1703.09137v1 [csNE] 27 Mar 2017

arxXiv

Where to put the Image in an Image Caption

Generator™
Marc Tanti Albert Gatt
marc.tanti.06@Qum.edu.mt albert.gatt@Qum.edu.mt
Institute of Linguistics Institute of Linguistics
University of Malta University of Malta

Kenneth P. Camilleri
kenneth.camilleriQum.edu.mt
Department of Systems and Control Engineering
University of Malta

Under review. Comments welcome.

Abstract

When a neural language model is used for caption generation, the
image information can be fed to the neural network either by directly in-
corporating it in a recurrent neural network — conditioning the language
model by injecting image features — or in a layer following the recurrent
neural network — conditioning the language model by merging the image
features. While merging implies that visual features are bound at the end
of the caption generation process, injecting can bind the visual features
at a variety stages. In this paper we empirically show that late binding
is superior to early binding in terms of different evaluation metrics. This
suggests that the different modalities (visual and linguistic) for caption
generation should not be jointly encoded by the RNN; rather, the multi-
modal integration should be delayed to a subsequent stage. Furthermore,
this suggests that recurrent neural networks should not be viewed as actu-
ally generating text, but only as encoding it for prediction in a subsequent
layer.

*The research work disclosed in this publication is partially funded by the Endeavour
Scholarship Scheme (Malta). Scholarships are part-financed by the European Union - Euro-
pean Social Fund (ESF) - Operational Programme II Cohesion Policy 2014-2020 Investing in
human capital to create more opportunities and promote the well-being of society.

1 Introduction

Image caption generation® is the task of generating a natural language descrip-
tion of the content of an image (Bernardi et al., 2016). One way to do this is to
use a neural language model, a neural network that generates a sentence word
by word. These work by using a recurrent neural network (RNN) that predicts
the next word in the sentence based on its prefix or ‘history’. This predicted
word can then be appended to the previous prefix in order to predict the word
after that, and so on, until a whole sentence is generated. A simple neural
language model can be extended into an image caption generator by condition-
ing predictions on image features. In other words, the language model takes
as input not only the prefix, but also the image being captioned. This raises
the question: At which stage should image information be introduced into the
language model?

Recent work on image captioning has answered this question in different
ways, suggesting different views of the relationship between image and text in
the caption generation task. To our knowledge, however, these different models
and architectures have not been systematically compared. Yet, the question
of where image information should feature in captioning is at the heart of a
broader set of questions concerning how language can be grounded in perceptual
information, questions which have been addressed by philosophers (Harnad,
1990) and AI practitioners (Roy, 2005).

As we will show in more detail in Section 2, differences in the way caption
generation architectures treat image features can be characterised in terms of
two distinct sets of decisions:

Conditioning by injecting versus conditioning by merging : A lan-
guage model can be conditioned by injecting the image (see Figure la). In
these ‘inject’ architectures, the image vector (usually derived from the activa-
tion values of a hidden layer in a convolutional neural network) is injected into
the RNN, for example by treating the image vector on a par with a ‘word’ and
including it as part of the caption prefix. The RNN is trained to vectorise the
image-caption mixture in such a way that this vector can be used to predict the
next word. On the other hand, a language model can be conditioned by merging
the image (see Figure 1b). In the case of ‘merge’ architectures, the image is left
out of the RNN subnetwork, such that the RNN handles only the caption prefix,
that is, handles only purely linguistic information. After the prefix has been
vectorised, the image vector is then merged with the prefix vector in a separate
‘multimodal layer’ which comes after the RNN subnetwork. Merging can be
done by, for example, adding the two vectors together elementwise. In this case,
the RNN is trained to only vectorise the prefix and the mixture is handled in a
subsequent feedforward layer.

IThroughout this paper we refer to textual descriptions of images as captions, although
technically a caption is text that complements an image with extra information that is not
available from the image. Specifically, the descriptions we talk about are ‘concrete’ and
‘conceptual’ image descriptions (Hodosh et al., 2013).

(a) Conditioning by injecting the image
means injecting the image into the same RNN
that processes the words.

(b) Conditioning by merging the image
means merging the image with the output of
the RNN after processing the words.

Figure 1: The inject and merge architectures for caption generation. Legend:
RNN - Recurrent Neural Network; FF - Feed Forward layer.

In short, if the image somehow influences the state of an RNN that is also
processing words then it is being injected, otherwise it is being merged.

Early versus late inclusion of image features : As the foregoing descrip-
tion suggests, merge architectures tend to incorporate image features somewhat
late in the generation process, that is, after processing the whole caption prefix.
In the case of inject architectures, there is a broader range of possibilities, from
injecting the image before processing any of the words in the caption prefix,
to injecting the image after processing the last word of the prefix. Section 2
describes these options in more detail. The main point, however, is that it is
possible to conceive of models in which visual information influences linguistic
choices at different stages.

The main contribution of this paper is to present a systematic comparison
of the different ways in which the ‘conditioning’ of linguistic choices based on
visual information can be carried out, studying their implications for caption
generator architectures. Thus, rather than seeking new results that improve on
the state of the art, we seek to determine, based on an exhaustive evaluation of
inject and merge architectures on a common dataset, where image features are
best placed in the caption generation and image retrieval process.?

From a scientific perspective, such a comparison would be useful for shedding
light on the way language can be grounded in vision. Should images and text be
intermixed throughout the process, or should they initially be kept separate be-
fore being combined in some multimodal layer? Many papers speak of RNNs as
‘generating’ text. Is this the case or are RNNs better viewed as encoders which

2All the code used in our experiments is available at https://github.com/mtanti/
where-image

i word, E%| RNN H FF |—) wordy state,
L f

state, i word, :%| RNN H FF }—) word,

H i
| word, :el RNN H FF l% words STEJIEQ
' T

| |
state, i word, | word, :%| RNN FF word,

(a) The continuous view of neural (b) The discontinuous view of neural lan-
language models for generation. This guge models for generation. This is the way
is the common way RNNs are illus- RNNSs are illustrated in this paper.

trated.

