
Rational Proofs

Pablo Daniel Azar
MIT, CSAIL

32 Vassar Street
Cambridge, MA, 02139
azar@csail.mit.edu

Silvio Micali
∗

MIT, CSAIL
32 Vassar Street

Cambridge, MA, 02139
silvio@csail.mit.edu

ABSTRACT
We study a new type of proof system, where an unbounded
prover and a polynomial time verifier interact, on inputs a
string x and a function f , so that the Verifier may learn f(x).
The novelty of our setting is that there no longer are “good”
or “malicious” provers, but only rational ones. In essence,
the Verifier has a budget c and gives the Prover a reward
r ∈ [0, c] determined by the transcript of their interaction;
the prover wishes to maximize his expected reward; and his
reward is maximized only if he the verifier correctly learns
f(x).

Rational proof systems are as powerful as their classical
counterparts for polynomially many rounds of interaction,
but are much more powerful when we only allow a con-
stant number of rounds. Indeed, we prove that if f ∈ #P ,
then f is computable by a one-round rational Merlin-Arthur
game, where, on input x, Merlin’s single message actually
consists of sending just the value f(x). Further, we prove
that CH, the counting hierarchy, coincides with the class of
languages computable by a constant-round rational Merlin-
Arthur game.

Our results rely on a basic and crucial connection between
rational proof systems and proper scoring rules, a tool de-
veloped to elicit truthful information from experts.

Categories and Subject Descriptors
F.1.3 [Theory of Computation]: Complexity Measures
and Classes

General Terms
Economics, Theory

Keywords
Interactive Proofs, Rational Cryptography, Counting Hier-
archy

∗Partially funded by the Office of Naval Research, award
number N00014-09-1-0597

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC12, May 19–22, 2012, New York, New York, USA.
Copyright 2012 ACM 978-1-4503-1245-5/12/05 ...$10.00.

1. INTRODUCTION
Many centuries have passed. Arthur continues to be bounded,

probabilistic, and honest. Merlin, by contrast has changed a
lot. Although remaining as intelligent as ever, he has become
rational in the economic sense: that is, he now acts so as to
maximize his own utility. Perhaps he can be excused. A true
mathematician, for too long he had remained poor in a world
in which money is increasingly valued. Eventually, poverty
and frustration turned into disenchantment, and one day he
no longer saw any point in enlarging his king’s knowledge
for free. So, the last time Arthur asked him why he did not
prove him another theorem, he answered with brutal hon-
esty: ‘If you really you want me to prove a theorem to you,
I want to be paid.’ After the initial shock, Arthur agreed
to pay Merlin $1 for any new theorem successfully proved.
Proving promptly resumed.

This simple arrangement, however, did not last long. The
king soon saw some new opportunities in moving from a
chivalrous to a mercantilistic world. Namely, he saw how
to use Merlin’s intelligence and rationality to obtain much
faster proofs —that is, with fewer rounds of interaction—
and proposed an alternative arrangement to the wizard.

Rational Arthur-Merlin Games.
Focusing, more generally, on the evaluation of a given

function (rather than a given predicate) f with domain D,
they agreed as follows. On input x ∈ D, Arthur and Merlin
keep turns exchanging messages as before, with Merlin go-
ing first and Arthur always responding with a random string.
After a prescribed number of rounds (i.e., message pairs), a
pre-specified, polynomial time reward function R is evalu-
ated on (x, T), where T (the transcript) is the sequence of
messages between the two players. Merlin gets paid R(x, T).
Since Merlin wants a positive amount of money and Arthur’s
budget is limited, we require that 0 ≤ R(x, T) ≤ c for some
constant c.

Informally, the above arrangement constitutes a rational
Merlin-Arthur game for f if, for all x ∈ D, Merlin max-
imizes his expected reward by revealing the true value of
f(x). Note that Arthur does not verify that the compu-
tation of f(x) is correct. Instead, the correctness of f(x)
is guaranteed by Merlin’s unbounded computational power
and his rationality.

Informally, RMA[1] and RMA[k] respectively denote the
classes of functions f having a rational Merlin-Arthur game
with one round, and with k rounds, where k is a constant.
We will work with both functional and decision versions of
rational Merlin-Arthur games. To emphasize the distinc-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/9318388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tion, we call the corresponding class of function problems
FRMA[k] and the corresponding class of decision problems
DRMA[k].

1.1 The Surprising Power of One-Round Ra-
tional Proofs

We prove that rational proof systems are amazingly pow-
erful with just one round of interaction.

Theorem 1. #P ⊂ FRMA[1].

One-round rational proofs continue to be powerful even when
restricted to decision problems. In section 3, we define a
decision analogue of FRMA[1], which we call DRMA[1] to
emphasize that it is a class of decision problems. Recall that
PP is the set of languages L for which there exists a non-
deterministic Turing Machine M such that x ∈ L if and only
if more than half of the computational branches of M accept
x. We can show that

Theorem 2. PP ⊂ DRMA[1]

A corollary of Theorem 2 is that one-round rational M-A
games are, under standard complexity assumptions, more
powerful than their classical counterpart MA[1]

DRMA[1] includes MA[1]. The inclusion is strict unless
the polynomial hierarchy collapses.

Indeed, the inclusion is obvious since MA[1] ⊂ PP, and
if it were not strict, then we would have coNP ⊂ PP ⊂
DRMA ⊂ MA[1]. But, unless the polynomial hierarchy col-
lapses, coNP 6⊂ MA[1], which is a result due to [11].

1.2 A Characterization of Constant-Round Ra-
tional Proofs

In section 4 and section 5 we define a decision version
of rational Merlin Arthur proofs over k rounds where k is
a constant, which we call DRMA[k]. We show a complete
characterization of DRMA = ∪k:k>0DRMA[k] in terms of
the counting hierarchy, a counting analogue of the polyno-
mial hierarchy defined by Wagner [43].

Theorem 3. DRMA = CH

This theorem has several implications. The first is a new
characterization of CH in terms of interactive proofs. There
are many open problems for CH, and we leave for future
research whether this new characterization can solve them.
The second is that, under reasonable complexity assump-
tions (CH (PSPACE), rational proofs with constant rounds
have limited power. Indeed, classical proofs with polynomi-
ally many rounds (IP), are strictly more powerful.

1.3 Two Other Results On Rational Proofs
Although easier and less surprising, the following results

nonetheless are good to know as they give a more complete
picture about rational proofs

• RIP = PSPACE. We give the proof of this theorem in
section 6

• RNP = NPO ⊂ FRMA[1] and the inclusion is strict
unless the polynomial hierarchy collapses.

1.4 Using Scoring Rules
The underlying theme behind interactive proofs is infor-

mation asymmetry. Merlin knows the answer to some hard
problem, and Arthur does not. An alternative case of infor-
mation asymmetry is when there is uncertainty about the
world. In this case, Merlin knows a distribution D over the
possible states of the world and Arthur does not. In this sce-
nario, it is well known how to incentivize Merlin to reveal
his knowledge: Arthur should use a strictly proper scoring
rule. Indeed, we show that strictly proper scoring rules and
rational interactive proofs are tightly connected.

We prove Theorems 1, 2 and 3 by using strictly proper
scoring rules. These incentivize an expert to reveal a dis-
tribution D over a set Ω. Let there be two parties: Merlin,
who knows D, and Arthur, who has no information about
D and wishes Merlin to tell him (an encoding of) D. A
strictly proper scoring rule1 is a function S such that, for all
distributions D′ different from D:∑

ω∈Ω

D(ω)S(D, ω) >
∑
ω∈Ω

D(ω)S(D′, ω).

