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Abstract. The use of hardware compilers to generate complex circuits from a high-level
description is becoming more and more prevalent in a variety of application areas. However,
this introduces further risks as the compilation process may introduce errors in otherwise
correct high-level descriptions of circuits. In this paper, we present techniques to enable the
automatic verification of hardware compilers through the use of finite-state model checkers.
We illustrate the use of these techniques on a simple regular expression hardware compiler and
discuss how these techniques can be further developed and used on more complex hardware-
description languages.

1 Introduction

The size, and level of complexity of hardware has increased dramatically over these past years. This
has led to the acceptance of high-level hardware synthesis — allowing the compilation of program-
like descriptions into hardware circuits [10]. As in the case of software compilers, correctness of
synthesis tools is crucial.

Hardware description languages embedded in general purpose languages have been given proposed
and used with various languages and areas of application [4, 1, 2, 7]. In [3], we proposed a framework
in which different hardware synthesis languages can be combined and compiled together within the
framework of a single embedded hardware description language, Lava [4]. The high-level synthesis
languages provide a number of complex composition operators, the interaction of which can be
difficult to understand and ensure the correctness of. The verification of the synthesis procedures
proved to be tedious, and in some cases very difficult to demonstrate. When combining languages,
this proved to be even more difficult since each language has its own underlying compilation
invariants which need to be satisfied for the compilation to be correct.

Lava is linked to a number of model-checking tools, which one can use to verify properties via the
use of synchronous observers. We propose a technique using which we can verify the correctness of
our compilers using finite-state model checkers to verify the compilation techniques. Compositional
compilation techniques are usually verified using structural induction over the language constructs,
the individual cases of which usually turn out to be of a finite nature.

2 Circuit Descriptions in Lava

Circuit descriptions in Lava correspond to function definitions in Haskell. The Lava library provides
primitive hardware components such as gates, multiplexors and delay components. We give a short
introduction to Lava by example.

Here is an example of a description of a register. It contains a multiplexer, mux, and a delay
component, delay. The delay component holds the state of the register and is initialised to low.
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setRegister (set, new) = now

where

old = delay low now

now = mux (set, (old, new))

new

now

old
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set
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X

Note that setRegister is declared as a circuit with two inputs and one output. Note also that
definitions of outputs (now) and possible local wires (old) are given in the where-part of the
declaration.

After we have made a circuit description, we can simulate the circuit in Lava as a normal Haskell
function. We can also generate VHDL or EDIF describing the circuit. It is possible to apply circuit
transformations such as retiming, and to perform circuit analyses such as performance and timing
analysis. Lava is connected to a number of formal verification tools, so we can also automatically
prove properties about the circuits.

Should we want to decompose the multiplexor into more basic logic gates, one could define in terms
of negation (inv), disjunction (<|>) and conjunction (<&>) gates:

mux (set, (case0, case1)) =

(case0 <&> inv set) <|> (case1 <&> set)

2.1 Verification of Circuit Properties

Lava is connected through a number of model-checking tools which allow the verification of proper-
ties of circuits. To avoid introducing yet another formalism for property specification, An observer
based approach as advocated in [5] is used to specify safety properties.

Given a circuit C, the property is specified using a separate circuit, called the observer reading the
inputs and outputs of C, and outputting a single bit.

The circuit is then passed onto the model-checker to ensure that it outputs a constant high value.

For example, to check that the value in a register does not change if set is low, we can use the
following observer:

checkRegister (set, new) = ok

where

current = setRegister (set, new)

ok = inv set ==> (current <==> new)

Note that ==> and <==> denote boolean implication and equivalence respectively. To check that it
always holds using external model-checkers from within the Lava environment:

Lava> verify checkRegister

Proving: ... Valid.

Which allows us to conclude that ∀set, new · checkRegister (set, new).
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2.2 Generic and Parametrized Circuit Definitions

We can use the one bit register to create an n-bit register array, by putting n registers together.
In Lava, inputs which can be arbitrarily wide are represented by means of lists. A generic circuit,
working for any number of inputs, can then be defined by recursion over the structure of this list.

setRegisterArray (set, []) = []

setRegisterArray (set, new:news) = val:vals

where

val = setRegister (set, new)

vals = setRegisterArray (set, news)

Note how we use pattern matching to distinguish the cases when the list is empty ([]) and non-
empty (x:xs, where x is the first element in the list, and xs the rest).

Circuit descriptions can also be parametrized. For example, to create a circuit with n delay com-
ponents in series, we introduce n as a parameter to the description.

delayN 0 inp = inp

delayN n inp = out

where

inp’ = delay low inp

out = delayN (n-1) inp’

Again, we use pattern matching and recursion to define the circuit. Note that the parameter n is
static, meaning that it has to be known when we want to synthesise the circuit.

