View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by OAR@UM

Reading Between the Lines of Code:
Visualising a Program’s Lifetime

Nikolai Sultana

Department of Computer Science and Al,
University of Malta

Abstract. Visual representations of systems or processes are rife in all fields of science and
engineering due to the concise yet effusive descriptions such representations convey. Humans’
pervasive tendency to visualise has led to various methods being evolved through the years to
represent different aspects of software. However visualising running software has been fraught
with the challenges of providing a meaningful representation of a process which is stripped of
meaningful cues and reduced to manipulating values and the field has consequently evolved
very slowly. Visualising running software is particularly useful for analysing the behaviour of
software (e.g. software written to make use of late binding) and to gain a better understanding
of the ever-important assessment of how well the final product is fulfilling the initial request.
This paper discusses the significance of gaining improved insight into a program’s lifetime
and demonstrates how attributing a geometric sense to the design of computer languages
can serve to make it easier to visualise the execution of software by shifting the focus of
semantics towards the spatial organisation of program parts.

1 Introduction

Humans find it easy and effective to communicate using drawings — both between themselves and
increasingly with computers. Visualisation is heavily used when designing software however we lack
the means of visualising a running program in a way that enables us to see the software working
in a tangible manner. Such a feature of software would need to be added at an extra effort since
code is typically written to work well and not to look good while working. A visual aspect to the
program’s workings would need to be explicitly created and would not be a natural part of the code
hence potentially leading to a gap between the code and the visual representation of its execution.

In certain programmings languages circuit diagrams are used to convey a structure of how com-
ponents connect and work together to form the program — this in itself lends itself to a notion
of visualising what’s going on in a program while its running (if the information about program
components and interconnections is retained when the code is translated and executed, which is
usually not the case).

The motivations of this research revolve around the desire to have richer tools for software devel-
opers, tools which are compatible with human cognitive processes and traits in order to improve
qualities such as usability and (especially) sustainability in software development. It is widely held
that the largest catalyst for the use of visual representations is that humans are quick to grasp
the significance of images and reason about them. We tend to prefer to conceive parsimonious
visual descriptions conveying elements of information which serve to enrich a representation by
abating ambiguity. A lot of motivation for this paper was drawn from [1] in which, apart from the
ubiquitously known argument against use of the go to statement, a remark was made about the
correspondence between the running program and the code which controls it. This was followed


https://core.ac.uk/display/93184183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

110 Nikolai Sultana

by another remark about the fairly primitive ways of visualising processes evolving in time avail-
able. After almost 40 years our methods and tools have still remained rather primitive, especially
compared to the advancements made in the stages leading to the implementation of software. The
difference of computing power available in 1968 and now certainly plays a role since to enrich one’s
experience of computing one requires more computing power.

This paper attempts to address the concern of impoverished means of visualising running programs
and Dijkstra’s appeal to diminish the conceptual gap between the program and the process. By a
program’s lifetime we understand the time interval spanning a program’s execution and not the
path from inception leading to implementation and maintenance of a program since we believe that
this gives the actual execution of a program the importance it deserves above other stages leading
to or following its deployment.

Tt is generally (and overly generously) assumed that the implementation of software will follow its
design. This gap between visualising the design and experiencing the implementation can be partly
alleviated by having a means of reasoning about the system’s execution in a visual fashion, allowing
us (or another system for that matter) to follow the execution and observe discrepancies between
our expectations and the program’s behaviour. The importance of paying special attention to the
quality of the implementation is not only due to it being an artefact which is the product in the
software value-chain with which the client has most contact, but [2] presented results indicating
that even though rigorous formal techniques are applied during the design of software it is not
enough to eradicate problems in the implementation. The implementation of a system deserves
more importance than being seen as one of a number of stages constituting the lifecycle of a piece
of software, but rather be seen as standing out as the process which delicately hinges on to extending
and abiding to other pieces of software which themselves might contain inconsistencies and faults
and attempting to insulate as much as possible the end-user from shortcomings in software which
talks to our software.

The complexity of software is increased primarily because of the increasing demands being made
on it. This complexity tends to cloud designers’ foresight — some results can only be predicted
with a lot of difficulty due to the large number of interactions carried out by various systems. The
dense amount of interactions renders it hard to ascertain what sequence of states could render a
system or parts of it non-functional or have them return erroneous results.

Another motivation in this research is that of having an account of the lifetime of a piece of software
(analogous to a detailed autobiography) which can be analysed by humans or other software in the
event of any failure or to review a program’s behaviour (e.g. to improve its performance).