Figure 2: Two views on neural language models. Legend: RNN - Recurrent
Neural Network; FF - Feed Forward layer.

vectorise a prefix so that the next neural network layer can predict the next
word? Answers to these questions would help inform theories of how caption
generation can be performed.

From an engineering perspective, insights into the relative performance of
different models could provide rules of thumb for selecting an architecture for
image captioning, possibly for other tasks as well. This would make it easier to
develop new architectures and new ways to perform caption generation.

The remainder of this paper is structured as follows. We first give an
overview of related work, focusing in particular on the architectures used for
caption generation. Section 3 discusses the architectures we compare, followed
by a description of the data and experiments in Section 4. Results are pre-
sented and discussed in Section 5. We conclude with some general discussion
and directions for future work.

2 Background

In this section we discuss a number of recent image caption generation models,
with emphasis on how the image conditions the neural language model, based
on the distinction between inject and merge architectures illustrated in Figure 1.
Before we discuss these models, we first outline the view of RNNs as used for
language modelling that will be taken in the remainder of this paper. This
serves as useful background to understanding the purpose of the illustrations
used throughout.

2.1 Ways of viewing recurrent neural networks

Traditionally, neural language models are depicted as in Figure 2a, where strings
are thought of as being continuously generated. A new word is generated after
each time step, with the RNN’s state being combined with the last generated
word in order to generate the next word. We refer to this as the ‘continuous
view’. In this paper, we adopt a slightly different — though functionally identical

— perspective on RNNs and their role in language models. This is illustrated in
Figure 2b. We propose to think of the RNN in terms of a series of discontinuous
snapshots over time, with each word being generated from the entire prefix of
previous words and with the RNN’s state being reinitialised each time. We refer
to this as the ‘discontinuous view’.

The discontinuous perspective brings to light some similarities between RNNs
as used in language modelling and the encoding RNNs in sequence-to-sequence
models, for example in neural machine translation systems (Sutskever et al.,
2014). In order to translate a source sentence into a target sentence, the whole
source sentence is first encoded into a fixed vector which is then mapped into a
translation in the target language. In language modelling, instead of translating
a sentence into another sentence, we're ‘translating’ the prefix of a sentence into
a possible next word.

2.2 Types of architectures

In Section 1, we made a high-level distinction between architectures that merge
linguistic and image features in a multimodal layer, and those that inject image
features directly into the caption prefix encoding process. As we noted, merge
architectures tend to incorporate image features relatively late, after linguistic
strings have been encoded. By contrast, the inject architecture has been instan-
tiated in a number of different ways in the literature which bind image features
at different times, illustrated in Figure 3 and described below:

e Init-inject: The RNN’s initial state is set to be the image vector (or a vec-
tor derived from the image vector). This is an early binding architecture.

e Pre-inject: The first input to the RNN is the image vector (or a vector
derived from the image vector). The word vectors of the caption prefix
come later. The image vector is thus treated as a first word in the prefix.
This is an early binding architecture.

e Par-inject: The image vector (or a vector derived from the image vector)
serves as input to the RNN in parallel with the word vectors of the caption
prefix, such that either (a) the RNN takes two separate inputs; or (b) the
word vectors are combined with the image vector into a single input before
being passed to the RNN. The image vector doesn’t need to be exactly
the same for each word, nor does it need to be included with every word.
This is a mixed binding architecture.

e Post-inject: This is a theoretical possibility, though no work actually
adopts this architecture, to our knowledge. In this case, the last input
to the RNN is the image vector (or a vector derived from the image vec-
tor) and is preceded by the word vectors of the caption prefix. The image
vector is thus treated as the ‘final word’ in the prefix, a possibility that
is probably easier to envisage under a discontinuous view of RNNs (Fig-
ure 2b). Post-inject architectures are mentioned here in view of our in-

,,,,,,,,

RNN |—)| FF | ! image [wurdl Lot word, ¢ RNN H FF |

,,,,,,,,,,,,,,,,,,,,,,,,,

(a) Init-inject: The image vector is (b) Pre-inject: The image vector is used as
used as an initial state for the RNN. a first word in the prefix.

| word, | | word, |

L *—el RNN H FF | Fre R R

! image image | image ~>{ RNN H FF
L

! i | word, .| word,
(c) Par-inject: The RNN accepts two (d) Post-inject: The image vector is used as
inputs at once: the words and the im- a last word in the prefix.
age.

Figure 3: Different ways of conditioning a language model by inject.

clusion of them in the experiments reported below. This is a late binding
architecture.

With these distinctions in mind, we next discuss a selection of recent con-
tributions, placing them in the context of this classification. Table 1 provides a
summary of a wider selection of published architectures.

2.2.1 Init-inject architectures

Architectures conforming to the init-inject model treat the image vector as the
initial state of an RNN. These include (Devlin et al., 2015), who use a gated
recurrent unit (GRU) model (Chung et al., 2014), that was initialised with
an image vector. This was compared with a maximum entropy model (ME)
that maps a bag of visual words extracted from an image onto the most likely
complete caption.

In a related vein, (Ma and Han, 2016) first extract a sequence of attributes
from an image, then map these to a caption using a long short-term memory
(LSTM) network (Hochreiter and Schmidhuber, 1997), in an encoder-decoder
framework 4 la (Sutskever et al., 2014).

