
PROGRAMMABLE STIMULATOR SYSTEM

FOR STUDY OF CARDIAC ARRHYTHMIAS

by

Andrew H. Chung

S.B., Massachusetts Institute of Technology (1992)

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

at the

'MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1993

@ Andrew H. Chung, MCMXCIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute copies

of this thesis document in whole or in part, and to grant others the
right to do so.

A uthor
Department of Electrical Engineering and

Certified by....v...

Computer Science
August 27, 1993

.............
Richard J. Cohen

Professor
Thesis Supervisor

Accepted by
Frederic R. Morgenthaler

Chairman, Departmental Committee on Graduate Students

PROGRAMMABLE STIMULATOR SYSTEM FOR

STUDY OF CARDIAC ARRHYTHMIAS

by

Andrew H. Chung

Submitted to the Department of Electrical Engineering and Computer Science
on August 27, 1993, in partial fulfillment of the

requirements for the degree of
MASTER OF SCIENCE

Abstract

This thesis presents a microcomputer-based stimulator system which is used to
produce a wide variety of pacing protocols for the studies of cardiac arrhythmias. The
stimulator has two independent output channels: the first channel is for a stimulation
through a single-site electrode and the second is for a moderate level stimulation
through a multi-site electrodes sock or defibrillation catheters and patches. It is also
equipped with an ability to amplify the intracardiac electrogram and synchronize
the pacing with the electrical activity of the heart. The control software can be
programmed for an induction of cardiac arrhythmias and other variety of pacing
protocols.

The stimulator is used to investigate methods for the prevention and termina-
tion of lethal cardiac arrhythmias, such as ventricular tachycardia and fibrillation,
by multi-site pacing. It detects the ventricular premature beats and applies a trig-
gered pacing. This stimulator system is tested in the laboratory animal models of
arrhythmias and is shown to function successfully.

Thesis Supervisor: Richard J. Cohen
Title: Professor

Acknowledgements

I would like to express my sincere appreciation to Prof. Richard J. Cohen for his

guidance, advice, and encouragement. He provided an environment where I can learn

and pursue my research project independently.

Other members of Dr. Cohen's group deserve my thanks for the many hours they

spent helping me solve problems I faced. I would like to express my thanks to Kohei

Ono, who was very much a part of the effort during the hardware development; Zhihao

Yin and Darin Sherman, who were very resourceful during the software development;

Dr. Aldea, Tom Mullen, Antonis Armoundas, and Ray Lee for their help in doing the

animal experiments. Without their help and discussions, this thesis would have been

impossible to complete. Last, thanks to Tom Mullen and Terri Bae for their help in

editing this thesis.

Most of all, I would like to express my deep love for my parents and my sister.

Without their constant love and care, I would not have made it through this far.

Contents

1 Introduction 10

2 Background 13

2.1 The Heart 13

2.1.1 Anatomy of the Heart . 13

2.1.2 Cardiac Cycle . 15

2.1.3 Cardiac Conduction System 17

2.2 Electrocardiogram . 19

2.3 Arrhythmias . 21

2.3.1 Pathophysiology of Arrhythmias 21

2.3.2 Clinical Examples of Arrhythmias 22

3 Programmable Stimulator System 26

3.1 System Overview . 26

3.2 System Components . 29

3.2.1 Digital-to-Analog (D/A) Board 29

3.2.2 Voltage/Current Amplifier . 29

3.3 Integrated System . 30

3.3.1 Current Amplifier . 30

3.3.2 Intracardiac Electrocardiogram Amplifier 32

3.3.3 Detector . 39

4

CONTENTS 5

4 Control Program 45

4.1 Program Overview 45

4.2 User Interface 47

4.2.1 Pacing Threshold . 47

4.2.2 Mid-Diastolic Threshold . 48

4.2.3 Effective Refractory Period . 49

4.2.4 Extra Stimuli for Arrhythmias Induction 49

4.2.5 Burst for Arrhythmias Induction 50

4.2.6 Overdrive Pacing for Arrhythmias Prevention 51

4.2.7 Stimulation Modes . 52

4.3 Output Controller . 52

4.3.1 Initialization and Termination 53

4.3.2 D/A Operation . 53

5 Experimental Study 55

5.1 Survival Surgery . 55

5.2 Acute Surgery . 57

5.2.1 Surgical Preparation . 57

5.2.2 Electrophysiologic Study . 59

5.3 Future Study . 63

6 Conclusion 65

A Pacer.c 66

B Video.c 111

Bibliography 123

List of Figures

2-1 Cross-section of the heart (Reproduced from Netter FH: Heart, Vol. 5,

The CIBA Collection of Medical Illustrations, CIBA, 1981) 14

2-2 Cardiac Cycle (Reproduced from Berne and Levy: Cardiovascular

Physiology, 1992) . 16

2-3 Electrical conduction system of the heart (RV, right ventricle; LV, left

ventricle; LBB, left bundle branch system; A-V, atrioventricular; RA,

right atrium; LA, left atrium) . 18

2-4 Schematized ECG tracing (Reproduced from Netter FH: Heart, Vol.

5, The CIBA Collection of Medical Illustrations, CIBA, 1981) 20

2-5 Reentrant Circuit (Reproduced from Smith: Ph.D. Thesis, 1985) . . . 22

2-6 Ventricular premature beats (Reproduced from Smith: Ph.D. Thesis,

1985)......... 23

2-7 Ventricular ventricular period, the time during which ventricular ar-

rhythmias can be induced (Reproduced from Smith: Ph.D. Thesis, 1985) 24

2-8 Ventricular tachycardia (Reproduced from Smith: Ph.D. Thesis, 1985) 24

2-9 Ventricular fibrillation (Reproduced from Smith: Ph.D. Thesis, 1985) 25

3-1 Diagram of the programmable stimulator system 27

3-2 A block diagram of the current amplifier sub-system 31

6

LIST OF FIGURES

3-3 RC circuit used for the DC shock protection with pulse shapes before

and after the RC cirucit . 32

3-4 Circuit diagram of a voltage-to-current converter 33

3-5 A block diagram of the intra-cardiac electrocardiogram amplifier sub-

system . 34

3-6 A circuit diagram of the overload protection circuit with a high-pass

filter 35

3-7 A circuit diagram of the differential amplifier 36

3-8 Circuit diagram of a 2nd-order Chebyshev high-pass filter with 2dB . 38

3-9 Circuit diagram of a 2nd-order Bessel low-pass filter 39

3-10 Frequency response of 2nd-order Bessel low-pass filter 40

3-11 A block diagram of the detector sub-system 41

3-12 Circuit diagram of a full-wave rectifier 42

3-13 Transfer characteristics of a voltage comparator (Note that the output

of the comparator is high wheneve the input level is higher than the

threshold level.) . 44

3-14 Circuit diagram of a trigger generator 44

4-1 Flowchart of the control program . 46

4-2 Fixed-rate pacing to determine the pacing threshold 48

4-3 Mid-diastole pacing to determine the effective refractory period . . . 49

4-4 Extra stimuli used to induce ventricular arrhythmias 50

4-5 Burst used to induce ventricular arrhythmias 50

4-6 Overdrive pacing pulses used for the prevention of the ventricular ar-

rhythm ias . 51

5-1 Myocardial infarct (Reproduced from Netter FH: Heart, Vol. 5, The

CIBA Collection of Medical Illustrations, CIBA, 1981) 56

7

LIST OF FIGURES 8

5-2 Cranial view of the swine heart showing the relationships of the blood

vessels at the base of the heart. In the bottom view, the great vessels

have been severed to reveal the left azygos vein. 57

5-3 Intracavitary lead system used for the experiment 58

5-4 56-bipolar electrodes sock placed around the ventricle 59

5-5 Electrocardiogram and arterial blood pressure during single site pacing

using current pulses . 61

5-6 Ventricular fibrillation induced by four extra stimuli 62

5-7 Triggerd multi-site pacing to prevent VT/VF 64

List of Tables

4.1 Stimulation Modes 52

9

Chapter 1

Introduction

Sudden cardiac death victimizes approximately 400,000 people in the United

States alone every year. Because the event is both sudden and unexpected, almost

two-thirds of the victims die before reaching the hospital [24]. The primary cause of

sudden cardiac death in the vast majority of victims is ventricular fibrillation (VF),

a disorganized pattern of electrical activity in the principal pumping chambers of

the heart. The disorganized pattern of electrical activity results in random contrac-

tions and relaxations of cardiac muscle fibers which are ineffectual in pumping blood.

Unless cardiopulmonary resuscitation is initiated immediately, death ensues in ap-

proximately four minutes from a lack of perfusion of the brain. The only reliable

method for termination of VF is defibrillation, the delivery of a sufficiently strong

direct current electric discharge to the fibrillating heart to reset the electrical activity

of the heart.

Ventricular rhythm disturbances or ventricular arrhythmias, such as fibrillation

and tachycardia, are usually developed during the acute phase of myocardial infarc-

tion, more commonly known as heart attack. These arrhythmias normally disappear

when the infarction stabilizes. However, some patients do develop ventricular ar-

10

CHAPTER 1. INTRODUCTION

rhythmias usually in the form of tachycardias some weeks or months after the onset

of the infarction. Ventricular tachycardia itself is a dangerous rhythm disturbance

because the heart rate is usually too fast and too poorly synchronized to allow ef-

fective pumping action by the heart. Ventricular tachycardia often develops into

ventricular fibrillation. Therefore, these tachycardias must be treated. In some cases,

antiarrhythmic drug treatment is effective in suppressing such tachycardias. How-

ever, current drug therapy are only modestly useful in prevention of these ventricular

arrhythmias. Recently, an automatic internal cardiac defibrillator (AICD) has been

implanted in high-risk patients. The internal defibrillator senses established VF and

automatically administers a large counter electric shock to terminate it. Although

the implantable defibrillator is useful for termination of ventricular fibrillation, it is

not preventive. In addition, use of the internal defibrillator is also problematic in

individuals with multiple recurrent episodes of fibrillation since internal defibrilla-

tion is traumatic and painful, and the patient generally loses consciousness prior to

defibrillation.

This thesis presents a programmable stimulator system which is used in the studies

of electrical pacing methods for the prevention of ventricular arrhythmias, tachycar-

dia and fibrillation. Instead of treating established fibrillation by administration of a

large countershock, a stimulator system is used to detect the initiation of ventricular

arrhythmias and apply an electrical pacing to prevent ventricular tachycardia and

fibrillation from developing. In order to study the prevention method, a stimulator is

equipped with capabilities to sense the premature ventricular activities and deliver a

moderate level stimulation through a multi-site electrode sock. A personal computer

based system for amplifying the ventricular electrogram and delivering the stimuli of

sufficient amplitude is developed. The pacing protocols to prevent and treat ventric-

ular arrhythmias using an epicardial electrode array are studied on the experimental

animal models, which are used to duplicate the arrhythmogenic effects of myocardial

11

CHAPTER 1. INTRODUCTION

ischemia.

This thesis is organized as follows:

i. A brief review of the major features of the structure and function of the nor-

mal human heart is presented as a reference for subsequent discussion. Also,

the most recent theory regarding the initiation of the cardiac arrhythmias is

described. (Chapter 2)

ii. An overview of the programmable stimulator system, which consists of com-

mercial components and an integrated system, is presented. The design of the

integrated system is presented in detail. (Chapter 3)

iii. A review of the control program, which is used for the user interface and output

control, is presented. Several stimulation protocols used for the experiment are

discussed. (Chapter 4)

iv. Experimental study, where the system is used for induction of arrhythmias and

multi-site pacing, is presented. (Chapter 5)

12

Chapter 2

Background

In order to lay the groundwork for later description of the pacing system specifi-

cations, this chapter is focused on providing the necessary physiological background.

The first part of this chapter describes basic anatomy and physiology of the normal

human heart. The mechanical events of the heart are then related to the electrocardi-

grm. Finally, the mechanisms of cardiac arrhythmias, which interfere with the normal

functioning of the heart, are discussed and several examples of cardiac arrhythmias

are presented.

2.1 The Heart

The human heart is a hollow, thickly muscular organ which facilitates blood flow

through the vascular system by rhythmic contractions. The heart is responsible for

supplying all organs of the body with the necessary life-sustaining nutrition and

oxygen.

2.1.1 Anatomy of the Heart

13

CHAPTER 2. BACKGROUND

AORTIC SINUS (Of

14

MuM POSTERIOR CUSP
W kANTERIOR (AORTIC) CUSP

VAISALVAI I PULMONARY 1. Pt
VEIN VEIN

ASCENOING AORTA

L. CUSP

POSTERIORWai (NONCORONARY)

'CUSP

SUPERIOR
VENA CAVA

ATRtO-
VENRICUtA

VE NTRICUkAA M
PART

(BROKEN LINE
INOICATES LINE OF
ATTACHMENT OF
SEPTAL IEAFLET Of
TRICUSPID VALVE) ' ..

ANTERIOR
CUS
(RETRACTED)

Tit- MEDIAt
IN)" (SEPTAILI

POSTERIOR
CUSIP

R. VENTRICLE

R. ANTERIOR PAPILLARY MUSCLE (CUT)

INif
A. POSTER10OR PAPILLARY MUSCit SEPTI

Figure 2-1: Cross-section of the heart (Reproduced from Netter FH: Heart, Vol. 5,
The CIBA Collection of Medical Illustrations, CIBA, 1981)

CHAPTER 2. BACKGROUND

The average human adult heart measures 12 cm from apex to base, 9 cm in width

at its broadest point, and 6 cm in anterior-posterior dimension [25]. A cross-section

of the heart is shown in Figure 2-1. Internally, the heart is divided into four distinct

chambers; right and left atria, two small upper chambers with thin walls, and right

and left ventricles, two lower chambers with thicker walls. The atrium and ventricle

on the right side are separated from those on the left by a septum. There is an

opening between the atrium and ventricle, which is guarded by a valve.

2.1.2 Cardiac Cycle

In a normal cardiac cycle, oxygen-depleted, venous blood returning from the pe-

ripheral circulation empties into the right atrium (RA) via the superior and inferior

vena cavae (refer to Figure 2-1). From right atrium, blood is pumped through the

tricuspid valve into the right ventricle (RV). This is the resting or filling phase of

the cardiac cycle and is called diastole. The blood is then pumped from the right

ventricle through the pulmonic valve into the pulmonary circulation in a contractile

phase called systole. In the luigs, the blood is oxygenated and delivered to the left

side of the heart. In parallel with the events on the right, oxygenated blood empties

into the left atrium (LA) via several pulmonary veins. Left atrial contraction then

propels this blood through the mitral (bicuspid) valve into the left ventricle (LV).

The left ventricle, by far the most muscular of all the heart chambers, pumps blood

through the aortic valve into the ascending aorta. From there, blood is distributed

through the systemic circulation, eventually to return to the right atrium thereby

completing the circuit. The pressures inside of the heart chambers and the aorta

during the cardiac cycle are shown in Figure 2-2, with phases of systole and diastole

noted. Corresponding heart sounds and electrocardiogram are also provided.

15

E
E

Cz

CL

E

.2
001

0

U

0 0.1 0.2 0.3 0.4 0.5

Time(s)

16

I . .
0.6 0.7 0.9

Figure 2-2: Cardiac Cycle. (Reproduced from Berne and Levy: Cardiovascular Phys-
iology, 1992)

CHAPTER 2. BACKGROUND

CHAPTER 2. BACKGROUND

2.1.3 Cardiac Conduction System

A specialized electrical conduction system normally regulates the steady beating

of the heart. The signal giving rise to the cardiac cycle emanates from a cluster of

conduction tissue cells collectively known as the sinoatrial node, as shown in Figure

2-3. This node, located at the top of the right atrium, establishes the tempo of the

heartbeat; hence, it is often referred to as the cardiac pacemaker. It sets the tempo

simply because it issues impulses more frequently than do other cardiac regions, once

about every 830 milliseconds. If something provoks another part of the heart to fire at

a faster rate, it would become the new pacemaker. Although the sinoatrial node can

respond to signals from outside the heart, it usually becomes active spontaneously, a

capability known as automaticity.

Impulses born at a cell in the sinoatrial node speed nearly instantly through the

rest of the node, and from there, they course through the entire heart in the span

of 160 to 200 milliseconds. Travelling along conduction fibers, they first race across

both atria and then regroup at the atrioventricular node, a cellular cluster centrally

located atop the ventricles. After a pause, they course down the ventricles along an

A-V (His) bundle that divides into two branches known as left and right bundles

branches; these further ramify to form arbors of thinner projections called Purkinje

fibers. One arborized bundle serves each ventricle, sending signals first along the

surface of the septum to the tip of the heart, the apex, and, from there, up along the

inner surface of the external or lateral walls to the top of the ventricle.

As impulses from the conduction fibers reach muscle, they activate the overlying

cells. Muscle cells, too, are capable of relaying impulses, although more slowly than

do conduction fibers. The cells of the inner surface of the wall, the endocardium,

depolarizes first and relay the impulses through the thickness of the muscle to the

outer surface, the epicardium. Depolarization, in turn, triggers contraction that forces

17

CHAPTER 2. BACKGROUND

A-V node

S-A node ''branch

LA

RA

Anterior

Septal Division
Intemnodal RV of LBB

tracts
Posterior]

Right bundle
branch

Figure 2-3: Electrical conduction system of the heart (RV, right ventricle; LV, left
ventricle; LBB, left bundle branch system; A-V, atrioventricular; RA, right atrium;
LA, left atrium)

18

CHAPTER 2. BACKGROUND

blood through the heart and into the arterial circulation.

2.2 Electrocardiogram

The series of mechanical events outlined above can be tracked at the body surface

by monitoring the surface potentials which are caused by the flow of ionic currents

within the cardiac structures. The recording of such body surface potentials is known

as electrocardiography, and a single recording of the potential difference between

two points on the body surface is referred to as an electrocardiogram. Different

morphologies of the cardiac action potentials at various locations within the heart

are combined to give the electrocardiogram, shown in Figure 2-4. A theoretical basis

for the relationship between body surface potentials and myocardial transmembrane

potentials can be found in major texts [4].

The normal electrocardiogram consists of a P wave, a QRS complex, a T wave,

and an infrequent U wave (refer to Figure 2-4). The P wave, temporally the first

component of the ECG, is a result of atrial depolarization. The QRS complex, which

follows the P wave after a delay of approximatley 150 millisecondss (A-V nodal de-

lay), is the result of ventricular depolarization. The T wave, which follows the QRS

complex by a variable period of time, is the result of ventricular repolarization. The

repolarization of the atria-is not visible in the surface ECG partly because the mass

of the atria is relatively small and the time course of the atrial repolarization coin-

cides with ventricular depolarization. The infrequently seen U wave is thought to be

the result of the repolarization of the His-Purkinje system. It follows the T wave by

roughly 25 milliseconds because the action potential duration of the Purkinje cells is

approximately 25 milliseconds longer than that of ordinary myocardial cells [4].

