
Enabling System-Level Modeling of
Variation-Induced Faults in Networks-on-Chips∗

Konstantinos Aisopos†§, Chia-Hsin Owen Chen§, Li-Shiuan Peh§
†Princeton University §Massachusetts Institute of Technology

{kaisopos, owenhsin, peh}@ csail.mit.edu

ABSTRACT
Process Variation (PV) is increasingly threatening the reliability
of Networks-on-Chips. Thus, various resilient router designs have
been recently proposed and evaluated. However, these evaluations
assume random fault distributions, which result in 52%-81% inac-
curacy. We propose an accurate circuit-level fault-modeling tool,
which can be plugged into any system-level NoC simulator, quan-
tify the system-level impact of PV-induced faults at runtime, pin-
point fault-prone router components that should be protected, and
accurately evaluate alternative resilient multi-core designs.

Categories and Subject Descriptors: B.8 [Hardware]: Perfor-
mance and Reliability
General Terms: Reliability, Measurement
Keywords: fault modeling, variation, Networks-on-Chips

1. INTRODUCTION
As silicon technologies move into the nanometer regime, devices

become increasingly unreliable due to process variation (PV) and
runtime variation. With each technology generation halving tran-
sistor size and the inability of the fabrication process to scale its
precision accordingly1, variations in transistor dimensions result in
different electrical characteristics for each transistor. In addition,
runtime conditions (e.g., temperature, power consumption) have an
increasing effect on device operation, since smaller sized transis-
tors are more susceptible to runtime variations. This variability
results in unpredictable critical path delays, which can lead to tim-
ing violations and faults. Thus, silicon failures can affect critical
hardware components such as the Network-on-Chip (NoC). Unfor-
tunately, a single fault in the NoC causes packets to be dropped
or become corrupted, resulting in incoherent caches and erroneous
memory traffic, ultimately causing the entire chip to fail.

∗The authors acknowledge the support of the Gigascale Systems Research
Center and Interconnect Focus Center, research centers funded under the
Focus Center Research Program (FCRP), a Semiconductor Research Cor-
poration entity.
1The wavelength of light to pattern transistors cannot be decreased below
193nm with current technology[10]. Consequently, the semiconductor in-
dustry is fabricating 45nm CMOS devices using 193nm optical light.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2011, June 5-10, 2011, San Diego, California, USA.
Copyright 2011 ACM ACM 978-1-4503-0636-2 ...$10.00.

Resilient NoCs [3, 4] explore novel designs to allow continuous
operation in the face of faults. However, they are all evaluated us-
ing a simple fault model that injects random faults (at gate or link
level), uniformly distributed in time of occurrence and spatial loca-
tion. As we show in Section 3.2, random fault injection results in
52% to 81% inaccuracy in capturing the fault locations of variation-
induced faults, thus system-level designers cannot accurately iden-
tify the fault-prone components and protect them accordingly.

A more accurate fault modeling methodology is Static Timing
Analysis (STA), used by chip designers to identify the critical paths
that are likely to fail. However, PV changes the order of critical
paths: paths that were indicated as non-critical by STA may be-
come faulty, while the paths indicated as critical may not cause
timing violations. To demonstrate this, we synthesize a baseline
router (Table 1 in Section 2.1) with Synopsys Design Compiler at
3.8GHz on a 45nm process, perform STA with Synopsys Prime-
Time, and extract the 512 most critical paths (the paths with the
minimum slack), shown in decreasing delay along the x-axis of
Figure 1. Then, we perform 100 Monte Carlo simulations for each
path, varying the gate L/W, Vth, oxide thickness based on varia-
tion distributions obtained from the foundry, and plot (y-axis) the
probability that each path will not meet timing. First, we note that
in order to have no faults, the design has to run at only 75% of
the frequency that it was synthesized for (i.e., 2.85 GHz). Second,
we observe that many critical paths with higher slack (less critical,
towards right) have a higher probability of timing violation than
critical paths with lower slack (more critical, towards left). For
instance, we observe that paths with slack around 2.92% have a
higher probability of violating timing than paths with slack around
2.4%. That is because static timing libraries cannot identify the
actual critical paths under PV, where additional delays strongly de-
pend on the layout of the paths’ standard cells and other circuit-
level parameters. Throw in runtime variations in temperature and
power, and STA deviates further from reality.

Full-system simulation of multi-core chips is critical for evalua-
tion of resilient solutions early in the design cycle. As multi-cores
rely on NoCs for on-chip communications, the infrastructure needs
to account for NoC reliability. However, no prior works provide a
model/tool that can enable system level modeling of faults for NoC-
interconnected chips. Since the fault-prone router components can-
not be accurately identified by randomly injecting gate-level faults,
nor by capturing the components with critical paths statically at de-
sign time (via STA), an accurate variation-aware router fault model
is vital for early-stage evaluation of resilient ideas under PV.