(Wang et al., 2016) combine a simple RNN and an LSTM in one architecture,
keeping them independent until their vectors are mixed together by weighted
sum. This was motivated by the observation that the simple RNN and LSTM
get better scores in different evaluation metrics.

(Liu et al., 2016) describe two systems, both of which are optimized by dis-
crete optimisation on caption quality metrics directly which are CIDEr (Vedan-
tam et al., 2015) and SPICE (Anderson et al., 2016). During learning, the
system’s error is measured by generating (sampling) a number of continuations
of every prefix in the training set into a whole caption and measuring the average
quality of the full generated captions. This quality is used to guide optimisation.
One of the two systems described performs init-inject on an image vector.

Source Tnit-inject Pre-inject Par-inject Merge
(Chen and Zitnick, 2014)

(Chen and Zitnick, 2015)

(Devlin et al., 2015) v

(Donahue et al., 2015)

(Hendricks et al., 2016)

(Hessel et al., 2015)

(Karpathy and Fei-Fei, 2015)

(Kiros et al., 2014a)

(Kiros et al., 2014b)

(Krause et al., 2016) v
(Liu et al., 2016)t
(Liu et al., 2016)t
(Lu et al., 2016)
(Ma and Han, 2016)
(Mao et al., 2014)
(Mao et al., 2015a)
(Mao et al., 2015b)
(Nina and Rodriguez, 2015) v

AN
BN SRR
AN

SENENEEN

(Oruganti et al., 2016)
(Rennie et al., 2016)+
(Rennie et al., 2016)+
(Song and Yoo, 2016) v
(Vinyals et al., 2015)

(Wang et al., 2016)

(Wu et al., 2015)

SN

(Xu et al., 2015) v v v
(Yang et al., 2016) v v

(Yao et al., 2016)f v

(Yao et al., 2016)f v v

(You et al., 2016) v v v
(Zhou et al., 2016) v

Table 1: Summary of caption generators that use the different conditioning
methods. Post-inject has never been used to our knowledge. T means that the
publication describes multiple systems which use different conditioning methods.

2.2.2 Pre-inject architectures

Pre-inject models treat the image as though it were the first word in the prefix
during training. (Vinyals et al., 2015) use an LSTM language model in this
way, finding that pre-injection gives better results than par-injection (described
below). Their hypothesis is that this is because par-injection makes the neural
network overfit to image noise, which is always present with every word in the
prefix.

Rather than injecting a low-level image vector, (Wu et al., 2015) opt for a
higher-level approach by extracting attributes from an image and passing those
as an input to the caption generator. This attributes vector is passed to the
RNN by pre-injection.

(Krause et al., 2016) generate paragraph-length captions in two stages. First,
an LSTM which incorporates the image at every time step generates a sequence
of vectors representing sentence topics; these constitute the input to another
LSTM which generates the caption, by injecting the sentence vector with the
caption prefix to predict the next word in the caption.

(Rennie et al., 2016) describe two systems, an attention model and a non-
attention model, both of which use discrete optimisation in order to optimize
CIDEr directly. It was found that optimizing CIDEr directly is the best way to
improve other metrics as well. During learning, the system’s error is measured
by generating (sampling) full captions and measuring the quality of the captions.
This quality is used to guide optimisation. The non-attention model pre-injects
the image vector.

(Yao et al., 2016) describe five systems which mix image vectors and image
attributes in different ways. Three of the systems work as follows: (a) pre-
injecting the attributes alone (b) injecting the image as a first word and the
attributes as a second, (c) injecting the attributes as a first word and the image
as a second. This last one gives the best performance of all five in terms of
METEOR (Banerjee and Lavie, 2005).

2.2.3 Par-inject architectures

Par-injection combines image features and word features together when passing
them to the RNN. For example, in two papers, Chen and colleagues (Chen
and Zitnick, 2014, 2015) approach caption generation using two simple RNNs
in parallel. One RNN is trained to predict the image vector given the caption
prefix while the other RNN is trained to predict the next word given the caption
prefix, the image vector, and the first RNN. The first RNN ‘remembers’ visual
information about the caption prefix; this provides a more stable memory than
a simple RNN’s state.

Similarly, (Donahue et al., 2015) describes an image and video captioning
system that puts two LSTMs in series after each other. However, it was found
that injecting the image into the second (later) LSTM works better than inject-
ing it into the first.

(Karpathy and Fei-Fei, 2015) generate captions for multiple subregions within
an image. The caption generation works by using a simple RNN that uses par-
injection, but only with the first word, that is, only the first word is combined
with the image. Everywhere else the image vector is treated as if it is an all-
zeros vector. It was found that this works better than par-injection with every
word.

(Zhou et al., 2016) also use par-injection, but the first word that the image
is combined with is an all-zeros vector, that is, they use both pre-injection and
par-injection. The image vector’s elements are attended to differently for each
word in the prefix, which is then par-injected into the RNN.

One of the two systems of (Rennie et al., 2016) has already been described
in Section 2.2.2. The attention model performs par-inject of the attended image
vector into the cell memory of an LSTM. Attention was found to improve the
quality of the system.

2.2.4 Merge architectures

Rather than combining image features together with linguistic features from
within the RNN, merge architectures delay their combination until after the
caption prefix has been vectorised. Among the exponents of this approach is
the work of (Kiros et al., 2014a), who uses a log-bilinear language model (LBL)
(Mnih and Hinton, 2007) to convert a caption prefix into a single vector which
is later merged with the image vector in order to determine the next word in
the caption.

In later work, (Kiros et al., 2014b) describe a caption generator that can be
conditioned either on images or on full captions. This is because both image and
caption vectors are embedded into a common multimodal space which maximises
the similarity between corresponding images and captions. An image or caption
vector is then merged with the output of a LBL in order to predict the next
word in a prefix. To assist with the generation process, the expected parts of
speech are passed to the LBL as well.

