification of the point in the trade-off space to
which the parameter settings take the application. This point is
specified relative to the baseline performance and QoS of the pa-
rameter setting that delivers the highest QoS (which, for our set of
benchmark applications, is the default parameter setting).

The PowerDial calibrator executes all combinations of the rep-
resentative inputs and configuration parameters. For each parame-
ter combination it records the mean (over all representative inputs)
speedup of the application. It computes the speedup as the execu-
tion time of the application running with the default parameter set-
tings divided by the execution time of the application with the cur-
rent parameter combination. In a separate instrumented execution,
it also records the values of the control variables (see Section 2.1).

For each combination of configuration parameters PowerDial also
records the mean (over all representative inputs) QoS. The QoS
metric works with a user-provided, application-specific output ab-
straction which, when provided with an output from the program,
produces a set of numbers o1, . . . , om. The output abstraction typi-
cally extracts relevant numbers from the output or computes a mea-
sure of output quality (such as, for example, the peak signal-to-
noise ratio of the output). Given the output abstraction from the
baseline execution o1, . . . , om and an output abstraction ô1, . . . , ôm

from the execution with the current parameter settings, we compute
the QoS loss as the distortion [43]:

qos =
1
m

m∑
i=1

wi

∣∣∣∣∣oi − ôi

oi

∣∣∣∣∣ (1)

Here each weight wi is optionally provided by the user to capture
the relative importance of the ith component of the output abstrac-
tion. Note that a qos of zero indicates optimal QoS, with higher
numbers corresponding to worse QoS. PowerDial supports caps on
QoS loss — if a specific parameter setting produces a QoS loss that
exceeds a user-specified bound, the system can exclude the corre-
sponding dynamic knob setting from further consideration.

2.3 The PowerDial Control System

Knob 1

0 100

50
7525

Knob 2

0 100

50
7525

ActuatorController Feedback

Application

Perfomance
Goal

Figure 2: The PowerDial Control System.

The PowerDial control system automatically adjusts the dynamic
knobs to appropriately control the application. As shown in Fig-
ure 2, the PowerDial control system contains the following com-
ponents: a feedback mechanism that allows the system to monitor
application performance, a control component which converts the
feedback into a desired speedup, and an actuator which converts
the desired speedup into settings for one or more dynamic knobs.

2.3.1 Feedback Mechanism
PowerDial uses the Application Heartbeats framework as its feed-

back mechanism [25]. In general, PowerDial can work with any
application that has been engineered using this framework to emit
heartbeats at regular intervals and express a desired performance in
terms of a target minimum and maximum heart rate. For our set of

benchmark applications, the PowerDial instrumentation system au-
tomatically inserts the API calls that emit heartbeats — it profiles
each application to find the most time-consuming loop (in all of our
applications this is the main control loop), then inserts a heartbeat
call at the top of this loop. In general, the PowerDial control system
is designed to work with any target minimum and maximum heart
rate that the application can achieve. For our experiments (see Sec-
tion 4), the minimum and maximum heart rate are both set to the
average heart rate measured for the application using the default
configuration parameters.

We use Application Heartbeats as a feedback mechanism for sev-
eral reasons. First, this interface provides direct measurement of
a specific application’s performance, obviating the need to infer
this measure from low-level metrics such as hardware performance
counters or high-level metrics such as total system throughput. Sec-
ond, Application Heartbeats are applicable to a variety of applica-
tions as they are more general than other common metrics such
as flop rate (which is not designed to measure the performance of
integer applications) and instructions per clock (which is not de-
signed to measure the true performance of I/O bound applications
or applications lacking instruction-level parallelism). Third, the in-
terface is simple and can easily be customized by users who want to
control the placement of heartbeat calls or the target performance.
Finally, heartbeat-enabled applications can be controlled using a
general and extensible control framework.

2.3.2 Control Strategy
PowerDial employs an existing, general control strategy which

can work with any application that uses Application Heartbeats as
a feedback mechanism [35]. This controller monitors the heartbeat
data and determines both when to speed up or slow down the ap-
plication as well as how much speedup or slowdown to apply. As
described in [35], the control system models application perfor-
mance as

h(t + 1) = b · s(t) (2)

where h(t) is the application’s heart rate at time t, b is the speed of
the application when all knobs are set to their baseline values, and
s(t) is the speedup applied at time t.

Given this model of application behavior, the control system
computes the speedup s(t) to apply at time t as

e(t) = g − h(t) (3)

s(t) = s(t − 1) +
e(t)
b

(4)

where e(t) is the error at time t and g is the target heart rate.
We demonstrate several properties of the steady-state behavior

for the system defined in Equations 3–2. First, we show that the
system converges, i.e., the performance reaches the desired heart
rate, g. Second, we show that it is stable and does not oscillate
around the desired heart rate. Third we show that the convergence
time is bounded and fast.

To demonstrate these properties, we use standard control theo-
retic techniques and analyze the system in the Z-domain [24]. To
begin, we compute the Z-transforms F(z) and G(z) of the systems

defined in Equations 4 and 2, respectively as1:

F(z) =
S (z)
E(z)

=
z

b(z − 1)
(5)

G(z) =
H(z)
S (z)

=
b
z

(6)

Using Equations 5 and 6 we compute the transfer function Floop(z)
of the closed-loop system which converts the desired heart rate, g
into the target heart rate h as

Floop(z) =
F(z)G(z)

1 + F(z)G(z)
(7)

Floop(z) =
1
z

(8)

We use standard techniques [24, 35] to demonstrate the desired
properties of the system whose Z-transform is given by Equation 8.
To show that the system converges, we show that it has a unit steady
state gain, i.e., Floop(1) = 1. Clearly, when z = 1, Floop(z) = 1, so
the system converges to the desired heart rate. To demonstrate that
the system is stable and does not oscillate, we must ensure that the
poles2 of Floop(z) are less than 1. Floop(z) has a single pole p at
0, so it is stable and will not oscillate. The time tc required for
the system to converge is estimated as tc ≈ −4/ log(|pd |), where
pd is the dominant pole of the system [24]. As the only pole for
Floop(z) is p = 0, the system will converge almost instantaneously.
In practice, the convergence time will be limited by a time quantum
used to convert the continuous speedup signal into a discrete knob
setting as described in the next section.

2.3.3 Actuation Policy
The PowerDial actuator must convert the speedup specified by

the controller into a dynamic knob setting. The controller is a con-
tinuous linear system, and thus, the actuator must convert the con-
tinuous signal into actions that can be realized in the application’s
discrete, potentially non-linear, dynamic knob system. For exam-
ple, the controller might specify a speedup of 1.5 while the smallest
speedup available through a knob setting is 2. To resolve this issue,
the actuator computes a set of actions to take over a time quantum.
We heuristically establish the time quantum as the time required
to process twenty heartbeats. In the example, the actuator would
run with a speedup of 2 for half the time quantum and the default
speedup of 1 for the other half. Therefore, the average speedup
over the time quantum is 1.5, the desired value.