19

CHAPTER 2. BACKGROUND

Figure 2-4: Schematized ECG tracing (Reproduced from Netter FH: Heart, Vol. 5,
The CIBA Collection of Medical Illustrations, CIBA, 1981)

20

CHAPTER 2. BACKGROUND

2.3 Arrhythmias

Disturbances in the heart's electrical activity may cause significant abnormalities

in its mechanical function, and are the basis of much cardiac morbidity and mortality.

In fact, malfunctiion of the heart's electrical behavior is the principal cause of sudden

cardiac death. Arrhythmias are generally thought to occur on the basis of one or

a combination of three potential mechanisms: automaticity, triggered activity, or

re-entry [7].

2.3.1 Pathophysiology of Arrhythmias

Most evidence suggests that re-entry is the mechanism of clinical ventricular ar-

rhythmias [17]. In the presence of slow conduction and/or unidirectional block, it is

possible to establish in the myocardium a so-called "re-entrant circuits" of excitation, (
as shown in Figure 2-5. Some workers have subdivided the re-entrant mechanism

into two catagories, "random re-entry" and "ordered re-entry". Random re-entry can

cause atrial or ventricular fibrillation, whereas ordered re-entry can cause tachycar-

dias. The distinction between the two is that during random re-entry, propagation

occurs over re-entrant pathways that continuously change their size and location with

time. Whereas an ordered re-entry implies a relatively fixed re-entrant pathway. In

all configurations, however, The wavelength of the impulse in the reentrant circuit

(conduction velocity X refractory period) must be shorter than the length of the cir-

cuit, so that the tissue into which the impulse is re-entering has had time to recover

its excitability.

Re-entry may occur in patients who have bundles of surviving muscle fibers in

healed myocardial infarcts. The interfusion of dead cells and diseased cells creates

the anisotropic medium for the developement of re-entrant circuits. There are many

possible geometric arrangements for such loops which may exist in many locations of

21

CHAPTER 2. BACKGROUND

Region of
one -way" block

+- B ''- -W -- 4 C ---

Figure 2-5: Reentrant Circuit (Reproduced from Smith: Ph.D. Thesis, 1985)

the heart and in many sizes, both microscopic and macroscopic. It had been proposed

that the microscopic re-entrant circuits are the most common form [15].

2.3.2 Clinical Examples of Arrhythmias

As explained earlier, patients who had suffered myocardial infarction are sus-

pectible to ventricular arrhythmias because of the presence of the re-entrant pathways

in the surrounding areas of infarct. In this section, some of the clinical ventricular

disrhythmias are reviewed.

Ventricular Premature Beats

The most common ventricular arrhythmia is the ventricular premature beats

(VPB). A ventricular premature beats occur when ventricular activation is initiated

as a site within the ventricles and not as a result of the normal chain of cardiac

activation initiated in the sino-atrial (SA) node. Thus, the normal timing of events

22

CHAPTER 2. BACKGROUND

is disrupted with the result being inadequate time for filling of the ventricles, and

consequently decreased ejection of blood into the ascending aorta. As shown in ECG

in Figure 2-6, the P wave is absent and the QRS complex is quite wide (greater than

0.12 seconds) and bizzare. The width of QRS is enlarged due to the VPB not utilizing

the His-Purkinje system with its rapid conduction velocity.

Figure 2-6: Ventricular premature beats (Reproduced from Smith: Ph.D. Thesis,
1985)

VPB's are often found in otherwise normal individuals and probably have little

significance if they are infrequent. In heart diseases, VPB's may be a risk factor for

increased incidence of more serious ventricular arrhythmias and sudden death. VPB's

which fall on the T-wave of the previous beat are considered particularly dangerous.

The period near the T-wave peak is oftern referred to as the "ventricular vulnerable

period," as shown in Figure 2-7. At the time corresponding to the peak of the T-wave,

the ventricular myocardium is just beginning to repolarize. Some cells may be in the

relatively refractory period, while others may be more fully recovered, and still others

quite refractory. The electrical properties of the myocardium are thus quite varied,

and conditions favoring re-entrant loops are likely. Thus, an extra stimulus in the

form of an isolated VPB which is very early-cycle may trigger a repetitive ventricular

ectopic rhythm such as ventricular tachycardia or ventricular fibrillation [4].

23

CHAPTER 2. BACKGROUND

QRS

T periodvulnerable

Figure 2-7: Ventricular ventricular period, the time during which ventricular arrhyth-
mias can be induced (Reproduced from Smith: Ph.D. Thesis, 1985)

Ventricular Tachycardia

Another arrhythmia of ventricular origin is ventricular tachycardia, wherein rapid

repetitive stimulation and contraction of the ventricles occur in the absence of normal

atrially conducted stimulation. The rates of ventricular tachycardia vary from 150 to

300 beats per minute. Rates above 250 beats per minute fails to provide sufficient

cardiac output to maintain life since the rapid rate does not permit sufficient filling of

the ventricles [13]. As shown in ECG of Figure 2-8, a train of ventricular complexes

similar to VPBs are present, with no coupled preceding atrial activity.

Figure 2-8: Ventricular tachycardia (Reproduced from Smith: Ph.D. Thesis, 1985)

24

CHAPTER 2. BACKGROUND

Ventricular Fibrillaion

The last arrhythmia to be reviewed herein, and the one that is most often asso-

ciated with sudden cardiac death, is ventricular fibrillation. Ventricular fibrillation

is characterized by asynchronous, chaotic electrical activity resulting in disorganized

and ineffectual contractions. Cardiac output during ventricular fibrillation is negli-

gible, and as such the condition is incompatible with life. As shown in Figure 2-9,

ventricular fibrillation is manifested by a random oscillation of potential, with no

QRS complexes.

Figure 2-9: Ventricular fibrillation (Reproduced from Smith: Ph.D. Thesis, 1985)

25

Chapter 3

Programmable Stimulator System

A programmable stimulator system is an essential piece of equipment for the study

of arrhythmias. In our studies of arrhythmias, there was a need for a device which

produced more than the standard constant current or voltage S1 pacing train. A

device is needed to produce a wide variety of pacing protocols, such as induction of

arrhythmias, and synchronize the delivery of pulses with the electrical activity of the

heart. Also, since some of the pacing is done through a multi-site electrodes sock, the

system has to provide voltage and current pulses for a moderate level of amplitude.

In this chapter, a microcomputer-based stimulator system that can be programmed

to produce a wide variety of pacing protocols is presented.

3.1 System Overview

A block diagram of the programmable stimulator system is shown in Figure 3-

1. The programmable stimulator system consists of a 80386 microcomputer with a

digital-to-analog board, a software program, called Pacer, a stimulator hardware, and

monitoring/recording equipments. The stimulator hardware again conisits of three

26

CHAPTER 3. PROGRAMMABLE STIMULATOR SYSTEM

Gain Adjuster

DAI In

+10V G -10V

To power

Ch 2 Out o -|

Ch 2 Output pulses
aNo

Integrated System

DAO In STIM Ch I Out

Trig Out STIM Ch I Ret

DAO Stim Mon ECG + In

ECG Mon ECG - In

+10V G -10V

To power

Ch 1 Output pulses

Figure 3-1: Diagram of the programmable stimulator system

27

Voltage/Current Amplifier

P0 0
PO STIM

80386 Microcomputer with
DT2821 D/A Board

DAI Out

DAO Out
0-

Ext Trig

Chart Recorder

Ch I Ch 5
O-4

Ch 2 Ch 6

Ch 3
-O

Ch 4
-O

Monitor

ECG Out ECG In

BP Out BP In
--O 00

CHAPTER 3. PROGRAMMABLE STIMULATOR SYSTEM

sub-components: a) a integrated system, b) a gain adjuster, and c) a voltage/current

amplifier.

Two analog pulses are generated by a fast digital-to-analog converter at a rate

of 1,000 samples per second per channel (DA0 Out and DA1 Out in Figure 3-1).

The amplitude and timing of the voltage pulses from a digital-to-analog converter

are controlled precisely by a software and supplied to two inputs of the stimulator

hardware (DA0 In and DA1 In in Figure 3-1).

Stimulator hardware converts two voltage inputs to two independent outputs for

electrical stimulation. First channel sends current stimuli to a single electrode for

pacing and inducing arrhythmias. These current stimuli are generated by the voltage-

to-current converter of the integrated system (STIM Ch 1 Out in Figure 3-1). On the

other hand, second channel sends either voltage or current stimuli to a multi-site elec-

trodes sock. They are generated by the commercial high-performance voltage/current

amplifier (STIM Ch 2 Out in Figure 3-1). These pacing stimuli can be applied at

a fixed rate or be triggered by an external signal. These output pulses are used to

stimulate the heart of an open-chest animal.

Following the stimulation, the electrical signal generated by the heart is recorded

by the electrode placed on the epicardial surface of the heart (ECG t In in Figure

3-1). This signal is conditioned by the electrocardiogram amplifier of the integrated

system, and it is used to detect abnormal electrical activities of the the heart. When

abnormal events are detected, a pulse is sent to the external trigger port of a digital-

to-analog board to initiate another stimulation of the heart.

In order to monitor and record the animal experiments, all stimuli as well as

the electrical activity of the heart can be displayed on the screen of an oscilloscope,

and recorded on the analog tape and/or the Astro Med 8-channels chart recorder

for hardcopy. In the following sections, various commercial components used in the

programmable stimulatr system, as well as the integrated system, will be described.

28

CHAPTER 3. PROGRAMMABLE STIMULATOR SYSTEM

3.2 System Components

Some of the components used in the development of the programmable stimulator

system, such as a digital-to-analog board and a voltage/current amplifer, are com-

mercially available equipments. In this section, some of their specification are given

for reference.

3.2.1 Digital-to-Analog (D/A) Board

Data Translation DT 2821 board is used for the digital-to-analog conversion. This

board plugs into any IBM compatible microcomputer and contains conversion cir-

cuitry for both analog-to-digital and digital-to-analog operations. When used as the

digital-to-analog operation, this board produces two voltage outputs, ranging from

-10 to 10 volts, with the resolution of 5 millivolts [10]. (Refer to the DT 2821 board

manual for further information.)

3.2.2 Voltage/Current Amplifier

A Kepco BOP 72-6M bipolar operational power supply (BOP) is used as a pre-

cision voltage or current source for the stimulation through the multi-site electrodes

sock. This BOP provides the flexibility to pace by voltage or current and a moder-

ate amount of stimulation outputs for multi-site pacing. The output of BOP can be

controlled by voltage signals. As a bipolar voltage amplifier, the BOP output ranges

from -72 to 72 volts and has a gain factor of 7.2 (V/V). On the other hand, as a

bipolar current amplifier, the BOP output ranges from -6 to 6 amp and has a gain

factor of 0.6 (A/V). Therefore, a i10 volt input signal will program the BOP output

as voltage or current through its rated output ranges. Also, built-in preamplifiers,

for the voltage and current channels of the BOP, provide the interface with high as

29

CHAPTER 3. PROGRAMMABLE STIMULATOR SYSTEM

well as low impedance signal sources [19]. (Refer to the KEPCO BOP 72-6M power

suppliy manual for further information.)

3.3 Integrated System

It should be noted that the integrated system, shown in Figure 3-1, is specifically

developed for this study. It cosists of several functional units: a voltage-to-current

converter, an electrocardiogram amplifier, and a detector. Special care has been taken

to ensure safety of the integrated system by preventing electroshock hazards. By use

of isolation amplifiers, the current pulses are separated from ground guarding against

unwanted dangerous interference from the mains.

3.3.1 Current Amplifier

As mentioned previously, pacing and extra stimuli of channel one are current

pulses. Since the D/A board generates voltage pulses only, a voltage-to-current con-

verter is needed. The current amplifier, shown in Figure 3-2, consists of: a) a buffer

for impedance matching, b) a gain control, c) an isolation amplifier, d) a RC circuit

to prevent a DC shock, e) a voltage-to-current converter, and f) a current output

monitor with a LED indicator.

RC High-Pass Filter to Prevent DC Shock

The voltage pulses of the D/A board are fed to an unit-gain buffer, a gain control,

and an isolation amplifier. The output of the isolation amplifier is then fed into a

simple RC circuit, which acts as a high-pass filer to cutoff DC voltage. This RC cirucit

protects the experimental animal from the DC shock when DC is applied accidentally

to the current amplifer. The RC circuit and the shape of pulses before and after the

30

CHAPTER 3. PROGRAMMABLE STIMULATOR SYSTEM

ChI Output
Pulses

DAO Stim
Mon

Figure 3-2: A block diagram of the current amplifier sub-system

RC circuit is shown in Figure 3-3. Note that the uniform shape of the inputs pulse

is modified to the exponentially decaying pulse with the time constant of RC, in this

case 10 msec.

Voltage-to-Current Converter

The ouput of the RC cirucit is then used to control the current source. The current

source uses the xxx transistor . Assuming that

the load resistance of the heart during the pacing would be less than 200 ohm, the

output of the current source is linear upto about 30 mA.

Current Output Monitor

The output of the voltage-to-current converter is monitored by recording the volt-

age developed across 100 ohm resistor. The voltage is recorded on the chart recorder

and this enables the investigator to confirm the actual current output delivered to

the load at the time of pacing. Isolation amplifier is again used to protect animal

31

DAO In

CHAPTER 3. PROGRAMMABLE STIMULATOR SYSTEM

C =0.1 uF

Signal In Signal Out

Figure 3-3: RC circuit used for the DC shock protection with pulse shapes before and
after the RC cirucit

from fault-ground shock. Also, unity gain buffers are used for impedance matching.

In addition, a LED display is added to blink at each pacing stimuli.

3.3.2 Intracardiac Electrocardiogram Amplifier

In order to pace the heart based on the electrical activity of the heart, an in-

tracardiac electrocardigram amplifier is needed. This amplifier records the epicardial

or intracavitary cardiac signals from the electrode and conditions it as an input the

detector.

General Description

The intracardiac electrocardiogram (ECG) amplifier is used for the amplification

of epicardial electrocardiogram, which has a small differential signal riding on a large

common mode signal, signals that are common to all the electrodes. For example, if

there were a millivolt electrocardiogram signal and a volt of common-mode signal at

32

I -

CHAPTER 3. PROGRAMMABLE STIMULATOR SYSTEM

+V= 18 V

5 Current Out
Signal InO

Current Ret

-V = -9 V

Figure 3-4: Circuit diagram of a voltage-to-current converter

the electrodes and transmission along the two wires differed by 0.1 %, then a millivolt

of differential signal would be developed from the common-mode signal, which is as

large as the electrocardiogram itself.

In order to solve these problems involving a common-mode signal, identical condi-

tions have to be imposed on the two signal paths. Each must be exposed to the same

noise, same source, and destination impedance. A high input-impedance differential-

input amplifier is an ideal choice to solve these problems.

The intra-cardiac electrocardiogram amplifier, shown in Figure 3-5, is composed

of six basic building blocks: a) an overload protection circuit with high pass filter, b)

a direct-coupled, low gain preamplifier, c) an isolation amplifier, d) a high pass filter

set at 10 Hz, e) a programmable gain amplifier, and f) a low-pass filter set at 70 Hz.

33

CHAPTER 3. PROGRAMMABLE STIMULATOR SYSTEM

ECG In Circuit 10 Hz 70 Hz ECG Mon

Power Power
Supply Supply
(Mains) (Battery)

Figure 3-5: A block diagram of the intra-cardiac electrocardiogram amplifier sub-

system

Overload Protection Circuit with a High-Pass Filter

An overload protection circuit, shown in Figure 3-6, prevents damage to the rest of

the intracardiac electrocardiogram amplifier in case of cardioversion. The protection

circuit clips the input signal when an excessive signal such as defibrillator discharge

signal is applied to the input. In addition, the built-in high-pass filter rejects the DC

(sub-signal) frequencies, especially the half cell potential of several ten or hundreds

mV around the surface of electrode.

In the circuit diagram of Figure 3-6, resistors (R1, R2) and zenor diodes (D1,

D2) work to protect the differential amplifier from the shock of the defibrillator.

Capacitors (C1, C2) and resistors (R1, R2, and R3) compose the high pass filter

which eliminates the DC voltage from the surface of electrodes. Note that R3 must

be far greater than R1 and R2 to keep the input impedance of the amplifier high.

Capacitor C3 works as a high cut filter together with R1, R2, C1, and C2. The

characteristics of the filter is adjusted so that the frequency which composes the QRS

34

CHAPTER 3. PROGRAMMABLE STIMULATOR SYSTEM

R1= Cl=
10 KG 0.047 uF

0- H
ECG + In

DI D3 D5

U
D2 D4 D6

ECG -In

R2= C2
10 K2 0.047 uF

Figure 3-6: A circuit diagram of the overload protection circuit with a high-pass filter

complex, 20-50 Hz, can be entirely passed through. Finally, diodes (D3 - D6) clip the

signal to 1.2 Volts.

Differential Amplifier

The direct-coupled, low-gain preamplifier, shown in Figure 3-7, is a high input

impedance differential amplifier with single-ended output. The differential amplifier

consists of two stages, a balanced input stage and a differential output stage. The

balanced input stage is ideal for amplifying small (range of 10 mV) electrocardiogram

signals since it provides: a) high input impednace to minimize differences in attenua-

tion in the two signal paths due to unequal source impedances, b) an extremely good

common-mode rejection ratio (CMRR) to amplify a small differential signal riding

on a large DC offset. The balanced input stage's differential output represents a sig-

nal with substantial reduction in the comparative common-mode signal. Then, the

output stage is connected in the standard differencing amplifier configuration. This

35

CHAPTER 3. PROGRAMMABLE STIMULATOR SYSTEM

configuration of a balanced input stage followed by a differential amplifier is called

the three op-amp insturmentation amplifier.

CMRR and CMR of the differential amplifier are defined as follows:

Output due to unit differential - mode signal
Output due to unit common - mode signal

CMR = 20 log1 o CMRR (dB) (3.2)

Also, the differential gain of the instrumentation amplifier in Figure 3-7 is defined as

follows:

Vout _ R1 + R2 + R3 R4 (33)
Vin R 2 R3

This differential amplifier provides CMR of about 50 dB, which is acceptable CMR

for electrocardiogram, and has a differential gain of 10.