Similar to Kiros, (Mao et al., 2014, 2015a) use a multimodal layer, where an
image vector is merged with a vector from a simple RNN. (Mao et al., 2015a)
do a basic comparison between inject and merge architectures and find that
merging works better than injecting. (Mao et al., 2015b) describe a subsequent
development, where the vocabulary of a caption generator can be increased after
training by only learning the new words’ embeddings whilst leaving the rest of
the network intact.

(Hendricks et al., 2016) also uses a multimodal layer that merges the image
vector with the caption prefix vector produced using an LSTM. This architecture
keeps the image out of the LSTM by necessity, as the system is designed to be
trained on images and sentences separately, to enable generalisation to objects
not found in the training set. Hence, an object recogniser and a language model
are trained separately. Their outputs are combined into a single vector which
is used to predict the next word in the caption prefix. This makes it possible to
improve the performance of each module separately using non-captioned images
and free text.

2.2.5 Mixed models

There is a growing amount of work that has explored a combination of different
inject and/or merge strategies, most of which are attention-based models. This
is the case in the work of (Xu et al., 2015), who describe an attention-based
caption generator. Here, an LSTM is initialised using the full image. The
attended image is passed to the LSTM by par-injection, giving rise to a new
state. This new state is then merged with the attended image again in order
to determine the next word. Thus, the architecture incorporates aspects of the
init-inject, par-inject and merge strategies.

(Lu et al., 2016) describe an attention-based model that also determines the
importance that should be given to an image during generation. If a caption
needs to generate the compound word “stop sign”, then only “stop” requires
access to the image and “sign” can be deduced linguistically. The attended
image is merged whilst the full image is par-injected.

(Yang et al., 2016) describe a generic attention-based encoder-decoder sys-
tem that was used for image captioning and source code commenting. The
attended image is par-injected whilst a mixture of the attended and full image
is init-injected.

(You et al., 2016) describe an attention-based caption generator that init-
injects the full image whilst using attributes from the image to perform attention
both at the word level (par-inject) and at the RNN level (merge).

One of the two systems of (Liu et al., 2016) has already been described in
Section 2.2.1. The other system performs init-inject of the image vector and par-
inject of the image attributes. The addition of attributes did not significantly
improve the system.

Three of the five systems of (Yao et al., 2016) have already been described in
Section 2.2.2. The other two systems perform pre-inject of the image attributes
and par-inject of the image vector or pre-inject of the image vector and par-
inject of the image attributes. This last system performs the best of all five in
terms of CIDEr.

2.3 Summary and outlook

While the literature on caption generation now provides a rich range of mod-
els and comparative evaluations, there is as yet very little explicit systematic
comparison between the performance of the architectures surveyed above, each
of which represents a different way of conditioning the prediction of language
sequences on visual information. Work that has tested both par-inject and
pre-inject, such as (Vinyals et al., 2015), reports that pre-inject works better.
The work of (Mao et al., 2015a) compares inject and merge architectures and
concludes that merge is better than inject. However Mao et al.’s comparison
between architectures is a relatively tangential part of their overall evaluation,
and is based only on the BLEU metric (Papineni et al., 2002).

Answering the question of which architecture is best is difficult because
different architectures perform differently on different evaluation measures, as
shown for example by (Wang et al., 2016), who compared simple RNNs and
LSTMs. Although the state of the art systems in caption generation all use
inject type architectures, it is also the case that they are more complex systems
than the published merge architectures and so it is not fair to conclude that
inject is better than merge on a survey of the literature alone.

In what follows, we present a systematic comparison between all the different
architectures discussed above, using both simple RNNs and LSTMs. We perform
these evaluations using a common dataset and a variety of quality metrics,
covering (a) the predictive capacity of the caption generator; (b) the quality of
the generated captions; (c) the linguistic diversity of the generated captions; and
(d) the networks’ capabilities to find the most relevant image given a caption.
This last metric is included by way of comparison: many caption generators have
been shown to serve a dual function, for both image description and retrieval.
By including retrieval among our evaluation methods, we seek to shed light on
whether, from an architectural perspective, the same conclusions can be drawn
as for captioning.

3 Architectures

In this section we go over the different architectures that are evaluated in this
paper. A diagram illustrating the three main architecture types is shown in

10

i Prefix : Embed Dropout RNM
| nwords | nx 256 (0.5) 256

Dense
merge %{ 7,415 Softmax

| Image | Dropout Dense
| 4086 | (0.5) 256

(a) The merge architecture.

i Prefix : Embed Dropout
lL nwords | nx 256 (0.5)
L RNN Dense
|nJect%{ 256 H 7,415 H Softmax
lr Image ; Dropout Dense
| 4096 | (0.5) 256

(b) The inject architecture.

Vo Prefix | Embed Dropout RNM Dense soft
| nwords 7| nx256 {0.5) 256 7,415 ortmax

(¢) The imageless language model architecture.

Figure 4: An illustration of the different architectures that are tested in this
paper. The numbers refer to the vector size output by a layer, except for dropout
layers which refer to the dropout rate. Note that the softmax size of 7,415 refers
to the number of possible words that can be chosen as next words (determined
by the vocabulary size). ‘Dense’ means fully connected layer.

Figure 4. We start with a description of a general, schematic architecture in
Section 3.1, followed by a description of how each evaluated architecture modifies
this schema in Section 3.2. Finally, we give a formal description of the important
details of the architectures in Section 3.3.