Assume now that, after Merlin reports a distribution X , a
sample from D becomes available and that Arthur rewards
Merlin with the amount S(X , ω). Then a rational Merlin
wants to announce the true distribution D. That is, it be-
comes dominant for Merlin to report D rather then another
distribution D′.

Many strictly proper scoring rules are known by now2:
two popular ones [28, 12] are,

Good’s rule, S(D, ω) = log(D(ω)), and
Brier’s rule, S(D, ω) = 2D(ω)−

∑
ω∈ΩD(ω)2 − 1.

Outline .
The rest of the paper is divided as follows. Section 2 sum-

marizes some related work. We give proofs of theorems 1
and 2 in section 3. Section 4 gives a definition of Ratio-
nal Merlin Arthur games with multiple rounds, and section
5 give a proof of theorem 3. Section 6 gives a proof that
RIP = PSPACE. We present independent new results on
scoring rules in section 7. Section 8 gives a conclusion, dis-
cusses further related work and proposes future directions.

2. PRIOR AND RELATED WORK

2.1 Interactive Proofs and Delegation of Com-
putation

The study of interactive proofs started with the work of
Goldwasser, Micali and Rackoff [26] and Babai and Moran
[5]. These papers were followed by a sequence of work [27,
24, 19, 8, 4, 21] which culminated with IP = PSPACE [34,
39].

The classical analogue of our class RMA is the class MA
[5]. There are two important differences between RMA
and MA. The first is that MA is believed to be equal to
NP. That is, randomness does not help the verifier, un-
der standard complexity assumptions.3 However, we show
1For brevity and when the context is clear, we will often refer
to strictly proper scoring rules simply as proper scoring rules
or scoring rules.
2The interested reader is referred to a paper by Gneiting
and Rafterty [23], which includes a comprehensive survey.
3If PrBPP = PrP then MA = NP as shown in [30].

that NP ⊂ RMA and the inclusion is strict unless the poly-
nomial hierarchy collapses. The second key difference is
that the MA hierarchy of proofs with constant number of
rounds is known to collapse to the second level, that is,a
AM [k] = AM [2] for constant k. We show that CPk ⊂
RMA[k] ⊂ CP2k+1, so the RMA hierarchy does not collapse
unless the counting hierarchy does as well. One problem
that we leave open is whether one can improve the perfor-
mance of RMA by allowing the verifier to have private coins.
It is known that private coins do not help in classical Merlin
Arthur protocols [27].

2.2 Rational Multiparty Computation
The contrast between classical interactive proofs and ra-

tional ones is that, in the first case, the prover can be either
“Good” (submitting a correct proof) or “Malicious” (submit-
ting an incorrect proof hoping to fool the prover). In the
new setting, the prover can only fail in ways that maximize
its utility.

The idea of replacing a potentially malicious agent with
a rational one is not new. Indeed, it is central to the lit-
erature of rational multiparty computation. Shoham and
Tennenholtz [40] study non-cooperative computation with a
trusted party. In their model, there are multiple agents each
of whom has one input to a function y = f(x1, ..., xn). Each
agent prefers (1) learning the output y over not learning it
and (2) given that they learn y, they prefer that as many
other people as possible do not learn y. Halpern and Teague
[29] study the problem without a trusted party, showing that
no mechanism running in fixed time can implement a ratio-
nal multiparty computation. However, they show a ran-
domized mechanism running which is expected to terminate
and which can implement rational multiparty computation.
Katz [32] gives a broad survey of rational computation and
other interactions between game theory and cryptography.

2.3 Testing Experts
Sandroni [37] considers the problem of distinguishing be-

tween a knowledgable expert, who knows some distribution
D, and an ignorant one. He shows that any test that is
passed by the knowledgable expert can also be passed (with
some probability) by an ignorant person. Babaioff, Blum-
rosen, Lambert and Reingold [6] restrict the set of possible
distributions that the expert may know, and show that when
the information in D is “valuable” then one can distinguish
between knowledgable experts and ignorant ones. Fortnow
and Vohra [20] use complexity-theoretic tools to show an
efficient test that cannot be passed by experts with limited
computational power.

There are contrasts with our work that we want to high-
light. The first is that in our work the expert always has
infinite computational power (as opposed to the expert in
[20]) and thus is always knowledgable. The second is that
the expert does not know a distribution D, but rather the
deterministic answer to some hard computational problem.
The question of whether we can distinguish between a knowl-
edgable expert and an ignorant one (that is, one with limited
computational power) remains open.

2.4 Refereed Games and multiple provers
Feige and Kilian [18] propose the complexity class RG(k)

of refereed games with k rounds. This class can be inter-
preted as the set of languages L such that a polynomial

time referee can decide whether a string x is in L by set-
ting up a game between two infinitely powerful experts. If
the first expert wins the game with non-negligible advan-
tage, then x ∈ L. If the second expert wins the game with
non-negligible advantage, then x 6∈ L. Feige and Killian
show that if the experts have one round of communication,
this procedure can decide any language in PSPACE. If they
have polynomially many rounds of communication, then this
procedure can decide any language in NEXP .

Refereed games play the experts against each other, using
them to verify that each expert’s computation is correct. In
contrast, we only have one prover, and cannot verify (either
by ourselves, or by using another expert) that the prover
is giving us correct answers to problems in #P . Instead,
we rely on incentives to trust the correctness of the prover’s
answer.

3. PROVING #P ⊂ FRMA[1]

First we introduce some notation. Given a string x ∈
{0, 1}∗, |x| represents the description length of x. We say
a function f : {0, 1}∗ → {0, 1}∗ is polynomially bounded if
|f(x)| ≤ p(|x|) for some polynomial p.

Given a polynomially bounded function f and an input x,
we define a Rational Merlin-Arthur game with one-round.
Informally, Arthur will ask Merlin for the value of f(x).
When Merlin answers y, he receives a reward R(x, y). Ide-
ally, Merlin should maximize his expected reward by an-
swering y = f(x). More formally, we can define one-round
Rational Merlin Arthur games as follows.

Definition 1 (Rational Merlin Arthur). Let
f : {0, 1}∗ → {0, 1}∗ be a polynomially bounded function. A
Rational Merlin Arthur game with one round is defined
by a randomized reward function R : {0, 1}∗×{0, 1}∗ → R≥0

such that for all inputs x ∈ {0, 1}∗

1. R(x, y) is computable in time polynomial in |x|, |y|.

2. E[R(x, f(x))] > E[R(x, y)] for any y 6= f(x), where the
expectation is taken over the coin tosses of R.

The class FRMA[1] is defined as the set of all functions
that have Rational Merlin Arthur Protocols with 1 round
of communication. We now show the main theorem of this
section

Theorem 1. #P ⊂ FRMA[1]

Proof. We first show that #SAT ∈ FRMA[1]. Con-
sider the following probabilistic reward function R. For ev-
ery formula φ = φ(x1, ..., xn) in conjunctive normal form,
and every n-bit non-negative integer y, R(φ, y) is the value
computed by the following process:

1. Select n uniformly random bits r1, . . . , rn and set b =
φ(r1, . . . , rn).

2. Compute α(y) = (y
2n)2 + (1− y

2n)2.

3. If b = 1, then output 2 y
2n − α(y) + 1; else output

2
(
1− y

2n

)
− α(y) + 1.

Clearly R is computable in time polynomial in the first
input by a probabilistic algorithm. Furthermore, one can
show R(x, y) ≥ 0. Thus, to prove that R is a one-round
Merlin-Arthur game for #SAT we need to show that, for

all conjunctive-normal-form formulas φ, letting #φ be the
number of satisfying assignments of φ, we have that

argmax
y

ER(φ, y) = #φ.