R8 =10 KQ
&ii + 7 R4= A0 KQ R5 =10MK

V11 Opt

10
Vo1

R2= -OP30
1 + V1
R3=

QVO2

3 I R5 =10 KQ 0K

V12

Figure 3-7: A circuit diagram of the differential amplifier

36

CHAPTER 3. PROGRAMMABLE STIMULATOR SYSTEM

In the circuit diagram of Figure 3-7, a balanced input stage, which is composed of

two operational amplifiers (OP1 and OP2) and three resistors (RI, R2, and R3), is

implemented to improve CMRR. Its transfer function is characterized by equations

3.4 and 3.5. The differential gain ADD and ADC are about 10 and 0, respectively; the

common-mode gain ACD and ACC are 1 and 0, respectively. Matching of R1 to R3

and R4 to R5 affect CMRR. Gain may be adjusted through R2.

V02 - Voi = ADD(V12 - V11) + ADC(Vu + V12) (3.4)
2

R1 +R2+ R3
where ADD = and ADC = 0

V01i+ V 2 Vu1 + V,
2) = ACD(V 2 - Vu) + AcC(2) (3.5)2 2

where ACD = 1 and ACC ~ R3- 1 0
2 R2

A differential output stage is composed of one operation amplifier (OP3) and four

resistors (R4, R5, R6, and R7). Its transfer function is characterized by equation 3.6.

The differential gain AD is an unity and the common-mode gain AC is ideally 0 for

a differential amplifier. However, CMRR is limited by the resistor matching of R5 to

R7. To improve CMRR, high-precision resistors are used in building the circuit.

Vi = AD(V 0 2 - Voi) + Ac(Voi + V02) (3.6)
2

where AD = (--) and Ac = 0
R4

37

CHAPTER 3. PROGRAMMABLE STIMULATOR SYSTEM

High Pass Filter

Since the spectrum of the electrocaridogram signal is distributed above 5 Hz, a

high-pass filter is built with a cutoff frequency of 10 Hz. The Chebyshev filter with

2 dB ripple in the pass band is chosen for the high-pass filter. Although Chebyshev

filter allows some ripples in the passband, it provides the fastest roll-off from passband

to stopband. The Sallen-Key circuit with the unity-gain follower, shown in Figure

3-8, is chosen for the high-pass filter.

R1 = 220 Ka

. VinO 2
C1 = C2= -O Vout
0.1 uF 0.047 uF +

R2=
220 K T 7V

Figure 3-8: Circuit diagram of a 2nd-order Chebyshev high-pass filter with 2dB

Low-Pass Filter

The main purpose of the low pass filter is to reduce the noise due to the muscle

movements. Since the electrocardiogram signal is distributed below 60 Hz, a low-pass

filter is built with a cutoff frequency of 70 Hz. This low-pass filter and the high-pass

filter make up a band-pass filter for the electrocardiogram amplifier.

The Bessel filter is chosen for the low-pass filter since it introduces the least

distortions to electrocardiogram. The Bessel filter has a phase response which is

linearly related to frequency. It also exhibits short settling time and rise time [1, p.

38

CHAPTER 3. PROGRAMMABLE STIMULATOR SYSTEM

23]. Therefore, when pulses, such as ECG signals, are transmitted, the output pulses

are of approximately the same shape as the input pulses. The Sallen-Key circuit with

the unity-gain follower, shown in Figure 3-9, is chosen for the low-pass filter. The

transfer function of this low-pass filter is shown below, and its frequency response is

shown in Figure 3-10.

H(s) =
1 + s(R 2 C2 +

The output of the low-pass filter is

amplifier. This signal is then supplied to

1
(3q 7)

R1 C2) + s2(R 1 C1 R 2C2)

the final output of the electrocardiogram

the input of the detector.

C2= 0.1 uF

C1 =
0.047 uF

Vout

Figure 3-9: Circuit diagram of a 2nd-order Bessel low-pass filter

3.3.3 Detector

A hardware detector, built as a part of the integrated system, uses level detec-

tion to trigger a stimulation. This stage receives the filtered electrocardiogram signal

from the amplifier and outputs a negative-going (from 10 volt to 0 volt) short du-

ration pulse when the electrocardiogram signal goes above a normal range. This

- 39

CHAPTER 3. PROGRAMMABLE STIMULATOR SYSTEM

0

-1

-2

-3

-4

-5

-6

Frequency response of 2nd-order low-pass Bessel filter

-7'
0 50 100 150 200 250

Frequency (Hz)

300

Figure 3-10: Frequency response of 2nd-order Bessel low-pass filter

negative-going pulse is provided to the external trigger of the digital-to-analog board

for synchronizing the pacing with the abnormal events of the heart. The detector,

shown in Figure 3-11 consists of: a) a full-wave rectifier, b) a voltage comparator,

and c) a trigger generator with a trigger inhibit time.

Full-Wave Rectifier

A full-wave rectifier, shown in Figure 3-12, converts all negative values to positive

values in order to insure detection of all abnormal events. This is necessary since the

voltage detector, which follows in the signal path, cannot have two threshold values.

-o

40

CHAPTER 3. PROGRAMMABLE STIMULATOR SYSTEM

ECG Mon +o- Full-Wave TComparator Trigger rigger Output
Rectifier ompaa>o Trge Pulses

Figure 3-11: A block diagram of the detector sub-system

When the input is positive, diode D1 is off and diode D2 is on. In this case,

the first op-amp (OP1) with first two resistors (R1 and R2) becomes an unity-gain

inverter. The second op-amp (OP2) with next three resistors (R3, R4, and R5) make

up an adder with inverting configuration. The output of the second op-amp should

follow the input signal to the full-wave rectifier. On the other hand, when the input

is negative, D1 is on and D2 is off. Then, the first op-amp's output is zero and the

second op-amp becomes an unity-gain inverter. The output of the second op-amp

should be the opposite of the input signal.

Voltage Comparator

The static transfer characteristics of a voltage comparator are shown in Figure

3-13. Voltage comparator has two output levels, VL and VH- When the input voltage

to the comparator goes above the the threshold value, VTH, the output goes from

VL to VH. Note that there is a range of input signals which produce an ambiguous

output, called the linear range. It is most optimal to have a minimum linear range

to decrease ambiguity. The low and high output levels, VL and VH, are specified by

the type of logic circuitry which is to be actuated by the detector. For the digital-to-

analog board, it's the TTL (transistor-transistor-logic) levels, in which less than 0.4

volts is considered logically low, and greater than 2.6 volts is considered high. The

threshold voltage, VTH, is controlled by the potentiometer. This voltage comparator

41

ECG Mon

100

CHAPTER 3. PROGRAMMABLE STIMULATOR SYSTEM

R3= R5=
100 KQ 100 Ka

ECG Rect

Figure 3-12: Circuit diagram of a full-wave rectifier

is realized using LM311, an integrated cirucit comparator.

Trigger Generator

The output of the comparator is high whenever the input level is higher than

the threshold level. Since the digital-to-analog board's output is triggered when the

external trigger signal is low, a separate trigger ciruit is needed to generate the short

negative pulse to the digital-to-analog board. Also, it is desirable not to trigger again

for certain time after the first trigger in order to prevent pacing during the refractory

time. The trigger generator with the sensing inhibit time, implemented with the

retriggable/resettable monostable vibrator, is shown in Figure 3-14 .

In the circuit diagram of Figure 3-14, the output of the voltage comparator is

connected to the positive input of the first monostable vibrator (MV1). When the

input to the positive input of MV1 goes from low to high, it triggers MV1 to output

42

CHAPTER 3. PROGRAMMABLE STIMULATOR SYSTEM 43

a negative-going pulse of two milliseconds width. This negative-going pulse is sent

to the external trigger port of the digital-to-analog board and it is used to trigger a

pacing.

In order to prevent from triggering during heart's refractory time, a sensing inhibit

time generator is implemented using the second monostable vibrator (MV2). This

generator disables the trigger generator for approximately 70 milliseconds after a

trigger signal is sent out. The width of the sensing inhibit time is determined by a

resistor (R2) and a capacitor (C2).

PROGRAMMABLE STIMULATOR SYSTEM

Vin
Vout

10 KQj VL- VTh Vin

Figure 3-13: Transfer characteristics of a voltage comparator (Note that the output
of the comparator is high wheneve the input level is higher than the threshold level.)

Trigger Output
Pulses

LED

Figure 3-14: Circuit diagram of a trigger generator

From '
Comparator

CHAPT ER 3. 44

Chapter 4

Control Program

The primary function of the control program, Pacer, is to provide an easy to use

interface for the operator while accurately controlling the output of hardware on the

digital-to-analog board. The combination of hardware and software allows for the

implementation of many useful features. Preprogrammed stimulation modes are used

to limit the number of parameters that the investigator must enter. In addition to

the unique modes, there are several functions which can be enabled regardless of the

currently selected mode, such as the stoppage of ventricular tachycardia. There is

also the ability to receive an trigger signal from an external device, such as the inte-

grated system described in the previous chapter. This trigger signal can be used for

synchronous stimulation. Pacer is written in C using Borland's Turbo C development

environment.

4.1 Program Overview

A flowchart of the control program, Pacer, is shown in Figure 4-1. All of the

features of the program can be accessed from the menu in the command box. The

45

CHAPTER 4. CONTROL PROGRAM

Figure 4-1: Flowchart of the control program

46

CHAPTER 4. CONTROL PROGRAM

keyboard key may be used to select items from the menu, and Pacer automatically

initiates the desired task. The control program, Pacer, can be divided into two main

parts: a) the user interface where stimulation protocol parameters are selected by

the investigator, and b) the output controller where actual data buffers are written

for the outputs of the digital-to-analog board. This separation of two tasks ease the

change of stimulation protocols for a constantly evolving investigation.

4.2 User Interface

Pacer is especially designed to meet the specific needs of investigators in venr-

ticular arrhythmias study. In this section, it will be explained how parameters of

different stimulation protocols in the study of ventricular arrhythmias are inputted

by the investigator.

4.2.1 Pacing Threshold

For a fixed-rate pacing, a constant current Si pacing train is used, as shown in

Figure 4-2. Output parameters, such as the Si pulse amplitude, Si pulse duration, and

interstimulus interval (Si - Si), of pacing pulses can be adjusted from default values

by using cursor keys or new parameter values can be typed in using keyboard keys.

Once these parameters are set, a series of fixed-rate pacing pulses is generated on the

command. While stimulation is active, the pulse amplitude can be in-/decremented by

the pre-set incremental value using the cursor keys in order to determine the threshold

level. On the key pad, number 7 key and number 1 key are used for an increment

and decrement of the pacing pulse amplitude, respectively. The interstimulus interval

can also be in-/decremented by the cursor keys while stimulation is active. Number 6

key and number 4 key are used for an increment and decrement of the interstimulus

47

CHAPTER 4. CONTROL PROGRAM

interval, respectively.

Sis - S J

Figure 4-2: Fixed-rate pacing to determine the pacing threshold

4.2.2 Mid-Diastolic Threshold

As discussed in chapter 2, there is a ventricular vulnerable period roughly coin-

ciding in time with the occurrence of the first half of the T wave in the electrocar-

diogram, as shown in Figure 2-7. Since the ventricles are susceptible to re-entrant

rhythm disturbances during the vulnerable period, a mid-diastolic (premature) pac-

ing pulse (S2) can be used to induce ventricular arrhythmias. S2 pulse is applied in

late diastole of the cardiac cycle, as shown in Figure 4-3. Again, output parameters,

such as the S2 pulse amplitude, S2 pulse duration, and initial Si - S2 interval (D1),

can be adjusted. After the fixed-rate pacing is initiated, the mid-diastolic pacing

pulse (S2) can be applied on the command to determine if a beat is induced by the

mid-diastolic pacing pulse (S2). The pulse amplitude can be in-/decremented by the

pre-set incremental values using the cursor keys and the stimulation can be repeated

until the mid-diastolic threshold level is determined. On the key pad, number 9 key

and number 3 key are used for an increment and decrement of the pulse amplitude,

respectively.

48

CHAPTER 4. CONTROL PROGRAM

4.2.3 Effective Refractory Period

After the mid-diastolic threshold is determined, the effective refractory period

(ERP) is found. During the effective refractory period, there can be no propagated

response to the stimuli. The initial S1 - S2 interval is decremented until no beat is

induced by the mid-diastolic pacing pulse (S2) and the Si - S2 interval is noted as the

effective refractory period.

S1si-si DI S

Figure 4-3: Mid-diastole pacing to determine the effective refractory period

4.2.4 Extra Stimuli for Arrhythmias Induction

Since more than one mid-diastolic pacing pulses are usually needed to induce

ventricular arrhythmias, another mid-diastolic pacing pulse (S3) is added in the same

manner as S2 was added. Again, S3 pulse amplitude, S3 pulse duration, and initial

S2 - S3 interval, are adjustable parameters. After the fixed-rate pacing is initiated,

the mid-diastolic pacing pulses (S2 and S3) are applied on the command to determine

if a beat is induced by S2 and S3 . The S2 - S3 interval, D2 , is decremented until

no beat is induced by S3 . The effective refractory period of S2 is noted. Then, same

procedure is applied for the determination of effective refractory periods for S3 and S4.

These premature stimuli delivered during consecutive ventricular vulnerable period

are referred to as extra stimuli.

49

CHAPTER 4. CONTROL PROGRAM

1-Si S1 D5 2

SF -Sl S1IDII1 D2 IS

ISl S1 DI S D2 D3

-I],- -- J Ls[D3

Figure 4-4: Extra stimuli used to induce ventricular arrhythmias

4.2.5 Burst for Arrhythmias Induction

In addition to extra stimuli, burst is another type of stimulation pulses known

to induce ventricular arrhythmias. Burst is a group of closely placed current pulses

in one vulnerable period (approximately 100 milliseconds), as shown in Figure 4-5.

Output parameters, such as S2 pulse amplitude, S2 duration, length of vulnerable

period, and frequency of pulses (!), can be adjusted for the burst.

Burst

J SL- SJLIL

Figure 4-5: Burst used to induce ventricular arrhythmias

50

CHAPTER 4. CONTROL PROGRAM

4.2.6 Overdrive Pacing for Arrhythmias Prevention

Overdrive stimuli refer to the stimuli which are applied after the delivery of pre-

mature stimuli in order to prevent the development of ventricular arrhythmias, as

shown in Figure 4-6. Ventricular arrhythmias are caused by the occurrence of re-

entrant circuit, and they can be terminated if re-entrant circuit can be interrupted

by the depolarization of the ventricular mass.

_ [S S i D D 2 D 3 D 4

Figure 4-6: Overdrive pacing pulses used for the prevention of the ventricular ar-
rhythmias

Either constant current or voltage pacing train can be used for overdrive stimuli.

In addition to the usual output parameters (i.e. the pulse amplitude, pulse duration,

and interstimulus interval of overdrive pacing pulses), the number of overdrive stimuli

and triggering mode can be adjusted. The overdive pacing stimuli can be continued

infinitely or specified in any number of overdrive stimuli.

Triggering mode can be either on or off. When triggering mode is off, the overdrive

pacing stimuli are applied at a fixed interval after the last premature stimuli. On

the other hand, if triggering mode is on, it allows the overdrive pacing stimuli to

be applied synchronously with the external event, such as the ventricular electrical

activity. When the triggering mode is on, an external trigger port of the digital-to-

analog board is sampled to detect the trigger signal. Triggering capability allows the

pacing to be applied when premature ventricular beats are detected after the last

premature stimulus.

When used with a triggering mode on, a pacing inhibit time must be specified.

51

CHAPTER 4. CONTROL PROGRAM

A pacing inhibit time refers to the period after the last premature stimulus, during

which detection is disabled in order to prevent being triggered by the artifacts, or

transients, of the previous stimuli. The pacing inhibit time is implemented using a

computer board's internal clock and it can be controlled with the one millisecond

resolution.

4.2.7 Stimulation Modes

To reduce the number of parameters that must be entered for an electrophysio-

logic study (EPS) of ventricular arrhythmias, individual stimulation modes for this

research have been preprogrammed. Currently, six possible stimulation modes are

available. They differ in the types of premature stimuli and overdrive stimuli S 2.

Different stimulation modes are tabulated in Table 4.1. When each stimulation mode

is selected, appropriate premature stimuli and overdrive triggering mode are selected

and default parameter values are assigned to the output parameters.

Extra Stimuli Burst

No Overdrive Pacing Mode 1 Mode 4
Fixed Rate Overdrive Pacing Mode 2 Mode 5
Triggered Overdrive Pacing Mode 3 Mode 6

Table 4.1: Stimulation Modes

4.3 Output Controller

When the investigator initiates a stimulation run, the output controller portion of

the Pacer program is entered. The parameters that were setup in the user interface

are now used to write output buffers for the registers of the digital-to-analog board.

Special board driver program, ATLAB, is used to control the outputs of the digital-

to-analog board.

52

CHAPTER 4. CONTROL PROGRAM

4.3.1 Initialization and Termination

The initialization subroutine AL-INITIALIZE must be called before calling any

other subroutine. ALSELECT-BOARD and ALRESET are used to reset the cur-

rently selected unit. In addition, a first argument of ALSETUP.DAC specifies an

internal clock to be the timing source for D/A conversions and a second argument

specifies that two channels are used for writing the data values, one to each chan-

nel simultaneously. ALSETPERIOD initializes the clock period that affects the

conversion rate for D/A operations to one millisecond.

ATLAB provides the termination subroutine AL-TERMINATE which performs

the functions of termination. AL.TERMINATE must be called before exiting the

program to terminate the DMA operation.

4.3.2 D/A Operation

Fixed-rate pacing can be started by running a PACING function. When PACING

function is called in the program, user data buffers are declared by ALDECLARE.BUFFER

and linked to the the digital-to-analog board's Buffer Transfer List by ALLINKBUFFER.

After a buffer is declared and linked, output buffer is now filled with data based on the

parameter values inputted by the investigator. The output buffer contains a twelve

bit value which corresponds to the voltage required by the stimulator system to pro-

duce the desired current and voltage outputs. The analog output board can produce

4096 steps over a -10 V to +10 V range: i.e., a digital value 0 refers to output of -10

V, 2048 refers to output of 0 V, and 4096 refers to output of 10 V.

After the buffer needed for the stimulation has been written, ALBURST-DAC is

used to produce analog outputs. AL-BURSTDAC allows high speed data transfer

using the Direct Memory Access (DMA) technique. AL.WAITFOR..COMPLETION

function synchronizes user program operation with burst mode I/O operation by re-

53

CHAPTER 4. CONTROL PROGRAM

turning the control of the program when I/O operation is complete. AL.UNLINKBUFFER

is called to unlink the buffer from the current unit's Buffer Transfer List after the

stimulation. ALUNDECLAREBUFFER is used to undeclare the buffer.

Arrhythmias induction and prventive overdrive pacing can be started by using

a combination of the following functions: EXT.STM, BURST, OVERDRIVE, and

TRIGGER. For example, for mode 2 stimulation, functions EXTSTM and OVER-

DRIVE are called; for mode 3 stimulation, functions EXTSTM and TRIGGER are

used. All these functions are written in the same structure as the PACING function.