Nicopoulos et al. [15], were the first to evaluate NoC’s suscep-
tibility to PV effects with rigorous circuit analysis, but did not de-
velop a fault model/tool, nor extensively explored the system-level
impact of faults. Various fault models have been developed though

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/9318508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

1.84%	
 2.08%	
 2.20%	
 2.28%	
 2.32%	
 2.40%	
 2.40%	
 2.60%	
 2.92%	
 3.08%	
 3.48%	
 3.64%	
 5.64%	
 7.20%	
 9.76%	
 11.96%	
 14.56%	

pr
ob

ab
ili
ty
	
 o
f	
 ,

m
in
g	

vi
ol
a,

on
	

more	
 cri,cal	
 path	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 cri,cal	
 path's	
 slack	
 (%	
 cycle),	
 from	
 sta,c	
 ,ming	
 analysis	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 less	
 cri,cal	
 path	
 	

100%	
 synthesis	
 frequency	

95%	
 synthesis	
 frequency	

90%	
 synthesis	
 frequency	

85%	
 synthesis	
 frequency	

80%	
 synthesis	
 frequency	

75%	
 synthesis	
 frequency	
 <1%

for 75%
of synth.
freq

22%
for 80%
of synth.

freq

Figure 1: Timing violation probabilities under Process Variation (27◦C, 512 most critical paths of router).

for memories and processors [11, 12, 16, 17]. These fault models
typically depend on analytical modeling, which introduces inaccu-
racy2 [16, 17] or project3 future technology nodes [11, 12, 13].

We develop a router fault model based on the golden reference
of the PV maps obtained from the foundry. As discussed in [18],
SPICE models (and not the finished silicon) are the golden refer-
ence for the design of an ASIC, since once a technology has been
defined and validated it is the job of the fab to produce silicon that
matches this reference. We develop our fault model by synthesiz-
ing a highly parameterizable router RTL using 45nm technology,
and performing Monte Carlo simulations directly on SPICE model
netlists to capture timing violations due to variations of the man-
ufacturing process. System-level designers only need to supply
high-level NoC parameters to use our tool to explore the system-
level impact of variation-induced timing violations.

Contributions. In this work, we make the following contributions:
• We develop a framework with circuit-level accuracy, that auto-

mates the mapping of timing violations to system-level faults, to
explore the system-level outcome of variation-induced failures
of NoCs (e.g., misrouting, corrupted data, etc.). This framework
captures the joint effect of PV and variation of runtime condi-
tions (temperature and power consumption).
• We release a system-level fault modeling tool for NoCs, which

can be plugged into any network simulator to inject variation-
induced faults in routers’ hardware at runtime, for designers to
evaluate their resilient routers.
• We present a case study, characterizing faults at runtime, with

or without fault-tolerant hardware in place, with GARNET [1],
a NoC simulator that is part of the popular (over 1,700 users)
system-level simulator GEMS [14] that models the OS, mem-
ory, and processors of multi-cores.

This paper is organized as follows: Section 2 describes how we
develop a system-level fault model that captures the effects of vari-
ation without compromising circuit-level accuracy. In Section 3,
we apply our fault model to characterize faults for various system
configurations. Then, in Section 4, we present a case study where
we demonstrate how our tool can be leveraged for evaluation of
resilience at system-level. Finally, Section 5 concludes this paper.

2Analytical variation models can provide fault distributions very swiftly,
since no actual simulation is required. However, they make assumptions
to simplify complex equations that involve hundreds of physical parame-
ters, significantly compromising accuracy; consequently, there is no widely
accepted analytical model for determining the delay distributions under PV.
3Projecting a future technology with predictive models (e.g., PTM [19]) is
critical for early circuit design research, though its accuracy is limited. PTM
adjusts 10 process/physical parameters (of about 100 in a BSIM model) and
only considers their first-order correlations. The scaling factor and layout of
standard cells is also set empirically based on previous technology nodes.

 multicore simulator (GEMS)

 network simulator (Garnet)

temperature

prob
of

faultstransistor W (µ,σ2)
transistor L (µ,σ2)

oxide thickness (µ,σ2)

threshold voltage (µ,σ2) core of
fault

model

floorplan

power model
(Orion 2.0)

thermal
model

(Hotspot 5.0)power

!

pr
oc

es
s

pa
ra

m
et

er
s

router configuration

Figure 2: Usage of fault model.