The actuator determines which actions to take for the next time
quantum by optimizing a system of linear constraints. Let h be the
observed heart rate, while g is the target heart rate of the system.
Let smax be the maximum achievable speedup for the application
given its dynamic knobs, and let smin be the minimum speedup cor-
responding to a knob setting such that smin ≥ g/h. Let unknowns
tmax, tmin, and tde f ault correspond to the percentage of time during the
next quantum to run with the application’s knobs set to the maxi-
mum speedup, the minimum required speedup, and the default set-
tings, respectively. The following system of constraints captures

1A Z-transform converts an infinite list of values (e.g. s(t) for all
t ≥ 0) into an infinite sum. In many cases, this infinite sum has a
compact representation which is easier to analyze than the infinite
list representation.
2A pole is a point p such that limz→p F(z) = ∞.

the behaviors the actuator considers for the next time quantum.

smax · tmax + smin · tmin +
h
g
· tde f ault = 1 (9)

tmax + tmin + tde f ault ≤ 1 (10)
tmax, tmin, tde f ault ≥ 0 (11)

While there are many solutions to this system of constraints, two
are of particular interest for making power versus performance ver-
sus QoS trade-offs. First, for platforms with sufficiently low idle
power consumption (for more detail see Section 3), PowerDial sup-
ports race-to-idle execution by setting tmin = tde f ault = 0, which
forces the application to run at the highest available speedup. If
tmax < 1 the system can idle for the remaining 1 − tmax portion of
the time quantum to save power. The second solution PowerDial
considers results from setting tmax = 0 and requiring tmin + tde f ault =

1. This solution will run the application at the lowest obtainable
speedup that will enable the application to meet its heart rate tar-
get and delivers the lowest feasible QoS loss. Having determined
values for tmax, tmin, and tde f ault for the next time quantum, the Pow-
erDial controller executes the corresponding plan, then computes a
new plan when the quantum expires.

3. ANALYTICAL MODELS
Data center power consumption is experiencing significant growth.

By 2011, U.S. data centers are predicted to use 100 Billion kWh, at
a cost of $7.4 billion per year [50]. Of particular concern is the low
average data center utilization, typically around 20-30% [10, 37],
which when coupled with high idle power consumption (at idle,
current servers use about 60% of peak power), leads to significant
waste.

The combination of brief but frequent bursts of activity cou-
pled with latency requirements results in underutilized machines
remaining online. Server consolidation through the use of virtual
machines, a commonly used solution for non-critical services, can-
not react quickly enough to maintain the desired level of service [37].
Turning idle systems off (even in low power mode), has similar
problems.

To deal with idle power waste, researchers have proposed that
system components be designed to consume energy proportional to
their use [10]. Dynamic voltage and frequency scaling (DVFS) is a
power management technique commonly found in modern proces-
sors [1, 3] that demonstrates this concept.

Beyond direct energy costs, data centers also incur capital costs
(e.g. power provisioning, cooling, etc.,). Over the lifetime of the
facility, these capital costs may exceed energy costs. To reduce
such costs, researchers have proposed techniques that aim to op-
erate facilities as close to maximum power capacity as possible,
sometimes guaranteeing availability using various forms of power
capping [19, 31, 41]. Power capping throttles server performance
during utilization spikes to ensure that power budgets are satisfied.
As a consequence of power capping, applications may experience
increased latency due to the lower operating frequency. This in-
creased latency may violate latency service level agreements.

We next present several analytical models that characterize the
effectiveness of dynamic knobs in enabling applications to respond
to dynamic voltage/frequency scaling (caused, for example, by the
imposition or lifting of power caps) and in reducing the number of
machines required to maintain responsiveness in the face of inter-
mittent load spikes.
DVFS and Dynamic Knobs: Figure 3 shows how operating at
lower power states can enable systems to reduce power consump-
tion at the cost of increased latency. The area within the boxes

represents the total energy required to complete a workload. For a
task which takes time t and consumes average power of Pavg, the
total energy can be calculated as: Etask = Pavg · t. Without DVFS
(Figure 3 (a)), the workload consumes power Pnodv f s for time t1

and power Pidle for the remaining time tdelay. With DVFS (Figure 3
(b)), the consumed power is reduced to Pdv f s but the execution time
increases to t2 = t1 + tdelay. To accurately calculate DVFS energy
savings, the idle power consumed by the non-DVFS system (Pidle)
must be included. Thus the energy savings due to DVFS can be
computed as:

Edv f s = (Pnodv f s · t1 + Pidle · tdelay) − (Pdv f s · t2) (12)

For CPU-bound applications, t2 can be predicted by the change in
operating frequency as: t2 =

fnodv f s
fdv f s

· t1. We note that any power
savings here come at the cost of added latency.

Dynamic knobs can complement DVFS by allowing systems to
save power by reducing the amount of computational resources re-
quired to accomplish a given task. There are two cases to consider
depending on the idle power of the system Pidle as illustrated in
Figure 4. Figure 4(a) illustrates the first case. This case applies
to systems with low idle power consumption (i.e., small Pidle). In
this case, the best energy savings strategy is to complete the task
as quickly as possible, then return to the low-power idle state, a
strategy known as race-to-idle. Dynamic knobs can facilitate race-
to-idle operation by decreasing the amount of computational re-
sources required to complete the task (in return for some QoS loss),
thereby reducing t1. Figure 4(b) illustrates the second case, which
applies to systems with high idle power consumption (i.e., large
Pidle), common in current server class machines. In this case, dy-
namic knobs can allow the system to operate at a lower power state
for the time t2 allocated to complete the task.

In both cases the energy savings available through combining
DVFS and dynamic knobs can be calculated as:

t′1 =
t1

S (QoS)
, t′delay = tdelay + t1 −

t1

S (QoS)
(13)

E1 = Pnodv f s · t′1 + Pidle · t′delay (14)

t′2 =
t2

S (QoS)
, t′′delay = t2 −

t2

S (QoS)
(15)

E2 = Pdv f s · t′2 + Pidle · t′′delay (16)
Eelasticdv f s = min(E1, E2) (17)

Edv f s = min(Pnodv f s · t1 + Pidle · tdelay, Pdv f s · t2) (18)
Esavings = Edv f s − Eelasticdv f s (19)

where S (QoS) represents the speedup available as a function of ac-
ceptable QoS loss (i.e., the desired level of accuracy). In the power
cap scenario discussed in Section 5.4, tdelay = 0 and the control ob-
jective is to find a point that maximizes delivered quality of service
for a given constant t2.
Server Consolidation: Dynamic knobs can also enable power sav-
ings by reducing the total number of machines required to meet
peak load without increasing latency. This is achieved by increas-
ing the throughput of each individual machine (by trading QoS
for performance) thus reducing the number of machines that are
needed to service peak demand. The resulting reduction in compu-
tational resources required to service the load enables the system to
service the load spike without increasing the service time. The re-
duction in the number of machines improves server utilization dur-
ing normal operation and reduces energy wasted on idle resources.
It can also provide significant extra savings in the form of reduced
cooling costs.