We could do this directly and in a self-contained manner, but
by so doing we would hide all intuition and, worse, the im-
portant connection we wish to establish with strictly proper
scoring rules. Let us instead adopt a better explanation.

In our procedure, Arthur computed two quantities: a ran-
dom sample b = φ(r1, ..., rn) and α(y) = (y

2n)2 + (1− y
2n)2.

We now want to highlight the crucial connection between
rational Merlin-Arthur games and scoring rules. Recall that
Arthur wants to obtain #φ. This is an integer between 0
and 2n, but it can also be interpreted as a random variable
B over {0, 1}, giving the probability that a uniformly ran-
dom selection of variables x1, ..., xn will satisfy φ. Under
this interpretation, b is a random sample from B. The fact
that Merlin knows #φ can be interpreted as saying that
Merlin knows the distribution B. By sending the integer
y, Merlin is de facto reporting a random variable Y over
{0, 1} such that Pr[Y = 1] = y

2n . Note that Y = B if and
only if y = #φ. Under this interpretation, Arthur wants to
incentivize Merlin to report the true distribution B. The
appropriate tool for solving this problem is a proper scoring
rule. Since Arthur’s budget is fixed, we use Brier’s scoring
rule because it is bounded in the interval [−2, 0]. However,
using this rule would give Merlin a negative reward. This
is why we use a linear transformation of Brier’s scoring rule
(namely, we add 2), which does not affect incentives.

R(φ, y) = BSR(Y, b) + 2 =

{
Y (1)− ‖Y ‖2 + 1 if b = 1
Y (0)− ‖Y ‖2 + 1 if b = 0

Recall that, for a general random variable Y , Brier’s scor-
ing rule requires us to compute ‖Y ‖2 =

∑
ω∈Ω Y (ω)2, which

in general is hard to compute when |Ω| is large. In this case
|Ω| = |{0, 1}| = 2, and we have ‖Y ‖2 = (y

2n)2 + (1 − y
2n)2,

which is the same as α(y) defined above. In other words,
not only have we “reduced” rational proof systems to scor-
ing rules, but to scoring rules over bit-distributions!

Because our protocol incentivizes Merlin with a proper
scoring rule, he maximizes his expected reward when Y is the
same as the distribution B from which the sample b is drawn.
But b is a random variable which is 1 with probability #φ

2n .
Thus, Y matches B whenever y = #φ. This shows that
#SAT ∈ FRMA[1].

Since any problem in #P is reducible to #SAT under
one-to-one reductions, to complete the proof that #P ⊂
FRMA[1], we need to show that FRMA[1] is closed under
one-to-one reductions. Recall that a one-to-one reduction
from a function f to another function g is a triple of poly-
nomial time computable functions (α, β, γ) such that

1. For all x in the domain of f we have y = f(x) if and
only if g(α(x)) = β(y)

2. For all x in the domain of f , let w = α(x). Then we
have g(w) = z if and only if f(x) = γ(z).

Let g ∈ FRMA[1] and let (α, β, γ) be a one-to-one re-
duction from some function f to g. We want to show that
f ∈ FRMA[1]. Since g ∈ FRMA[1], it is associated with
a reward function Rg(w, z) that incentivizes Merlin to com-
pute the right answer to g(w). Define a new reward function

Rf : {0, 1}∗ × {0, 1}∗ → R such that for all x in the domain
of f , Rf (x, y) = Rg(w, z) where w = α(x), z = β(y). Since
Rg, α, β are polynomial time computable in |x|, Rf is also
polynomial time computable in |x|.

Now we need to show that for all y 6= f(x), we have
ERf (x, f(x)) > ERf (x, y). Let w = α(x), z = β(y) as be-
fore. Note that since y 6= f(x), and the reduction is one-to-
one, we have z = β(y) 6= β(f(x)) = g(w). With this fact in
hand, we can write

ERf (x, f(x)) = ERg(w, β(f(x))) = ERg(w, g(w)) >

ERg(w, z) = ERg(α(x), β(y)) = ERf (x, y).

Thus, we conclude that ERf (x, f(x)) > ERf (x, y) for all
y 6= f(x). This shows that f ∈ FRMA[1] and that this class
is closed under one-to-one reductions.

To summarize, we have shown that #SAT ∈ FRMA[1]
and that FRMA[1] is closed under one-to-one reductions.
Thus, #P ⊂ FRMA[1]. Q.E.D.

Rational Proofs and Zero Knowledge Proofs.
We remark that our rational proof for #P is also a zero

knowledge proof. Informally, this is because the only message
that the verifier receives from the prover is y = f(x), the
output of the function. The verifier learns no additional
information about the function f or about the process that
the expert used to compute it.

Rational Proofs and Computationally Sounds Proofs.
Our rational proof for #P is computationally sound [33,

35]. In these proofs, the expert needs to give a short (usu-
ally polylogarithmic in length) certificate of the correctness
of the computation. For our rational proofs for #P , this cer-
tificate is short because its length is zero! Merlin only needs
to give the answer y = f(x) to the problem he is asked to
solve. There is no extra overhead in communication between
prover and verifier.

Rational Proofs and Computationally Bounded provers.

In our rational proof for #P , Merlin does not need to be
infinitely powerful. In fact, he is only required to be able
to solve problems in #P . Furthermore, there is no compu-
tational overhead for Merlin. He does not need to perform
any more computations than those required to evaluate the
function f .

3.1 PP and Discrete Rational Merlin Arthur
games

The classical analogue of FRMA[1] is the complexity class
MA of Merlin Arthur games. It should be intuitive that,
since #P ⊂ FRMA[1], that rational Merlin Arthur games
are much more powerful than classical ones. However, in
order to make a proper comparison, we need to define a
decision analogue of FRMA[1].

Definition 2. A language L ∈ {0, 1}∗ is in DRMA[1] if
and only if there exists a polynomial time predicate π(x, y)
and a reward function R(x, y) ≥ 0 computable in randomized
polynomial time such that

1. Given x, there exists a unique y∗(x) = argmaxy E[R(x, y)].

2. If x ∈ L, then π(x, y∗(x)) = 1.

3. If x 6∈ L, then π(x, y∗(x)) = 0.

4. If y 6= y∗(x), π(x, y) is arbitrary.

The predicate π(x, y∗(x)) simply helps Arthur distinguish
whether y∗ is a proof that x ∈ L or x 6∈ L. We want to
emphasize that y∗ is not a proof and π is not a verifier. For
example, for the language MAJSAT ∈ PP (as we will show
in section ??) y∗ will be the number of satisfying assignments
to a given formula, and the predicate π will simply say if this
number is greater or lower than 2n

2
. Arthur cannot verify by

himself that this answer is correct. The correctness is due
to Merlin’s ability to solve hard problems, as well as Merlin
following his own self-interest.

We can now state a discrete analogue of theorem 1.

Theorem 2. PP ⊂ DRMA[1].

Proof. This follows from the proof that #P ⊂ FRMA[1].
We showed that #SAT was contained in FRMA[1] by con-
structing a function R(φ, y) that is maximized only when
y = #φ. We use the same function to show that MAJSAT
is in DRMA[1], which implies that PP ⊂ DRMA[1].

Let φ be an input to MAJSAT . Let

π(φ, y) =

{
1 if y ≥ 2n

2
0 otherwise

Since argmaxy ER(φ, y) = #φ, we have that if φ ∈MAJSAT ,
then π(φ, argmaxy ER(φ, y)) = 1, and if φ 6∈ MAJSAT ,
then ρ(φ, argmaxY ER(φ, y)) = 1. This shows thatMAJSAT ∈
DRMA[1]. To conclude that PP ∈ DRMA[1], we need to
show that DRMA[1] is closed under one-to-one reductions.
The proof is analogous to our proof that FRMA[1] was closed
under one-to-one reductions in section 3. Q.E.D.