2. PROPOSED NOC FAULT MODEL
The aim of our fault model is to detect when and where circuit-

level timing violations will occur in NoCs and, for each potential
timing violation, provide a system-level fault type in the form of
a probability function. Though the core of our fault model is de-
veloped at circuit-level, the inputs and the outputs of the model are
system-level variables (shown in bottom right of Figure 2). The in-
puts are the router configuration (number of input and output ports,
number of virtual channels (VCs) or queues, number of buffers/VC,
channel width, and operation frequency), the process parameters
and their variations, and temperature. The output is the probability
of occurrence for various system-level fault types. In order to cap-
ture the runtime temperature, a thermal model (e.g., HOTSPOT 5.0
[6]) is required, which takes as input the floorplan and the runtime
power of each router, provided by a network power model (e.g.,
ORION 2.0 [8]). The power model obtains the run-time activity of
NoC components from a network simulator (e.g., GARNET [1]),
whose traffic is driven by a multi-core simulator (e.g., GEMS [14]).

To demonstrate potential ways that system designers can use our
fault model for evaluating multi-core resiliency, we assume three
hypothetical solutions that tackle the system-level fault types “data
corruption”, “flit4 conservation”, and “misrouting” (the first 3 fault
types that our fault model detects, subsection 2.2, Table 2):

(a) An Error-Correction-Code (ECC) that can tolerate corrupted
bits in a packet’s data: our fault model provides the expected num-
ber of data bits that will be corrupted depending on the actual run-
time conditions (traffic, power, temperature), so the network simu-
lator can reflect these corrupted bits appropriately and various ECC
policies (for instance Hamming codes) can be evaluated.

(b) A coherence protocol that can tolerate lost and duplicate
packets: our fault model will allow the network simulator to du-
plicate or drop packets, thus a system-level resilient solution where
the coherence protocol resends undelivered packets after a timeout,
can be modeled in the multi-core simulator and faithfully evaluated.

(c) A resilient routing algorithm: our fault model will provide
the probability of a packet being misrouted, which is reflected to

4Packets are broken into smaller pieces, called flits (flow control digits).

time > cycle (?)

state

VC
selectSW

controller
link

controller

link
controller

state

SW
arbiter

VC
select

critical path 1:

in

critical path 2:

out

out
fixed value

fixed
value

fixed
value

fixed
value

in

critical path 2

in
PV

critical
path 1
(1%)

critical
path 2
(3%)timing violations

simulations

Step 1. Static Timing Analysis to
 determine the critical paths

Step 2. Extraction of critical paths
 with stressing inputs

Step 3. Monte Carlo circuit-level simulations
 to capture PV-induced timing violations

Step 4. Map circuit-level faults to
 system-level fault types

VC
select

SW
arbiter

0

1

0

1in

0

1

0

1

0

1

0

1

critical path 1

record time
 of

0

1

PV
System-level fault types

type-1 type-2 type-3 type-4

=

aggregate
probability

 of occurrence = 1% 3%0%(1%)U(3%)

record time
 of

0

1

Figure 3: Our fault modeling methodology

the network simulator as a packet being sent to an incorrect output
port at appropriate points in time. The effectiveness of a routing al-
gorithm that can deliver the misrouted packets to their destinations
without deadlocks can then be evaluated.

In Section 4, we present an actual case study with detailed simu-
lation results, illustrating how the proposed fault model can be used
for system-level evaluation of resilient multicores. The remaining
of this section describes the methodology we use to develop the
core of the fault model: we implement a highly-parameterizable
router in RTL (subsection 2.1) and design the methodology of sub-
section 2.2 to measure the probability of faults for an experimental
setup (a specific configuration of the high-parameterizable router
and fixed temperature). Then, we perform a large number of exper-
iments for a wide range of experimental setups, so we can observe
the fault trends and create a database that captures the fault proba-
bilities for a range of router configurations and runtime conditions.

2.1 Parameterizable Router Design
We implement in Verilog an input-buffered wormhole-switched

router, with shared input buffers and credit-based flow control. The
router design is similar to that of recent many-core chips, such as
the 5GHz TERAFlops [5] and Intel’s 2GHz 48-core chip [7]: each
incoming flit gets buffered to an input buffer (BW), and then the
output port to route to its destination is computed (RC). Next, it
goes through switch allocation to reserve switch bandwidth (SA),
selects a virtual channel (VA), traverses the switch (ST), and finally
traverses the link (LT) onto the next router. We pipeline these func-
tions into 4 stages: (BW/RC), (SA/VA), (ST), (LT), derived through
synthesizing various component-to-stage assignments to obtain the
most balanced timing across stages.