Pnodvfs

Pidle

t1 tdelay

Pdvfs

t2= t1 +tdelay
(a) (b)

Figure 3: Power Consumption with DVFS

Pelastic
nodvfs

Pidle

Pelastic
dvfs Pidle

t'2 t''delay
(a) (b)

t'delayt'1

Figure 4: Power Consumption with DVFS and Dynamic Knobs

To quantify how dynamic knobs can help improve server consol-
idation, we need to examine the total work required to meet system
peak load requirements. This can be calculated as follows:

Wtotal = (Wmachine · Norig) (20)

Wtotal represents the total work, where Wmachine represents the
work per machine and Norig is the total number of machines. Let
S (QoS) be the speedup achieved as a function of the reduction in
QoS. For the default QoS (obtained with the default knob settings)
the speedup is 1. The number of machines required to meet peak
load with some loss of accuracy can be computed as:

Nnew =

⌈
Wtotal

S (QoS)
·

1
Wmachine

⌉
(21)

Here Nnew is the new, lower number of machines that can be used
to meet peak load requirements after consolidation. To measure the
savings achieved by this consolidation let Unew = Norig/Nnew be the
average utilization of the consolidated system and Uorig be the aver-
age utilization in the original system. Further assume that the two
systems both use machines that consume power Pload under load
and Pidle while idle. Let Porig be the average power in the original
system, while Pnew is the average power in the smaller consolidated
system. Then we can calculate the average power savings of the
consolidated system as:

Porig = Norig(Uorig · Pload + (1 − Uorig)Pidle) (22)
Pnew = Nnew(Unew · Pload + (1 − Unew)Pidle) (23)

Psave = Porig − Pnew (24)
This power savings can reduce both the power required to op-

erate the system and indirect costs such as cooling and conversion
costs. It can also reduce the number of machines and therefore the
capital cost of acquiring the system.

4. BENCHMARKS AND INPUTS
We report results for four benchmarks. swaptions, bodytrack,

and x264 are all taken from the PARSEC benchmark suite [11];
swish++ is as open-source search engine [48]. For each application
we acquire a set of representative inputs, then randomly partition
the inputs into training and production sets. We use the training
inputs to obtain the dynamic knob response model (see Section 2)
and the production inputs to evaluate the behavior on previously
unseen inputs. Table 1 summarizes the sources of these inputs. All

of the applications support both single- and multi-threaded execu-
tion. In our experiments we use whichever mode is appropriate.

4.1 swaptions
Description: This financial analysis application uses Monte Carlo
simulation to solve a partial differential equation that prices a port-
folio of swaptions. Both the accuracy and the execution time in-
crease with the number of simulations — the accuracy approaches
an asymptote, while the execution time increases linearly.
Knobs: We use a single command line parameter, -sm, as the dy-
namic knob. This integer parameter controls the number of Monte
Carlo simulations for each swaption. The values range from 10, 000
to 1, 000, 000 in increments of 10, 000; 1,000,000 is the default
value for the PARSEC native input.
Inputs: Each input contains a set of parameters for a given swap-
tion. The native PARSEC input simply repeats the same parame-
ters multiple times, causing the application to recalculate the same
swaption price. We augment the evaluation input set with addi-
tional randomly generated parameters so that the application com-
putes prices for a range of swaptions.
QoS Metric: Swaptions prints the computed prices for each swap-
tion. The QoS metric computes the distortion of the swaption prices
(see Equation 1), weighting the prices equally to directly measur-
ing the application’s ability to produce accurate swaption prices.

4.2 x264
Description: This media application encodes a raw (uncompressed)
video according to the H.264 standard [53]. Like virtually all video
encoders, it uses lossy encoding, with the visual quality of the en-
coding typically measured using continuous values such as peak
signal-to-noise ration.
Knobs: We use three knobs: �subme (an integer parameter which
determines the algorithms used for sub-pixel motion estimation),
�merange (an integer which governs the maximum search range
for motion estimation), and �ref (which specifies the number of
reference frames searched during motion estimation). �subme ranges
from 1 to 7, �merange ranges from 1 to 16, and �ref ranges from
1 to 5. In all cases higher numbers correspond to higher quality
encoded video and longer encoding times. The PARSEC native
defaults for these are 7, 16, and 5, respectively.
Inputs: The native PARSEC input contains a single high-definition
(1080p) video. We use this video and additional 1080p inputs from
xiph.org [5].
QoS Metric: The QoS metric is the distortion of the peak sig-
nal to noise ratio (PSNR, as measured by the H.264 reference de-
coder [23]) and bitrate (as measured by the size of the encoded
video file), with the PSNR and bitrate weighted equally. This QoS
metric captures the two most important attributes of encoded video:
image quality and compression.

4.3 bodytrack
Description: This computer vision application uses an annealed
particle filter and videos from multiple cameras to track a human’s
movement through a scene [16]. bodytrack produces two outputs:
a text file containing a series of vectors representing the positions
of body components (head, torso, arms, and legs) over time and a
series of images graphically depicting the information in the vec-
tors overlaid on the video frames from the cameras. In envisioned
usage contexts [16], a range of vectors is acceptable as long as the
vectors are reasonably accurately overlaid over the actual corre-
sponding body components.

Knobs: bodytrack uses positional parameters, two of which we
convert to knobs: argv[5], which controls the number of anneal-
ing layers, and argv[4], which controls the number of particles.
The number of layers ranges from 1 to 5 (the PARSEC native de-
fault); the number of particles ranges from 100 to 4000 (the PAR-
SEC native default) in increments of 100.
Inputs: bodytrack requires data collected from four carefully cal-
ibrated cameras. We use a sequence of 100 frames (obtained from
the maintainers of PARSEC) as the training input and the PARSEC
native input (a sequence of 261 frames) as the production input.
QoS Metric: The QoS metric is the distortion of the vectors that
represent the position of the body parts. The weight of each vec-
tor component is proportional to its magnitude. Vector components
which represent larger body components (such as the torso) there-
fore have a larger influence on the QoS metric than vectors that
represent smaller body components (such as forearms).

4.4 swish++
Description: This search engine is used to index and search files
on web sites. Given a query, it searches its index for documents
that match the query and returns the documents in rank order. We
configure this benchmark to run as a server — all queries originate
from a remote location and search results must be returned to the
appropriate location.
Knobs: We use the command line parameter �max-results (or
-m, which controls the maximum number of returned search re-
sults) as the single dynamic knob. We use the values 5, 10, 25, 50,
75, and 100 (the default value).
Inputs: We use public domain books from Project Gutenberg [2]
as our search documents. We use the methodology described by
Middleton and Baeza-Yates [38] to generate queries for this cor-
pus. Specifically, we construct a dictionary of all words present
in the documents, excluding stop words, and select words at ran-
dom following a power law distribution. We divide the documents
randomly into equally-sized training and production sets.
QoS Metric: We use F-measure [36] (a standard information re-
trieval metric) as our QoS metric. F-measure is the harmonic mean
of the precision and recall. Given a query, precision is the number
of returned documents that are relevant to the query divided by the
total number of returned documents. Recall is the number of rel-
evant returned documents divided by the total number of relevant
documents (returned or not). We examine precision and recall at
different cutoff values, using typical notation P @N.