We highlight again that the predicate π(φ, y) is efficiently
computable. Contrast this with the very similar but believed
to be hard predicate

ρ(φ, y) =

{
1 if y = #φ and y ≥ 2n

2
0 otherwise

The key difference is that the predicate ρ verifies that y =
#φ. The predicate π on the other hand trusts that Merlin is
telling the truth (otherwise he wouldn’t be maximizing his
own utility), and simply decides whether the given y implies
that φ ∈MAJSAT or φ 6∈MAJSAT .

Rational Proofs for the Polynomial Hierarchy.
PP is considered to be more powerful than the polyno-

mial hierarchy because Toda’s theorem [41] tells us that
PH ⊂ PPP . However, it is not known whether PH ⊂ PP .
Nevertheless, we can give one round rational proofs for any
problem in the polynomial hierarchy by noting the following
two facts

1. Toda’s Theorem [41] : Any language in PH can be
decided by a polynomial time machine that makes one
query to #P .

2. Any language L in P#P [1] (where the polynomial time
machine makes only one query to #P) can be decided
with a one-round rational proof, where the query to
#P is outsourced to Merlin. As in the proof above,

Arthur will ask Merlin for the number of satisfying
assignments to a formula φ, and reward him using a
scoring rule. After Merlin gives us his answer #φ,
we can apply a polynomial time predicate π(x,#φ) to
decide whether x ∈ L.

3.2 Comparison with classical analogues
As mentioned and proved in the introduction, the fact

that PP ⊂ DRMA[1] implies the following corollary, which
shows that – under widely believed complexity assumptions
– classical Merlin Arthur protocols, introduced by [5], are
strictly less powerful than Rational ones.

Corollary 1. MA ⊂ DRMA[1] and the inclusion is strict
unless the polynomial hierarchy collapses.

3.3 The crucial role of randomness
For classical Merlin Arthur games, it is widely believed

that randomness does not help. Indeed, if PrBPP = PrP
then MA = NP [30]. We show this is not the case for the
rational analogue of these classes.

First, we need to define RNP. We will define it as a func-
tion class. Informally, this is exactly the same definition
as that of FRMA[1] except that now the reward function
R(x, y) is deterministic. One can show that under this def-
inition, RNP is the set NPO of NP optimization problems,
defined as follows [3]:

Definition 3. An NP optimization problem is given by
a tuple (I,S, R,L) where

• I ⊂ {0, 1}∗ is a set of valid instances.

• For any instance x ∈ I, S(x) is a set of feasible solu-
tions of x.

• R : I ×S → R is a function in FP that assigns a score
to each (instance,solution) pair.

• L ⊂ I×S is the set of (instance,solution) pairs (x, y∗)
such that y∗ = argmaxy ER(x, y).

NP and NPO are known to be equivalent under Turing
reductions [3]. Since FRMA[1] contains #P, we have that,
in contrast to the classical case, randomness is crucial for
rational proofs.

Corollary 2. RNP = NPO ⊂ FRMA[1] and the inclu-
sion is strict unless the polynomial hierarchy collapses.

4. RATIONAL INTERACTIVE PROOFS WITH
MULTIPLE ROUNDS

When we consider Rational Interactive Proofs over mul-
tiple rounds, we can obtain a complete characterization of
what these proofs can do. First, we have to define what
multi-round rational proofs are. It will be more natural
for our theorems to define Rational Interactive Proofs for
decision problems. The definition for function problems is
analogous.

Definition 4 (Interactive Protocols). A k-round
interactive protocol consists of two randomized functions P, V :
{0, 1}∗ → {0, 1}∗. Given an input x and a round i, we can
define the transcript Ti, the prover’s view Pi, and the veri-
fier’s view Vi at round i as follows:

• T0,V0,W0
def
= {x}.

• ai = P (Pi), and Pi = (Pi−1, Ti−1, ri) where ri is the
set of random coin tosses used to compute ai, P ’s mes-
sage at round i.

• bi = V (Vi), and Vi = (Vi−1, Ti−1, si, ai) where si is
the set of random coin tosses that the prover uses at
time i and ai is the prover’s message at round i.

• Ti = (Ti−1, ai, bi).

The protocol has public coins if ri is included in the mes-
sage ai and si is included in the message bi.

Definition 5 (Rational Interactive Proof). A lan-
guage L has a Rational Interactive Proof if there exists an
interactive protocol (P, V), a reward function R(·, ·) and a
polynomial-time predicate π(·, ·) such that, on input x

• The verifier’s messages can be computed in time poly-
nomial in |x|.

• All message lengths are polynomial in |x|.
• If the prover and verifier follow the protocol, the tran-

script T is produced. For this transcript, we have
π(x, T) = 1 if x ∈ L and π(x, T) = 0 if x 6∈ L.

• The prover does not want to be the first to deviate from
the protocol. If both prover and verifier follow the pro-
tocol correctly up to time i, and the prover’s view is
Pi, then P (Pi) = argmaxai ETk [R(Tk)|ai,Pi], where
the expectation is taken over all possible complete tran-
scripts Tk that are compatible with the current prover’s
view Pi. Furthermore P (Pi) is the unique input mes-
sage that maximizes this expectation.

Definition 6 (DRMA,RIP). Let k be a constant. The
set of all languages which admit a k-round rational interac-
tive proof with public coins is called DRMA[k]. We define
DRMA =

⋃
k:k>0 DRMA[k].

The set of all languages which admit a rational interactive
proof with polynomially many rounds (with or without public
coins) is called RIP.

We can now show the relative power of rational interactive
proofs compared to classical ones. First, we show

Theorem 3. CH = DRMA.

This not only completely determines FRMA, but also
gives a new interactive proof characterization of the count-
ing hierarchy, which might be of independent interest. We
prove this theorem and recall definitions for the counting
hierarchy in section 5. One important aspect of our proof is
that, when giving rational proofs for problems in CH, Mer-
lin’s rewards will always be given by scoring rules, or linear
combinations of scoring rules.

When we use polynomially many rounds and possibly pri-
vate coins, rational proofs are no more powerful than classi-
cal ones.

Theorem 4. RIP = IP = PSPACE.

We give the proof of this theorem in section 6

5. PROVING DRMA = CH

We prove in this section that DRMA = CH. Before we
prove this, we recall the definition of the counting hierarchy,
as well as a useful result, due to Toran [42]. We will need
some details not in his paper, which is why we reprove this
result here.

5.1 The Counting Hierarchy
The counting hierarchy CH was introduced by [43] as a

counting analogue to the polynomial hierarchy. First, we
recall the definition of this hierarchy. Our definitions follow
the ones in [1]

Definition 7 (Counting Operator [1][43]). Let K be
a class of languages. C · K is the class of all languages L
for which there exists a polynomial p and a language A ∈ K
satisfying

x ∈ L ⇐⇒ #{y : |y| ≤ p(|x|) and (x, y) ∈ A} > 1

2
· 2p(|x|)

Definition 8 (CH). The counting hierarchy is the union⋃
k:k>0 CPk where the CPk are defined recursively as follows

1. CP0 = P

2. CP1 = PP

3. CPk = C · CPk−1

Toran [42] showed that CPk = PPCPk−1 giving an alter-
native characterization to the counting hierarchy. We show
one side of this result, as we will need this proof to show
CH ⊂ DRMA.