Our router design is highly parametrizable: it utilizes two virtual
networks, one for data and one for control packets, for which the
number of VCs, buffers/VC are parameterizable. Also, the number
of input/output ports, channel width, and operation frequency are
parameterizable. The nominal values are shown in Table 1.

data num VCs 2
vnet num buff/VC 3
control num VCs 2
vnet num buff/VC 1
channel width (bits) 64

num inputs 5 (4 directions, net interface)
num outputs 5 (4 directions, net interface)
operation 80%, 75% synth frequency
frequency (3.04, 2.85 GHz)
temp, power 27◦C, 0.2 watt

Table 1: Nominal router configuration (values are parametrizable)

2.2 Fault Modeling Methodology
In order to measure the fault probabilities for a specific configu-

ration, under a fixed temperature, we need to perform a large num-
ber of Monte Carlo SPICE simulations for the router’s layout, for
variable Vth, gate dimensions, oxide thickness. However, chip-
level simulation with timing is extremely time consuming and sig-
nificantly limits the amount of input permutations and Monte Carlo
simulations we can perform. On the other hand, STA has supe-
rior analysis speed and simulation completeness that no pattern set
can provide, except that it is based on timing libraries that do not
capture PV. Thus, we perform the following hybrid modeling pro-

cedure: we use STA to detect only the paths that are likely to fail,
the worst-case input patterns that stress these paths, and then per-
form circuit-level simulation only for these paths and these input
patterns. The steps of our methodology (Figure 3) are:
• Step 1. Static Timing Analysis to determine the critical paths
• Step 2. Extraction of critical paths with stressing inputs
• Step 3. Monte Carlo circuit-level simulations of critical paths

to capture PV-induced timing violations
• Step 4. Map circuit-level faults to system-level fault types

Step 1. STA to determine the critical paths. In this step, the
256 slowest paths of the design, together with the input transitions
that result in their longest delays, are recorded in a database. These
are the paths that are most likely to fail5 when PV in transistor di-
mensions and electrical characteristics results in additional timing
delays for each cell. To achieve this, we perform STA with Prime-
Time [18], using the timing library of IBM 45nm process. Prime-
Time uses a vector-less approach that thoroughly explores the input
space and all possible internal states of the synthesized netlist to
identify the paths that can become critical at runtime.

Step 2. Extraction of critical paths with stressing input in-
formation. Once the critical paths have been identified, we extract
their netlists, together with their worst-case input vectors. In the
example of Figure 3, two critical paths are extracted; the first crit-
ical path is most likely to fail (worst input vector) when one input
of the switch arbiter transitions from 0 to 1, while the other input
maintains some fixed value (shown in Step 2). Each netlist contains
a list of standard cells and their interconnections. To perform accu-
rate circuit-level simulation, we extract the SPICE model for each
cell of the critical paths from the IBM 45nm PDK and incorporate
in our netlist all the parasitic elements resulting from the standard
cells’ geometry and internal wiring, including all parasitic capaci-
tances and parasitic resistances.

Step 3. Monte Carlo circuit-level simulations of critical paths
to capture PV-induced timing violations. The critical paths in-
corporating the SPICE models of cells are the golden reference
of the most vulnerable paths of the chip. Next, we perform 100
Monte Carlo SPICE simulations for each critical path, at a specific
input temperature, varying the process parameters (transistor di-
mensions, threshold voltage, gate oxide thickness) of its cells con-
sistently with the statistical distributions provided by the foundry.
The foundry assumes a Gaussian distribution for each process pa-
rameter and provides its mean (µ) and variance (σ2). We note that
we do not model spatial variation, since IBM 45nm SOI process
claims that its intra-chip spatial variation is negligible and does not
provide a model for it. In each simulation, we measure the de-
lay of the critical path under the worst-case input vectors and mark
whether the time till its output is ready remains shorter than the
cycle duration, or if there is a timing violation. If there is a tim-
ing violation, we assume that the end register of the path will have
5Considering that only the 256 most critical paths (indicated by STA) are
likely to fail is a fair assumption. As shown in Figure 1, only the 256 critical
paths have a non-zero probability to violate timing for 75% or 80% of the
synthesis frequency that we operate our baseline router design (Table 1).

Vector of system-level fault types
data corruption flit conserv. misrouting credit conserv. erroneous unfair
few all dupli- loss wrong wrong gener- loss allocation arbitration/

critical path’s end register / signal bits bits cation port vnet ation vc switch starvation
1. buffer ID where incoming flit is written

√ √ √ √

2. switch request by SA winner
√ √ √ √ √

3. buffer ID where SA winner is to be read
√ √ √ √ √

4. vnet of SA winner
√

5. destination VC of next router
√ √ √

6. SA’s outcome vector
√ √ √ √ √ √

7. SA’s data buffer
√

8. credit to be sent to previous node
√ √ √

9. credit available in output buffer
√ √ √ √

10. head of free VC IDs queue
√ √ √ √ √

11. free VC request by SA winner
√ √ √

12. ST’s data buffer
√

Table 2: Mapping the 12 most critical paths to system-level fault types

a random value in the next cycle, resulting in a fault. We define
the fault probability of each critical path as the fraction of timing
violations over the total number of simulations.