4.5 Discussion
These applications are broadly representative of our target set

of applications — they all have a performance versus quality of
service trade-off and they all make that trade-off available via con-
figuration parameters. Other examples of applications with appro-
priate trade-off spaces include most sensory applications (appli-
cations that process sensory data such as images, video, and au-
dio), most machine learning applications, many financial analysis
applications (especially applications designed for use in compet-
itive high-frequency trading systems, where time is critically im-
portant), many scientific applications, and many Monte-Carlo sim-
ulations. Such applications (unlike more traditional applications
such as compilers or databases) are typically inherently approxi-
mate computations that operate largely without a notion of hard
logical correctness — for any given input, they instead have a range
of acceptable outputs (with some outputs more accurate and there-
fore more desirable than others). This broad range of acceptable
outputs, in combination with the fact that more accurate outputs
are often more computationally expensive to compute, gives rise to

Benchmark Training Inputs Production Inputs Source
swaptions 64 swaptions 512 swaptions PARSEC & randomly generated swaptions
x264 4 HD videos of 200+ frames 12 HD videos of 200+ frames PARSEC & xiph.org [5]
bodytrack sequence of 100 frames sequence of 261 frames PARSEC & additional input from PARSEC authors
swish++ 2000 books 2000 books Project Gutenberg [2]

Table 1: Summary of Training and Production Inputs for Each Benchmark

the performance versus quality of service trade-offs that PowerDial
enables the applications to dynamically navigate.

There are a variety of reasons such applications would be de-
ployed in contexts that require responsive execution. Applications
that process soft real-time data for human users (for example, video-
conferencing systems) need to produce results responsively to de-
liver an acceptable user experience. Search and information re-
trieval applications must also present data responsively to human
users (although with less stringent response requirements). Other
scenarios involve automated interactions. Bodytrack and similar
probabilistic analysis systems, for example, could be used in real-
time surveillance and automated response systems. High-frequency
trading systems are often better off trading on less accurate results
that are available more quickly — because of competition with
other automated trading systems, opportunities for lucrative trades
disappear if the system does not produce timely results.

5. EXPERIMENTAL EVALUATION
We next discuss the experimental platform and each of the ex-

periments used to evaluate PowerDial. Our first set of experiments
explores the performance versus QoS trade-off space for each of
our benchmark applications. Next, we explore the (closely related)
power versus QoS trade-off spaces. We then investigate how Pow-
erDial enables applications to respond to the imposition of power
caps using dynamic knobs. Finally, we investigate the use of Pow-
erDial to reduce the number of machines required for servicing
workloads with intermittent load spikes. This reduction can, in
turn, reduce the cost of acquiring and operating the system.

For each application, our experimental evaluation works with
two data sets: a training data set used to characterize the appli-
cation’s performance versus QoS trade-off space, and a production
data set used to evaluate how well the obtained characterization
generalizes to other inputs. We obtain a set of inputs for each ap-
plication, then randomly divide this set of inputs into training and
production sets.

5.1 Experimental Platform
We run all our experiments on a Dell PowerEdge R410 server

with two quad-core Intel Xeon E5530 processors running Linux
2.6.26. The processors support seven power states with clock fre-
quencies from 2.4 GHz to 1.6 GHz. The cpufrequtils package
enables software control of the clock frequency (and thus the power
state). We use a WattsUp device to sample and store the consumed
power at 1 second intervals [4]. All benchmark applications run for
significantly more than 1 second. The measured power ranges from
220 watts (at full load) to 80 watts (idle), with a typical idle power
consumption of approximately 90 watts. The WattsUp device mea-
sures full system power and all results reported here are based on
this measurement.

We measure the overhead of the PowerDial control system by
comparing the performance of the benchmarks with and without
the control system. The overhead of the PowerDial control system
is insignificant and within the run-to-run variations in the execution
times of the benchmarks executing without the control system.

Benchmark Speedup QoS Loss
x264 0.995 0.975
bodytrack 0.999 0.839
swaptions 1.000 0.999
swish++ 0.996 0.999

Table 2: Correlation coefficient of observed values from training
with measured values on production inputs.

5.2 Performance Versus QoS Trade-Offs
Dynamic knobs modulate power consumption by controlling the

amount of computational work required to perform a given task.
On a machine that delivers constant baseline performance (i.e., no
clock frequency changes), changes in computational work corre-
spond to changes in execution time.

Figures 5a–5d present the points that dynamic knobs make avail-
able in the speedup versus QoS trade-off space for each bench-
mark application. The points in the graphs plot the observed mean
(across the training or production inputs as indicated) speedup as
a function of the observed mean QoS loss for each dynamic knob
setting. Gray dots plot results for the training inputs, with black
squares (connected by a line) indicating Pareto-optimal dynamic
knob settings. White squares (again connected by a line) plot the
corresponding points for these Pareto-optimal dynamic knob set-
tings for the production inputs. All speedups and QoS losses are
calculated relative to the dynamic knob setting which delivers the
highest QoS (and consequently the largest execution time). We ob-
serve the following facts:
• Effective Trade-Offs: Dynamic knobs provide access to op-

erating points across a broad range of speedups (up to 100
for swaptions, 4.5 for x264, and 7 for bodytrack). More-
over, QoS losses are acceptably small for virtually all Pareto-
optimal knob settings (up to only 1.5% for swaptions, 7% for
x264, and, for speedups up to 6, 6% for bodytrack).
For swish++, dynamic knobs enable a speedup of up to ap-
proximately a factor of 1.5. The QoS loss increases linearly
with the dynamic knob setting. The effect of the dynamic
knob is, however, very simple — it simply drops lower-priority
search results. So, for example, at the fastest dynamic knob
setting, swish++ returns the top five search results.

• Close Correlation: To compute how closely behavior on
production inputs tracks behavior on training inputs, we take
each metric (speedup and QoS loss), compute a linear least
squares fit of training data to production data, and compute
the correlation coefficient of each fit (see Table 2). The cor-
relation coefficients are all close to 1, indicating that behav-
ior on training inputs is an excellent predictor of behavior on
production inputs.

5.3 Power Versus QoS Trade-offs
To characterize the power versus QoS trade-off space that dy-

namic knobs make available, we initially configure each applica-
tion to run at its highest QoS point on a processor in its highest

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5

QoS Loss

S
pe

ed
up

all knobs optimal knobs (training) optimal knobs (production)

(a) swaptions

1

2

3

4

5

0 1 2 3 4 5 6 7

QoS Loss

S
pe

ed
up

all knobs optimal knobs (training) optimal knobs (production)

(b) x264

1

2

3

4

5

6

7

8

0 3 6 9 12 15

QoS Loss

S
pe

ed
up

all knobs optimal knobs (training) optimal knobs (production)

(c) bodytrack

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80

QoS Loss

S
pe

ed
up

optimal knobs (P@10 training) optimal knobs (P@10 production)
optimal knobs (P@100 training) optimal knobs(P@100 production)

(d) swish++

Figure 5: QoS loss versus speedup for each benchmark.

 160

 170

 180

 190

 200

 210

2.4 2.26 2.13 2 1.86 1.73 1.6
 0

 0.02

 0.04

 0.06

 0.08

 0.1

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s

Frequency in GHz

QoS Loss
Power

(a) swaptions

 160

 170

 180

 190

 200

 210

2.4 2.26 2.13 2 1.86 1.73 1.6
 0

 0.1

 0.2

 0.3

 0.4

 0.5

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s

Frequency in GHz

QoS Loss
Power

(b) x264

 160

 170

 180

 190

 200

 210

2.4 2.26 2.13 2 1.86 1.73 1.6
 0

 0.5

 1

 1.5

 2

 2.5

 3

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s

Frequency in GHz

QoS Loss
Power

(c) bodytrack

 155

 160

 165

 170

 175

 180

 185

2.4 2.26 2.13 2 1.86 1.73 1.6
 5

 10

 15

 20

 25

 30

 35

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s

Frequency in GHz

QoS Loss
Power

(d) swish++

Figure 6: Power versus QoS trade-offs for each benchmark.

power state (2.4 GHz) and observe the performance (mean time
between heartbeats). We then instruct the PowerDial control sys-
tem to maintain the observed performance, use cpufrequtils to
drop the clock frequency to each of the six lower-power states, run
each application on all of the production inputs, and measure the re-
sulting performance, QoS loss, and mean power consumption (the
mean of the power samples over the execution of the application in
the corresponding power state). We verify that, for all power states,
PowerDial delivers performance within 5% of the target.