Lemma 1 (Toran). CPk ⊂ PPCPk−1 where the PP ma-
chine only makes one query to the CPk−1 oracle per compu-
tation branch.

Proof. Let L ∈ CPk. This means that there exists a
polynomial p and a language A ∈ CPk−1 such that

x ∈ L ⇐⇒ #{y : |y| ≤ p(|x|) and (x, y) ∈ A} > 1

2
.

Now consider a non-deterministic Turing Machine MA ∈
PPA with oracle access to A. The non-deterministic machine
does the following:

1. Non-deterministically choose y such that |y| ≤ p(|x|).

2. Ask whether (x, y) ∈ A. If (x, y) ∈ A, accept. Other-
wise, reject.

Since MA ∈ PPA, it accepts if and only if more than half of
its computation branches accept. But that means that MA

accepts if and only if x ∈ L. Q.E.D.

We will first prove that CH ⊂ DRMA

Lemma 2. CH ⊂ DRMA

Proof. We proceed by induction, showing that CPk ⊂
DRMA[k]. Notice that multiple round protocols give rise
to a dynamic incentive problem. It is possible that Merlin
will want to lie in the first query in order to get a bigger
profit in queries 2, 3..., k. Merlin forsakes some profit today
to make more profit tomorrow.

To avoid this incentive problem, we first assume that there
are k independent Merlins, and we only ask one query to
each one. Let k − DRMA be the class of languages which
can be decided via rational Merlin Arthur games with k
Merlins, where Arthur can only make one query to each
Merlin. We will show that CPk is reducible to k − DRMA.
Then, to finish the proof, we will show that we can replace
k Merlins with just one Merlin for this particular problem.

The question of whether multiple Merlins are more powerful
than one for rational proofs remains open.

We already showed the first step of this induction when
we showed that PP ⊂ DRMA[1]. Note that DRMA[1] =
1−DRMA.

Now assume that we know CPk−1 ⊂ (k − 1) − DRMA.
We want to show CPk ⊂ k − DRMA. Recall that CPk =
PPCPk−1 . Furthermore, we only need one query to the
CPk−1 oracle per computation branch of the PP machine.

Consider a language L ∈ CPk. Let MCPk−1 be a non-
deterministic machine that accepts L if and only if more
than half of its computation paths accept. We now exhibit
a Rational Arthur-Merlin game with k Merlins to decide
x ∈ L.

1. Arthur chooses a computation branch of machine M at
random. He will need to make one query to the CPk−1

oracle. Since any language in CPk−1 can be decided
by a rational MA proof with k − 1 Merlins, Arthur
simulates the query to CPk−1 by asking questions to
k − 1 Merlins.

2. Arthur reaches the end of his computation branch and
writes down the output b ∈ {0, 1}.

3. Arthur brings in a new Merlin (the kth one) and asks
him how many paths of MCPk−1 accept. Merlin an-
swers y.

4. Arthur creates the random variable Y ∈ {0, 1} such
that Pr[Y = 1] = y

2n . He rewards the kth Merlin using

Brier’s scoring rule BSR(Y, b) = Y (b)− ‖Y ‖2 + 1.4

5. If y > 2n/2 then Arthur outputs x ∈ L. Otherwise, he
outputs x 6∈ L.

By the inductive hypothesis, the first (k − 1) Merlins are
being truthful, and their answers help Arthur simulate the
query to CPk−1. This gives Arthur a random output b from
the machine MCPk−1 . Since Merlin is rewarded using the
scoring rule BSR(Y, b), he will announce Y so it matches the
distribution from which b is drawn. That is, he will announce
y equal to the number of accepting computation branches
in MCPk−1 . Note that it does not matter if Arthur reveals
his coin tosses (the random path he chooses in the machine
MCPk−1).

This shows that any language in CPk can be decided by
a rational Merlin Arthur proof using k Merlins. Now all we
need to do is show that we can simulate k Merlins using only
one Merlin and k queries. We sketch the proof below.

Note that all of the interactions between Arthur and Mer-
lin in the above proof are of the form:

1. Arthur samples b from some distribution B over {0, 1}.

2. Merlin announces some random variable Y ∈ {0, 1}
such that Pr[Y = 1] = y

2n for some integer y.

3. Arthur rewards Merlin with R(Y, b) = BSR(Y, b)

Assume without loss of generality that we apply a linear
transformation to BSR so that it always outputs a reward
between [0, 1]. Let B be the distribution from which b is

4Again, we shift BSR by 2 so the reward is always positive.
This does not affect incentives.

drawn (that is, the true distribution) and let Y be any dis-
tribution Y 6= B. If Merlin announces Y , he is lying. Define
∆ = minY 6=B ‖Eb[BSR(B, b) − BSR(Y, b)]‖. We need the fol-
lowing two facts about ∆: (1) ∆ > 0, (2) ∆ can be expressed
in polynomially many bits.

Both facts are easy to show. Since BSR is a strictly proper
scoring rule, we have ∆ > 0. Since we work with distri-
butions Y such that Pr[Y = 1] can be expressed in poly-
nomially many bits, we have ∆ can also be expressed in
polynomially many bits.

By definition, ∆ is Merlin’s minimum expected loss from
deviating. Under a worst case scenario, Merlin could lie
today if he expected to profit by more than ∆ tomorrow
and lose only ∆ today.

Suppose on the other hand that Merlin cannot profit by
more than ∆ tomorrow. Then Merlin’s incentive is to be
truthful today. Let B be a truthful announcement for Merlin
and let Y 6= B be a deviation. If Merlin announces Y ,
he loses more than ∆ units of utility today. His deviation
cannot increase tomorrow’s profit by more than ∆. Thus,
in total Merlin loses utility by deviating today.

To incentivize Merlin to be truthful over k time periods,
we reward him using the following scheme. Let x1, ..., xk be
Arthur’s queries, and let b1, ..., bk be the random samples
he draws for each query. Let y1, ..., yk be Merlin’s answers
and let Y1, ..., Yk be the corresponding random variables in
{0, 1}k. Merlin’s reward is given by

S(b1, ..., bk, Y1, ..., Yk) =

k∑
i=1

γi−1
BSR(Yi, bi),

where γ = ∆
1+∆

is chosen so that
∑k
i=2 γ

i−1 < γ
1−γ ≤ ∆.5

This choice guarantees that, at any time i, Merlin’s loss
from deviating from the truth is strictly larger than any gain
he would obtain from his deviation in future periods. Thus,
Merlin always wants to be truthful.

Q.E.D.

We have shown that CH ⊂ DRMA. We now show the
opposite direction. We will use the following definition and
facts in the proof.

Definition 9. An NP optimization problem with ac-
cess to an oracle A is given by a tuple (I,S, R,L) where

1. I ⊂ {0, 1}∗ is a set of valid instances.

2. For any instance x ∈ I, S(x) is a set of feasible solu-
tions of x.

3. R : I × S → R is a function in FPA that assigns a
score to each (instance,solution) pair and has oracle
access to A.

4. L ⊂ I×S is the set of (instance,solution) pairs (x, y∗)
such that y∗ = argmaxy ER(x, y).

Lemma 3. The following facts are true

1. The set of NPOA of NP optimization problems with
oracle access to an arbitrary language A is Turing re-
ducible to the set NPA.

5This technique is inspired by the discounted market scor-
ing rules of [14], who used it to argue approximate truthful-
ness for scoring rules in dynamic environments. Because of
the special nature of our distributions, we can obtain exact
truthfulness.