Step 4. Map circuit-level faults to system-level fault types.
To capture the system-level impact of each failure, we design a
framework to automate the mapping of timing violations to system-
level faults. Each Verilog signal or register piggybacks a vector of
system-level faults that will occur if it gets corrupted. The vector
including all potential NoC system-level fault types is shown in Ta-
ble 2, together with its values for the end registers/signals of the
12 most critical paths (of the 256 paths we are simulating). For
instance, the first record corresponds to a timing violation of the
path that generates the ID of the buffer where a received flit will
be buffered. Upon such a failure the flit will be written to another
random buffer (flit loss) potentially overwriting a useful flit latched
there (data corruption). Also, since the buffer that the flit was in-
tended for already sent a credit to the upstream router (indicating
buffer availability for one flit) and not received the flit that used this
credit, it assumes that the upstream router has not utilized this credit
yet (credit loss). At system-level, the destination node will never
receive the corresponding flit while, from now on, this buffer’s ca-
pacity is reduced by one flit buffer. Note that our fault model only
captures the first order effect of each failure; subsequent faults that
may happen in later cycles as a result of the initial failure should
be modeled in the network simulator. We note that if a fault is not
masked by resilient hardware, it will eventually propagate to all
stages of the router and potentially other routers as well.

After the fault probability of each critical path has been measured
(Step 3), we set the probability of occurrence for each system-level
fault type as the union of the fault probabilities of the critical paths
whose failure triggers the corresponding system-level fault type (as
indicated by the critical paths’ vector of system-level faults). In
Step 4 of Figure 3’s example, the probability of failure is 1% for
the first and 3% for the second critical path, thus the type-2 system-
level fault type, which can be caused by either critical path failing,
is (1%)∪(3%) = 100%−[(100%−1%)∗(100%−3%)] = 3.97%.
We assume that the probability of each path failing is independent.

3. ROUTER FAULT CHARACTERIZATION
This section uses our model to better understand the fault loca-

tions and characteristics of NoCs. We first identify the exact loca-
tions where faults occur in each pipeline stage (subsection 3.1) and
highlight their system-level impact. Using the fault locations that
our model indicated as a reference point, we characterize the inac-
curacy introduced by fault models with random distributions, and
point out the importance of circuit-level modeling (subsection 3.2).

3.1 Fault Locations for Varying Configurations
In order to generate a decent amount of PV-induced faults to

study the fault-prone pipeline stages, we set the operation frequency
to 80% of the synthesis frequency (22% aggregate fault probability
for nominal configuration as shown in Figure 1), and set the remain-
ing configuration parameters in their nominal values (as in Table
1). We then measure the probability of occurrence for each system-
level fault type (Step 4 of Section 2.2), by performing Monte Carlo
SPICE simulations for each critical path of our baseline router. We
observe that 15.4% of paths fail with this configuration: 3.1% of
these paths belong to BW/RC stage, 12.2% belong to the SA/VA
stage, and 0.1% to the ST stage. In Figure 4a, we show the prob-
ability of each system-level fault type for variable number of VCs.
Since the SA/VA stage is the most vulnerable, increasing the num-
ber of VCs will result in more complex logic for this stage, thus
more paths will not meet timing, resulting in increased fault prob-
abilities. We also vary the number of buffers/VC (Figure 4b), to
demonstrate that adding complexity to the BW/RC stage will have
a smaller impact on the fault probabilities, since fewer paths of
this stage are expected to violate timing. We note that faults that
are caused by few critical paths (e.g., flit duplication) tend to have
a small probability of occurrence, while faults that are related to
data bits failing (e.g., corruption of few bits) have high probabili-
ties, since each of the 64 data bits violating timing will result in the
same fault.

3.2 Comparison to Random Fault Model
In this section, we compare our fault model to the most com-

monly used fault model for system-level simulation of resilient
Networks-on-Chip [3, 4], which is uniform random fault distribu-
tion at gate level. We use the fault rate that our model predicted to
estimate the expected number of faults, and then we uniformly dis-
tribute them across the chip to measure the inaccuracy that is intro-
duced by such a distribution (per fault type). For a fair comparison,
given that the most critical pipeline stage can be easily identified by
STA, we uniformly distribute faults to SA/VA stage only. We also
experiment with uniformly distributing the faults only to the 256
critical paths that were identified by STA (if fewer critical paths
are considered, the case is even stronger for our fault model). Fig-
ure 5 shows the inaccuracy introduced by these approaches; 0%
inaccuracy corresponds to the distribution matching our model’s
probability of occurrence, while 100% inaccuracy implies that the
distribution either does not predict that the corresponding fault type
will occur, or doubles its probability. We observe that uniformly
distributing faults across the 256 critical paths introduces 52% in-
accuracy (on average), while uniformly distributing faults across
SA/VA hardware introduces 81% inaccuracy (on average).