As in any communication channel, a software development process suffers form the arbitrary intro-
duction of noise from shortcomings in the communication between the various stakeholders, making
it harder for the implementation to be faithful to the design. Moreover the nature of executing
software makes it more difficult to visualise due to it being stripped of symbolic cues about its
overall function during translation to a lower level. When software is translated features of the text
which render the code readable are removed from the object code. This is understandable since for
the execution of the software such information is not required. Information lost in this manner is
not retrievable if the translation process were to be reversed (and often such a reversal would return
a slightly different of the code if any optimisation were applied by the compiler). Understanding
the program’s lifetime is more difficult due to the impoverished information we can be provided
with and this challenges our ability to excogitate the details of the program’s operation.



Reading Between the Lines of Code: Visualising a Program’s Lifetime 111

Source code

Translation

Object code | ——— P Object code

Process

uonewJoyul jnjbuluesw Jo sso

Certain ways of dealing with the translation of code change the organisation of the diagram shown
above by leaving traces of information in intermediate positions along the path which leads to the
production of object code. The primary example of this are some of the systems which generate
intermediate code which is then executed by a virtual machine — this information can be used
to reason about the program’s execution in a more meaningful manner (e.g. represent objects and
their relationships, methods invoked on them, etc). The intuitive wealth of such descriptions of
the program’s lifetime is still limited nonetheless and a number of ideas will be presented later on
which attempt to push more of the program’s execution towards the information-rich side of the
representation rubicon.

The Bubble programming language will be used to demonstrate an approach towards computation
by including spatial organisation of mobile program components and their relationships in the
decisions taken to arrive to the program’s behaviour. A different model for running software is
used in Bubble’s execution environment, which retains information about the program’s lifetime
and makes it very easy to visualise and reason about.

This paper proceeds to review the widespread notion of readability in programming, outline the
state of affairs in runtime inspection of software and its interplay with visualising programs in
execution in Section 2. In Section 3 a number of features are identified which would equip a
programming language with basic properties to be used to express programs of which execution
would be intertwined with their visualisation. Section 4 outlines the implementation of such a
language and refers to a case study, moving it to the context of software visualisation since that is
the aspect of interest in this paper. Section 5 briefly describes a tool written to generate a graphical
representation of the description of a program’s lifetime and Section 6 presents a short contrast of
advantages and drawbacks of the ideas and approach put forward in this research, together with
identifying areas which could benefit or benefit already from work in software visualisation.



112 Nikolai Sultana

—» | source code

Process

Translation

Object code

Process

uolew.Jojul jnjBuluesw Jo ssoT

2 Background

2.1 Program readability

A fair amount is emphasis is placed on the importance of producing readable code when teaching
programming skills since this improves its maintainability, affects somewhat its re-usability as well
as the total cost of ownership of the software — instilling such a sense at the very beginning of
exposure to programming makes plenty of sense. Readability serves to assist the perception of the
person reading the code (which could be the original author of the code) in interpreting what it
does. It is commonly associated with indenting code pertaining to particular blocks, adding in-line
comments describing in a natural language what certain bits of the code do and using meaningful
strings of characters as identifiers. Readability is also influenced by the choice of operators used
and the amount of space used for the expression of the solution to a problem (with obfuscated code
usually being on the minimalist side of expression).

Due to the way software is translated it is rarely the case that much thought is given to a notion
of process readability since a process (program in execution) is conventionally not for humans to
control, but rather handled entirely by the machine during a program’s lifetime as it manages
its internal workings. Process readability is not addressed by traditional methods of eliciting in-
formation about running programs (runtime inspection) because of there not being a ubiquitous
system of assigning execution of code with an appearance. In spite of that the appearance and its
interpretation is of utmost importance when it comes to visualisation and having the execution of
code being a function of an appearance it operates on would allow humans to create more analogies
between pictures and operations.

The importance of producing readable code is supported by awareness about our capabilities of
cognition — for example [3] had hypothesised that we can keep track of around seven things at
the same time. This made it into programming as the Hrair limit and serves to curb the amount
of subroutines called from the main program and fundamentally results in facilitating visualising
the program when reading the code (since there are less things to track).



Reading Between the Lines of Code: Visualising a Program’s Lifetime 113

2.2 Eliciting information about program execution

A visualisation pipeline usually involves gathering data as the first step. Data is then processed
and filtered, rendered and displayed. Conventionally the quality of information we can elicit about
a running program is quite poor — it does show what the program is doing and how it is doing it
but does so in an abstruse fashion.