The actual program, called pacer.c, is attached in appendix. The program is

written with comments for future modifications. Also, the ATLAB manual can be

consulted for more information on the ATLAB functions used in the program [9].

54

Chapter 5

Experimental Study

The programmable stimulator system presented in this thesis is tested in the

experimental animal study. Ventricular arrhythmias are induced in a small swine,

which has a similar heart size and coronary circulation as humans, and triggered

pacing is administered to prevent the arrhythmias from developing. There are two

days of surgery involved in this experimental study. The first surgery is a survival

surgery, during which myocardial infarction is induced by the occlusion of the coronary

arteries. The second surgery is an acute procedure for the induction of ventricular

arrhythmias and study of triggered multi-site pacing for the prevention of ventricular

arrhythmias. (Protocol # 92-005, approved by MIT Committee on Animal Care)

5.1 Survival Surgery

Using aseptic techniques, a pig of female sex (20 ± 1 kg) is tranquilized with a

mixture of ketamine (10 mg/kg) and xylazine (2 mg/kg) intramuscularly. Anesthesia

is maintained using isoflurane gas by the vaporizer through the endocardial tude

(size 6.5) placed in the trachea. A left thoracotomy at the fourth intercostal space is

55

CHAPTER 5. EXPERIMENTAL STUDY

performed and the paracardium is dissected open.

Myocardial infarction is induced by ligating the second and third diagonal branches

from the left anterior descending (LAD) coronary artery, permanently obstructing

blood flow. Thirty minutes prior to occlusion, a bolus of lidocaine (1.5 mg/kg) is

administered intravenously. The infarct covers approximately 15 - 20 % of the left

ventricular myocardium. The pictorial representation of the myocardial infarct is

shown in Figure 5-1.

Zone of Infarction

Figure 5-1: Myocardial infarct (Reproduced from Netter FH: Heart, Vol. 5, The
CIBA Collection of Medical Illustrations, CIBA, 1981)

Tygon 16-gauge catheter (Norton Plastics, Akron, Ohio) is implanted in the left

azygous vein going into the left atrium for post-operational care (see Figure 5-2 for the

anatomy of a pig heart). The catheter is externalized on the back of the animal be-

tween the shoulder blades. Following the surgery, animal is treated with prophylactic

antibiotics (kefflin) and is allowed to recover for seven days before acute surgery.

56

CHAPTER 5. EXPERIMENTAL STUDY

Postcava

Precava-
L.arggous

atrium

-__4 _L.ventricle
R.ventriclee

. L.azggou v

Figure 5-2: Cranial view of the swine heart showing the relationships of the blood

vessels at the base of the heart. In the bottom view, the great vessels have been

severed to reveal the left azygos vein.

5.2 Acute Surgery

5.2.1 Surgical Preparation

The animals is tranquilized (see last section) and anesthized with sodium pentabar-

bital (30 mg/kg) intravenously. Tygon 16-gauge catheter is implanted in the femoral

vein percutaneously for infusion of 5 % dextrose ringer solution. And, another Ty-

gon 16-gauge catheter is implanted in the femoral artery percutaneously to record

the blood pressure. Phasic arterial blood pressure is measured by a pressure trans-

ducer connected to the catheter. Lead I electrocardiogram (ECG) is obtained through

57

CHAPTER 5. EXPERIMENTAL STUDY

surface electrode needles. A sterotomy is performed and the heart is exposed.

One catheter with four unipolar pacing electrodes is passed through a jagular vein

and positioned in the apex of the right ventricle, as shown in Figure 5-3., Two distal

pacing electrodes are used to deliver current pulses for the single-site pacing and the

induction of ventricular arrhythmias. Two proximal pacing electrodes are used for

recording the intracavitary electrocardogram. In addition, 56-bipolar electrodes sock

array is placed around the ventricle for multi-site pacing of the ventricle, as shown in

Figure 5-4. The 56-bipolar electrodes sock array of Bard Electrophysiology has the

dimensions of 15 centimeters in perimeter and 8.8 centimeters in length.

Figure 5-3: Intracavitary lead system used for the experiment

58

CHAPTER 5. EXPERIMENTAL STUDY

Figure 5-4: 56-bipolar electrodes sock placed around the ventricle

5.2.2 Electrophysiologic Study

Electrophysiologic study is accomplished by the programmable stimulator sys-

tem presented in this thesis. In the following sections, the electrophysiologic study

conducted for the prevention of arrhythmias is presented.

Determination of Single-Site Pacing Threshold

During electrophysiologic study, heart is paced by the distal electrodes of the

catheter. The distal pole of the pacing bipolar catheter is made cathodal with refer-

ence to the proximal pole. Heart rate is maintained at 150 beats/min using constant

current rectangular stimuli of two milliseconds duration. The rate is chosen to be

10 % higher than the intrinsic rate of 135 beats/min. Also, the pulse duration is

chosen to be two milliseconds since it is the optimal duration based on the study of

the inverse relationship between the pulse duration and pacing threshold [3]. While

59

CHAPTER 5. EXPERIMENTAL STUDY

pacing is being performed at the lowest current amplitude possible, the current am-

plitude is increased at 1 milliamp interval until a ventricular beat is induced. The

pacing threshold is determined to be 1 milliamp. The current amplitude of the pacing

is then set at four times the value of the pacing threshold, 4 milliamp. The lead I

electrocardiogram recorded during the ventricular pacing is shown in Figure 5-5 with

stimulator outputs and arterial blood pressure.

Induction of Ventricular Tachycardia

Extra stimuli are used to induce ventricular arrhythmias in this experiment. While

maintaining a 150 beats/min pacing rate at 4 times pacing threshold, a 2 miliseconds

square wave stimulus (S2), producing the first ventricular premature beat, is inter-

posed in late diastole and is moved closer to the T wave of the previous beat in 20

milliseconds intervals until the effective refractory period is reached. S2 is then set

and presented at an interval that is 10 milliseconds longer than the effective refractory

period, and a second stimulus (S3) is added in the same manner. The S2 - S3 interval

is shortened progressively in the same fashion until S3 fails to evoke a propagated

response. A third (S4) and fourth (S5) are added similarly until the desired end point

is reached. Ventricular fibrillation is induced when the fourth extra stimulus is added.

The animal is defibrillated by 10 Joule energy delivered by internal defibrillation pad-

dles. The characteristics of extra stimuli needed to induce ventricular fibrillation is

noted. The lead I electrocardiogram during ventricular fibrillation is shown in Figure

5-6 with the stimulator outputs and arterial blood pressure. This protocol is simi-

lar to one previously described and utilized in clinical electrophysiologic induction of

ventricular arrhythmias [20].

60

EXPERIMENTAL STUDY

Stimulator Outputs - Channel 1 (SS)

Surface ECG

Arterial Blood Pressure

I I
0 2 3 4 5

Time (sec)

Figure 5-5: Electrocardiogram and arterial blood pressure during single site pacing
using current pulses

I I I I I I I

CH APT ER 5. 61

I I
1

CHAPTER 5. EXPERIMENTAL STUDY

Stimulator Outputs - Channel 1 (SS)

Surface ECG

Arterial Blood Pressure

2

I I

3 4

Time (sec)

Figure 5-6: Ventricular fibrillation induced by four extra stimuli

62

a I I I

0 1

I I

5

L- I I I I

CHAPTER 5. EXPERIMENTAL STUDY

Triggered pacing

The extra stimuli of same characteristics is used to induce another ventricularfib-

rillation, and triggered mulit-site pacing is applied through the mutli-site electrodes

sock. The multi-site pacing is applied when two proximal pacing electrodes detect

an activity in the right ventricle near the apex. Since the premature activities can

be a part of re-entrant circuit, multi-site pacing is applied to prevent arrhythmias by

deploarizing the ventricular mass. The multi-site pacing is not applied during the

pacing inhibit time, 200 milliseconds period right after the previous pacing beat, in

order not to trigger pacing by the transient of the pacing pulse. The lead I electrocar-

diogram, one right intracavitary electrogram, stimulator outputs, and blood pressure

are shown in Figure 5-7.

Mutli-site pacing in this experiment did not prevent the development of ventricular

fibrillation. The most likely reason for this is that the initial re-entrant site was a

very small region and that the multi-site pacing electrodes were not sufficiently close

to block the development of re-entry.

5.3 Future Study

To further investigate the preventive methods, the ventricular myocardium where

the arrhythmia originate must be depolarized effectively. Other multi-site electrode

pacing configurations to achieve this is currently being investigated. The high pre-

cision voltage/current amplifier of the current stimlator system can be used for this

type of pacing. Also in order to pace only the premature beats, more efficient timing

scheme can be programmed into the control program.

63

CHAPTER 5. EXPERIMENTAL STUDY

Right Ventricular Intracavitary ECG

Stimulator Outputs - Channel 1 (SS) & Channel 2 (Triggered MS)

1 1 1 1
|| I | |

Surface ECG

Arterial Blood Pressure

2 3 4 5

Time (sec)

Figure 5-7: Triggerd multi-site pacing to prevent VT/VF

0

64

i , l , i . l . 1

1

Chapter 6

Conclusion

The programmable stimulator system with the control program has provided our

laboratory with an easy to use cardiac stimulator for the electrophysiologic study of

the prevention of arrhythmias. As new research protocols are created, it is a relatively

simple matter to add them into the control program. Also, new hardware components

may be added easily into the current system.

65

Appendix A

Pacer.c

* File name -- > pacer.c
* Date -------- > 08/22/93
* Purpose ---- > routine to operate DA board as a stimulator
*

#include <stdio.h> /* standard C I/O header file */
#include <bios.h> 10

#include <conio.h> /* console I/O header file */
#include <dos.h> /* command line */
#include "atldefs.h" /* ATLAB function definition file */
#include "atlerrs .h" /* ATLAB error definition file *1
#include "video.h" /* video display function file */

* Function prototype
20

void INITPARAMETERSCREEN 0; /* initialize parameters on the screen */
void READ KEYBOARD-INPUT 0; /* read keyboard input */
void HIGHLIGHT (char kytmp2);
void FUNCTION KEY (char kytmp2, int i);
void CURSOR (char kytmp2);

66

APPENDIX A. PACER.C 67

void KEYBOARD.SCREEN (int k, int 1);

void PACING (int, int, int); 30

void PACINGPVC (int, int);
void PACINGNOPVC (int, int);
void EXTSTM (int, int);
void BURST (int, int);
void OVERDRIVE (int, int, int);
void TRIGGER (int, Mit, int);

*

* Initial value definitions for parameters 40

/* Note on voltage and current amplitudes

DABoard: one unit corresponds to 5 mV

Ch 1 (Current): Range: 0 to 40 mA, assuming 200 ohm load resistance
Resolution: 0.05 mA
DA board output of 1000 mV (200 unit) gives 10 mA 50

(1000 mV / 100 ohm = 10 mA)

Ch 2 (Voltage): Range: 0 to 50000 mV
Resolution: 25 mV
DA board output of 1000 mV (200 unit) gives 5000 mV
(1000 mV is attenuated by a factor of 5/7.2
and then amplified by a factor of 7.2 (V/ V))

Ch 2 (Current): Range: 0 to 600 mA
Resolution: 0.3 mA 60
DA board output of 1000 mV (200 unit) gives 60 mA
(1000 mV is attenuated by a factor of 1/10
and then amplified by a factor of 0.6 (A/ V)) */

/* Pacing parameter initial values */

#define CHPD E 1 * 1 if pacing is on channel 1 */
#define OUTPDE 1 / * 1 if pacing is current pulses */
#define AMPPDE 200 /* 1 for 25 mV or 1 for 0.05 mA */
#define IAP DE 20 70

#define CYCLDE 500 /*500 ms
#define ICDE 20 / * 20 ms */
#define WIDTHPDE 2 /* 2 ms

/ * Extra stimuli parameter initial values */

APPENDIX A. PACER.C 68

#define CHEDE 1 /* 1 if extra stimuli are on channel 1 */
#define OUTEDE 1 / * 1 if extra stimuli are current pulses */
#define AMPEDE 200 /* 10 mA */
#define IAE DE 20 /* 1 mA */
#define D1_DE 200 /* mode 1, 2, or 3 configuration */
#define D2_DE 0
#define D3DE 0
#define D4_DE 0
#define IDDE 10 /* 10 ms
#define WIDTHEDE 2 /*2 ms
#define EXST.DE 1

/* Overdrive pacing parameter initial values */
90

80

#define CHODE 2
#define OUTO.DE 2 /* 2 if overdrive are
#define AMPODE 200
#define DODDE CYCLDE
#define'ODDE 99
#define WIDTHODE 10

/ * Trigger parameter initial values */

voltage pulses */

#define TRIGGERDE 99
#define TRIGLOCKEDE 100
#define TRIGLOCKODE 100
#define TRIGLOCKBDE 100
#define TRIGWINDOWDE 300
#define TRIGDEMANDDE 1000

100

/*1000 msec */

/* Other definitions */

#define FALSE 0
#define TRUE 1
#define CURRENT 1
#define VOLTAGE 2

/ ***

* Global parameter declarations

**

/ * parameter declarations for main function */

int ch[3]
int out[3]

= {CHPDECHEDE,CHODE};
= {OUTPDEOUTEDE,OUTO_DE};

110

120

APPENDIX A. PACER.C

float amp[3]
float ia[2]
int cycl
int ic
int delays[4]
int id
int width[3]
int ex-st

int dod
int od

= {AMPP.DE, AMPEDE, AMPO_DE}; /* pulse amplitudes */
= {IAPDE, IAEDE}; /* pulse amplitude increments */
= CYCLDE; /* cycle length */
= ICDE; / * cycle length increment */
= {D1_DE, D2_DE, D3_DE, D4_DE}; /* eztra stimuli delays */
= IDDE; / * extra stimuli delay increments */
= {WIDTHP.DE, WIDTHEDE, WIDTHODE}; /* pulse widths */
= EXSTDE; / * number of extra stimuli */

= DODDE; /* overdrive delay */
SODDE; / * number of overdrive pacing stimuli; 99 for cont */

int trig = TRIGGERDE; /* number of tigger stimuli */
int trigjocke = TRIG_.LOCKEDE; /* trigger lockout time for extra */
int trigjocko = TRIGLOCKODE; / * trigger lockout time for od */
int trig lockb = TRIGLOCKBDE; / * trigger lockout for spontaneous beat */
int trigwindow = TRIGWINDOWDE;
int trigdemand = TRIGDEMANDDE;

/*** parameter declarations for function
char tmpstr[100];

/ *** parameter declarations for function
char kytmpl, kytmp2;

/*** parameter declarations for function
char str[10];

/ *** parameter declarations for function
char kytmp;
float new-value;

/ * parameter declarstions for flag */
int again_flg = TRUE;
int ex-stjflg;
int odfig;
int againjfg2 = TRUE;
int outlflg = CURRENT;
int out2flg = VOLTAGE;
int modeflg = 1;
int infg = FALSE;
mt start flg = FALSE;
int writefig;
int fixjflg;

int ij,k;

'INIT PARAMETERSCREEN' ***/

'READKE YBOARDINPUT' */

'HIGHLIGHT' ***/

'KEYBOARDSCREEN' **/

170

int *pts;

69

130

140

150

160

APPENDIX A. PACER.C

int accu = 0;

/ *** parameter for waiter *
int intnumber = 0x15;
union REGS inregs, outregs;
long waitval = 1024;
int clock-tics;
int clock tics1;

/ *** parameter for readport *
int addr = 0x240;
unsigned port-read;

maino {

*
* Parameter assignments

/ *** parameter assignments for function
int number.buffer-p;
int lengthbuffer-p;
int number_pacing;

/ *** parameter assignments for function
int number -buffer-pvc;
int lengthbuffer-pvc;

/ *** parameter assignments for function
int number.buffernopvc;
int length-buffernopvc;

'PACING' ** *

'PA CING PVC' *

200

'PA CINGNOPVC ** *

/ *** parameter assignments for function 'EXTSTM' ***/
int number buffer e;
int length-buffer -e;
/* NOTE: this better be fized to account for 3 ex or 2 ex

/*** parameter assignments for function 'BURST' *
int number buffer-b;
int lengthbufferb;

/ *** parameter assignments for function 'OVERDRIVE' ***/
int number-bufferop;
int lengthbufferop;
int number-overdrive;

70

180

190

210

APPENDIX A. PACER.C 71

/*** parameter assignments for function 'TRIGGER' ***/ 220

int number buffert;
int lengthbuffer-t;
int number-trigger;

*

* Initialize video screen
*

230

CLEAR SCREEN 0;
SETUP SCREEN 0;
INITPARAMETERSCREEN 0;

* Choose from Main Menu
*

* Protocol 1 fi Triggered Multi-Site Pacing
* Protocol 2 f2 240

* Protocol 3 f3
* Protocol 4 f4
*

**

CLEAR COMMAND 0; /* routine to clear command panel */
MAINMENU (); / * routine to put protocol menu in command pannel */
READKEYBOARDINPUT (/* routine to get a keyboard input */

/ 250
*

* Protocol 1 fi Triggered Multi-Site Pacing
*

if ((kytmpl == 0) && (kytmp2 == 59)) {

*

* Flag definitions 260
*

againjflg = 1; /* do it again when it's 1 */
ex.stflg = 1; / * extra stimuli */
od-flg = 1; /* overdrive */
outlflg = CURRENT;

APPENDIX A. PACER.C 72

out2_flg = CURRENT;

/ ~ 270
*

* Begin protocol 1 loop
*

***************** ********* ********** **** ***** ************** */

while(againflg) {

*

* Choose from Protocol I Menu: 280
*

* Level 1.1 fi select mode 6 channel
* Level 1.2 f2 change output characteristics
* Level 1.3 cursor change output characteristics
* Level 1.4 f10 start pacing
* Level 1.4.1 cursor change output characteristics

* Level 1.4.2 fi stop pacing V ezit to protocol 1 menu
* Level 1.4.3 f10 introduce eztra stimuli V overdrive

* Level 1.5 esc ezit to the main menu
290

***************** *******************************/

CLEARCOMMAND (;
PROTOCOL1 MENU 0;
READKEYBOARDINPUT 0;

*

* Level 1.1 fi select mode 4 channel
300

**/

if ((kytmpl == 0) && (kytmp2 == 59)) { /* fl */

/ **
*

* Choose from Level 1.1 Menu:
*

* Level 1.1.1 fI select mode
* Level 1.1.2 f2 select channel 310

* Level 1.1.3 esc ezit this level
*

CLEARCOMMAND ();

PROTOCOL1_1_MENU ();
READKEYBOARDINPUT 0;