 0%

 10%

 20%

 30%

 40%

few (1-3)
bits

corrupted

all bits
corrupted

duplication
or trash

generation

flit lost or
split in
pieces

flit sent
to wrong

port

credit
gener-
ation

credit
loss

virtual
channel

switch
bandwidth

unfair
arbitration
starvation

data corruption flit conservation misrouting credit conservation erroneous allocation

pr
ob

ab
ili
ty
	
 o
f	
 o

cc
ur
re
nc
e	

fault	
 type	

8	
 VCs	
 4	
 VCs	
 1	
 VC	

(a) Fault probabilities for varying number of VCs (buffers/VC = 3)

 0%

 2%

 4%

 6%

 8%

few (1-3)
bits

corrupted

all bits
corrupted

duplication
or trash

generation

flit lost or
split in
pieces

flit sent
to wrong

port

credit
gener-
ation

credit
loss

virtual
channel

switch
bandwidth

unfair
arbitration
starvation

data corruption flit conservation misrouting credit conservation erroneous allocation

pr
ob

ab
ili
ty
	
 o
f	
 o

cc
ur
re
nc
e	

fault	
 type	

5	
 buffers/	
 VC	
 3	
 buffers/	
 VC	
 1	
 buffer/	
 VC	

(b) Fault probabilities for varying number of buffers/VC (VCs = 4)
Figure 4: Fault probabilities per fault type (256 critical paths).

 0%

 20%

 40%

 60%

 80%

 100%

data
corruption

flit
conservation

misrouting credit
conservation

erroneous
allocation

starvation average

%
	
 in
ac
cu
ra
cy
	

	
 (c
om

pa
re
d	

to
	
 o
ur
	
 m

od
el
)	

fault	
 type	

UR	
 fault	
 distribu.on,	
 across	
 cells	
 of	
 the	
 256	
 cri.cal	
 paths	
 indicated	
 by	
 STA	

UR	
 fault	
 distribu.on,	
 across	
 all	
 cells	
 of	
 SA/VA	
 pipeline	
 stage	
 only	

Figure 5: Inaccuracy introduced by random fault models.

This significant inaccuracy primarily stems from the fact that PV
changes the order of critical paths (as motivated in our introductory
section): paths that were not critical, but contain weak cells are
more sensitive to variation in transistor dimensions and electrical
characteristics, and thus are more susceptible to timing violations.
In random fault models, the vulnerability of a critical path only de-
pends on the gate count. On the other hand, our model takes into
account the current that each gate requires to drive the following
gates (as well as its fanout), the parasitic capacitances which re-
sult in additional undesirable delays, the voltage fluctuations due to
threshold voltage variation, and various other interactions that can
only be captured by circuit-level simulation. We frequently observe
that paths that were not characterized as critical by our static timing
analysis tool (PrimeTime), result in a significant number of timing
violations in our Monte Carlo simulations. We conclude that, in
the face of variations, a very large number of paths are potential
timing violators and most of them cannot be identified by static
timing libraries provided by the manufacturer, thus simulating the
actual layout of the standard cells, as our model does, is critical for
accurate modeling.

4. CASE STUDY: CAPTURING FAULT
PROBABILITIES AT RUNTIME

In this section, we discuss a case study to showcase how our
fault model can be used by system-level designers as a part of their
multi-core and network simulators. To demonstrate this, we de-
velop the simulation infrastructure detailed in subsection 4.1 and
measure the expected runtime fault probabilities under synthetic
traffic and PARSEC benchmarks (subsection 4.2). Then, we inves-
tigate the effect of fault tolerant system solutions (subsection 4.3).

4.1 System Configuration
We perform cycle-accurate full-system simulations with GEMS

[14] for the 64-node system shown in Table 3. We set the power
consumption of cores to 1watt (consistent with [5, 7]), and directly
capture the runtime power for each router from the ORION 2.0
power model [8], which is integrated in GEMS’s network simula-
tor, GARNET [1]. At runtime, we feed these power numbers to
HOTSPOT 5.0 [6] to estimate the temperature across the chip. Us-
ing the estimated temperature and power of each router, our fault
model provides the fault probabilities on-the-fly. This simulation
infrastructure was detailed in Section 2 and is shown in Figure 2
(of Section 2).

topology 8x8 mesh with 4 memory controllers at the corners,
(for GARNET) router parameters as in Table 1
floorplan 256mm2: 64 interconnected 2mm x 2mm nodes
(for HOTSPOT) with 64 0.2mm x 0.2mm routers
L1 caching 32KB/node, private unified, 2 ways, MESI (latency: 3 cycles)
L2 caching 1MB/node, shared, distributed, 16 ways, MESI (latency: 15 cycles)
benchmarks uniform random traffic, PARSEC suite (64 threads pinned to cores)

Table 3: System configuration
While in the previous section we set a high operation frequency

to intentionally generate PV-induced faults, here we set the fre-
quency to 75% of the synthesis frequency (close to 0% fault prob-
ability for nominal runtime conditions, Figure 1). This is because
we assume that the chip manufacturer will opt to run the chip at a
lower frequency to mitigate PV. So, this section explores the run-
time faults, due to increased power and temperature, for a chip that
was tested and shown to be fault-free under nominal conditions.