3.1 General architecture

This section describes the basis from which all evaluated architectures are de-
rived. Tt is a scaled-down version of the architecture described in (Vinyals et al.,
2015). This architecture was chosen for its simplicity whilst still being the best
performing system in the 2015 MSCOCO image captioning challenge.?

Word embeddings Word embeddings, that is, the vectors that represent
known words prior to being fed to the RNN, consist of 256-element vectors that
have been randomly initialised. No precompiled vector embeddings such as
word2vec (Mikolov et al., 2013) were used. Instead, the embeddings are trained
as part of the neural network in order to learn the best representations of words.

Recurrent neural network The purpose of the RNN is to take a prefix of
embedded words (with image vector in inject architectures) and produce a single
vector that represents the sequence. The size of this vector is 256. Two types

Shttp://mscoco.org/dataset/#captions-leaderboard

11

of RNNs were used: the simple RNN described in (Mao et al., 2015a) and the
LSTM described in (Vinyals et al., 2015). Apart from enabling a comparison
of different RNN types overall, this strategy accounts for using an RNN that is
reported to work well in a merge architecture (Mao et al., 2015a) and another

RNN that is reported to work well in an inject architecture (Vinyals et al.,
2015).

Image Prior to training, all images were vectorised using the activation values
of the penultimate layer of the VGG OxfordNet 19-layer convolutional neural
network (Simonyan and Zisserman, 2014), which is trained to perform object
recognition and returns a 4,096-element vector. The convolutional neural net-
work is not influenced by the caption generation training. During training, a
layer of the neural network (with no activation function) compresses this vector
into a 256 element vector (the same size as word vectors). It is this 256-element
vector that is referred to as the ‘image vector’ in our experiments.

Output Once the image and the caption prefix have been vectorised and
mixed into a single vector, the next step is to use them to predict the next
word in the caption. This is done by passing the mixed vector through a soft-
max layer that predicts the probability of each possible 7,415 next word being
the word that comes after the prefix.

Regularisation In order to reduce overfitting, dropout (Srivastava et al.,
2014) with a dropout rate of 0.5 was applied on the 4,096-element image in-
put and the word embeddings. Preliminary experiments showed that applying
dropout to the input vectors works better than applying dropout to intermediate
layers.

3.2 Evaluated architectures

This section describes each architecture that is evaluated in our experiments.
There is one language model architecture (langmodel), three merge architec-
tures (merge), and four inject architectures (inject), each of which can either
use a simple RNN (srnn) or an LSTM (lstm) as a recurrent neural network.
In total we therefore evaluate (8 x 2) 16 different architectures.

3.2.1 The language model architecture

The language model architecture (langmodel) is a simple unconditioned image-
less language model that predicts the next word in a caption given a prefix only.
It is used as a baseline against which to measure the effectiveness of different
ways of including an image in an architecture.

12

3.2.2 The merge architectures

The merge architectures merge the prefix vector with the image vector before
passing the result to the output layer. We consider three ways to merge the
image vector with the prefix vector:

e merge-concat: The image vector and prefix vector are concatenated into
a single vector that has a length equal to the sum of the length of the
two vectors. Whilst this method is intuitive, we are mindful of the extra
parameters this architecture needs to have in order to process a larger
layer.

e merge-add: The image vector and prefix vector are added together ele-
mentwise into a single vector that has a length equal to the original vectors
(image vector and prefix vector have an equal length).

e merge-mult: The image vector and prefix vector are multiplied together
elementwise into a single vector that has a length equal to the original
vectors (image vector and prefix vector have an equal length).

3.2.3 The inject architectures

The inject architecture injects the image vector into the RNN as if it were part
of the caption prefix. As noted in Section 2, there are four ways to inject the
image into the RNN, which are realised in our experiments in the following way:

e inject-init: The image vector is treated as an initial state for the RNN.
After initialising the RNN, the vectors in the prefix are then fed to the
RNN as usual. Every other architecture in our experiments uses the all-
zeros vector as an initial state.

e inject-pre: The image vector is used as the first ‘word’ in the caption
prefix. This makes the image vector the first thing that the RNN will see.

e inject-par: The image vector is added (elementwise) to every word vector
in the caption prefix in order to make the RNN take a mixed word-image
vector. Every word would have the exact same image vector added to it.

e inject-post: The image vector is used as the last ‘word’ in the caption
prefix. This makes the image vector the last thing that the RNN will see
before predicting each next word.

3.3 Formal details

This section gives a more formal description of the evaluated architectures. As
a matter of notation, we treat vectors as being horizontal.

The simple RNN, which is the same one used in (Mao et al., 2015a), is
defined as

sn = ReLU(zy, + $p—1Wss + bs) (1)

13

where z,, is the nth input, s, is the hidden state after n inputs, sg is the initial
state, W is the state-to-state weight matrix (which is square), b, is the state
bias vector, and ReLU refers to the Rectified Linear Unit function, which is
defined as

ReLU(z) = max(0, x) (2)

The LSTM model, which is the one used in (Vinyals et al., 2015), is defined
as

iy = Sig(xy, Wy + $p—1 Wi + b;)

S =sig(xnWayp + Sn—1Wsyp + by)

Cn = fn © Cn1 +in © tanh(z, Wae + 8p—1Wise + be)
on, = Sig(Xn Wao + Sn—1Wso + bo)

Sp = 0p O Cp

=~

~ o~~~
S Ot
NB NGNS AN AN

7

where z,, is the n'? input, s,, is the hidden state after n inputs, s is the initial
state, ¢, is the cell state after n inputs, ¢y is the all-zeros vector (even when
init-inject is used), 4, is the input gate after n inputs, f,, is the forget gate after
n inputs, o, is the output gate after n inputs, i,, is the input gate after n inputs,
Wop is the weight matrix between a and 3, b, is the bias vector for ¢, and © is
the elementwise vector multiplication operator. In the above, ‘sig’ refers to the
sigmoid function which is defined as:

) 1
sigle) = - — Q
Only the last hidden state of the RNN is used in the rest of the neural
network. Both the state vector (in the simple RNN and LSTM) and the cell
vector (in the LSTM) are of size 256.
The feedforward layers used for the image and output are normal dense
layers which are defined as

z=aW +b 9)

where z is the result vector, z is the input vector, W is the weight matrix, b is
the bias vector.