* Level 1.1.1 fi select mode

if ((kytmpl == 0) && (kytmp2 == 59)) { 1*1f */
CLEARCOMMAND ();
PROTOCOL111MENU 0;
READKEYBOARDINPUT 0;

if ((kytmpl == 0) &&
modejlg = 1;
exstflg = 1;
od.flg = 1;

}

else if ((kytmpl == 0)
modefig = 2;
ex stjlg = 1;
odig = 2;

}

else if ((kytmpl == 0)
modefig = 3;
ex.stflg = 1;
odflg = 3;

}

(kytmp2 == 59)) { 330

&& (kytmp2 == 60)) {

340

&& (kytmp2 == 61)) {

else if ((kytmpl == 0)
modejig = 4;
ex-stjfg = 2;
odjlg = 1;

}

else if ((kytmpl == 0)
modejlg = 5;
ex-stjlg = 2;
odflg = 2;

}

else if ((kytmpl == 0)
modejflg = 6;
ex.stflg = 2;
odjig = 3;

&& (kytmp2 == 62)) {

350

&& (kytmp2 == 63)) {

&& (kytmp2 == 64)) { 360

APPENDIX A. PACER.C 73

320

74

}

else if ((kytmpl == 0) && (kytmp2 == 65)) {
modeflg = 7;

}

if (ex.stjflg == 1) { 370
delays[0] = 200;
delays[1] = 0;
delays[2] = 0;
delays[3] = 0;
sprintf(tmpstr,"4d ms",delays[0]);
outtext(EXTRAx,D1y,tmpstr,0);
sprintf(tmpstr,"X4d ms",delays[1]);
outtext(EXTRAx,D2y,tmpstr,0);
sprintf(tmpstr,"%4d ms",delays[2]);
outtext(EXTRAx,D3y,tmpstr,0); 380

sprintf(tmpstr,"X4d ms",delays[3]);
outtext(EXTRAx,D4y,tmpstr,0);

}

else if (ex-stjflg == 2) {
delays[0] = 200; / * delay before burst train */
delays[1] = 100; /* period for which burst train is on */
delays[2] = 8 /8* delay between burst train */
delays[3] = 0;
sprintf(tmpstr,"X4d ms",delays[0]); 390

outtext(EXTRAx,D1y,tmpstr,0);
sprintf(tmpstr,"X4d ms",delays[1]);
outtext(EXTRAx,D2y,tmpstr,0);
sprintf(tmpstr,"4d ms",delays[2]);
outtext(EXTRAx,D3y,tmpstr,0);
sprintf(tmpstr,"%4d ms",delays[3]);
outtext(EXTRAx,D4y,tmpstr,0);

}
}

400

* Level 1.1.2 f2 select channel
*

else if ((kytmpl == 0) && (kytmp2 == 60)) { /* f2 */
CLEARCOMMAND ();
PROTOCOL12_MENU 0;
READKEYBOARDINPUT 0; 410

APPENDIX A. PACER.C

75

if ((kytmp1 == 0) && (kytmp2 == 59)) {
CLEARCOMMAND ();
PROTOCOL1.1_2_1_MENU 0;
READKEYBOARDINPUT 0;

if ((kytmpl == 0) && (kytmp2 == 59)) {
ch[0] = 1;
sprintf(str,"%4d",ch[0]);
outtext(PACINGx,CHPy,str,0); 420

}

else if ((kytmpl == 0) && (kytmp2 == 60)) {
ch[0] = 2;
sprintf(str,"%4d",ch[O]);
outtext(PACINGx,CHPy,str,0);

}
}
else if ((kytmpl == 0) && (kytmp2 == 60)) { 430

CLEARCOMMAND ();
PROTOCOL1_1_2_1_MENU 0;
READKEYBOARDINPUT (;

if ((kytmpl == 0) && (kytmp2 == 59)) {
ch[1] = 1;
sprintf(str,"%4d",ch[1]);
outtext(EXTRAx,CHEy,str,0);

}
440

else if ((kytmpl == 0) && (kytmp2 == 60)) {
ch[1] = 2;
sprintf(str,"%4d",ch[1]);
outtext(EXTRAx,CHEy,str,0);

}

}

else if ((kytmpl == 0) && (kytmp2 == 61)) { /*f3 *1
CLEARCOMMAND (); 450

PROTOCOL1_1.2_1_MENU 0;
READKEYBOARDINPUT 0;

if ((kytmp1 == 0) && (kytmp2 == 59)) {
ch[21 = 1;
sprintf(str,"%4d",ch[2]);
outtext(Ox,CHOy,str,0);

}

APPENDIX A. PACER.C

APPENDIX A. PACER.C 76

else if ((kytmpl == 0) && (kytmp2 ==466)) {
ch[2] = 2;
sprintf(str,"%4d",ch[2]);
outtext(Ox,CHOy,str,O);

}

}
} /* end of level 1.1.2 f2 select channel */

/ ** 470

* Level 1.1.3 esc exit this level
*

else if (kytmpl == 27) {

/* don't do anything;
it will automatically go to the protocol 1 menu *1

480

} /* end of level 1.1.4 esc exit this level */

} /* end of level 1.1 fi (select channel, extra stimuli e overdrive) */

/ **

* Level 1.2 f2 change output characteristics
*

490

else if ((kytmp1 == 0) && (kytmp2 == 60)) { /*f2 */

/ **

* Begin level 1.2 loop

while (1) {
500

CLEARCOMMANDO;
outtext(2,19,"Which output characteristics do you want to change?",0);
outtext(2,20,"1fI AMPP f 2 IAP f 3 WP 4 CYCL f5 IC ESC Exit",0);
outtext(2,21,"M6 AMPO 17 OD 18 DOD 19 LE 110 L_0 #7 LB #8 WINDOW #9 WO",O);

outtext(2,22,"F1 AMPE F2 IAE F3 WE F4 DI FS D2 F6 D3 F7 D4 F8 ID F9 EXST",0);
READKEYBOARDINPUT ();

APPENDIX A. PACER.C 77

if (kytmpl == 27) break; /* Ezit level 1.2 loop */
if (kytmpl == 0) {

CLEARCOMMAND); 510
outtext(2,19,"Type in new value for ",0);
HIGHLIGHT(kytmp2);
outtext(28,19,", followed by RETURN key:",0);
KEYBOARDSCREEN(54,19);

/ * program to print what's being typed */
FUNCTIONKEY(kytmp2,i);
/* A LTERMINATE (; *1

}
} 520

} /* end of level 1.2 f2 (change output characteristics) */

* Level 1.3 cursor change output characteristics

********************* **************************/

else if ((kytmpl == 0) && (kytmp2 > 70) && (kytmp2 < 82)) { / tfaursor */

CURSOR(kytmp2);

}|* end of level 1.3 cursor (change output characteristics) */

* Level 1.4 f10 begin pacing

540

else if ((kytmpl == 0) && (kytmp2 == 68)) { /*fl0 */

* Initialize A TLAB for DA operation

1* initialize the A TLAB subroutines *1 550

ALINITIALIZE ();
/ * select board 1, the first unit */
ALSELECTBOARD (1);
/* perform a reset on the device *1
ALRESET ();

APPENDIX A. PACER.C 78

/* 0 - internal clock, software start
-1 - output two values, one to each DAC
channel simultanelously */

ALSETUPDAC (0,-1); 560

/ * set sample point interval at 1 msec */
ALSETPERIOD (0.001);

CLEARCOMMAND 0;
PROTOCOL1_4_MENU (modefig);

again-flg2 = 1;

/ **************************************
570

* Begin protocol 1.4 loop

while (againflg2) {

/ ***

* Pacing
580

number bufferp = 0;
lengthbufferp = cycl;
numberpacing = 99;

PACING (numberbufferp, lengthbufferp, numberpacing);

/ **
590

* Choose from Level 1.4 Menu:
*

* Level 1.4.1 cursor change output characteristics
* Level 1.4.2 fi stop pacing £ ezit to protocol 1 menu
* Level 1.4.3 110 introduce eztra stimuli & overdrive
*

READKEYBOARDINPUTo;
600

/ **
*

* Level 1.4.1 cursor change amp and cycle

APPENDIX A. PACER.C 79

*

************ ***** **** ***** *********/

if ((kytmp2 > 70) && (kytmp2 < 82)) {
CURSOR(kytmp2);

}
610

*** **** ******* *** ******* ***** *****

* Level 1.4.2 f10 stop pacing

************ ***** **** ***** ***********/

else if ((kytmpl == 0) && (kytmp2 == 68)) {

againjflg2 = 0; / * end while loop */
620

CLEARCOMMAND 0;
PROTOCOL1.MENU 0;

}

*

* Level 1.4.3 fi extra stimuli li overdrive

630

else if ((kytmpl == 0) && (kytmp2 == 59)) {

/ ********************************

* Mode 1: Extra stimuli only
*

if (modejflg == 1) {
640

*

* ES for VT induction
*

number-buffer e = 0;
/ * last pacing pulse width */
length.buffer.e = width[0];
for (i=0; i<ex st; i++) 650

lengthbuffere

APPENDIX A. PACER.C 80

= length-buffer-e + delays[i] + width[1);
/* reset the value to 0 so to avoid the DC shock */
length-buffer e = length_buffer-e + 2;

EXTSTM (number buffer-e, lengthbuffere);

ALTERMINATE 0;
}

660

/ *************************************

* Mode 2: Extra stimuli V fixed rate overdrive pacing
*

************ *************************

else if (modejflg == 2) { /* ES e OD */

/ *****************************
670

* ES for VT induction
*

************ ***************/

number buffer-e = 0;
length -buffer -e = width[O];
for (i=0; ikex st; i++)

lengthbuffere
= length-buffere + delays[i] + width[1];

length-buffere = lengthbuffer -e + 2; 680

EXTSTM (number-buffere, length-buffer-e);

/ *****************************
*

* Fixed rate overdrive pacing
*

number buffer-op = 0;
lengthbufferop = dod; 690

number-overdrive = od;
OVERDRIVE (number-buffer -op,

length-bufferop, number-overdrive);

ALTERMINATE 0;
}

/ *************************************
*

APPENDIX A. PACER.C 81

* Mode 3: Extra stimuli V triggered pacing 700
*

else if (mode-fig == 3) { /*ES LiT L OD */

/ *****************************
*

* Extra stimuli for VT induction

710

number buffer e = 0;
length buffer e = width[O];
for (i=O; i<ex st; i++)

length-buffer-e
= length.buffer -e + delays[i] + width[1];

length buffer e = length..buffer e + 2;
EXTSTM (numberbufere, length-buffer-e);

/***************************** 720
*

* Trigger
*

number buffer t = 0;
length -buffer t = width[0] + 2;
number-trigger trig;
TRIGGER

(numberbufert, length-buffer.t, number7taigger);

ALTERMINATE 0;
}
/ *************************************

*

* Mode 7: Extra stimuli 6 PVC triggered pacing
*

740

else if (modejflg == 7) { /*ES LT & OD */

** **** *** * **** **** **********
*

* Extra stimuli to induce arrhythmias
*

82

number buffere = 0;
lengthbuffer-e = width[0]; 750

for (i=0; i<ex-st; i++)
length-buffer-e
= length-buffer e + delays[i] + width[1];

length-buffere = lengthbuffere + 2;
EXTSTM (number buffer-e, lengthbuffer-e);

CLEARCOMMAND (;
outtext(2,19,"Press the space bar

to stop PVC triggered pacing",1);
760

* Wait the pacing inhibit time
* to avoid sensing pacing pulse
* transients
**************** ***** *******

/* Initialization for waiter */
inregs.h.ah = 0x86;
inregs.x.cx = waitval >> 16;
inregs.x.dx = waitval && Oxffff; 770

/* 'clock tics' are used to
convert the 1.02 KHz clock
to 1 KHz clock */

clock-tics = (int) (((long)trig-locke *
(long)1024) / (long)1000);

for (i=0; i<clock tics; i++)
int86 (intnumber, &inregs, &outregs);

/ ***************************** 780

* PVC Trigger
*

/* Set up ports 0 V 1 of DT2821 interface board to read in words */
outport (addr+0x6,OxOO);
clock-tics = (int) (((long)(trig-window-trig_locke) *

(long)1024) /(long)1000);
790

/* Start monitoring trigger */

do {
for (i=O; i< clock-tics; i++) {

port-read = inport(addr+Oxa);

APPENDIX A. PACER.C

83

if (port-read == Oxfeff) {

/ * output triggered pacing pulse */
numberbuffer-pvc = 0; 800

length-bufferpvc = width[2] + 2;
PACINGPVC(numberbufferpvc, lengthbufferpvc);

/ * wait trig lockout time of overdrive */
clock-ticsl = (int) (((long)trig-locko *

(long)1024) / (long)1000);
for (i=O; i<clock ticsl; i++)

int86 (intnumber, &inregs, &outregs);

/* new initialization */ 810
clock-tics = (int) (((long)(trig_window-trig-jocko) *

(long)1024) / (long)1000);

/ get out of 'for' loop */
break;

}

/* if the end of triggering window is reached */

else if (i == clock-tics - 1) { 820

/ * wait for the spontaneous beat *1

clock-ticsl = (int) (((long)(trig_demand - trigwindow) *
(long)1024) /(long)1000);

j = 0;

do {
int86(intnumber,&inregs, &outregs);

j = j + 1; 830
port-read = inport (addr+Oxa);

} while (port-read == Oxffff && j < clockticsl);

if (j < clocktics1) {

/* wait trigger lockout time of spontaneous beat */
clock-ticsl = (int) (((long)triglockb * (long)1024) /

(long)1000);
for (=0; j<clock-ticsl; j++)

int86 (intnumber, &inregs, &outregs); 840

/* new initialization */
clock-tics = (int) (((long)(trigwindow-triglockb) *

APPENDIX A. PACER.C

APPENDIX A. PACER.C 84

(long)1024) / (long)1000);

/* get out of 'for' loop */
break;

}

else { 850
number.buffer.nopvc = 0;
length-buffer-nopvc = width[0] + 2;
PACINGNOPVC (number buffernopvc, length-buffer-nopvc);

/ * wait trigger lockout time of channel 1 (or ES) */
clockticsl = (int) (((long)trig_locke * (long)1024) /

(long)1000);
for (j=0; j<clock-ticsl; j++)

int86 (intnumber, &inregs, &outregs);
860

/* new initialization */
clock-tics = (int) (((long)(trig-window-trig_locke) *

(long)1024) / (long)1000);

/* get out of 'for' loop */
break;

}
}

else { 870
int86 (intnumber, &inregs, &outregs);

}

} /* end of for loop */

} while (!kbhitO);

/* kbhit() puts the key hit in register,
so need to be removed */

880

getch 0;

ALTERMINATE 0;

} /* end of mode 7*/

/*************************************

* Mode 4: Burst only
890

85

else if (mode-flg == 4) { /* Burst */

number buffer b = 0;
lengthbufferb = delays[O] + delays[1];
BURST(numberbufferb, lengthbufferb);

ALTERMINATE 0;
} 900

*

* Mode 5: Burst & jized rate overdrive pacing

************ ********************

else if (modejflg == 5) { /* Burst & OD */

number-buffer b = 0; 910

length-bufferb = delays[0] + delays[1];
BURST(numberbufferb, lengthbufferb);

number-bufferop = 0;
length buffer.op = cycl;
number-overdrive = od;
OVERDRIVE

(number-bufferop, length-buffer-op, number-overdrive);

ALTERMINATE 0; 920

}

* Mode 6: Burst & triggered OD

else if (modejflg == 6) { /*B & T */
930

number buffer b = 0;
length.buffer-b = delays[0] + delays[1];
BURST(numberbufferb, lengthbuffer-b);

* Trigger
*

APPENDIX A. PACER.C

APPENDIX A. PACER.C 86

940

number buffer t = 0;
lengthbuffer-t = width[0] + 2;
number-trigger = trig;
TRIGGER (numberbuffert, lengthbuffert, number-trigger)

ALTERMINATE (;

}

again-flg2 = 0;
CLEARCOMMAND); 950

PROTOCOL1_MENU 0;

} /* different extra stimuli loop */

} / * while loop */

} /*end of level.4 */

/ ***
960

* Level 1.5: esc (ezit)
*

else if (kytmpl == 27) { /* esc

againflg = 0;

} /* end of lelve 1.5 esc (ezit) */
970

} /* end of while loop */

/*** put in 'EXITHANDLER (' which resets all outputs to avoid
accidential outputs *

} /* end of protocol 1 */
} /* end of main.c */

/ **

980

* Function -------- > INIT PARAMETERSCREEN()
*

* Return Type ---- > void
*
* Description ---- > routine to put initial parameter values on the screen

**/

APPENDIX A. PACER.G 87

void INIT PARAMETER SCREEN0{
990

/**PACING panel **

sprintf(tmpstr,1%4d11,ch[O]);

outtext(PACINGx,CHPy,tmpstr,O);
sprintf(tmpstr,"1%4. Of mAl',amp[0]I/20);
outtext(PACINGx,AMPPy,impsr,O);
sprintf(tmpstr,"%4 .Of mA" ,a[Oj/20);
outtext(PACINGxIAPy,tmpstr,O);
sprintf(tmpstr,"%4d mos",width[OJ);
outtext(PACINGx,WIDTHPy,tmpstr,O); 1000
sprintf(tmpstr,"1%4d ms'l,cycl);
outtext(PACINGx,CYCLy,tmpstr,O);
sprintf(tmpstr,"%4d ms",ic);
outtext(PACINGx,ICy,tmpstr,O);

/*** EXTRA STIMULI panel ~

sprintf(tmpstr,1%4d",ch1]);
outtext(EXTRAx,CHEy,tmpstr,O);
sprintf(tmpstr,'7.4. Of mA"',amp[1]/20); 1010
outtext(EXTRAx,AMPEy,tmpstr,O);
sprintf(tmpstr,"/A. Of mA",ia{1]/2O);
outtext(EXTRAx,IAEy,tmpstr,O);
sprintf(tmpstr,"1%4d ms",width[1]);
outtext(EXTRAx,WIDTHEy,tmpstr,O);
sprintf(tmpstr,"'%4d",ex-st);
outtext(EXTRAx,EX.STy,tmpstr,O);
sprintf(tmpstr,"1%4d ms",delaysO]);
outtext(EXTRAx,Dly,tmpstr,O);
sprintf(tmpstr,"%4d ms ",delays [1]); 1020
outtext(EXTRAx,D2y,tmpstr,O);
sprintf(tmpstr,"/.4d ms"l,delays[2]);
outtext(EXTRAx,D3y,tmpstr,O);
sprintf(tmpstr,"%4d ms ",delays [3]);
outtext(EXTRAx,D4y,tmpstr,O);
sprintf(tmpstr,"%/4d ms"f,id);
outtext(IEXTRAx,IDy,tmpstr,O);