4.2 Fault Probabilities at Runtime
In order to demonstrate the effects of network traffic on fault

probabilities, we warmup our network and then inject increasing
uniform random traffic in intervals of 3,000 cycles (x-axis of Figure
6). Then, we plot the resulting temperatures of the warmest router,
the coldest router, as well as average temperature of all routers, as
shown in the top subfigure. For increased traffic, we observe high
temperatures that exceed 100◦C. This is a result of integrating state-
of-the-art router designs in many-core chips with today’s packaging
technology. Recent research on on-chip router temperature profil-
ing indicates that state-of-the-art router designs with standard pack-
aging can develop temperatures up to 125◦C under high traffic [2].
Such high temperatures result in 4% -10% fault probabilities (bot-
tom subfigure of Figure 6) for a chip that is fault-free in nominal
conditions. On the other hand, today’s workloads are designed to
scale up to small number of core counts, thus rarely put so much
pressure in the network. When experimenting with PARSEC suite,
we observe that the peak fault probability of the warmest router is
1% or below (Figure 7).

4.3 Fault Probabilities w Resilient Hardware
Recent research in system-level router design has explored vari-

ous flavors of fault tolerant hardware to protect fault-prone compo-
nents [3, 4]. Here, we model two simple techniques to protect the

 time:
(cycles)

(warmup)
0.01

(zero load)
0.1

(low load)
0.2

(high load)
0.3

(close to sat)
0.4

(past sat)

 time:
(cycles)

(warmup)
0.01

(zero load)
0.1

(low load)
0.2

(high load)
0.3

(close to sat)
0.4

(past sat)

Figure 6: Runtime fault probabilities for increasing synthetic
traffic

0.0%	

0.2%	

0.4%	

0.6%	

0.8%	

1.0%	

blac
ksch

ole

s	
 bod
ytra

ck	

ded

up	
 ferr
et	

freq
min

e	

stre
amc

lust

er	
 swa
p?o

ns	
 vips
	

x26
4	
 pr

ob
ab

ili
ty
	
 o
f	
 	

fa
ul
t	

benchmark	
 (parsec	
 suite)	

warmest	
 router	
 average	
 over	
 all	
 routers	
 coldest	
 router	

Figure 7: Peak/average runtime fault probabilities for PARSEC.

0%	

2%	

4%	

6%	

8%	

10%	

bl
ac
ks
ch
ol
es
	

bo
dy
tr
ac
k	

de
du

p	

fe
rr
et
	

fr
eq

m
in
e	

st
re
am

cl
us
te
r	

sw
ap
>o

ns
	

vi
ps
	

x2
64

	

0.
01
	
 fl
its
/c
yc
	

0.
1	

	
 fl
its
/c
yc
	

0.
2	

fli
ts
/c
yc
	

0.
3	

fli
ts
/c
yc
	

0.
4	

fli
ts
/c
yc
	

parsec	
 synthe>c	
 traffic	
 	

pr
ob

ab
ili
ty
	
 o
f	
 	

fa
ul
t	

benchmark	

without	
 fault	
 tolerant	
 hardware	

with	
 fault	
 tolerant	
 hardware	

Figure 8: Average runtime fault probabilities, with and without
resilient hardware, for synthetic traffic and PARSEC.

most vulnerable hardware components of our router (as identified
by our characterization). We incorporate an Error Correction Code
(ECC) to protect the flits from data corruption (we assume a Ham-
ming code that can correct 1 to 3 bits whose value has been flipped).
We also utilize triple modular redundancy to allocate the switch,
where 3 identical structures perform switch allocation and the al-
location winners are determined by voting logic that implements
what the majority of the structures suggested. Figure 8 shows the
average runtime fault probabilities with and without these resilient
structures. We observe that resilient hardware results in fault prob-
abilities close to zero for PARSEC benchmarks and low uniform
random synthetic traffic, while for high synthetic traffic it decreases
fault probabilities up to 6.8%

5. CONCLUSIONS
We have presented a fault modeling tool that can be easily inte-

grated in system-level network simulators to capture runtime PV-
induced faults in the NoC. Though the core of our model is imple-
mented in circuit-level to capture accurate variation measurements,
its system-level interface provides the probability of occurrence for
system-level faults. We hope that this tool will ease the exploration
of resilient NoCs and help researchers accurately evaluate their sys-
tems in the face of variation. Our future work includes exploring
spatial variation and validating against silicon.