The result vector can then be passed through an activation function, such
as softmax, which is defined as

eri

= 72] o7

where softmax(x); refers to the i*® element of the output vector.

softmax(x); (10)

14

Framework Theano 0.9.0 (Theano Development Team, 2016)
Language Python 2.7.6

Data set Flickr30k (Young et al., 2014)

Vocabulary all tokens in training set occurring 5 times or more
Cost function sum cross-entropy

Optimisation Adam (P. Kingma and Ba, 2014)

Minibatch size 500

Regularisation dropout with dropout rate 0.5

Stopping criteria

Gradient control

early stopping patience of 2 epochs with maximum
of 20 epochs
elementwise gradient clipping of +5

Initialisation biases - zeros; feedforward weights - xavier (Glorot
and Bengio, 2010); recurrent weights - orthogonal
Generation beam search with beam width being 40 and a maxi-

mum length of 50 words

Table 2: Summary of parameters and configurations used in all experiments.

4 Experiments

This section describes the experiments conducted in order to compare the per-
formance of the different architectures described in the previous section. A
summary of all the parameters and configurations is given in Table 2.

4.1 Dataset

Images The dataset used for all experiments was the version of Flickr30k*
(Young et al., 2014) distributed by (Karpathy and Fei-Fei, 2015)°, a set of 31,014
images taken from Flickr combined with five manually written captions per
image. The provided dataset is split into a training, validation, and test set of
29,000, 1,014, and 1,000 images respectively. The images are already vectorised
into 4,096-element vectors via the activations of layer ‘fc7’ (the penultimate
layer) of the VGG OxfordNet 19-layer convolutional neural network (Simonyan
and Zisserman, 2014), which was trained for object recognition on the ImageNet
dataset (Deng et al., 2009). These vectors were normalised to unit-length vectors
prior to training.

Vocabulary The known vocabulary consists of all the words in the captions
training set that occur at least 5 times (capital letters are normalised to lower-
case before constructing the vocabulary). This gives us a total of 7,413 known
words. These words are used both as inputs, which are embedded and fed to

4We used Flickr30k instead of the larger MSCOCO (Lin et al., 2014) in order to reduce
training time as we had to evaluate many different architectures.
Shttp://cs.stanford.edu/people/karpathy/deepimagesent/

15

the RNN, and as outputs, which are given probabilities by the softmax. Apart
from these content tokens, some other special tokens were used:

e PAD: ignored by the RNN and used to make all caption prefixes in the
training set of equal length (used only with the input words);

e START: used to mark the beginning of the caption prefix and useful for
predicting the first word in the caption (used only with the input words);

e END: used to mark the end of the caption and useful for predicting the
end of the caption (used only with the output words);

e UNKNOWN: used to replace and represent any word which is not in the
known vocabulary (used with both the input and output words).

4.2 Training set

In Section 2, we noted that it is possible to adopt a continuous or a discontinuous
perspective on an RNN. For the experiments reported here, adopting the latter
perspective turns out to be beneficial, in that it naturally enables a unified
treatment of all the models under consideration. In particular, training a post-
inject model requires us to inject the image at every stage of training on a given
prefix.

Therefore, throughout our experiments, captions are broken down into sep-
arate prefixes of increasing length and each prefix is treated as a separate entry
in the training set. The training goal is to maximize the individual probability
of each word in all the captions (including the END token), given the image and
caption prefix.

The training set produced from the dataset consists of triples (I, Cy . 5, Cp1),
where [is an image described by caption C, Cy. ., is the caption prefix with
n words (plus START token), and C),41 is the next word (which can be the
END token). Each caption-image pair is broken down into all the caption’s
prefixes together with the word following the prefix and corresponding image.
All prefixes start with a START token (including the empty prefix with the first
word as a next word) and are padded so that all of the sequences are of the
same length (equal to the longest caption in the training set plus the START
token). An example is given in Figure 5. Before each training epoch, the rows
are all shuffled and then divided into minibatches. We allow prefixes of the same
caption to be placed in different minibatches.

4.3 Learning

We did not focus too much on optimizing hyperparameters as it is difficult to
find a set of hyperparameters that benefits all architectures at once and we did
not want one architecture to have an advantage over the others. For this reason
we used default or generally recommended settings were possible.

16

dog barking
two dogs play

< =

PAD PAD PAD START dog
PAD PAD START dog barking
PAD START dog barking END
PAD PAD PAD START two
PAD PAD START two dogs
PAD START two dogs play
START two dogs play END

Figure 5: An illustration of how the Flickr30k dataset is processed into a
training set for training. First column in the training set is for the image,
second is for the prefix, and third is for the next word after the prefix.

Cost function As a cost function, the sum of the crossentropy of all (I, Co.. ., Crit1)
triples (symbols defined in Section 4.2) in the training set minibatch were used.

This means that the neural networks are trained to minimise the crossentropy

of their probability predictions on the training set captions. The crossentropy

is defined as follows:

crossentropy(P, I,Co . n, Cry1) = —In (P(Cp41|Co..m, 1)) (11)

where P is the output of the neural network being trained which is the proba-
bility of a particular word being the next word in a caption prefix.