/ OVERDRIVE panel ~
1030

sprintf(tmpstr,"%4d",ch[2]);
outtext(Ox,CHOy,tmpstr,O);
sprintf(tmpstr,"%4. Of mV11,amp[2]*25);
outtext(Ox,AMPOy,tmpstr,O);
sprintf(tmpstr,"1%4d ms"l,width[2]);

APPENDIX A. PACER.C 88

outtext(Ox,WIDTHOy,tmpstr,O);
sprintf(tmpstr,"X4d ms",dod);
outtext(Ox,DODy,tmpstr,O);
sprintf(tmpstr,"%4d",od);
outtext(Ox,ODy,tmpstr,O); 1040

sprintf(tmpstr,"%4d",trig);
outtext(Ox,TRIGy,tmpstr,O);
sprintf(tmpstr,"%4d ms",triglocko);
outtext(Ox,LOCKy,tmpstr,O);

/** TRIGGER panel *

sprintf(tmpstr,"4d ms",trigjocke);
outtext(Tx,LOCKEy,tmpstr,O);
sprintf(tmpstr,"%4d ms",triglocko); 1050

outtext(Tx,LOCKOy,tmpstr,O);
sprintf(tmpstr,"X4d ms",triglockb);
outtext(Tx,LOCKBy,tmpstr,O);
sprintf(tmpstr,"%4d ms",trigwindow);
outtext(Tx,WINDOWy,tmpstr,O);
sprintf(tmpstr,"%4d ms",trigdemand);
outtext(Tx,DEMANDy,tmpstr,O);

}

/ ** 100

* Function -------- > READKEYBOARDINPUT()

* Return Type ----- > void

* Description ---- > routine to read keyboard input
*

void READKEYBOARDINPUT() { 1070

kytmp1 = getch(;
if (kytmpl == 0)

kytmp2 = getch(; /* ESC, cursors, function keys */

}

/ **

* Function -------- > HIGHLIGHT(char kytmp2)
1080

* Return Type ---- > void
*

* Description ----- > routine to highlight

APPENDIX A. PACER.C 89

********************** ***** ************** ******************************

void HIGHLIGHT(char kytmp2){

int posi x = 24, posi_y = 19;
1090

switch (kytmp2) {
case 59: outtext(posi -x,posiy,"AMPP",0); /*fl */

if (out[O] == VOLTAGE)
sprintf(str,"%4.Of ",amp[0]*25);

else if (out[O] == CURRENT)
sprintf(str,"%4.Of ",amp[0]/20);

outtext(PACINGx,AMPPy,str,1);
break;

case 60: outtext(posi x,posi',"IAP",0); /*f2 */
if (out[O] == VOLTAGE) 1100

sprintf(str,"%4. Of "t,ia[0]*25);
else if (out[0] == CURRENT)

sprintf(str,"4. Of ",ia[0]/20);
outtext(PACINGx,IAPy,str,1);
break;

case 61: outtext(posi-x,posi,"WP",0); /*f *1
sprintf(str,"%4d",width[0]);
outtext(PACINGx,WIDTHPy,str,1);
break;

case 62: outtext(posix,posir,"CYCL",0); /*f */ 1110
sprintf(str,"4d",cycl);
outtext(PACINGx,CYCLy,str,1);
break;

case 63: outtext(posi.x,posij,"IC",0); /* f5 *1
sprintf(str,"4d",ic);
outtext(PACINGx,ICy,str,1);
break;

case 64: outtext(posix,posi,"AMPO",0); /*f6 */
if (out[2] == VOLTAGE)

sprintf(str,"%4. Of ",amp[2]*25); 1120

else if (out[2] == CURRENT)
sprintf(str,"%4.Of ",amp[2]*0.3);

outtext(Ox,AMPOy,str,1);
break;

case 65: outtext(posix,posij,"D",0); /* f7 */
sprintf(str,"X4d",od);
outtext(Ox,ODy,str,1);
break;

case 66: outtext(posi-x,posiy,"DOD",0); /* f8 */
sprintf(str,"X4d",dod); 1130

outtext(Ox,DODy,str,1);

90

break;

case 67: outtext(posi x,posiy,"LOCKE",O); /* f9 *1
sprintf(str,"%4d",trigjlocke);
outtext(Tx,LOCKEy,str,1);
break;

case 68: outtext(posi-x,posi_y,"LOCK_0",O); /* fl0 */
sprintf(str,"%4d",trig-locko);
outtext(Ox,LOCKy,str,1); 1140

outtext(Tx,LOCKOy,str,1);
break;

case 71: outtext(posix,posi_'y,"LOCKB",O); /* #7 */
sprintf(str,"X4d",trig_lockb);
outtext(Tx,LOCKBy,str,1);
break;

case 72: outtext(posix,posi_y,"WINDOW",0); /* #8 */
sprintf(str,"%4d",trigwindow);
outtext(Tx,WINDOWy,str,1);
break; s150

case 73: outtext(posi.x,posiy,"'WO,O); /* #9 */
sprintf(str,"X/.4d",width[2]);
outtext(Ox,WIDTHOy,str,1);
break;

case 84: outtext(posi-x,posiy,"AMPE",O); /* F1 */
if (out[1] == VOLTAGE)

sprintf(str,"%4.Of ",amp[1]*25);
else if (out[1] == CURRENT)

sprintf(str,"%4.Of ",amp[1]/20); 1160

outtext(EXTRAx,AMPEy,str,1);
break;

case 85: outtext(posi.x,posij,"IAE",O); /* F2 */
if (out[1] == VOLTAGE)

sprintf(str,"X14.Of",ia[1] *25);
else if (out[1] == CURRENT)

sprintf(str,4. Of ",ia[1]/20);
outtext(EXTRAx,IAEy,str,1);
break;

case 86: outtext(posi-x,posiy,"WE",O); /* F3 *1 1170
sprintf(str,"X'4d",width[1]);
outtext(EXTRAx,WIDTHEy,str,1);
break;

case 87: outtext(posi-x,posiI,"D1",0); / * Fj *
sprintf(str,"X4d",delays[0]);
outtext(EXTRAx,Dly,str,1);
break;

case 88: outtext(posix,posiy,"D2",O); / * F5 */
sprintf(str,"%4d",deays[1]);

APPENDIX A. PACER.C

APPENDIX A. PACER.C

outtext(EXTRAx,D2y,str,1);
break;

case 89: outtext(posi-x,posiy,'D3",0); /* F6 */

sprintf(str,"%4d",delays[2]);
outtext(EXTRAx,D3y,str,1);
break;

case 90: outtext(posi-x,posij,"D4",0); /* F7 */
sprintf(str,"%4d",delays[3]);
outtext(EXTRAx,D4y,str,1);
break;

case 91: outtext(posi..x,posij,"ID",0); /* F8 */
sprintf(str,"%4d",id);
outtext(EXTRAx,IDy,str,1);
break;

case 92: outtext(posix,posi,"EST",0); /* F9 */
sprintf(str,"X4d",ex-st);
outtext(EXTRAx,EXSTy,str,1);
break;

}
}

/ **

* Function -------- > KEYBOARDSCREEN (int k, int 1)

* Return Type ---- > void
*

* Description ---- > routine to put keyboard input onto the screen

*************************** ***/

void KEYBOARDSCREEN (int k, int 1) {

i=0, j=0;

while ((kytmp = getch() != 13){
tmpstr[0]=kytmp;
tmpstr[1]= \0';
str[i++]=kytmp;
outtext(k+j,1,tmpstr,0);

j=j+1;
}

str[i] = '\0);
new-value = atoi(str);
outtezt(1,l,tmpstr2,0); */

/ * implement delete key */

1220

/* End of line */

91

1180

1190

1200

1210

/ *
}

APPENDIX A. PACER.C 92

/ **$********************
1230

* Function -------- > FUNCTION.KEY (char kytmp2, int i)

* Return Type ---- > void

* Description ---- > routine to read function key input and do the following
*

*** *** ***********************

void FUNCTIONKEY(char kytmp2, int i){
1240

switch (kytmp2) {

case 59: if (str[i-1] == 'V) { /*fl */
out[O] = VOLTAGE;
amp[0] = new..value / 25;
for (i=0; kstrlen(str); i++) {

if (str[i] == 32) { /* blank space ? */
str[i] = '\O'; /* put in end of line */
break;

} 1250

}
sprintf(str,"%4.Of mV ",new-value);
outtext(PACINGx,AMPPy,str,O);
sprintf(str,"4.0f mV ",ia[0]*25);
outtext(PACINGx,IAPy,str,0);

}

else if (str[i-1] == 'A') {
out[O] = CURRENT;
amp[0] = new-value * 20; 1260

for (i=0; i<strlen(str); i++) {
if (str[i] == 32) {

str[i] = 2\01;
break;

}
}
sprintf(str,"%4.0f mA ",new-value);
outtext(PACINGx,AMPPy,str,0);
sprintf(str,"X4.0f mA ",ia[0]/20);
outtext(PACINGx,IAPy,str,0); 1270

}

else {
if (out[0] == VOLTAGE) {

amp[O] = new-value / 25;

APPENDIX A. PACER.C 93

sprintf(str,"X/4.Of mV ",new-value);
outtext(PACINGx,AMPPy,str,O);

}
else if (out[O] == CURRENT) {

amp[O] = new-value * 20; 1280

sprintf(str,"%4.Of mA ",new value);
outtext(PACINGx,AMPPy,str,0);

}
}

break;

case 60: if (out[O] == VOLTAGE) { /* f2 */
ia[O] = new value / 25;
sprintf(str,"X4.Of mV ",new-value); 1290

}
else if (out[O] == CURRENT) {

ia[O] = new value * 20;
sprintf(str,"X4.Of mA",new value);

}
outtext(PACINGx,IAPy,str,0);
break;

case 61: width[O] = new value; /* f3 */
sprintf(str,"%4.of ms ",new-value);
outtext(PACINGx,WIDTHPy,str,0); 1300

break;
case 62: cycl = new -value; /* fB */

sprintf(str,"%4.0f ms ",new-value);
outtext(PACINGx,CYCLy,str,0);

fix flg = 2;
break;

case 63: ic = new value; /*f5 *1
sprintf(str,"%4.Of ms ",new-value);
outtext(PACINGx,ICy,str,0);
break; 1310

case 64: if (str[i-1] == 'V') { /*f6 */
out[2] = VOLTAGE;
amp[2] = new-value / 25;
for (i=0; kstren(str); i++) {

if (str[i] == 32) { / * blank space ? */
str[i] = '\O'; /*put in end of line */
break;

}
}
sprintf(str,"%4.0f mV ",new value); 1320

outtext(Ox,AMPOy,str,0);

}

94

else if (str[i-1] == A') {
out[2] = CURRENT;
amp[2] = new value / 0.3;
for (i=0; i<strlen(str); i++) {

if (str[i] == 32) {
str[i] = 3\0';
break; 1330

}
sprintf(str,"%4.Of mA ",new-value);
outtext(Ox,AMPOy,str,0);

}
else {

if (out[2] == VOLTAGE) {
amp[2] = new-value / 25;
sprintf(str,"%4.Of mV ",new-value); 1340

outtext(Ox,AMPOy,str,0);

}
else if (out[2] == CURRENT) {

amp[2] = new-value / 0.3;
sprintf(str,"%4.Of mA ",new-value);
outtext(Ox,AMPOy,str,O);

}
}

break;
case 65: od = new value; /*f7*/ 1350

sprintf(str,"%4.0f ",new -value);
outtext(Ox,ODy,str,O);
break;

case 66: dod = new value; /*f8 */
sprintf(str,"%4.0f ms ",new value);
outtext(Ox,DODy,str,O);
break;

case 67: trig_locke = newvalue; /* f9 */
sprintf(str,"%4.Of ",new.value);
outtext(Tx,LOCKEy,str,O); 1360

break;
case 68: trig_locko = newvalue; /* f10 */

sprintf(str,"14.0f ",newvalue);
outtext(Ox,LOCKy,str,O);
outtext(Tx,LOCKOy,str,O);
break;

case 71: trig-lockb = new value; /* #7 */
sprintf(str,"%4.Of ",new-value);
outtext(Tx,LOCKBy,str,O);
break; 1370

case 72: trig-window = new-value; /* #8 */

APPENDIX A. PACER.C

APPENDIX A. PACER.C 95

sprintf(str,"%4.Of ",new-value);
outtext(Tx,WINDOWy,str,0);
break;

case 73: width[2] = new value; /* #9 */
sprintf(str,"X4.of mB ",new-value);
outtext(Ox,WIDTHOy,str,O);
break;

case 84: if (str[i-1] == 'V') { /*F1 */ 1380

out[1] = VOLTAGE;
amp[1] = new-value / 25;
for (i=O; i<strlen(str); i++) {

if (str[i] == 32) { / * blank space ? */
str[i] = '\0' ; /* put in end of line */
break;

}
}
sprintf(str,"%4.0f mV ",new-value);
outtext(EXTRAx,AMPEy,str,O); 1390

sprintf(str,"'/4.0f mV ",ia[1]*25);
outtext(EXTRAx,IAEy,str,0);

}

else if (str[i-1] == 'A') {
out[1] = CURRENT;
amp[1] = new-value * 20;
for (i=O; i<strlen(str); i++) {

if (str[i] == 32) {
str[i] = '\0'; 1400
break;

}
}
sprintf(str,"%4.0f mA ",newvalue);
outtext(EXTRAx,AMPEy,str,O);
sprintf(str,"/4.0f mA ",ia[1]/20);
outtext(EXTRAx,IAEy,str,0);

}

else { 1410

if (out[1] == VOLTAGE) {
amp[1] = new-value / 25;
sprintf(str,"%4.0f mV ",new value);
outtext(EXTRAx,AMPEy,str,O);

}
else if (out[1] == CURRENT) {

amp[1] = new value * 20;
sprintf(str,"%4.0f mA ",newvalue);
outtext(EXTRAx,AMPEy,str,O);

APPENDIX A. PACER.C 96

} 1420

}

break;

case 85: if (out[1] == VOLTAGE) { /* F2 */
ia[1] = new value / 25;
sprintf(str,"X4.Of mV ",new-value);

}
else if (out[1] == CURRENT) {

ia[1i] = new-value * 20; 1430

sprintf(str,"%4.Of mA ",new-value);

}
outtext(EXTRAx,IAEy,str,0);
break;

case 86: width[1] = new-value; /* F3 */
sprintf(str,"X4.Of ms ",new value);
outtext(EXTRAx,WIDTHEy,str,0);
break;

case 87: delays[0] = new..value; /* F4 */
sprintf(str,"%4.Of ms ",new -value); 1440

outtext(EXTRAx,Dly,str,0);
break;

case 88: delays[1] = new-value; /* F5 */
sprintf(str,"X4.Of ms ",new -value);
outtext(EXTRAx,D2y,str,O);
break;

case 89: delays[2] = new value; /* F6 */
sprintf(str,"%4.Of ms ",new-value);
outtext(EXTRAx,D3y,str,O);
break; 1450

case 90: delays[3] = newvalue; /* F7 */
sprintf(str,"%4.Of ms ",new value);
outtext(EXTRAx,D4y,str,O);
break;

case 91: id = new value; /* F8 */
sprintf(str,"%4. Of",new -value);
outtext(EXTRAx,IDy,str,0);
break;

case 92: ex-st = new value; /* F9 */
sprintf(str,"%4. Of ",new -value); 1460

outtext(EXTRAx,EXSTy,str,O);
break;

}
}

/ **

APPENDIX A. PACER.C

* Function -------- > CURSOR(char kytmp2)

* Return Type ---- > void
*

* Description ---- > routine to do the following actions upon cursor input
*
************* **** ***** ***** **** ***** ***** ********* ********* ***** **********/

void CURSOR (char kytmp2){

switch(kytmp2){
case 71: amp[O] = amp[O] + ia[O]; /* home */

if (out[0] == VOLTAGE) {
sprintf(tmpstr,"%4.Of mV ",amp[o]*25);

}
else if (out[0] == CURRENT) {

sprintf(tmpstr,"%4.Of mA ',amp[O]/20);

}
outtext(PACINGx,AMPPy,tmpstr,O);
fixjlg = 1;
break;

case 72: amp[1] = amp[1] + ia[1]; /* up arrow
if (out[1] == VOLTAGE) {

sprintf(tmpstr,"%4.0f mV ",amp[O]*25);

}
else if (out[1] == CURRENT) {

sprintf(tmpstr,'%4.0f mA ",amp[1]/20);

}
outtext(EXTRAx,AMPEy,tmpstr,O);
fixjg = 1;
break;

case 73: delays[ex.st-1] = delays[exst-1] + id; /* pg up */
sprintf(tmpstr,"%4d ms ",delays[ex-st-1]);
if (exst == 1) outtext(EXTRAx,D1y,tmpstr,0);
else if (exst == 2) outtext(EXTRAx,D2y,tmpstr,O);
else if (exst == 3) outtext(EXTRAx,D3y,tmpstr,0);
else if (ex st == 4) outtext(EXTRAx,D4y,tmpstr,0);
break;

case 75: cycl = cycl - ic;
sprintf(tmpstr,'%4d ms ",cycl);
outtext(PACINGx,CYCLy,tmpstr,O);
fxlfg = 2;
break;

case 77: cycl = cycl + ic;
sprintf(tmpstr,"X4d ms ",cycl);
outtext(PACINGx,CYCLy,tmpstr,O);
fix fg = 2;

/ * left arrow */

1510

* right arrow */

97

1470

1480

1490

1500

APPENDIX A. PACER.C 98

break;
case 79: amp[O] = amp[O] - ia[0]; /* end */

if (out[O] == VOLTAGE) {
sprintf(tmpstr,"%4.Of mV ",amp[O]*25);

} 1520

else if (out[O] == CURRENT) {
sprintf(tmpstr,"X4.Of mA ",amp[O]/20);

}
outtext(PACINGx,AMPPy,tmpstr,O);
fixfig = 1;
break;

case 80: amp[1] = amp[1] - ia[1]; /* down arrow
if (out[1] == VOLTAGE) {

sprintf(tmpstr,"4.Of mV ",amp[1]*25);

} 1530
else if (out[1] == CURRENT) {

sprintf(tmpstr,"%4.Of mA ",amp[1]/20);

}
outtext(EXTRAx,AMPEy,tmpstr,0);
fixjflg = 1;
break;

case 81: delays[ex_st-1] = delays[ex.st-1] - id; /* pg down */
sprintf(tmpstr,"4d ms ",delays[exst-1]);
if (ex..st == 1) outtext(EXTRAx,D1y,tmpstr,0);
else if (exst == 2) outtext(EXTRAx,D2y,tmpstr,O); 1540

else if (ex-st == 3) outtext(EXTRAx,D3y,tmpstr,0);
else if (exst == 4) outtext(EXTRAx,D4y,tmpstr,0);
break;