2. For any oracle A, NPA ⊂ PPA.

3. PP#P is Turing equivalent to PPPP

4. If f(x; r) is a randomized function computable in poly-
nomial time that depends on random coins r, then
Er[f(x; r)] can be computed in P#P.

Proof Proof Sketch. We sketch justifications for these
facts.

1. It is known that NPO is Turing reducible to NP. Given
an optimization problem P in NPO that asks to find y
maximizing some function R(x, y), one can create an
analogous decision problem PD that asks, given x and
R and k, whether there exists y such that R(x, y) ≥ k.
With some modifications to break ties, one can show a
Turing reduction that uses answers to PD and binary
search over the parameter k to solve the optimization
problemR(x, y) (see theorem 1.5 in [3]). The reduction
goes through even if we allow both the optimization
and decision problems to have access to some oracle
A. Whenever the optimization problem would need
to query A, the reduction to the decision problem can
also query A.

2. It is known that NP ⊂ PP. Furthermore, the machine
model in both cases is the same: non-deterministic
Turing machines. Thus NPA ⊂ PPA.

3. Given an oracle that answers queries to PP, we can, in
polynomial time, answer problems in #P using binary
search. Since machines in PP can implement binary
search, PP#P = PPPP.

4. We want to show that if f(x; r) is computable in poly-
nomial time then Erf(x; r) is computable in P#P. Let
yk · 2k + ... + y1 · 2 + y0 = f(x) be the output of
f(x) written in binary. The output bits yk, ..., y0 are
random variables that depend on the sequence of coin
tosses r. By linearity of expectation Er[

∑k
i=0 yi2

i] =∑k
i=1 Er[yi] · 2

i. Thus, it suffices to compute the ex-
pectation of each bit. Let Mi(x) be a probabilistic
polynomial time algorithm that tosses poly(|x|) coins
and computes the ith bit of y = f(x). The expected
value of yi is equal to the number of accepting com-
putation paths of Mi, divided by the total number of
paths, which is 2poly(|x|). The number of accepting
paths can be computed in #P. Thus, we can compute
E[yi] for each bit using an oracle to #P, and we can

reconstruct
∑k
i=0 2iEyi = Ey = Ef(x) in polynomial

time

Q.E.D.

Now we prove that DRMA ⊂ CH.

Lemma 4. DRMA ⊂ CH

Proof. We proceed by first showing that DRMA[1] ⊂
PPP#P

⊂ PPPPPP

= CP3. Our proof then builds on this
fact inductively.

Let L be a language in DRMA[1]. By definition, there
exists a randomized function R(x, y) and a predicate π(x, y)
such that

1. Given x, let y∗ ∈ argmaxy Er[R(x, y; r)] where r are
the random coin tosses of R.

2. π(x, y∗) = 1 if x ∈ L and π(x, y∗) = 0 if x 6∈ L.

Now consider the following optimization problem. Given
input x ∈ {0, 1}∗, we want to find y∗ such that
y∗ = argmaxy ErR(x, y; r) where r are the random coin

tosses of R. This problem is in NPO#P because for ev-
ery x, y there exists an algorithm in P#P that computes
E(x, y) =def ErR(x, y; r). Such an algorithm exists as shown
in lemma 3. It is a problem in NPO#P because we want to
find y∗ maximizing E(x, y) and E(x, y) is in FP#P.

Since NPO#P is Turing reducible to NP#P (again, by

lemma 3), there exists some polynomial time machineMNP#P

such that MNP#P

(x) finds a y∗ maximizing E(x, y). After
finding such a y∗, our machine M evaluates π(x, y∗). If
π(x, y∗) = 1 then it outputs x ∈ L. Otherwise it outputs

x 6∈ L. This shows that L ∈ PNP#P

⊂ PPP
PP

⊂ PPPP
PP

=
CP3. Thus, DRMA[1] ⊂ CP3.

We now show that DRMA[k] ⊂ CP2k+1, for all k ≥ 1.
Let L be a language in DRMA[k] with associated reward
and output functions R and π. Let x be an input and
let T ∗ = (a1, b1, ..., ak, bk) be a transcript of Merlin and
Arthur’s interaction on input x. Without loss of general-
ity, we assume that Arthur’s messages b1, ..., bk consist ex-
clusively of random coins.6 Given Arthur’s coins and the
transcript up to round i, Merlin can compute Arthur’s cor-
responding message in round i.

Thus, the transcript is completely determined by Merlin’s
messages (a1, ..., ak). Merlin determines these messages by
backwards induction as follows.

• Let Tk−1 = (a1, b1, ..., ak−1, bk−1) be the transcript up
to time k − 1, let ak be a possible message from Mer-
lin at time k and let bk ← {0, 1}poly(n) be Arthur’s
random coins at time k. Let T = [Tk−1, ak, bk] be the
final transcript when Merlin chooses ak and Arthur
tosses coins bk. Merlin’s value form choosing ak is
Vk(ak; Tk−1) = Ebk←{0,1}poly(n)R(x, T). Merlin will
choose a message

a∗k ∈ argmax
ak

Vk(ak; Tk−1).

Denote by V ∗k (Tk−1) = Vk(a∗k; Tk−1) the maximum
value of this function.

• Let Ti−1 = (a1, b1, ..., ai−1, bi−1) be the transcript up
to time i − 1 and let T = [Ti−1, ai, bi, ..., ak, bk] be a
possible final transcript. Note that aj(Tj−1) is a func-
tion of the transcript up to time j, and thus, each aj
for j > i is a function of ai. Merlin’s value from choos-
ing ai is Vi(ai; Ti−1) = Ebi←{0,1}poly(n)V ∗i+1(Ti) where

V ∗i+1(Ti) = maxai+1 Ebi+1 maxai+2 . . .EbkR(x, T) is a
function of the transcript Ti up to time i. Merlin
chooses a∗i to satisfy

a∗i ∈ argmaxaiVi(ai; Ti−1).

Denote by V ∗i (Ti−1) = Vi(a
∗
i ; Ti−1) the maximum value

of this function.

6We are relying on the fact that our protocols are public
coin protocols.

We want to simulate Merlin using the counting hierarchy
as an oracle. We begin by simulating Merlin’s choice of his
last message ak. The function Vk(ak; Tk−1) = Ebk←{0,1}poly(n)R(x, T)

can be computed in FP#P according to lemma 3 and the
fact that R(·, ·) is polynomial time computable. Making a
polynomial number of queries to an NP#P machine, we can
perform binary search over the inputs of Vk(·; Tk−1) to find
a∗k that maximizes this function. Since NP#P ⊂ PPPP , we
can find a∗k with access to a CP2 oracle.

Now we proceed by induction to show that we can find
a∗i , a

∗
i+1, ..., a

∗
k using queries to CP2·(k−i+1). The base case

was proved in the preceding paragraph. Assume inductively
that, for any transcript prefix Ti, we can find an optimal
continuation a∗i+1, ..., a

∗
k using queries to CP2·(k−i).

Given input Ti−1, we would like to find an optimal con-
tinuation a∗i , a

∗
i+1, ..., a

∗
k using queries to CP2·(k−i+1). It

suffices to find a∗i , because by inductive hypothesis, given
Ti−1, a

∗
i and random coins bi, we can compute an optimal

continuation a∗i+1, ..., a
∗
k using queries to CP2·(k−i) ⊂ CP2·(k−i+1).

We show that a∗i (Ti−1) can be computed using queries

to NP#P
CP2·(k−i) ⊂ CP2·(k−i+1). First of all, the function

Vi(ai, Ti−1) = EbiV
∗
i+1(Ti) can be computed using a poly-

nomial number of queries to #PCP2·(k−i) . Intuitively, the
idea is that the CP2·(k−i) oracle is used to compute V ∗i+1(Ti)
for each possible value of the random coin tosses bi. Each
branch of the #P machine computes V ∗i+1(Ti) for a different
setting of bi, and then adds the results in order to get the
expectation. Of course, this computation needs to be done
bit-by-bit as in lemma 3.