Optimisation Neural network learning is performed using Adam (P. Kingma
and Ba, 2014) as an optimisation method. All hyperparameters were left as
suggested in the original paper: o = 0.001, 5; = 0.9, 8 = 0.999, and € = 1078,

Gradient control In order to avoid gradient explosion (Pascanu et al., 2012),
all gradients in the gradient descent algorithm were clipped to be within the
range +5 as suggested by (Karpathy and Fei-Fei, 2015).

Minibatches Minibatches of size 500 were used. Minibatches consist of pre-
fixes rather than sentences (see Figure 5).

Stopping criteria Each training session lasted at most 20 epochs. The same
cost function that is used on the training set is also used on the validation set
so that only the weights that gave the smallest validation cost will be evaluated
on the test set. An early stopping patience of two was used such that if the cost
stops decreasing for two epochs on the validation set then training is stopped.

17

Initialisation For weight initialisation, all biases were set to zero and all
feed forward weights were randomly set using xavier initialisation (Glorot and
Bengio, 2010), including the word embeddings. Xavier initialisation sets the
weights of a layer to random numbers sampled from a normal distribution with

2
ni+ne

number of inputs to the layer and n, is the number of outputs from the layer.
The recurrent weights of the RNNs (square matrices that process the state)
were initialised using orthogonal weights.

mean equal to zero and standard deviation equal to where n; is the

4.4 FEvaluation metrics

To evaluate the different architectures, the test set captions (which are shared
among all experiments) are used to measure the architectures’ quality using
metrics that fall into four classes, described below.

4.4.1 Probability metrics

These are metrics that quantify how well the architectures are at predicting
probabilities of the caption words given their corresponding image and prefix.
We report the perplexity of the model given the test captions. The predicted
perplexity of a sentence is calculated as:

perplexity(P, C,I) = oH(P.C.I) (12)
1 IC|

H(P,O,I) = *@Zlogg P(Cn+1|COnaI) (13)
n=0

where P is the trained neural network that gives the probability of a particular
word being the next word in a caption prefix, C is a caption with |C| words, I is
an image described by caption C, and H is the entropy function. Note that C,,
is the n'" word in C and Cy..,, are the first n words in C (with START token).

In order to aggregate the caption perplexity of the entire test set of captions
into a single number, we report the arithmetic mean, geometric mean, and
median of all the caption’s scores.

4.4.2 Generation metrics

These metrics quantify the quality of the generated captions by measuring the
degree of overlap between generated captions and those in the test set. We
use the MSCOCO evaluation code® which measures the standard evaluation
metrics BLEU-(1,2,3,4) (Papineni et al., 2002), METEOR (Banerjee and Lavie,
2005), CIDEr (Vedantam et al., 2015), and ROUGE-L (Lin and Och, 2004).
Captions were generated using beam search with a beam width of 40 and a
clipped maximum length of 50 words.

Shttps://github.com/tylin/coco-caption

18

4.4.3 Diversity metrics

Apart from measuring the caption similarity to the ground truth we also measure
the diversity of the vocabulary used in the generated captions. This is intended
to shed light on the extent to which captions are ‘stereotyped’, that is, the
extent to which a model re-uses (sub-)strings from case to case, irrespective of
the input image.

As a limiting case, consider a caption generator which always outputs the
same caption. This has the lowest possible diversity. In order to quantify this we
measure the percentage of known vocabulary words used in all generated cap-
tions and the entropy of the unigram and bigram frequencies in all the generated
captions together, which is calculated as:

| 7|
diversity (P, F) Z P;(F)logy Pi(F) (14)

Fi
Z\F| F

where F' is the frequency distribution over unigrams or bigrams, with |F’| differ-
ent unigrams or bigrams, and P; is the maximum likelihood estimate probability
of encountering unigram or bigram i. Note that F), is the frequency of the n*®
unigram or bigram.

Entropy gives a measure of how uniform the frequency distributions are
(with higher entropy for more uniform distributions). The more uniform, the
more likely that each unigram or bigram was used in equal proportion, rather
than using the same few words for the majority of the time, hence the greater
the variety of words used.

Pi(F) = (15)

4.4.4 Retrieval metrics

As noted in Section 2, we include image retrieval performance among our eval-
uation measures in view of the frequent practice in the literature of evaluating
image captioning models bidirectionally, for both generation and retrieval. In
the present case, we are mainly interested in whether the various architectures
under consideration are ranked the same in the two tasks.

Retrieval metrics are metrics that quantify how well the architectures are at
retrieving the correct image given a caption. A conditioned language model can
be used for retrieval by measuring the degree of relevance each image has to the
given caption. Relevance is measured as the probability of the whole caption
given the image (by multiplying together each word’s probability). Different
images will give different probabilities for the same caption. The more probable
the caption is, the more relevant the image is.

We use the standard RQn recall measures (Hodosh et al., 2013), and report
recall at 1, 5, and 10. Recall at n is the percentage of captions whose correct
image is ranked at position n or less in the list of images sorted by relevance.

19

5 Results

Three runs of each experiment were performed and the mean together with the
standard deviation (reported in parentheses) of the different evaluation mea-
sures over the three runs is reported. For each run, the initial weight settings,
minibatch selections, and dropout selections are different since these are ran-
domly determined. Everything else is identical across runs.

For comparison, the architectures used in (Mao et al., 2015a) and (Vinyals
et al., 2015) are also included in the tables below. Both of these approaches have
been influential in the literature; furthermore, they are explicitly defined and
hence can be easily reimplemented. For the purposes of the present experiments,
they were reimplemented using the same layers and layer sizes as in the original;
however, to ensure a fair comparison we have trained and tested them in the
same way as the rest of the architectures considered here. This means that
we have used the same initialisation, regularisation, training method, etc. For
this reason, the results reported below for the Mao and Vinyals architectures
occasionally differ from those originally reported by the authors.