Figures 6a–6d plot the resulting QoS loss (right y axis, in per-
centages) and mean power (left y axis) as a function of the proces-
sor power state. For x264, the combination of dynamic knobs and
frequency scaling can reduce system power by as much as 21% for
less than 0.5% QoS loss. For bodytrack, we observe a 17% reduc-
tion in system power for less than 2.3% QoS loss. For swaptions,
we observe an 18% reduction in system power for less than .05%
QoS loss. Finally, for swish++ we observe power reductions of up
to 16% for under 32% QoS loss. For swish++ the dynamic knob
simply truncates the list of returned results — the top results are the
same, but swish++ returns fewer total results.

The graphs show that x264, bodytrack, and swaptions all have
suboptimal dynamic knob settings that are dominated by other,
Pareto-optimal dynamic knob settings. The exploration of the trade-
off space during training is therefore required to find good points in
the trade-off space. The graphs also show that because the Pareto-
optimal settings are reasonably consistent across the training and
production inputs, the training exploration results appropriately gen-
eralize to the production inputs.

5.4 Elastic Response to Power Capping
The PowerDial system makes it possible to dynamically adapt

application behavior to preserve performance (measured in heart-
beats) in the face of any event that degrades the computational ca-
pacity of the underlying platform. We next investigate a specific
scenario — the external imposition of a temporary power cap via
a forced reduction in clock frequency. We first start the applica-
tion running on a system with uncapped power in its highest power
state (2.4 GHz). We instruct the PowerDial control system to main-
tain the observed performance (time between heartbeats). Approx-
imately one quarter of the way through the computation we impose
a power cap that drops the machine into its lowest power state (1.6
GHz). Approximately three quarters of the way through the com-
putation we lift the power cap and place the system back into its
highest power state (2.4 GHz).

Figures 7a–7d present the dynamic behavior of the benchmarks
as they respond to the power cap and corresponding processor fre-
quency changes. Each graph plots the observed performance (com-
puted as the sliding mean of the last twenty times between heart-
beats times normalized to the target heart rate of the application) of
the application (left y axis) as a function of time. We present the
performance of three versions of the application: a version with-
out dynamic knobs (marked with an ×), a baseline version run-
ning with no power cap in place (black points), and a version that
uses dynamic knobs to preserve the performance despite the power
cap (circles). We also present the knob “gain” or the instantaneous
speedup achieved by the dynamic knob runtime (right y axis).

All applications exhibit the same general pattern. At the imposi-
tion of the power cap, PowerDial adjusts dynamic knobs, the gain
increases (Knob Gain line), and the performance of the applica-
tion first spikes down (circles), then returns back up to the baseline
performance. When the power cap is lifted, the dynamic knobs
adjust again, the gain decreases, and the application performance
returns to the baseline after a brief upward spike. For most of

the first and last quarters of the execution, the application executes
with essentially no QoS loss. For the middle half of the execution,
the application converges to the low power operating point plotted
in Figures 6a–6d as a function of the 1.6 GHz processor frequency.
Without dynamic knobs (marked with ×), application performance
drops well below the baseline as soon as the power cap is imposed,
then rises back up to the baseline only after the power cap is lifted.

Within this general pattern the applications exhibit varying de-
grees of noise in their response. Swaptions exhibits very predictable
performance over time with little noise. swish++, on the other
extreme, has relatively unpredictable performance over time with
significant noise. x264 and bodytrack fall somewhere in between.
Despite the differences in application characteristics, our dynamic
adaptation mechanism makes it possible for the applications to largely
satisfy their performance goals in the face of dynamically fluctuat-
ing power requirements.

5.5 Peak Load Provisioning
We next evaluate the use of dynamic knobs to reduce the num-

ber of machines required to service time-varying workloads with
intermittent load spikes, thereby reducing the number of machines,
power, and indirect costs (such as cooling costs) required to main-
tain responsive execution in the face of such spikes:

• Target Performance: We set the target performance to the
performance achieved by running one instance of the appli-
cation on an otherwise unloaded machine.

• Baseline System: We start by provisioning a system to de-
liver target performance for a specific peak load of the ap-
plications running the baseline (default command line) con-
figuration. For the three PARSEC benchmarks we provision
for a peak load of 32 (four eight-core machines) concurrent
instances of the application. For swish++ we provision for
a peak load of three concurrent instances, each with eight
threads. This system load balances all jobs proportionally
across available machines. Machines without jobs are idle
but not powered off.

• Consolidated System: We impose a bound of either 5% (for
the PARSEC benchmarks) or 30% (for swish++) QoS loss.
We then use Equation 21 to provision the minimum number
of machines required for PowerDial to provide baseline per-
formance at peak load subject to the QoS loss bound. For the
PARSEC benchmarks we provision a single machine. For
swish++ we provision two machines.

• Power Consumption Experiments: We then vary the load
from 0% utilization of the original baseline system (no load
at all) to 100% utilization (the peak load). For each load,
we measure the power consumption of the baseline system
(which delivers baseline QoS at all utilizations) and the power
consumption and QoS loss of the consolidated system (which
uses PowerDial to deliver target performance. At low utiliza-
tions the consolidated system will configure the applications
to deliver maximum QoS. As the utilization increases, Pow-
erDial will progressively manipulate the dynamic knobs to
maintain the target performance at the cost of some QoS loss.

Figures 8a–8d presents the results of these experiments. Each
graph plots the mean power consumption of the original (circles)
and consolidated (black dot) systems (left y axis) and the mean
QoS loss (solid line, right y axis) as a function of system utiliza-
tion (measured with respect to the original, fully provisioned sys-
tem). These graphs show that using dynamic knobs to consolidate
machines can provide considerable power savings across a range
of system utilization. For each of the PARSEC benchmarks, at a

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500
 0

 0.5

 1

 1.5

 2

 2.5

 3

M
ea

n
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

K
no

b
G

ai
n

Time

Powercap
Baseline

Dynamic Knobs
Knob Gain

(a) swaptions

 0

 0.5

 1

 1.5

 2

 100 200 300 400 500 600
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

M
ea

n
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

K
no

b
G

ai
n

Time

Powercap
Baseline

Dynamic Knobs
Knob Gain

(b) x264

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250
 0

 0.5

 1

 1.5

 2

 2.5

 3

M
ea

n
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

K
no

b
G

ai
n

Time

Powercap
Baseline

Dynamic Knobs
Knob Gain

(c) bodytrack

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 100 200 300 400 500 600 700 800 900 1000
 0

 0.5

 1

 1.5

 2

 2.5

 3

M
ea

n
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

K
no

b
G

ai
n

Time

Powercap
Baseline

Dynamic Knobs
Knob Gain

(d) swish++

Figure 7: Behavior of benchmarks with dynamic knobs in response to power cap.