}
}

/ **
*

* Function -------- > PACING (int number buffer p, int lengthbufferp, int number pacing)
1550

* Return Type ---- > void

* Description ---- > routine to produce pacing buffer

void PACING (int number bufferp, int lengthbufferp, int numberpacing) {

int BUFFERP[2000].;
1560

/ ************************************/
/ *** declare BUFFER_.P for pacing ***
/ ************************************/

PACER.C

ALDECLAREBUFFER (numberbuffer-p, BUFFERP, length-bufferp*2);
AL.LINKBUFFER (numberjbufferp);

/ **************************************/
/*** fill B UFFERP with pacing data ***/

/ **************************************/

for (i=0; i<length -.buffer-p*2; i++) /* initialize B UFFERP */
BUFFER_P[i]=2048;

for (i=ch[0]-1; i<width[0]*2; i=i+2)
BUFFERP[i]=2048+amp[0];

/ **************************************/
/ *** set up output **

/ **************************************/

ALSETUPDAC (0,-1);

ALSETPERIOD (0.001);

/* 0 - internal clock

-1 - output two values to channels 1 0 2 */

/ **************************************/
/*** output the pacing stimuli *

/ **************************************/

if (numberpacing != 99) {
for (i=0; i<numberpacing; i++) {

ALBURSTDAC ();

outtext(53,19," ** ** ",2);
outtext(53,20,"**** ****",2);
outtext(53,21," ******* 2);
outtext(53,22," ** ,2);
outtext(53,23," * ",2);

ALWAITFORCOMPLETION (number buffer-p);

}
}

else if (number_pacing == 99) {
while (!kbhit()) {

ALBURSTDAC

/ * while key is not hit, repeat */

1610

APPENDIX A. 99

1570

1580

1590

1600

outtext(53,19," ** ** 2);
outtext(53,20,"**** ****",2);
outtext(53,21," *******",2);

outtext(53,22," ***** 2);
outtext(53,23," * 2);

ALWAITFORCOMPLETION (numberbufferp);

outtext(53,19, it
outtext(53,20,"
outtext(53,21,"
outtext(53,22,"
outtext(53,23,"

/ * to erase the heart */

/* for (i=; i<cycl*2; i++)
BUFFERP[i] = 2048; *1 /* is this necessary? */

ALUNLINK.BUFFERS ();
ALUNDECLAREBUFFER (number bufferp);

}

I**
*

* Function -------- > EXTSTM (int number buffer.e, int length-buffere)
*

* Return Type ---- > void
*

* Description ---- > routine to produce extra stimuli for VT induction
*

************* ****************** ************** ************** ***** **********/

void EXTSTM (int number-buffer-e, int length-buffere) {

int BUFFERE[5000];

/ **/
/***declare BUFFER_- E for extra stimuli *

/ **/

ALDECLAREBUFFER (numberbuffere, BUFFERE, length-buffere*2);
ALLINKBUFFER (number buffere);

/***/
/***Fil B UFFER_.E with extra stimuli data ***/
/ ***/

APPENDIX A. PACER.C 100

}
}

1620

1630

1640

1650

APPENDIX A. PACER.C 101

1660

for (i=0; i < (length-buffer e*2); i++) /* initialize BUFFERE */
BUFFERE[i] = 2048;

for (j=ch[]-1; j < (width[0]*2); j=j+2) /* last pacing pulse before es
BUFFEREj] = 2048 + amp[O];

accu = width[0] + delays[0];

for (i=O; i < ex-st - 1; i++) { * first three extra stimuli */
for (j=(ch[1]-1)+(accu*2); j < (accu+width[1])*2; j=j+2) 1670

BUFFEREj] = 2048 + amp[1];

accu = accu + width[1] + delays[i+1];

}

for (j=(ch[1]-1)+(accu*2); j < (accu+width[1])*2; j=j+2) /* last es
BUFFEREj] = 2048 + amp[1];

/ **************************************/
/*** set up output 1680

/ **************************************/

ALSETUPDAC (0,-1); /* 0 - internal clock
-1 - output two values to channels I V 2 */

ALSETPERIOD (0.001);

/ ********************************/
/*** output the extra stimuli *
/ ********************************/ 1690

AL BURST DAC 0;
ALWAITFORCOMPLETION (number buffer e);
AL UNLINK BUFFERS 0;
ALUNDECLAREBUFFER (number buffer e);

/ **

* Function -------- > OVERDRIVE(int number bufferop, int lengthbuffer .op, 1700

* int number overdrive)

* Return Type ---- > void

* Description ----- > routine to do overdrive pacing

************* *********************** ********* **************************

APPENDIX A. PACER.C 102

void OVERDRIVE(int numberjbuffer-op, int lengthbuffer-op,
int number-overdrive) { 1710

int BUFFEROP[2000];

/ **/
/***declare BUFFEROP for overdrive pacing *

/ **/

AL DECLARE BUFFER (number-buffer-op, BUFFEROP, lengthbuffer-op*2);
ALLINKBUFFER (numberbufferop);

1720

/|***/
/*** fill BUFFER_.OP with overdrive pacing data *
/ ***

for (i=0; i<lengthbuffer-op*2; i++) /* initialize B UFFEROP */
BUFFEROP[i]=2048;

for (i = (ch[2]-1)+((length -buffer -op - width[O] - 2)*2);
/* pulse near the end of the cycle length */

i < (length -buffer-op - 2)*2; i=i+2) 1730

BUFFEROP[i]=2048 + amp[2];

/***/
/*** output the overdrive pacing stimuli ***|

/ ***/

if (number-overdrive != 99) {
CLEAR.COMMAND 0;
outtext(2,19,"Press the space bar to stop the overdrive pacing anytime",1);
for (i=0; i<number overdrive; i++) { 1740

if (kbhit()) break; /* stop overdrive pacing if any key is hit */
ALBURSTDAC 0;

outtext(65,19," ** ** 2);
outtext(65,20,"**** ****",2);
outtext(65,21," ******* 2);
outtext(65,22," *****"2);
outtext(65,23," * ",2);

ALWAITFORCOMPLETION (number-buffer-op); 1750

}
}

else if (number-overdrive == 99) {

APPENDIX A. PACER.C 103

CLEARCOMMAND 0;
outtext(2,19,"Press the space bar to stop overdrive pacing anytime",1);
while (!kbhit() {

ALBURSTDAC 0;
1760

outtext(65,19," ** ** 2);
outtext(65,20,"**** ****",2);
outtext(65,21, ******* 2);
outtext(65,22," *****",2);
outtext(65,23," * ",2);

ALWAITFORCOMPLETION (numberbuffer-op);

}
1770

outtext(65,19," ",0);
outtext(65,20," ",0);
outtext(65,21," ",0);
outtext(65,22,'' ",0);
outtext(65,23," ",0);

ALUNLINKBUFFERS ();
ALUNDECLAREBUFFER (numberbuffer-op);

1780

* Function -------- > TRIGGER(int number buffer op, int length-bufferop
* int numbertrigger)
*

* Return Type ---- > void
*

* Description ---- > routine to do trigger pacing right after ES or burst
1790

************* ************** *******************************/

void TRIGGER(int number-buffer.t, int lengthbuffer-t, int number trigger) {

int BUFFERT[100]; / * limits the width of trigger pulse to 50 msec

/ *** parameter assignments for timer.c ***|

/ ** struct time timep;
long tmp=0, otmp=0 * 1800

/ ***/
/ *** declare B UFFER_.T for triggered pacing **/

APPENDIX A. PACER.C 104

/ ***/

ALDECLAREBUFFER (numberbuffert, BUFFERT, lengthbufert*2);
ALLINKBUFFER (number buffer t);

I* ALSETUPDA C (2,-1);
AL_SETPERIOD (0.001); 1810

*/
/ **/
/***fill B UFFERT with triggered pacing stimuli data *

/ **/

for (i=0; i<length.buffer -.t*2; i++) /* initialize BUFFERT *
BUFFERT[i]=2048;

for (i=ch[2]-1; i<(width[0])*2; i=i+2)
BUFFERT[i]=2048 + amp[2]; 1820

/ **************************************/
/*** set up output

/ **************************************/

ALSETUPDAC (2,-1); /* 2 - external trigger
-1 - output one value to channel 2 */

ALSETPERIOD (0.001); 1830

/ ************************************/
/*** output the triggered stimuli ***/

/ ************************************/

if (number..trigger != 99) {
for (k=0; k<numbertrigger; k++) {

if (kbhit()) break; /* stop overdrive pacing if any key is hit */
1840

/***timer to count 100 msec for trigger lockout.
this timer increments in the amount 18.2 Hz (60 msec) ***/

/ ** gettime(6timep);
otmp = (timep.ti sec * 1000) + (timep.tijhund * 10);
while(1) {

gettime(tltimep);
tmp = timep.ti sec * 1000 + timep.ti hund * 10;
if ((tmp-otmp) >= trig_locko) {

break; 1850

}

APPENDIX A. PACER.C 105

} **/

inregs.h.ah = 0x86;
inregs.x.cx = waitval >> 16;
inregs.x.dx = waitval && Oxfif;
clock-tics = (int) (((long)trig.locko*(long)1024)/(long)1000);
for (i=O; i<clock tics; i++)

int86(intnumber,&inregs,&outregs);
1860

AL SET TIMEOUT (0);
ALBURSTDAC (number buffer t);

outtext(65,19,"*********",2);
outtext(65,20,"*********",2);
outtext(65,21," *** "2);
outtext(65,22," *** 12);
outtext(65,23," *** 92);

ALWAITFORCOMPLETION (number buffer t); 1870

}
}
else if (number-trigger == 99) {

while (!kbhito) {

/*** timer to count 100 msec for trigger lockout.
this timer increments in the amount 18.2 Hz (60 msec) *

1880

/ ** gettime(&timep);
otmp = (timep.tisec * 1000) + (timep.ti hund * 10); **/

/* printf("%d %d %d %d\n", timep.ti hour,timep.ti-min,
timep.tisec,timep.ti hund); *1

/ ** while(1) {
gettime(6timep);
tmp = timep.tisec * 1000 + timep.ti-hund * 10;
if ((tmp-otmp) >= trig-lockout) { 1890

break;

}
} **/

/* printf("%d %d %d %d\n", timep.tihour,timep.timin,
timep.tisec,timep.ti hund); *1

inregs.h.ah = 0x86;
inregs.x.cx = waitval >> 16;

APPENDIX A. PACER.C 106

inregs.x.dx = waitval && Oxffff; 1900
clocktics = (int) (((long)trig-jocko*(long)1024)/(long)1000);
for (i=O; i<clock tics; i++)

int86(intnumber,&inregs,&outregs);

/* A timeout period 0 causes ATLAB to wait indefinitely */
AL SET TIMEOUT (0);
ALBURSTDAC (number buffer-t);

outtext(65,19,"*********",2);
outtext(65,20,"*********",2); 1910

outtext(65,21," *** ",2);
outtext(65,22," *** 12);
outtext(65,23, *** ",2);

AL WAITFOR.COMPLETION (number buffer t);

}
}

outtext(65,19," ",0); 1920

outtext(65,20," ",0);
outtext(65,21," ",0);
outtext(65,22," ",0);
outtext(65,23," ",0);

ALUNLINKBUFFERS();
ALUNDECLAREBUFFER (number buffer t);

/*** at this point, either there was a intracardiac
triggered output or timeout triggered output ***/ 1930

}

/ **
*

* Function -------- > PACINGPVC (int number buffer pvc, int length-buffer pvc)

* Return Type ---- > void
*

* Description ---- > routine to produce PVC triggered pacing buffer

1940

void PACINGPVC (int numberbufferpvc, int lengthbufferpvc) {

int BUFFERPVC[50];

ALDECLAREBUFFER (number bufferpvc, BUFFERPVC, length bufferpvc*2);

APPENDIX A. PACER.C 107

ALLINKBUFFER (number bufferpvc);

/ **/ 1950
/*** fill BUFFERPVC with pacing data *

/ **/

for (i=0; i<length.buffer-pvc*2; i++) /* initialize BUFFER_PVC */
BUFFERPVC[i]=2048;

for (i=ch[2]-1; i<width[2]*2; i=i+2)
BUFFERPVC[i]=2048+amp[2];

/ **************************************/ 1960

/***set up output

/ **************************************/

ALSETUPDAC (0,-1); /* 0 - internal clock
-1 - output two values to channels 1 & 2 */

ALSETPERIOD (0.001);

/ **************************************/
/ *** output the pacing stimuli * 1970

/ **************************************/

ALBURSTDAC 0;

outtext(53,19,"******** ",2);
outtext(53,20,"** ** ",2);
outtext(53,21,"******** ",2);
outtext(53,22,"** ",2);
outtext(53,23,"** ",2);

1980

ALWAITFORCOMPLETION (number bufferpvc);

outtext(53,19," ",0); /* to erase the P */
outtext(53,20," ",0);
outtext(53,21," ",0);
outtext(53,22," ",0);
outtext(53,23," ");

ALUNLINKBUFFERS 0;
ALUNDECLAREBUFFER (number buffer_pvc); 1990

}

/ **

* Function---------> PACINGNOPVC (int number buffer nopvc, int length..buffernopvc)

APPENDIX A. PACER.C 108

*

* Return Type ---- > void

* Description ------ > routine to produce no PVC pacing buffer

2000
************* **** ********** **** ***** ********* ***** **** ********** **** ******/

void PACINGNOPVC (int number-buffer-nopvc, int lengthbuffer.nopvc) {

int BUFFERNOPVC[1001;

AL DECLARE BUFFER (numberbuffer.nopvc, BUFFERNOPVC, lengthbuffer.nopvc*2);
ALLINKBUFFER (number-buffer-nopvc);

/ **/ 2010

/*** fill BUFFERNOPVC with pacing data ***/

I/**/
for (i=0; i<length-buffer.nopvc*2; i++) /* initialize B UFFERP VC */

BUFFERNOPVC[i]=2048;

for (i=ch[]-1; i<width[0]*2; i=i+2)
BUFFERNOPVC[i]=2048+amp[0];

/ **************************************/ 2020

/*** set up output

/ **************************************/

ALSETUPDAC (0,-1); /* 0 - internal clock
-1 - output two values to channels 1 EV 2 */

ALSETPERIOD (0.001);

/ **************************************/
/*** output the pacing stimuli ***/ 2030

/ **************************************/

ALBURSTDAC 0;

outtext(53,19,"** ***"2);
outtext(53,20,"** ****,2);
outtext(53,21,"** ** **"2);
outtext(53,22,"**** ** 2);
outtext(53,23,"*** **"2);

2040

ALWAITFORCOMPLETION (numberbuffer.nopvc);

outtext(53,19," ",0); /* to erase the N */

APPENDIX A. PACER.C 109

outtext(53,20," ",0);
outtext(53,21," ",0);
outtext(53,22," ",0);
outtext(53,23," ",0);

AL UNLINK BUFFERS 0;
ALUNDECLAREBUFFER (number-buffernopvc); 2050

}

* Function -------- > BURST(int number bufferb, int length.bufferb)
*

* Return Type ---- > void
*

* Description ---- > routine to produce burst train for VT induction 2060
*

**/

void BURST(int numberbuffer-b, int lengthbufferb) {

int BUFFERE[5000];

/ **/
/*** declare BUFFER E for extra stimuli *
/ **/ 2070

ALDECLAREBUFFER (number-bufferb, BUFFERE, lengthbufferb*2);
ALLINKBUFFER (numberbuffer-b);

/ ***/
/*** fill BUFFER E with extra stimuli data *

/ ***/

for (i=0; i < (length buffer -b*2); i++) /* initialize BUFFERE */
BUFFERE[i] = 2048; 2080

for (j=(ch[1]-1); j < (width[O]*2); j=j+2) /* pacing pulse before es */
BUFFEREj] = 2048 + amp[1];

accu = width[O] + delays[0];

while (accu < (delays[0] + delays[1])) { /* burst train */
for (j (ch[1]-1) + (accu*2); j < (accu+width[1])*2; j=j+2)

BUFFER EU] = 2048 + amp[1];
accu = accu + width[1] + delays[2]; 2090

}

APPENDIX A. PACER.C 110

for (j=(length..buffer-b-2)*2; j<lengthbuferb*2; j=j+1) /* to avoid DC shock */
BUFFEREj] = 2048;

/ ********************************/
/*** output the eztra stimuli *
/********************************/

ALBURSTDAC); 2100

ALWAITFORCOMPLETION (number buffer b);

ALUNLINKBUFFERS ();
ALUNDECLAREBUFFER (number buffer b);

}

Appendix B

Video.c

*.