Since Vi(ai, Ti−1) can be computed using queries to #PCP2·(k−i) ,
an a∗i that maximizes Vi(·, Ti−1) can be computed using

queries to NP#P
CP2·(k−i)

, which is what we wanted to show.
We remark that the computed a∗i depends on the prefix Ti−1.

Carrying out the induction up to i = 1, we obtain that
we can compute a∗1, a

∗
2, ..., a

∗
k using oracle queries to CP2k.

Since we need to make polynomially many such queries, and
then pass the simulated transcript to the polynomial time
predicate π(·, ·), we conclude that any language in DRMA[k]
can be decided in PCP2k ⊂ PPCP2k = CP2k+1.

Q.E.D.

6. PROVING RIP = PSPACE

We have shown that, for constant number of rounds, ratio-
nal proofs are strictly more powerful than classical ones. We
now show that this is not the case if we allow polynomially
many rounds of interaction.

Theorem 5. RIP = PSPACE

Proof. We first show RIP ⊂ PSPACE. Let L ∈ RIP.
By the definition above, there exists a protocol given by al-
gorithms (P, V) and a randomized reward function R such
that the prover never maximizes his expected reward by be-
ing the first to deviate from the protocol given by (P, V).

We now show that L is a language that can be decided in
polynomial space. Consider a Turing Machine that on input
x performs the following steps

1. Keep state variables P,V, T where P will simulate the
prover’s view, V will simulate the verifier’s view and T
will simulate the transcript. Initialize P0 = V0 = {x}.

2. For i = 1...k = poly(|x|)

(a) Update the prover’s view Pi = (Pi−1, Ti−1, ri)
where ri is a sequence of random coins.

(b) Given that the protocol has been followed so far,
the prover will choose ai that maximizes
ET [R(x, T)|Pi, ai]. This requires the computa-
tion of R(x, T) over all possible final transcripts
T that are compatible with the prover’s current
view Pi. This can be done in polynomial space,
since each transcript only takes polynomial space.
Furthermore R only uses polynomially many ran-
dom coins, so it’s expectation when we fix a T
can also be computed in polynomial space.

(c) Update the verifier’s view Vi = (Vi−1, Ti−1, ai, si)
where si is a sequence of random coins.

(d) Compute the verifier’s message bi = V (Vi). This
can be computed in polynomial time, and thus,
in polynomial space.

(e) Update Ti = (Ti−1, ai, bi).

The above process simulates the Rational Interactive Proof
in polynomial space. It finishes by outputting a transcript
T such that π(x, T) = 1 if x ∈ L and π(x, T) = 0 if x 6∈ L.
Since π can be computed in polynomial time, it can also
be computed in polynomial space. Thus, we presented a
PSPACE machine that decides L.

Q.E.D.

This inclusion is tight:

Lemma 5. PSPACE ⊂ RIP.

Proof. Since IP = PSPACE [39], it suffices to show IP ⊂
RIP. Indeed, let L be a language that has an interactive
proof. Consider the following rational interactive proof for
L. Given an input x

1. If x ∈ L, prover and verifier compute an interactive
proof π that x ∈ L. The prover’s reward is R(x, π) = 1
if the verifier accepts the proof and zero otherwise.

2. If x 6∈ L, prover and verifier compute an interactive
proof π that x 6∈ L. The prover’s reward is R(x, π) = 1
if the verifier accepts the proof and zero otherwise.

In both cases, the prover maximizes his expected reward by
giving a correct proof. Using this protocol, a verifier can
decide whether x ∈ L or x 6∈ L.7 Thus, L admits a rational
interactive proof with polynomially many rounds.

Q.E.D.

7. NEW SCORING RULES
For our application, the existing Brier scoring rule is good

enough because we only consider a world with two states
{0, 1}. We would like however to mention some new results
on scoring rules that may be of separate interest.

General scoring rules over more complicated state spaces
have disadvantages that make them hard to use for compu-
tational applications. In particular,

7It does not matter if the proof fails with some very low
probability. Arthur trusts Merlin to always give a correct
answer and correct proof, because Merlin maximizes his util-
ity this way.

(a) (The range of) S might be unbounded.
In this case one of the parties may not have enough
money to make the required payment. For instance,
in Good’s rule logD(ω) may be an arbitrarily low neg-
ative number, and thus Merlin may have to make an
arbitrarily high payment: hardly a reward for his help!

(b) Evaluating S may be computationally hard.
For instance, when the set Ω of states of the world
contains too many elements, computing

∑
ω∈ΩD(ω)2,

as required by Brier’s rule, may be too hard!

Thus, there is a tradeoff between a scoring rule being
bounded and its query complexity. We have shown that
this tradeoff always holds when the scoring rule queries the
probability density function of the distribution D. This is
what all known scoring rules do. However, if we allow the
scoring rule to query the cumulative density function of the
distribution, then we can obtain new scoring rules that have
bounded range, make few queries to their distribution, and
are strictly proper. In particular

(a) All known proper scoring rules which have bounded

range require more than |Ω|
4

queries to the probability
density function of D.

(b) There exists a proper scoring rule which has bounded
range and requires O(log |Ω|) queries to the cumulative
density function of D.

8. SUMMARY OF CONTRIBUTIONS AND
FUTURE DIRECTIONS

Our contributions are a new type of proof system and a
characterization of said proof system in terms of the count-
ing hierarchy.

We see at least two interesting directions for future work.
The first direction is in efficient delegation of computation.
General interactive proofs are not practical and there has
been plenty of work in reducing the number of messages
exchanged as well as the amount of work that the verifier
needs to do [35, 33, 31, 25, 13, 7, 36, 9, 22, 15, 16, 2, 10, 38,
17]. Delegation of computation requires the user to be able
to verify that the computation is correct. We propose ra-
tional proofs as an alternative, where the correctness of the
computation is guaranteed by economic reasons. Note that
in our proof that #SAT ∈ FRMA[1], Arthur’s computa-
tion time is linear in the size of the input instance φ. Thus,
Arthur is not only efficient but linear. This means that,
for any problem with a linear time reduction to #SAT , we
can find a rational proof with only one round of communi-
cation and where the verifier acts in linear time. These are
very efficient proofs for a very hard problem! An interesting
question is to what extent we can provide rational proofs
for other problems that are not #SAT where Arthur only
needs to perform linear computations.

The second direction for future work is using our equiv-
alence between DRMA and CH to solve open problems in
counting. For example, one can show that a logarithmic
space analogue of the counting hierarchy is equivalent to uni-
form TC0 circuits [1]. Does the connection between rational
proofs and the counting hierarchy still hold if we restrict the
verifier to logarithmic space? Can this connection help us
answer questions about circuit complexity? We leave these
questions for future research.

As a final note, we want to remark that we can give
other interpretations to rational proof systems outside eco-
nomics. The interpretation in this paper is that Merlin is
self-interested and wants to maximize some “cash” reward.
But this does not need to be the case for our complexity
results to hold. One can think of the prover as some process
that, given input x, outputs some y maximizing (or min-
imizing) some random function R(x, y). Rationality gives
one justification for this maximization process, but it does
not need to be the only justification.

Acknowledgements.
We thank Ronitt Rubinfeld, Alessandro Chiesa, Jing Chen

and Shrenik Shah for helpful discussions. We thank Lance
Fortnow for pointing out an error in our original proof of
RMA ⊂ CH.