 0

 200

 400

 600

 800

 1000

 0 0.2 0.4 0.6 0.8 1
 0

 0.001

 0.002

 0.003

 0.004

 0.005

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s

Utilization

QoS Loss
Consolidated Power

Original Power

(a) swaptions

 0

 200

 400

 600

 800

 1000

 0 0.2 0.4 0.6 0.8 1
 0

 2

 4

 6

 8

 10

 12

 14

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s

Utilization

QoS Loss
Consolidated Power

Original Power

(b) x264

 0

 200

 400

 600

 800

 1000

 0 0.2 0.4 0.6 0.8 1
 0

 2

 4

 6

 8

 10

 12

 14

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s

Utilization

QoS Loss
Consolidated Power

Original Power

(c) bodytrack

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100
 0

 10

 20

 30

 40

 50

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s
--

 P
@

10

Utilization

QoS Loss
Consolidated Power

Original Power

(d) swish++

Figure 8: Using dynamic knobs for system consolidation.

system utilization of 25% consolidation can provide an average
power savings of approximately 400 Watts, a reduction of 66%.
For swish++ at 20% utilization, we see a power savings of approx-
imately 125 Watts, a reduction of 25%. These power savings come
from the elimination of machines that would be idle in the baseline
system at these utilization levels.

Of course, it is not surprising that reducing the number of ma-
chines reduces power consumption. A key benefit of the dynamic
knob elastic response mechanism is that even with the reduction in
computational capacity, it enables the system to maintain the same
performance at peak load while consuming significantly less power.
For the PARSEC benchmarks at a system utilization of 100%, the
consolidated systems consume approximately 75% less power than
the original system while providing the same performance. For
swish++ at 100% utilization, the consolidated system consumes
25% less power.

The consolidated systems save power by automatically reducing
QoS to maintain performance. For swaptions, the maximum QoS
loss required to meet peak load is 0.004%, for x264 it is 7.6%, and
for bodytrack it is 2.5%. For swish++ with P@10, the QoS loss
is 8% at a system utilization of 65%, rising to 30% at a system
utilization of 100%. We note, however, that the majority of the
QoS loss for swish++ is due to a reduction in recall — top results
are generally preserved in order but fewer total results are returned.
Precision is not affected by the change in dynamic knob unless the
P@N is less than the current knob setting. As the lowest knob
setting used by PowerDial is five, precision is always perfect for
the top 5 results.

For common usage patterns characterized by predominantly low
utilization punctuated by occasional high-utilization spikes [10],
these results show that dynamic knobs can substantially reduce
overall system cost, deliver the highest (or close to highest) QoS in
predominant operating conditions, and preserve performance and
acceptable QoS even when the system experiences intermittent load
spikes. Note that system designers can use the equations in Sec-
tion 3 to choose a consolidation appropriate for their envisioned
usage pattern that minimizes costs yet still delivers acceptable QoS
even under the maximum anticipated load spike.

6. RELATED WORK
Adaptive, or self-aware, computing systems have the flexibility

to meet multiple goals in changing computing environments. A
number of adaptive techniques have been developed for both soft-
ware [45] and hardware [7]. Adaptive hardware techniques are
complementary to the Dynamic Knobs approach for developing
adaptive applications. If such hardware chooses to save power by
reducing computational capacity, Dynamic Knobs can enable the
software to respond and maintain performance. This section fo-
cuses on related software techniques.

Trading accuracy of computation for other benefits is a well-
known technique. It has been shown that one can trade off accu-
racy for performance [17, 32, 40, 43, 44], energy consumption [13,
14, 17, 21, 34, 43, 47] and fault tolerance [14, 43, 47]. The Dy-
namic Knobs system presented in this paper, along with loop per-
foration [27, 39] and task skipping [43, 44], is unique in that it
enables applications to adaptively trade accuracy for performance
and does so without requiring a developer to change the application
source code.

Autotuners explore a range of equally accurate implementation
alternatives to find the alternative or combination of alternatives
that deliver the best performance on the current computational plat-
form [18, 52, 54]. Researchers have also developed APIs that an
application can use to expose variables for external control (by, for

example, the operating system) [6, 42, 49]. This paper presents
a system (PowerDial) that transforms static configuration parame-
ters into dynamic knobs and contains a control system that uses the
dynamic knobs to maintain performance in the face of load fluctu-
ations, power fluctuations, or any other event that may impair the
ability of the application to successfully service its load with the
given computational resources. It also presents experimental re-
sults that demonstrate the effectiveness of its approach in enabling
server consolidation and effective execution through power reduc-
tions (imposed, for example, by power caps).

Researchers have developed several systems that allow program-
mers to provide multiple implementations for a given piece of func-
tionality, with different implementations occupying different points
in the performance versus accuracy trade-off space. Such systems
include the tunability interface [15], Petabricks [8], Green [9], and
Eon [46]. Chang and Karamcheti’s tunability interface allows ap-
plication developers to provide multiple configurations of an appli-
cation (specified by the programmer through compiler directives).
A tunable application is then modeled in a virtual execution envi-
ronment, to determine which configuration is best suited for dif-
ferent system states. Petabricks is a parallel language and com-
piler that developers can use to provide alternate implementations
of a given piece of functionality. Green also provides constructs
that developers can use to specify alternate implementations. The
alternatives typically exhibit different performance and QoS char-
acteristics. PetaBricks and Green both contain algorithms that ex-
plore the trade-off space to find points with desirable performance
and QoS characteristics. Eon [46] is a coordination language for
power-aware computing that enables developers to adapt their algo-
rithms to different energy contexts. In a similar vein, energy-aware
adaptation for mobile applications [17], adapts to changing system
demands by dynamically adjusting application input quality. For
example, to save energy the system may switch to a lower quality
video input to reduce the computation of the video decoder.

Each of these systems requires the developer to intervene directly
in the source code to provide or specify multiple implementations
of the same functionality. They can therefore increase the size and
development cost of the application and require the presence of a
developer who understands the internal structure of the implemen-
tation and can appropriately modify the implementation. These
systems are therefore of little or no use when such a developer is un-
available, either because the original developers are no longer with
the organization or are dedicated to other projects; the organization
that originally developed the software no longer exists, is no longer
developing or maintaining the application, or is simply unwilling to
incorporate the functionality into their code base; or when the cost
of performing the modifications is prohibitively expensive.

In contrast, PowerDial works directly on unmodified and unan-
notated applications. It automatically transforms existing config-
uration parameters into dynamic knobs and automatically inserts
the appropriate Application Heartbeats API calls into the applica-
tion. It can therefore enable third-party users to automatically aug-
ment their applications with desirable dynamic adaptivity proper-
ties without the need to involve knowledgeable developers or the
organization that originally developed the application.

None of Petabricks, Green, or Eon provides a control mechanism
which can react to changes that affect performance. Petabricks does
not have a dynamic control component. Green uses heuristic con-
trol to manage quality of service but does not control or even mon-
itor performance. Similarly, Eon uses a heuristic control system
to manage the energy consumption of the system, but does not di-
rectly control performance. Both control systems are completely
heuristic, with no guaranteed convergence or predictability prop-

erties whatsoever. The Chang/Karamcheti approach does directly
control performance using a heuristic decision mechanism. This
controller monitors system state and attempts to select a config-
uration appropriate for the current state, but does not use direct
feedback from the application.