* File name -- > video.c
* Date --------- > 8/23/93
* Purpose ---- > Routine to do video opearations for the stimulator

*************************** ***************************

#include "video.h"
10

*

* Global parameter declarations
*

unsigned char far *screenptr = (unsigned char far *)(SCREEN SEG * Ox10000);
/* pointer to text screen memory */

/**20
*

* Function -------- > CLEARSCREEN()
*

* Return Type ---- > void

* Description ---- > routine to initialize screen attributes
*
*************************** ******************************** ***** **** ******/

void CLEARSCREEN() { / * Initializes the screen attributes */ 30

111

APPENDIX B. VIDEO.C 112

int i=O;
while(i < (MAXX*MAXY<<1)) {

screenptr[i++I = '

screenptr[i++] = FOREGROUNDWHITEIBACKGROUNDBLACK;

}
}

*

* Function -------- > SETUP SCREEN() 40
*

* Return Type ---- > void

* Description ---- > routine to draw boundaries
*

void SETUPSCREEN() { /* outside boundary */

int j; 50

char tmpstr[2];
char *tstr;

/ *** four corners
tmpstr[1]=0;
tmpstr[O]=218;
outtext(0,0,tmpstr,0);
tmpstr[O]=192;
outtext(0,24,tmpstr,O);
tmpstr[O]=217; 60

outtext(79,24,tmpstr,O);
tmpstr[O]=191;
outtext(79,0,tmpstr,O);

/ horizontal lines at y = 0,2,18,24 *
tmpstr[O]=196;
for (j=1; j<79; j++) {

outtext(j,0,tmpstr,0);
outtext(j,2,tmpstr,O);
outtext(j,18,tmpstr,O); 70

outtext(j,24,tmpstr,0);

}
/* for (j=35; j<79; j++) {

outtezt(j,3,tmpstr,0);
outtezt(j, 10,tmpstr, 0);

} */
for j=1; j<34; j++)

outtext(j,14,tmpstr,O);

APPENDIX B. VIDEO. C

/ ***vertical lines at z = 0,17,34,79 *
tmpstr[O]=179;
for (j=1; j<24; j++) {

outtext(0,j,tmpstr,0);
outtext(79,j,tmpstr,O);

}
for (j=3; j<14; j++)

outtext(17j,tmpstr,O);
for (j=3; j<18; j++)

outtext(34j,tmpstr,O);

tmpstr[O]=195; /*I- */
outtext(0,2,tmpstr,O);
outtext(0,14,tmpstr,O);
outtext(0,18,tmpstr,O);

/* outtext(34,3,tmpstr,0);
outtezt(34,10,tmpstr,0); */
outtext(34,14,tmpstr,O);

tmpstr[0]=180; /* - *1
outtext(79,2,tmpstr,O);

/ * outtezt(79,3,tmpstrO);
outtezt(79, 10,tmpstr, 0); */
outtext(79,18,tmpstr,O);
outtext(34,14,tmpstr,O);

tmpstr[0]=194; /*T */
outtext(17,2,tmpstr,O);
outtext(34,2,tmpstr,0);

tmpstr[o=193; /* reverse T */
outtext(17,14,tmpstr,O);
outtext(34,18,tmpstr,O);

/ *** headings ***/
tstr="P R 0 G R A M M. A B L

outtext(12,0,tstr,1);
tstr="PACING";
outtext(2,2,tstr,1);
tstr="PREMATURE";
outtext(19,2,tstr,1);
tstr="OVERDRIVE";
outtext(36,2,tstr,1);

/* tstr="WAVEFORM";
outtezt(52,2,tstr,1);
tstr="CH 1";
outtext(36, 3,tstr, 1);

E S T I M U L A T 0 R S Y S T E M";

120

113

80

90

100

110

APPENDIX B. VIDEO.C 114

tstr="CH 2";
outtezt(36,10,tstr,1); */
tstr="COMMAND";
outtext(36,18,tstr,1); 130

/*** PA CING panel ***/
tstr="CH =";
outtext(2,3,tstr,O);
tstr="AMP =";
outtext(2,4,tstr,O);
tstr="STEP =";
outtext(2,5,tstr,O);
tstr="WIDTH=";
outtext(2,6,tstr,O); 140
tstr="CYCL =";
outtext(2,9,tstr,O);
tstr="STEP ";

outtext(2,10,tstr,O);

/*** PREMATURE panel **
tstr="CH =";
outtext(19,3,tstr,O);
tstr="AMP =";
outtext(19,4,tstr,O); 150
tstr="STEP =";
outtext(19,5,tstr,O);
tstr="WIDTH=";
outtext(19,6,tstr,O);
tstr="EXST=";
outtext(19,8,tstr,O);
tstr="D1 =";
outtext(19,9,tstr,O);
tstr="D2 =";
outtext(19,10,tstr,O); 160
tstr="D3 =";
outtext(19,11,tstr,O);
tstr="D4 =";
outtext(19,12,tstr,O);
tstr="STEP =" ;
outtext(19,13,tstr,O);

/*** OVERDRIVE panel **

tstr="CH ="; 170
outtext(36,3,tstr,O);
tstr="AMP =";
outtext(36,4,tstr,O);
tstr="WIDTH=";

APPENDIX B. VIDEO.C 115

outtext(36,6,tstr,O);

tstr="MODE 2 & 6";
outtext(36,8,tstr,1);
tstr="OD =";
outtext(36,9,tstr,O); 180

tstr="DOD =";
outtext(36,1O,tstr,0);

tstr=MODE 3 & 6";
outtext(36,11,tstr,1);
tstr="TRIG =";
outtext(36,12,tstr,O);
tstr="LOCKO=";
outtext(36,13,tstr,O);

190

tstr="MDDE 7";
outtext(53,8,tstr,1);
tstr="LOCKE =";
outtext(53,9,tstr,O);
tstr="LOCK_0 =";
outtext(53,10,tstr,O);
tstr="LOCKB =";
outtext(53,11,tstr,O);
tstr="WINDOW =";
outtext(53,12,tstr,O); 200

-tstr="DEMAND =";
outtext(53,13,tstr,O);

}

/ **

* Function -------- > CLEARCOMMAND()
*

* Return Type ---- > void
210

* Description ---- > routine to clear command panel

void CLEARCOMMANDO {

char *tstr;

tstr="
outtext(2,19,tstr,O); 220

outtext(2,20,tstr,O);
outtext(2,21,tstr,O);

APPENDIX B. VIDEO.C 116

outtext(2,22,tstr,O);
outtext(2,23,tstr,0);

}

*

* Function -------- > MAIN MENU()
230

* Return Type ---- > void
*

* Description ---- > routine to put protocols menu in command panel
*

********************** **************************** *****************/

void MAINMENU() {

char *tstr;
240

tstr="Select the protocol:
outtext(2,19,tstr,O);
tstr="f1 Triggered Multi-Site Pacing";
outtext(2,20,tstr,O);

tstr="f2 ";
outtext(2,21,tstr,O);

tstr="f3 ";
outtext(2,22,tstr,O);

tstr="f 4 ";
outtext(2,23,tstr,O); 250

}

/ **
*

* Function -------- > PROTOCOL1_MENU()
*

* Return Type ---- > void
*

* Description ---- > routine to put protocol 1 menu in command panel
260

void PROTOCOL1_MENU() {

char *tstr;

tstr="f I select mode and channel";

outtext(2,19,tstr,O);
tstr="f 2 change output characteristics";

outtext(2,20,tstr,O); 270

APPENDIX B. VIDEO.C 117

tstr=''cursor change output characteristics";
outtext(2,21,tstr,O);

tstr="f 10 start pacing";
outtext(2,22,tstr,0);

tstr="esc end the program";
outtext(2,23,tstr,O);

}

/ **

* 280

* Function -------- > PROTOCOL11MENU()
*

* Return Type ----- > void
*

* Description ---- > routine to put protocol 1.1 menu in command panel
*

********************** ***/

void PROTOCOL11MENU() {
290

char *tstr;

tstr="f 1 select mode";
outtext(2,19,tstr,0);
tstr="f 2 select channel";
outtext(2,20,tstr,0);

/* tstr="f3 select premature stimuli";
outtezt(2,21,tstr,0);
tstr="f4 select overdrive";
outtezt(2,22,tstr,0); */ 300

tstr="esc exit this level";
outtext(2,21,tstr,O);

}

*

* Function -------- > PROTOCOL111MENU(
*

* Return Type ---- > void
310

* Description ---- > routine to put protocol 1.1.1 menu in command panel
*

*** ********************************

void PROTOCOL_1_1_MENU 0 {

char *tstr;

APPENDIX B. VIDEO.C 118

tstr="fI Model (ES & NO) f4 Mode4 (BURST & NO) ";

outtext(2,19,tstr,0); 320

tstr="f 2 Mode2 (ES & FIXED) f5 ModeS (BURST & FIXED)";
outtext(2,20,tstr,O);
tstr="f 3 Mode3 (ES & TRIG) f6 Mode6 (BURST & TRIG) ";

outtext(2,21,tstr,O);
tstr="f7 Mode7 (ES & PVC TRIG)
outtext(2,22,tstr,O);

}

* Function -------- > PROTOCOL112_MENU() 330

* Return Type ---- > void
*

* Description ---- > routine to put protocol 1.1.2 menu in command panel

** *********

void PROTOCOL112_MENU 0 {

char *tstr; 340

tstr="1f Pacing channel";
outtext(2,19,tstr,O);
tstr="1f2 Extra stimuli channel";
outtext(2,20,tstr,O);
tstr="f3 Overdrive channel";
outtext(2,21,tstr,O);

}

* Function -------- > PR.OTOCOL12_1_MENU()
*

* Return Type ---- > void

* Description ---- > routine to put protocol 1.1.2.1 menu in command panel
*

***************** ******************* **************************** *********

void PROTOCOL112_1_MENU (0{ 36

char *tstr;

tstr="f I Channel 1";
outtext(2,19,tstr,O);
tstr="f2 Channel 2";

APPENDIX B. VIDEO.C 119

outtext(2,20,tstr,0);

}

/* PROTOCOLl13_MENU () and PROTOCOL114_MENU () are obsolete */ 370

*

* Function -------- > PROTOCOL_1_3 MENU(
*

* Return Type ---- > void
*

* Description ---- > routine to put protocol 1.1.3 menu in command panel
*

380

void PROTOCOL113-MENU() {

char *tstr;

/* tstr="fl None";
outtext(2,19,tstr,0);

*/ tstr="f i Extra Stimuli";
outtext(2,19,tstr,O);
tstr="f 2 Burst"; 390

outtext(2,20,tstr,O);
}

/ **
*

* Function -------- > PROTOCOL114_MENU()
*

* Return Type ---- > void-

* Description ---- > routine to put protocol 1.1.4 menu in command panel 400

void PROTOCOL114_MENU() {

char *tstr;

tstr="f1 None";
outtext(2,19,tstr,O);
tstr="f 2 Fixed rate"; 410

outtext(2,20,tstr,O);
tstr="f 3 Triggered";
outtext(2,21,tstr,O);

}

APPENDIX B. VIDEO.C 120

* Function -------- > PROTOCOL1_4_MENU (int mode)
*

* Return Type ---- > void 420
*

* Description ---- > routine to put protocol 1.4 menu in command panel
*

************* ********* ***** **** ******************* **** ***** ********* ******/

void PROTOCOL1_4_MENU (int mode) {

char *tstr;

tstr="f 1 introduce extra stimuli & overdrive"; 430

outtext(2,19,tstr,0);
tstr="cursor change output characteristics";
outtext(2,20,tstr,O);
tstr="f 10 stop pacing & exit to protocol 1";
outtext(2,21,tstr,O);

if (mode == 1) {
tstr="Mode 1: Extra stimuli only";
outtext(2,23,tstr,0);

} 440

else if (mode == 2) {
tstr="Mode 2: Extra stimuli and fixed rate overdrive";
outtext(2,23,tstr,O);

}
else if (mode == 3) {

tstr="Mode 3: Extra stimuli and triggered pacing";
outtext(2,23,tstr,0);

}
else if (mode == 4) {

tstr="Mode 4: Burst only"; 4s0

outtext(2,23,tstr,0);

}
else if (mode == 5) {

tstr="Mode 5: Burst and fixed rate overdrive";
outtext(2,23,tstr,O);

}
else if (mode == 6) {

tstr="Mode 6: Burst and triggered pacing";
outtext(2,23,tstr,O);

} 460

else if (mode == 7) {
tstr="Mode 7: Extra Stimuli and PVC triggered pacing";

APPENDIX B. VIDEO.C 121

outtext(2,23,tstr,0);

}
}

/ **
*

* Function -------- > PROTOCOL2_MENU()
470

* Return Type ---- > void
*

* Description ---- > routine to put protocol 2 menu in command panel
*

********************** ******************* **** *******************

void PROTOCOL2_MENU() {

char *tstr;
480

tstr="f I induce VT -by extra stimuli w/ no overdrive pacing";
outtext(2,19,tstr,O);
tstr="f 2 induce VT by extra stimuli w/ fixed overdrive pacing";
outtext(2,20,tstr,O);
tstr="f 3 induce VT by extra stimuli w/ triggered overdrive pacing";
outtext(2,21,tstr,O);

/* need to put induce VT by burst w/ no overdrive pacing */
tstr="f 4 induce VT by burst w/ fixed overdrive pacing";
outtext(2,22,tstr,O);
tstr="f 5 induce VT by burst w/ fixed overdrive pacing"; 490

outtext(2,23,tstr,O);
}

/ **
*

* Function -------- > outtext(int zcoord, int y coord, char *str, int videojfg)
*

* Return Type ---- > void
*

* Description ---- > routine to write characters soo
*

*************************** ************** ****************** ***** *********

void outtext(int x-coord, int ycoord, char *str, int video flg) {

int off=offset(x_coord, y_coord);

if (videoflg == 0) {
while (*str != 1\0'){

screenptr[off+1)= 510

APPENDIX B. VIDEO.C 122

FOREGROUND GREEN BACKGROUND.BLACK;
screenptr[off] = *str++;
off += 2;

}
}
else if (video-flg == 1) {

while (*str != '\0') {
screenptr[off+1]=

FOREGROUND BLACKIBACKGROUNDGREEN; 520

screenptr[off] - *str++;
off += 2;

}
}
else if (video -flg ==2) {

while (*str != '\0') {
screenptr[off+1]=

FOREGROUNDREDIBACKGROUNDBLACKIBLINKING;
screenptr[off] = *str++; 530

off += 2;

}
}

}

/* This main program is used for testing.

main() {
int z, y;
init-screen(; 540

for(y=O;y<MAXY;y++) {
for(z=O;z<MAXX;z++) {

if ((z==1O) 66 (y==O)) {
screenptr[ofset(z,y)+1] =
BLINKING|FOREGR OUNDBLA CK|BA CKGR OUND_ WHITE;

}
screenptr[offset(z,y)] = 'B';

}
}

} 550

*/

Bibliography

[1] F. Al-Nasser. Tables speed design of low-pass active filters. EDN, pages 23-32,
1971.

[2] N. Barkakati. The Waite Group's Essential Guide to Turbo C. Howard W. Sams
and Company, Indianapolis, first edition, 1989.

[3] S. S. Barold and D. P. Zipes. Cardiac pacemakers and antiarrhythmic devices. In
E. Braunwald, editor, Heart Diseases: A Textbook of Cardiovascular Medicine,
chapter 25. W.B. Saunders Company, Philadelphia, 1992.

[4] R. M. Berne and M. N. Levy. Cardiovascular Physiology. Mosby-Year Book,
Inc., St. Louis, sixth edition, 1992.

[5] H. B. Burchell and J. Merideth. Management of cardiac tachyarrhythmias with
cardiac pacemakers. Annals of the New York Academy of Sciences, 167:546-556,
October 1969.

[6] M. N. Collins and G. E. Billman. Autonomic response to coronary occlusion in
animals susceptible to ventricular fibrillation. American Journal of Physiology,
257:H1886-94, 1989.

[7] P. F. Cranefield and R. S. Aronson. Cardiac Arrhythmias: The Role of Triggered
Activity and Other Mechanisms. Futura Publishing Company, Inc, Mount Kisco,
New York, 1988.

[8] B. P. Damiano and M. R. Rosen. Effects of pacing on triggered activity induced
by early afterdepolarizations. Circulation, 69:1013-1025, 1984.

[9] Data Translation, Inc. User Manual for A TLAB, 1988.

[10] Data Translation, Inc. User Manual for DT2821 Series, ninth edition, 1989.

123

BIBLIOGRAPHY

[11] D. S. Echt, J. C. Griffin, A. J. Ford, J. W. Knutti, R. C. Feldman, and J. W.
Mason. Nature of inducible ventricular tachyarrhythmias with different elec-
trophysiologic characteristics and different mechanisms in the infarcted canine
heart. American Journal of Cardiology, 52:1127-1132, 1983.

[12] N. El-Sherif, M. Restivo, W. Craelius, R. Mehra, R. Henkin, E. B. Caref, and
G. Kelen. The high-resolution electrocardiogram: Technical and basic aspects.
In El-Sherif N and Samet P, editors, Cardiac Pacing and Electrophysiology, chap-
ter 19. W. B. Saunders Company, Philadelphia, 1991.

[13] R. A. Freedman and J. W. Mason. Sustained ventricular tachycardia: Clinical
aspects. In El-Sherif N and Samet P, editors, Cardiac Pacing and Electrophysi-
ology, chapter 13. W. B. Saunders Company, Philadelphia, 1991.

[14] S. Furman and D. J. W. Escher. Principles and Techniques of Cardiac Pacing.
Harper and Row, Publishers, Inc., Mount Kisco, New York, fifth edition, 1970.

[15] A. H. Harken. Surgical treatment of cardiac arrhythmias. Scientific American,
pages 68-74, July 1993.

[16] H.. Hirche and F. M. McDonald. New aspects on the pathogenesis of ischemia-
induced ventricular arrhythmias. In D. W. Behrenbeck, E. Sowton, G. Fontaine,
and U. J. Winter, editors, Cardiac Pacemakers, pages 170-177. Steinkopff Verlag
Darmstadt, 1985.

[17] M. E. Josephson and C. D. Gottlieb. Ventricular tachycardia associated with
coronary artery disease. In Zipes E, editor, From Cell to Bedside, chapter 63.
W.B. Saunders Company, Philadelphia, 1989.

[18] W. Kaltenbrunner, R. Cardinal, M. Dubuc, M. Shenasa, R. Nadeau, G. Trem-
blay, M. Vermeulen, P. Savard, and P. Page. Epicardial and endocardial mapping
of ventricular tachycardia in patients with myocardial infarction. Circulation,
84(3):1058-1071, 1991.

[19] Kepco. Bipolar Operational Power Supplies Instruction Manual, 1979.

[20] D. A. Kirby, S. Hottinger, S. Ravid, and B. Lown. Inducible monomorphic
sustained ventricular tachycardia in the conscious pig. American Heart Journal,
119(5):1042-1049, 1990.

[21] K.-H. Kuck, K.-P. Kunze, M. Schuter, and W. Bleifeld. Single-beat stimulation
and train of stimuli method for prevention of reentrant tachycardia. In D. W.

124

BIBLIOGRAPHY

Behrenbeck, E. Sowton, G. Fontaine, and U. J. Winter, editors, Cardiac Pace-
maker, pages 282-290. Steinfopff Verlag Darmstadt, Springer-Verlag New York,
1985.

[22] J. W. Mason, K. P. Anderson, and R. A. Freedman. Techniques and criteria in
electrophysiologic study of ventricular tachycardia. Circulation, 75:111125, 1987.

[23] E. N. Moore and J. F. Spear. Electrophysiologic studies on the initiation, pre-
vention, and termination of ventricular fibrillation. In Cardiac Electrophysiology
and Arrhythmias, chapter 35. Grune & Stratton, 1985.

[24] R. J. Myerburg and A. Castellanos. Cardiac arrest and sudden cardiac death. In
E. Braunwald, editor, Heart Diseases: A Textbook of Cardiovascular Medicine,
chapter 26. W.B. Saunders Company, Philadelphia, 1992.

[25] F. H. Netter. Heart, The CIBA Collection of Medical Illustrations, volume 5.
CIBA, 1981.

[26] S. L. Robbins, R. S. Cotran, and V. Kumar. Pathologic Basis of Disease. W. B.
Saunders Company, Philadelphia, third edition, 1984.

[27] J. F. Spear, E. M. Moore, and L. N. Horowitz. Effect of current pulses deliv-
ered during the ventricular vulnerable period upon the ventricular fibrillation
threshold. American Journal of Cardiology, 32:814-822, 1973.

125