We can gain insight about a running program (dynamic analysis) in a variety of ways. Initially one
can look at a program’s memory and processor-time usage. We can gain a lot more information
by looking at its communication with the rest of the system — through files, sockets, and other
channels (even UI). However, such information tends to be overwhelming and unwieldy since its
contents can be arbitrary and were not intended for a visualisation of the running program to be
produced — the intention behind them was just to get the program working. A variety of tools can
be used to monitor the internal workings of a program, but very often the information accessed
in this manner is too fine grained and not intuitive — thus it doesn’t convey the big picture
about what the program (or significantly large chunks of it) is doing. An often used technique is
inserting diagnostic code (e.g. in the form of statements sending values to standard output) to
obtain an indication of the values of certain variables during the program’s lifetime. Software can
be set to send information to a system-wide logging facility (e.g. SysLog) or have their own logging
mechanism (e.g. this can be created with ease in AOP as an aspect weaved to an application).

As previously mentioned, a generous interpretation of visualisation of program run-time allows us
to consider what we see on screen and what is dumped to file/communication channels as pertinent
information about what the program is doing. This contains what we choose to show (e.g. to adhere
to specification of software, protocols, etc) and typically offers poor quality of information in terms
of what’s going on inside due to the way software is/was written to carry things out rather than
carry things out by showing it is doing so.

More pervasive means of inspecting and visualising program lifetime are required. This stems from
the way software is written and/or expected to be written. An inherent geometric sense would lend
itself well to human visualisation abilities by instilling a sense of spatial coherence in the writing of
software that will manifest itself in its workings and will take a role in its execution. The following
section elaborates on this point.

2.3 Software visualisation

Giving software an inherent appearance laden with information about its operation would consol-
idate it with its modelling aspect and empower stakeholders of software to take better decisions
based on the operation of software. Traditionally a variety of graphs have been used to describe the
lifetime of a program. Call graphs, control flow graphs and action diagrams are all depictions of
the parts of a program which were called while it was running and helps us understand better the
sequence of events which characterised the program’s execution as well as offering the possibility
of aggregating information into a profile. A profile is used to describe an aspect of a system (e.g.
time spent executing in a part of a program or else representation of the distribution of statements
in a program). Profiling therefore provides us with a summary of the program’s execution but the
information returned is often too general to deal with specific details.

Learning what’s being done in running programs largely depends on the paradigm those programs
were written in: it tends to be the case that the more sophisticated the paradigm (in terms of
metaphors with the real world) the more meaningful the representations. For example, an execu-
tion trace can usually be produced for programs written in any language, but diagrams involving
relationships between objects can be produced for programs written in OO languages.



114 Nikolai Sultana

A variety of tools exist which produce representations of program’s lifetime for programs written
in a variety of languages (e.g. [4-6]). Other tools depart from the source code and provide the
user with support for software comprehension [7,8]. Some tools are designed to augment existing
tools and adding new features [9]. The link between software visualisation and cognition has been
discussed in [10] together with an approach that attempts to support the latter to arrive at the
former.

The way that software is written does make a difference to the representation — for example
different approaches to a program’s modularity will return different call graphs which would usually
be of different complexity (in terms of clutter).

3 Programming Spaces

The primary concern in programming deals with getting a working program (which fulfils the
requirements which caused it to be written). No thought is given to the program having any
inherent visual significance and as previously mentioned information describing the program (albeit
limited) is lost during translation and this further limits our ability to visualise running programs
in a meaningful manner. Program components are usually designed in such a way that they have
to be (at least) conceptually linked to be useful. The components themselves have no location
and therefore the information conveyed lacks the relationship between the function and location
of elements. If a more geometric view of programming is taken the program components can
move and interact and would function according to their location. This pitches computation at
a level where spatial organisation and behaviour are related, hence one can influence the other.
This would encourage a mechanistic view of computation and allow transferring somewhat visual
representations from a description of the problem to a program’s implementation.

It follows that a program can therefore be thought of as a description of points (instances of certain
types) moving in a space and the execution of the program involves the properties and proximity
of such points — thus programming would consist of conveying the description of a system into a
computer representation in a way that retains positional information. This information would also
contribute to visualising the execution of the program in a meaningful manner.

The semantics of a programming language would need to cater for this information, but the benefit
of this would be that the semantics would not only have a functional but also convey a visual
concern.

4 The shape of a program

Bubble [11] is a language which was developed to model certain natural phenomena [12], transfer-
ring descriptions of aspects of our perceptions of such phenomena into a form which could then be
used in a simulation. A framework handles the classification of roles and the ways of reproducing
(an approximation of) certain dynamics as observed in nature. This language was also used to look
at some ideas in Computer Science and a report [13] was prepared about different implementations
of a Turing Machine using Bubble. This case will be used as an example of a simple example of a
visualisation produced for a program lifetime and a statement about the suitability of this approach
for different genres of programs will be made further down.