In contrast, PowerDial uses a decision mechanism grounded in
control science with provably good convergence and predictability
properties [35]. By relying on a modeling phase to discover Pareto-
optimal knob settings, the PowerDial control system is able to solve
constrained optimization problems to dynamically maintain perfor-
mance while minimizing quality loss. In addition, the PowerDial
control system uses Heartbeats as its feedback mechanism. By us-
ing direct feedback from the application the control system is able
to operate maintain performance without having to infer applica-
tion performance from low measurements of system state.

Researchers have also explored the use of loop perforation (which
automatically transforms loops to skip loop iterations) to augment
applications with the ability to operate at different points in an in-
duced performance versus quality of service trade-off space [27,
39]. The results show that loop perforation can help developers find
computations that are suitable for further optimization [39] and en-
ables applications to adapt to fluctuations in the delivered compu-
tational resources [27]. Task skipping [43, 44] has also been shown
to automatically augment applications with the ability to trade off

quality of service in return for increased performance. This pa-
per presents a system that uses dynamic knobs instead of loop per-
foration, has a control system with guaranteed performance and
predictability properties, and more fully demonstrates how to use
dynamic knobs to solve power management issues.

Hellerstein et al [24] and Karamanolis et al [29] have both iden-
tified standard control theoretic techniques as a general solution for
managing dynamic behavior in computing systems. Other authors
have shown how control techniques can be generalized allowing
software developers to incorporate them without having to develop
expertise in control science [22, 26, 33, 35, 55]. The PowerDial
control system furthers this idea, showing how standard control
techniques can be automatically embedded into an application to
dynamically manage performance. The control system presented
in this paper uses Application Heartbeats as a feedback mechanism
(or sensor) combined with a novel actuation strategy which con-
verts static configuration options into dynamically tunable param-
eters. Control theory provides predictable behavior, making it a
good match for applications with performance constraints.

7. CONCLUSION
The PowerDial system augments applications with dynamic knobs

that the PowerDial control system can use to adapt the behavior of
the application to execute successfully in the face of load spikes,
power fluctuations, or (in general) any event that changes the bal-
ance between the computational demand and the resources avail-
able to meet that demand. Our results demonstrate that Power-
Dial can enable applications to maintain responsive execution in the
face of power caps and load spikes (thereby reducing or even elim-
inating the over-provisioning otherwise required to service these
spikes). We see PowerDial as an early example of an emerging
class of management systems that will enable applications to oper-
ate successfully in complex modern computing environments char-
acterized by fluctuations in power, load, and other key operating
characteristics.

Acknowledgements
Henry Hoffmann and Anant Agarwal are grateful for support from
DARPA, the NSF, and Quanta Computer. Stelios Sidiroglou, Michael

Carbin, Sasa Misailovic, and Martin Rinard are supported in part
by the National Science Foundation under Grant Nos. 0937060
to the Comuting Research Association for the CIFellows Project,
Nos. CNS-0509415, CCF-0811397 and IIS-0835652, DARPA un-
der Grant No. FA8750-06-2-0189 and Massachusetts Institute of
Technology. We note our earlier technical reports on performance
versus QoS trade-offs [27, 28].

8. REFERENCES
[1] Intel Xeon Processor.

http://www.intel.com/technology/Xeon.
[2] Project Gutenberg. http://www.gutenberg.org/.

[3] Intel Atom Processor.
http://www.intel.com/technology/atom.

[4] Wattsup .net meter. http://www.wattsupmeters.com/.
[5] Xiph.org. http://xiph.org.
[6] Exposing application alternatives. In Proceedings of the 19th IEEE

International Conference on Distributed Computing Systems,
ICDCS, page 384, Washington, DC, USA, 1999. IEEE Computer
Society.

[7] D. H. Albonesi, R. Balasubramonian, S. G. Dropsho, S. Dwarkadas,
E. G. Friedman, M. C. Huang, V. Kursun, G. Magklis, M. L. Scott,
G. Semeraro, P. Bose, A. Buyuktosunoglu, P. W. Cook, and S. E.
Schuster. Dynamically tuning processor resources with adaptive
processing. Computer, 36:49–58, December 2003.

[8] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,
and S. Amarasinghe. Petabricks: A language and compiler for
algorithmic choice. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, Dublin, Ireland, June 2009.

[9] W. Baek and T. Chilimbi. Green: A framework for supporting
energy-conscious programming using controlled approximation. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation, June 2010.

[10] L. Barroso and U. Holzle. The case for energy-proportional
computing. COMPUTER-IEEE COMPUTER SOCIETY-, 40(12):33,
2007.

[11] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In PACT-2008:
Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques, October 2008.

[12] M. Carbin and M. Rinard. Automatically Identifying Critical Input
Regions and Code in Applications. In Proceedings of the
International Symposium on Software Testing and Analysis, 2010.

[13] L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz,
K. V. Palem, and B. Seshasayee. Ultra-efficient (embedded) soc
architectures based on probabilistic cmos (pcmos) technology. In
Proceedings of the conference on Design, automation and test in
Europe, DATE, pages 1110–1115, 2006.

[14] L. N. Chakrapani, K. K. Muntimadugu, A. Lingamneni, J. George,
and K. V. Palem. Highly energy and performance efficient embedded
computing through approximately correct arithmetic: a mathematical
foundation and preliminary experimental validation. In Proceedings
of the 2008 international conference on Compilers, architectures and
synthesis for embedded systems, CASES, pages 187–196, 2008.

[15] F. Chang and V. Karamcheti. Automatic configuration and run-time
adaptation of distributed applications. In Proceedings of the
International ACM Symposium on High Performance Parallel and
Distributed Computing, HPDC, pages 11–20, 2000.

[16] J. Deutscher and I. Reid. Articulated body motion capture by
stochastic search. International Journal of Computer Vision,
61(2):185–205, 2005.

[17] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile
applications. In Proceedings of the seventeenth ACM symposium on
Operating systems principles, page 63. ACM, 1999.

[18] M. Frigo and S. G. Johnson. FFTW: An adaptive software
architecture for the FFT. In Proc. 1998 IEEE Intl. Conf. Acoustics
Speech and Signal Processing, volume 3, pages 1381–1384. IEEE,
1998.

[19] A. Gandhi, M. Harchol-Balter, R. Das, C. Lefurgy, and J. Kephart.
Power capping via forced idleness. In Workshop on Energy-Efficient

http://www.intel.com/technology/Xeon
http://www.gutenberg.org/
http://www.intel.com/technology/atom
http://www.wattsupmeters.com/
http://xiph.org

Design, June 2009.
[20] V. Ganesh, T. Leek, and M. Rinard. Taint-based directed whitebox

fuzzing. In Proceedings of the 2009 IEEE 31st International
Conference on Software Engineering, pages 474–484. IEEE
Computer Society, 2009.

[21] J. George, B. Marr, B. E. S. Akgul, and K. V. Palem. Probabilistic
arithmetic and energy efficient embedded signal processing. In
Proceedings of the 2006 international conference on Compilers,
architecture and synthesis for embedded systems, CASES, pages
158–168, 2006.