A parameter to a circuit does not have to be a number. For example, we can express circuit
descriptions which take other circuits as parameters. We call these parametrized circuits connection
patterns. Other examples of parameters include truth tables, decision trees and state machine
descriptions. In this paper, we will talk about circuit descriptions which take behavioural hardware
descriptions, or programs, as parameters.

2.3 Behavioural Descriptions as Objects

In order to parametrize the circuit definitions with behavioural descriptions, we have to embed a
behavioural description language in Lava. We do this by declaring a Haskell datatype representing
the syntax of the behavioural language. To illustrate the concepts with a small language, we will
use simplified regular expressions without empty strings3. The syntax of regular expressions is
expressed as a Haskell datatype:

data RegExp = Input Sig

| Plus RegExp

| RegExp :+: RegExp

| RegExp :>: RegExp

The data objects belonging to this type are interpreted as regular expressions with, for example,
a(b + c)+ being expressed as:

3 This constraint can be relaxed, but it allows us to illustrate the concepts presented in this paper more
effectively.
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Input a :>: Plus (Input a :+: Input c)

Note that the variables a, b and c are of type Sig — they are signals provided by the programmer
of the regular expression. They can either be outputs from another existing circuit, or be taken
as extra parameters to the definition of a particular regular expression. We interpret the signal a
being high as the character ‘a’ being present in the input.

Since regular expressions are now simply data objects, we can generate these expressions using
Haskell programs. Thus, for example, we can define a power function for regular expressions:

power 1 e = e

power n e = e :>: power (n-1) e

Similarly, regular expressions can be manipulated and modified. For example, a simple rewriting
simplification can be defined as follows:

simplify (Plus e :>: Plus e) =

let e’ = simplify e

in e’ :>: Plus e’

simplify (Plus (Plus e)) =

simplify (Plus e)

...

3 Compiling Regular Expressions into Hardware Circuits

Following the approach presented in [8], it is quite easy to generate a circuit which accept only
input strings which are admitted by a given regular expression. The circuits we generate will have
one input start and one output match: when start is set to high, the circuit will start sampling
the signals and set match to high when the sequence of signals from a received start signal until
just before the current time is included in the language represented by the regular expression.

start

match

The type of the circuit is thus:
type Circuit = Signal Bool -> Signal Bool

The compilation of a regular expression is a function from regular
expressions to circuits:
compile :: RE -> Circuit

start

match

a
Signal input
The regular expression Input a is matched if, and only if the signal
a is high when the circuit is started.

compile (Input a) s = delay low (s <&> a)

start

match

e

f

Sequential composition
The regular expression e :>: f must start accepting expression e,
and upon matching it, start trying to match expression f.

compile (e :>: f) start = match_f
where

match_e = compile e start
match_f = compile f match_e
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e

start

match

Loops
The circuit accepting regular expression Plus e is very similar to
that accepting e, but it is restarted every time the inputs match e.

compile (Plus e) start = match
where

start’ = start <|> match
match = compile e start’

f

start

e

match

Non-deterministic choice
The inputs match regular expression e :+: f exactly when they
match expression e or f.

compile (e :+: f) start = match
where

match_e = compile e start
match_f = compile f start
match = match_e <|> match_f

4 Model Checking Compilers

As we have seen in the regular expression example, we will be using embedded language techniques
to represent programs as instances of a datatype:

data Program =
Variable := Expression

| Program :> Program -- Sequential composition
| ...

In general, a synthesis procedure is nothing but a function from a program to a circuit:

compile :: Program -> (Circuit_Ins -> Circuit_Outs)

To reason about individual programs is no different from reasoning about circuits. For example
the following function generates an observer to verify whether a given program satisfies a given
property (with some constraints on the environment):

observer (environment, property) program =
\ ins -> let outs = compile ins program

in environment (ins, outs) ==> property (ins, outs)

Similarly, we can compare programs by generating an appropriate observer:

p === q =
\ ins -> let outs_p = compile ins p

outs_q = compile ins q
in outs_p <==> outs_q
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However, we can do more than this. We have identified a number of levels in which we can use
model checking to reason about the synthesis procedure itself.

– We would like to be able to quantify over programs, to be able to write properties like:

forAllPrograms $ \ e ->
forAllPrograms $ \ f ->
forAllPrograms $ \ g ->

e :> (f :> g) === (e :> f) :> g

To do this, we add a new component to the Program datatype, which represents a circuit:

data Program =
...

| Circuit (Circuit_Ins -> Circuit_Outs)

We can now quantify over the outputs of the circuit to obtain an observer for the quantification:

forAllPrograms fprogram =
\ (outs_c, ins) -> fprogram (Circuit (\ _ -> outs_c)) ins

Using this approach, we can verify various properties of our regular expression compilation
function:

plusCommutative ins =
forAllPrograms $ \e ->
forAllPrograms $ \f ->

e :+: f === f :+: e

Lava> verify plusCommutative
Proving: ... Valid.