In Bubble a program is composed of entities having properties amongst which is a position in a
space. The program’s initiation is a process which involves producing and laying out such struc-
tures in the space and then a message can be passed to the execution environment instructing it



Reading Between the Lines of Code: Visualising a Program’s Lifetime 115

to start the program. The program’s execution revolves around determining the truth value of cer-
tain triggers and then carrying out the appropriate transformation on the space. Triggers involve
determining the satisfaction of conditions including property values and/or the composition of the
neighbourhood of an object.

The end result of implementing a program in Bubble is that a program would consist of a dis-
tribution of points each with a potential for carrying out an execution. As the program executed
the execution environment keeps track of the changes made to the space in which the program is
situated and a description of its lifetime can be produced in XML. This can then be transformed
using appropriate tools or else passed on to a specifically written tool for visualisation.

The preferred implementation of the Turing Machine in [13] treats two kinds of objects (bits of
tape and the read-write head) and the initialisation sets up the tape and read-write head to be
at the start position. The behaviour of the head follows a state-transition diagram by specifying
the sensitivity of the head to the presence of the tape and its contents and these conditions trigger
changes carried out inside the head (current state) or space (movement).

While the specific details of the implementation are provided in [13] the final result of writing the
program in Bubble was having a program which worked by manipulating its spatial organisation.
Information could be elicited about each stage of the program and the next section will describe a
tool used to render this information into a more visually appealing form.

5 Visualising the Program’s Autobiography

Once a description of a program’s lifetime has been generated it is fed to a viewing tool written
specifically to interpret it and present the user with a visual representation. A time-line is provided
for the user to manipulate and move forwards and backwards in the lifetime of the program. The
program’s components are represented on the screen and their behaviour can be observed as the
user moves across the time-line. Different types of components can be represented using different
user-specified images, making it easier to understand what is occurring since the movement of the
components is augmented with a pictorial representation pertinent to the nature of the component.
Clicking on any component returns details about that component (its properties and their values).



116 Nikolai Sultana

< Bubble - Simulation Yiewer [Simple Turing Maching] =)

oooooOoooooooo E Viewing preferences

Exit

[T

D

loaded C\bubblelshn ol
Sitmulation: Simple Turing Machine
By: Nikolai Sultana

This visualisation of the program’s lifetime is only one of several possible processes which can be
applied to that information — future work can seek ways of refining the information, filtering it, or
possibly create an animation of the interactions between objects since the XML description contains
certain information which the current visualisation software does not utilise to the fullest. The aim
of this software is to show the possibilities of this approach to programming and attempt to shed
some light on its suitability. Zooming into the system to observe its components of components
will be required for complex systems and visual cues can be used to convey information to the user
and enrich their perspective on the software’s operation.

Augmenting visual significance
through object-type images

v

DDDDDDDDDDDDDQ

Bubble allows annotations to be added into the code and these will be automatically reproduced
in appropriate locations in the description of the program’s lifetime. These annotations are dis-
played according to the current point in the time-line the user is viewing in order to provide more
information (as included by the programmer) about the context of that point in the program’s
lifetime.



Reading Between the Lines of Code: Visualising a Program’s Lifetime 117

6 Gains and Drawbacks

The advantage of having a representation of a program’s lifetime adds value to the stakeholders of
software since it empowers them with insight about the software. Writing software can be easier
since it is more clear what is going on when the software is being executed — people can see it
working. Another advantage of having a rich description of a program’s behaviour is that tools can
be developed to evaluate and assess the software’s behaviour and performance in an automated
fashion. In the case of a software failure the representation can be used to examine what led to the
surfacing of the failure and take better decisions about fixing the fault.

Since a different (and not commonly used) programming language and execution environment where
used in this research there is the disadvantage of the artefacts not being directly applicable to any
program. It’s also true that producing a visualisation involves a cost: executing and visualising
software in this manner, although beneficial, adds a burden on its performance and slows it down.
Furthermore, this approach to programming might not be ideal for certain genres of programming,
though on the other hand it’s always best to use languages inclined to a particular application to
get the job done better (or having the qualities to render this more likely). Not having a silver
bullet for software [14] also includes not having a single programming language which is apt for
any problem: having a variety of languages is beneficial and allows formulating better solutions
to more problems. Another criticism of this research might be that a Turing Machine is in itself
highly mechanical and might not have served as the best example to use for software visualisation.
However many algorithms tend to operate in a mechanical fashion, even if this is not immediately
evident, or could be adapted to work that way (rendering them more intuitively comprehensible in
the process).