[22] A. Goel, D. Steere, C. Pu, and J. Walpole. Swift: A feedback control
and dynamic reconfiguration toolkit. In 2nd USENIX Windows NT
Symposium, 1998.

[23] H.264 reference implementation.
http://iphome.hhi.de/suehring/tml/download/.

[24] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback
Control of Computing Systems. John Wiley & Sons, 2004.

[25] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and
A. Agarwal. Application Heartbeats: A Generic Interface for
Specifying Program Performance and Goals in Autonomous
Computing Environments. In 7th International Conference on
Autonomic Computing, ICAC, 2010.

[26] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and
A. Agarwal. SEEC: A Framework for Self-aware Computing.
Technical Report MIT-CSAIL-TR-2010-049, CSAIL, MIT, October
2010.

[27] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and
M. Rinard. Using Code Perforation to Improve Performance, Reduce
Energy Consumption, and Respond to Failures . Technical Report
MIT-CSAIL-TR-2009-042, CSAIL, MIT, September 2009.

[28] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal,
and M. Rinard. Power-Aware Computing with Dynamic Knobs.
Technical Report TR-2010-027, CSAIL, MIT, May 2010.

[29] C. Karamanolis, M. Karlsson, and X. Zhu. Designing controllable
computer systems. In Proceedings of the 10th conference on Hot
Topics in Operating Systems, pages 9–15, Berkeley, CA, USA, 2005.
USENIX Association.

[30] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the
2004 International Symposium on Code Generation and
Optimization , CGO, Palo Alto, California, March 2004.

[31] C. Lefurgy, X. Wang, and M. Ware. Power capping: a prelude to
power shifting. Cluster Computing, 11(2):183–195, 2008.

[32] J. Letchner, C. Re, M. Balazinska, and M. Philipose. Approximation
trade-offs in markovian stream processing: An empirical study. In
2010 IEEE 26th International Conference on Data Engineering,
ICDE, pages 936 –939, 2010.

[33] B. Li and K. Nahrstedt. A control-based middleware framework for
quality-of-service adaptations. Selected Areas in Communications,
IEEE Journal on, 17(9):1632 –1650, September 1999.

[34] S. Liu, K. P. amd Thomas Moscibroda, and B. G. Zorn. Flicker:
Saving Refresh-Power in Mobile Devices through Critical Data
Partitioning. Technical Report MSR-TR-2009-138, Microsoft
Research, Oct. 2009.

[35] M. Maggio, H. Hoffmann, M. D. Santambrogio, A. Agarwal, and
A. Leva. Controlling software applications within the heartbeats
frame work. In 49th IEEE Conference on Decision and Control,
2010.

[36] J. Makhoul, F. Kubala, R. Schwartz, and R. Weischedel. Performance
measures for information extraction. In Broadcast News
Workshop’99 Proceedings, page 249. Morgan Kaufmann Pub, 1999.

[37] D. Meisner, B. Gold, and T. Wenisch. PowerNap: eliminating server

idle power. ACM SIGPLAN Notices, 44(3):205–216, 2009.
[38] C. Middleton and R. Baeza-Yates. A comparison of open source

search engines. Technical report, Universitat Pompeu Fabra,
Department of Technologies, October 2007.

[39] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of
service profiling. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering, ICSE, pages
25–34. ACM, 2010.

[40] R. Narayanan, B. Ozisikyilmaz, G. Memik, A. Choudhary, and
J. Zambreno. Quantization error and accuracy-performance tradeoffs
for embedded data mining workloads. In Proceedings of the 7th
international conference on Computational Science, ICCS, pages
734–741, Berlin, Heidelberg, 2007. Springer-Verlag.

[41] S. Pelley, D. Meisner, P. Zandevakili, T. Wenisch, and J. Underwood.
Power routing: dynamic power provisioning in the data center. ACM
SIGPLAN Notices, 45(3):231–242, 2010.

[42] R. Ribler, J. Vetter, H. Simitci, and D. Reed. Autopilot: adaptive
control of distributed applications. In High Performance Distributed
Computing, July 1998.

[43] M. Rinard. Probabilistic accuracy bounds for fault-tolerant
computations that discard tasks. In Proceedings of the 20th annual
international conference on Supercomputing, pages 324–334. ACM
New York, NY, USA, 2006.

[44] M. C. Rinard. Using early phase termination to eliminate load
imbalances at barrier synchronization points. In Proceedings of the
22nd annual ACM conference on Object-oriented programming
systems and applications, OOPSLA, pages 369–386, New York, NY,
USA, 2007. ACM.

[45] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and
research challenges. ACM Transactions on Autonomous and Adaptive
Systems, 4(2):1–42, 2009.

[46] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D. Corner, and
E. D. Berger. Eon: a language and runtime system for perpetual
systems. In Proceedings of the 5th international conference on
Embedded networked sensor systems, SenSys, New York, NY, USA,
2007. ACM.

[47] P. Stanley-Marbell, D. Dolech, A. Eindhoven, and D. Marculescu.
Deviation-Tolerant Computation in Concurrent Failure-Prone
Hardware. Technical Report ESR-2008-01, Eindhoven University of
Technology, January 2008.

[48] SWISH++. http://swishplusplus.sourceforge.net/.
[49] C. Tapus, I. Chung, and J. Hollingsworth. Active harmony: Towards

automated performance tuning. In Proceedings of the 2002
ACM/IEEE Conference on Supercomputing, pages 1–11, Los
Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[50] U.S. Environmental Protection Agency. EPA report to congress on
server and data center energy efficiency, 2007.

[51] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for
reduced CPU energy. Mobile Computing, pages 449–471, 1996.

[52] R. Whaley and J. Dongarra. Automatically tuned linear algebra
software. In Proceedings of the 1998 ACM/IEEE conference on
Supercomputing, pages 1–27. IEEE Computer Society, 1998.

[53] x264. http://www.videolan.org/x264.html.
[54] J. Xiong, J. Johnson, R. W. Johnson, and D. Padua. SPL: A language

and compiler for DSP algorithms. In Proceedings of the ACM
SIGPLAN 2001 conference on Programming language design and
implementation, PLDI, pages 298–308, 2001.

[55] R. Zhang, C. Lu, T. Abdelzaher, and J. Stankovic. Controlware: A
middleware architecture for feedback control of software
performance. In Proceedings of the 22nd International conference on
Distributed Computing Systems. IEEE computer society, 2002.

http://iphome.hhi.de/suehring/tml/download/
http://swishplusplus.sourceforge.net/
http://www.videolan.org/x264.html

	Introduction
	Dynamic Knobs and Adaptive Response
	Summary of Experimental Results
	Contributions

	Dynamic Knobs
	Dynamic Knob Identification
	Dynamic Knob Calibration
	The PowerDial Control System
	Feedback Mechanism
	Control Strategy
	Actuation Policy

	Analytical Models
	Benchmarks and Inputs
	swaptions
	x264
	bodytrack
	swish++
	Discussion

	Experimental Evaluation
	Experimental Platform
	Performance Versus QoS Trade-Offs
	Power Versus QoS Trade-offs
	Elastic Response to Power Capping
	Peak Load Provisioning

	Related Work
	Conclusion
	References