6. ACKNOWLEDGMENTS
We thank Nigel Drego for his guidance during the initial phase

of this project. Nigel advised us to combine static timing anal-
ysis tools with circuit-level tools in our simulation infrastructure.
Tushar Krishna designed our baseline RTL, based on [9].

References
[1] N. Agarwal, T. Krishna, L.-S. Peh, and N. Jha. GARNET: A Detailed On-Chip

Network Model Inside a Full-System Simulator. In IEEE International Sympo-
sium on Performance Analysis of Systems and Software, pages 33 –42, 2009.

[2] C.-H. Chao, K.-Y. Jheng, H.-Y. Wang, J.-C. Wu, and A.-Y. Wu. Traffic- and
Thermal-Aware Run-Time Thermal Management Scheme for 3D NoC Systems.
In NOCS ’10: Proceedings of the 2010 Fourth ACM/IEEE International Sympo-
sium on Networks-on-Chip, pages 223–230, 2010.

[3] K. Constantinides, S. Plaza, J. Blome, B. Zhang, V. Bertacco, S. Mahlke,
T. Austin, and M. Orshansky. BulletProof: A Defect Tolerant CMP Switch Ar-
chitecture. In International Symposium on High-Performance Computer Archi-
tectures, 2006.

[4] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw, and D. Sylvester. Vicis:
a Reliable Network for Unreliable Silicon. In Proceedings of the 46th Annual
Design Automation Conference, pages 812–817, New York, NY, USA, 2009.

[5] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. A 5-GHz Mesh
Interconnect for a Teraflops Processor. IEEE Micro, 27(5):51–61, 2007.

[6] W. Huang, S. Ghosh, K. Sankaranarayanan, K. Skadron, and M. R. Stan.
HotSpot: Thermal Modeling for CMOS VLSI Systems. In IEEE Transactions
on Component Packaging and Manufacturing Technology, 2005.

[7] J. Howard et al. A 48-Core IA-32 Message-Passing Processor with DVFS in
45nm CMOS. International Solid-State Circuits Conference, pages 108–109,
2010.

[8] A. Kahng, B. Li, L.-S. Peh, and K. Samadi. ORION 2.0: A Fast and Accu-
rate NoC Power and Area Model for Early-Stage Design Space Exploration. In
Proceedings of the conference on Design, Automation and Test in Europe, pages
423–428, 2009.

[9] T. Krishna, J. Postman, C. Edmonds, L.-S. Peh, and P. Chiang. SWIFT:
A SWing-reduced Interconnect For a Token-based Network-on-Chip in 90nm
CMOS. In Proceedings of International Conference on Computer Design, 2010.

[10] S. Kundu, A. Sreedhar, and A. Sanyal. Forbidden Pitches in Sub-Wavelength
Lithography and Their Implications on Design. Journal of Computer Aided Ma-
terials Design, 14(1):79–89, 2007.

[11] X. Liang and D. Brooks. Microarchitecture Parameter Selection to Optimize
System Performance Under Process Variation. In International Conference on
Computer-Aided Design (ICCAD), pages 429–436, 2006.

[12] X. Liang and D. Brooks. Mitigating the Impact of Process Variations on Proces-
sor Register Files and Execution Units. In Proceedings of the annual IEEE/ACM
International Symposium on Microarchitecture, pages 504–514, 2006.

[13] Y. Lu, L. Shang, H. Zhou, H. Zhu, F. Yang, and X. Zeng. Statistical Reliability
Analysis Under Process Variation and Aging Effects. In Proceedings of the 46th
Annual Design Automation Conference, pages 514–519, New York, 2009.

[14] M. Martin et al. Multifacet’s General Execution-driven Multiprocessor Simula-
tor (GEMS) Toolset. Computer Architecture News (CAN), 2005.

[15] C. Nicopoulos, S. Srinivasan, A. Yanamandra, D. Park, V. Narayanan, C. R.
Das, and M. J. Irwin. On the effects of process variation in network-on-chip
architectures. IEEE Transactions on Dependable and Secure Computing, 7:240–
254, 2010.

[16] S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrel-
las. VARIUS: A Model of Process Variation and Resulting Timing Errors for
Microarchitects. IEEE Transactions on Semiconductor Manufacturing, 21(1):3
–13, 2008.

[17] S. R. Sarangi, B. Greskamp, and J. Torrellas. A Model for Timing Errors in
Processors with Parameter Variation. In ISQED, pages 647–654, 2007.

[18] T. Thiel. Have I Really Met Timing? – Validating PrimeTime Timing Reports
with Spice. In DATE ’04: Proceedings of the conference on Design, automation
and test in Europe, Washington, DC, USA, 2004. IEEE Computer Society.

[19] W. Zhao and Y. Cao. New Generation of Predictive Technology Model for Sub-
45nm Design Exploration. In ISQED ’06: Proceedings of the 7th International
Symposium on Quality Electronic Design, 2006.