Progress in software visualisation is inclined to produce benefits in diverse areas by allowing one
to look at certain problems from new angles. Examples of applications of the information once a
reasonable automated description of a program’s lifetime has been generated are the following:

— Testing and debugging, preventive and corrective maintenance of software

— Simulations

— Understanding interaction between/within software

— Reflection Reverse engineering Teaching programming and computer literacy
— Refactoring

7 Conclusion

The duration of our engagement with the a formulation of a program usually lasts until we compile
and run the software. Then testing is carried out to see how well our expectations are met. A dire
need exists for more tools and techniques to extend our contact with the domain of processes in
order to better understand what goes on during a program’s lifetime, why specific failures occur,
etc. While visual representations of a program’s functioning are used frequently in the stages leading
to its implementation very little visualisation is carried out on its execution.

In this research a lot of effort was made to avoid reinventing the wheel and instead approach the
problem from identified shortcomings in the nature of software and moving towards software oper-
ating as a function of its appearance. Due to the way things evolved in the history of programming
there wasn’t sufficient opportunity of thinking things through (certain concepts grew that way)
and it might be of benefit certain ideas are re-evaluated.



118 Nikolai Sultana

Dealing with with the heterogeneity in programming languages makes it difficult to create general
purpose visualisation tools for program execution. The goals outlined in the beginning of the paper
were met by the approach to programming outlined in the paper, but the cost involved is very high
due to lack of alternatives for creating such programs. This makes it difficult to apply this approach
to mainstream languages. However, this might be alleviated by focussing on the intermediate
level and having the translation process involve creating geometric representations of programs in
languages before going on to generate low-information representations of the code (i.e. first talking
to a form of middleware, then the code will be translated to a lower level representation).

We believe that elegance in software design can be improved by converging execution of code
with a meaningful spatial representation of the running program. This adds another dimension
to programming since along with readable code and an intuitive interface the programmer must
ensure that the program executes in such a way that the motion and interaction of its components
make sense. The readability of code is somewhat extended by this concern since it also covers the
dynamic aspect of executing code. Having a description of a program’s lifetime and being able to
translate that into pictures has several advantages and serve to increase the tangibility of software,
which in turn offers plenty of appeal to human cognition. Having a representation of a running
program which is compatible with the way we work should offer a good opportunity to understand
such a program by giving us the means of looking at it through new eyes.

References

1. Dijkstra, E. Go To Statement Considered Harmful. In: Communications of the ACM, Vol. 11 (March
1968) 147-148.

2. Pfleeger, S., Hatton, L.: Do formal methods really work? IEEE Computer (January 1997).

3. Miller, G.: The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Pro-
cessing Information. The Psychological Review (1956), Vol. 63, 81-97.

4. Hopfner, M., Seipel, D., Wolff von Gudenberg, J.: Comprehending and Visualizing Software Based
on XML-Representations and Call Graphs. Proceedings of the 11th IEEE International Workshop on
Program Comprehension (2003).

5. Bertuli, R., Ducasse, S., Lanza, M.: Run-Time Information Visualization for Understanding Object-
Oriented Systems. 4th International Workshop on Object-Oriented Reengineering (2003) 10-19.

6. Systa, T.: Understanding the Behavior of Java Programs. Proceedings of the Seventh Working Con-
ference on Reverse Engineering. IEEE Computer Society (2000).

7. Wu, J., Storey, M-A.: A Multi-Perspective Software Visualization Environment. Proceedings of the
2000 conference of the Centre for Advanced Studies on Collaborative research.

8. Storey, M-A., Muller, H., Wong, K.: Manipulating and Documenting Software Structures. Proceedings
of the 1995 International Conference on Software Maintenance.

9. Zeller, A., Lutkehaus, D.: DDD-A Free Graphical Front-End for UNIX Debuggers.

10. Eduard Todureanu, M.: Designing effective program visualization tools for reducing user’s cognitive
effort. Proceedings of the 2003 ACM symposium on Software visualization.

11. Sultana, N.: Bubble Language Specification (2004).

12. Sultana, N.: Modelling and Simulating Systems using Molecule Interactions, Technical report, Univer-
sity of Kent (2004).

13. Sultana, N.: Bubble Case Study — a simple Turing Machine (2004).

14. Brooks, F.: No Silver Bullet: Essence and Accidents of Software Engineering. Computer Magazine,
April 1987.