9. REFERENCES

[1] Eric W. Allender and Klaus W. Wagner. Counting
hierarchies: Polynomial time and constant depth
circuits, 1990.

[2] B. Applebaum, Y. Ishai, and E. Kushilevitz.
Computationally private randomizing polynomials and
their applications. Computational Complexity,
15(2):115–162, 2006.

[3] Crescenzi P. Gambosi G. Kann V.
Marchetti-Spaccamela A. Ausiello, G. and M. Protasi.
Complexity and approximation: combinatorial
optimization problems and their approximability
properties. Springer Verlag, 1999.

[4] L. Babai, L. Fortnow, and C. Lund. Non-deterministic
exponential time has two-prover interactive protocols.
Computational complexity, 1(1):3–40, 1991.

[5] L. Babai and S. Moran. Arthur-merlin games: a
randomized proof system, and a hierarchy of
complexity classes. Journal of Computer and System
Sciences, 36(2):254–276, 1988.

[6] M. Babaioff, L. Blumrosen, N.S. Lambert, and
O. Reingold. Only valuable experts can be valued. In
Proceedings of the 12th ACM conference on Electronic
commerce, pages 221–222. ACM, 2011.

[7] B. Barak and O. Goldreich. Universal arguments and
their applications. ccc, page 0194, 2002.

[8] M. Ben-Or, S. Goldwasser, J. Kilian, and
A. Wigderson. Multi-prover interactive proofs: How to
remove intractability assumptions. In Proceedings of
the twentieth annual ACM symposium on Theory of
computing, pages 113–131. ACM, 1988.

[9] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable
delegation of computation over large datasets. 2011.

[10] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and
Eran Tromer. From extractable collision resistance to
succinct non-interactive arguments of knowledge, and
back again. 3rd Innovations in Theoretial Computer
Science, 2012.

[11] R.B. Boppana and J. Hastad Stathis. Does-np have
short interactive proofs? Information Processing
Letters, 25(2):127–132, 1987.

[12] G.W. Brier. Verification of forecasts expressed in
terms of probability. Monthly weather review, 1950.

[13] R. Canetti, B. Riva, and G.N. Rothblum. Practical
delegation of computation using multiple servers. In
Proceedings of the 18th ACM conference on Computer
and communications security, pages 445–454. ACM,
2011.

[14] Y. Chen, S. Dimitrov, R. Sami, D.M. Reeves, D.M.
Pennock, R.D. Hanson, L. Fortnow, and R. Gonen.
Gaming prediction markets: Equilibrium strategies
with a market maker. Algorithmica, 58(4):930–969,
2009.

[15] K.M. Chung, Y. Kalai, and S. Vadhan. Improved
delegation of computation using fully homomorphic
encryption. Advances in Cryptology–CRYPTO 2010,
pages 483–501, 2010.

[16] G. Cormode, J. Thaler, and K. Yi. Verifying
computations with streaming interactive proofs.

[17] Ivan Damg̊ard, Sebastian Faust, and Carmit Hazay.
Secure two-party computation with low

communication. Cryptology ePrint Archive, Report
2011/508, 2011.

[18] U. Feige and J. Kilian. Making games short. In
Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing, pages 506–516.
ACM, 1997.

[19] L. Fortnow, J. Rompel, and M. Sipser. On the power
of multi-prover interactive protocols. Theoretical
Computer Science, 134(2):545–557, 1994.

[20] L. Fortnow and R.V. Vohra. The complexity of
forecast testing. Econometrica, 77(1):93–105, 2009.

[21] Lance Fortnow and Michael Sipser. Are there
interactive protocols for co-np languages? Information
Processing Letters, 28:249–251, 1988.

[22] R. Gennaro, C. Gentry, and B. Parno. Non-interactive
verifiable computing: Outsourcing computation to
untrusted workers. Advances in Cryptology–CRYPTO
2010, pages 465–482, 2010.

[23] T. Gneiting and A.E. Raftery. Strictly proper scoring
rules, prediction, and estimation. Journal of the
American Statistical Association, 102(477):359–378,
2007.

[24] O. Goldreich, S. Micali, and A. Wigderson. Proofs
that yield nothing but their validity and a
methodology of cryptographic protocol design. In
Foundations of Computer Science, 1986., 27th Annual
Symposium on, pages 174–187. IEEE, 1988.

[25] S. Goldwasser, Y.T. Kalai, and G.N. Rothblum.
Delegating computation: interactive proofs for
muggles. In Proceedings of the 40th annual ACM
symposium on Theory of computing, pages 113–122.
ACM, 2008.

[26] S. Goldwasser, S. Micali, and C. Rackoff. The
knowledge complexity of interactive proof-systems. In
Proceedings of the seventeenth annual ACM
symposium on Theory of computing, pages 291–304.
ACM, 1985.

[27] S. Goldwasser and M. Sipser. Private coins versus
public coins in interactive proof systems. In
Proceedings of the eighteenth annual ACM symposium
on Theory of computing, pages 59–68. ACM, 1986.

[28] I.J. Good. Rational decisions. Journal of the Royal
Statistical Society. Series B (Methodological), pages
107–114, 1952.

[29] J. Halpern and V. Teague. Rational secret sharing and
multiparty computation. In Proceedings of the
thirty-sixth annual ACM symposium on Theory of
computing, pages 623–632. ACM, 2004.

[30] R. Impagliazzo and A. Wigderson. P= bpp if e
requires exponential circuits: Derandomizing the xor
lemma. In Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing, pages
220–229. ACM, 1997.

[31] Y. Kalai and R. Raz. Probabilistically checkable
arguments. Advances in Cryptology-CRYPTO 2009,
pages 143–159, 2009.

[32] J. Katz. Bridging game theory and cryptography:
Recent results and future directions. Theory of
Cryptography, pages 251–272, 2008.

[33] J. Kilian. A note on efficient zero-knowledge proofs
and arguments. In Proceedings of the twenty-fourth

annual ACM symposium on Theory of computing,
pages 723–732. ACM, 1992.

[34] C. Lund, L. Fortnow, H. Karloff, and N. Nisan.
Algebraic methods for interactive proof systems.
Journal of the ACM (JACM), 39(4):859–868, 1992.

[35] S. Micali. Computationally sound proofs. SIAM
Journal on Computing, 30(4):1253–1298, 2001.

[36] C. Papamanthou, R. Tamassia, and N. Triandopoulos.
Optimal verification of operations on dynamic sets. In
Proc. International Cryptology Conference
(CRYPTO), 2011.

[37] A. Sandroni. The reproducible properties of correct
forecasts. International Journal of Game Theory,
32(1):151–159, 2003.

[38] Aviad Rubinstein Shafi Goldwasser, Huijia Lin.
Delegation of computation without rejection problem
from designated verifier cs-proofs. Cryptology ePrint
Archive, Report 2011/456, 2011.

[39] A. Shamir. Ip= pspace. Journal of the ACM (JACM),
39(4):869–877, 1992.

[40] Y. Shoham and M. Tennenholtz. Non-cooperative
computation: Boolean functions with correctness and
exclusivity. Theoretical Computer Science,
343(1-2):97–113, 2005.

[41] S. Toda. Pp is as hard as the polynomial-time
hierarchy. SIAM Journal on Computing, 20:865, 1991.

[42] J. Torán. Complexity classes defined by counting
quantifiers. Journal of the ACM (JACM),
38(3):752–773, 1991.

[43] K.W. Wagner. The complexity of combinatorial
problems with succinct input representation. Acta
Informatica, 23(3):325–356, 1986.