Using this technique, we managed to prove that the compilation procedure satisfies standard
axioms of regular expressions, hence effectively verifying the compiler.

– However, most interesting language properties can only be proved using structural induction. It
is usually impossible to prove properties of a program unless one assumes that the subcircuits
satisfy these properties. This can be encoded inside the synthesis procedure, by adding an
extra output which confirms whether the sub-components of the compiled circuit satisfy the
invariant:

compile2 (p :+: q) invariant ins = (ok, outs)
where
(ok_p, outs_p) = compile2 p invariant ins
(ok_q, outs_q) = compile2 q invariant ins

outs = combine (outs_p, outs_q)
inv = invariant (ins, outs)

ok = ok_p <&> ok_q ==> inv

compile2 (Circuit c) invariant ins = (invariant (ins, outs), outs)
where
outs = c ins
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To prove the invariant inductive case for an operator, it would suffice to prove the following
observer holds:

proveAlt invariant (outs_c1, outs_c2, ins) = ok
where

c1 = Circuit (\_ -> outs_c1)
c2 = Circuit (\_ -> outs_c2)
(ok, _) = compile2 (c1 :+: c2) invariant ins

Similar inductive step observers can be constructed for the other language operators:

proveStructuralInduction invariant (o1, o2, ins) = ok
where

ok = ok1 <&> ok2 <&> ok3 <&> ok4

ok1 = proveSeq invariant (o1, o2, ins) -- :>:
ok2 = proveAlt invariant (o1, o2, ins) -- :+:
ok3 = provePlus invariant (o1, ins) -- Plus
ok4 = proveInput invariant ins -- Input

One such property we can prove only through the use of structural induction is:

noEmptyString (start, match) = start ==> inv match

Lava> verify (proveStructuralInduction noEmptyString)
Proving: ... Valid.

This confirms all the cases of the structural induction, allowing us to confirm its truth for all
regular expressions.

– One weakness with the above proof, is that if the sub-circuits ‘break’ for some time but then
resume to work correctly, the top-level circuit is expected to resume correctly. This is a strong
property which compilation procedures which encode some form of state usually fail to satisfy.
To strengthen induction to deal with this adequately we need to add temporal induction –
assuming that the sub-components always worked correctly, the top-level component works as
expected:

compile3 (p :+: q) invariant ins = (inv, outs)
where

(ok_p, outs_p) = compile3 p invariant ins
(ok_q, outs_q) = compile3 q invariant ins

outs = combine (outs_p, outs_q)
inv = invariant (ins, outs)

ok = always (ok_p <&> ok_q) ==> inv

Where:

always s = ok
where

ok = delay high (s <&> ok)

– Most compiler invariants assume that the environment satisfies certain conditions. At first
sight, this could be expressed as environment ==> property. However, we run into the same
problem that we had with sub-circuits breaking and then starting to work once again. The
solution is to add an environment condition to the condition verified:
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compile4 (p :+: q) ins = (ok, outs)
where
(ok_p, outs_p) = compile4 p ins
(ok_q, outs_q) = compile4 q ins

outs = combine (outs_p, outs_q)
inv = invariant (ins, outs)
env = environment (ins, outs)
env_p = environment (ins, outs_p)
env_q = environment (ins, outs_q)

ok = always (env <&> ok_p <&> ok_q)
==> (inv <&> env_p <&> env_q)

5 Conclusions

In this paper, we have outlined how finite state model-checkers can be used to verify properties
of hardware compilers, and we have illustrated the use of these techniques on a simple regular
expression compiler. Through the (external) use of structural induction, we decompose the general
property into a number of finite state cases. This works on hardware compilers thanks to the
fact that the size of the data path can be determined at compile time. In languages where this is
not possible, our techniques clearly fail to work as presented. All related work we have identified
use pen-and-pencil proofs (eg [6]) or theorem provers (eg [9]) to verify the correctness of the
synthesis procedure. Our approach, although narrower in scope, has the distinct advantage of
being a (relatively speaking) ‘push-button’ approach to compiler verification.

We plan to apply our techniques on more complex languages. In particular, we would like to inves-
tigate the correctness of Esterel compilation and standard Verilog and VHDL synthesis techniques.
Furthermore, the use of these techniques on other generic and parametrised circuits can also prove
to be effective.
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