5.1 Data

Table 3 shows the results of the evaluation using probability metrics, which
consist of different ways to aggregate perplexities, against the captions in the
test set.

Table 4 shows metrics that measure the quality of generated captions. Note
that the imageless language model here generates one caption, which is the most
probable caption overall, and uses it for all images.

Table 5 shows the extent to which models exploit a significant proportion
of the available vocabulary. We estimate the proportion of the available vo-
cabulary (unigram or bigram) used by a model. For comparison, we include
the proportions for human captions in the test set, considering both an overall
proportion based on all five captions per test set image (human-all) and a pro-
portion based on only the first caption from the five available human captions
(human-one).

Finally, Table 6 shows the results of evaluating the models based on a ‘re-
versal’ of the caption generation process, considering image retrieval based on
a caption in the test set. Note that, since the imageless language model cannot
be applied for retrieval, it is not included in this table.

5.2 Discussion

If we take the late binding architectures, merge and post-inject, and the early
binding architectures, init-inject and pre-inject, as two groups, then there is a
clearly discernible pattern for both the models using a simple RNN and those
using an LSTM: given the same RNN type, late binding architectures perform
better than early binding architectures with mixed binding architectures (par-
inject) floating somewhere in the middle. This holds across the board, for all

20

PpIxX geomean ppIx artmean ppIx median

vinyals 18.405 (0.061) 36.507 (0.169) 16.029 (0.155)
merge-concat-lstm 18.740 (0.038) 41.934 (0.324) 16.236 (0.149)
inject-post-lstm 18.868 (0.052) 45.652 (3.077) 16.143 (0.041)
merge-add-lstm 18.943 (0.057) 38.647 (0.479) 16.500 (0.151)
inject-init-lstm 19.108 (0.100) 43.358 (1.419) 16.435 (0.135)
inject-par-lstm 19.142 (0.043) 41.422 (1.080) 16.629 (0.058)
inject-pre-lstm 19.228 (0.053) 45.984 (3.867) 16.586 (0.138)
mao 19.404 (0.045) 40.023 (1.452) 16.961 (0.061)
merge-add-srnn 20.812 (0.027) 43.040 (1.030) 18.054 (0.154)
merge-concat-srnn 20.971 (0.077) 49.812 (1.812) 17.981 (0.073)
inject-post-srnn 21.810 (0.142) 102.489 (45.708) 18.402 (0.384)
inject-par-srnn 21.991 (0.148) 60.842 (6.368) 18.712 (0.165)
merge-mult-srnn 22.268 (0.170) 53.501 (1.498) 19.053 (0.158)
merge-mult-lstm 23.655 (0.861) 96.770 (6.263) 19.939 (0.810)
inject-init-srnn 24.220 (0.378) 83.403 (16.085) 20.456 (0.328)
inject-pre-srnn 24.279 (0.335) 88.050 (23.114) 20.695 (0.466)
langmodel-lstm 24.740 (0.122) 55.003 (1.016) 20.914 (0.081)
langmodel-srnn 28.822 (0.079) 84.552 (1.917) 24,292 (0.080)

Table 3: Results of the caption probability metrics. Legend: geomean - geo-
metric mean; artmean - arithmetic mean; pplx - perplexity. Lower is better.

evaluation metrics, including retrieval.

This result is somewhat surprising, since the LSTM is a reimplementation of
the one described by (Vinyals et al., 2015), which is optimized for a pre-inject
architecture. In fact there doesn’t seem to be any evaluation criterion where
early binding architectures have an advantage over late binding ones. Even
if we ignore merge-concat, which has more weights than other architectures,
merge-add is always better than inject-par which is almost always better than
inject-pre.

Merge by multiplication seems to suffer on perplexity, but performs well
on the other measures. It also has the highest standard deviation in median
perplexity (across the three runs). This suggests that one possible reason for
its relatively poor ranking on perplexity is due to a high degree of variation in
output probability across runs.

The diversity metrics show that all architectures have a similar word fre-
quency distribution (although simple RNN early binding architectures are rel-
atively more skewed). Nevertheless, the statistics on vocabulary usage are very
telling. It seems that even though humans use at least 32% of the known vocab-
ulary to describe the test set images, none of the evaluated systems used more
than 7%. We interpret this as meaning that neural caption generators require
seeing a word in the training set very often in order to learn how to use it. From
a methodological perspective, this further implies that setting an even higher
frequency threshold below which words are mapped to the UNKNOWN word
(the current experiments set the threshold at five), would be feasible and would
make relatively little difference to the results. Furthermore, this also explains
why the standard deviation of the generation measures is so low compared to
other measures: the caption generators were conservatively using a handful of
words, resulting in a relatively low degree of variation in the captions.

In the concluding section, we turn to a more thorough interpretation of
these results. Our conclusion, however, must be that models in which image
features are included early in the generation process perform poorly, relative
to those models based on injecting or merging image features later. It appears,

21

CIDEr METEOR ROUGE-L

merge-add-srnn 0.337 (0.009) 0.157 (0.002) 0.397 (0.003)
merge-mult-lstm 0.337 (0.004) 0.158 (0.002) 0.399 (0.004)
inject-post-srnn 0.333 (0.008) 0.156 (0.002) 0.392 (0.003)
merge-add-lstm 0.331 (0.011) 0.156 (0.002) 0.394 (0.002)
mao 0.325 (0.012) 0.156 (0.003) 0.395 (0.006)
merge-concat-lstm 0.320 (0.013) 0.155 (0.001) 0.393 (0.003)
inject-post-lstm 0.320 (0.007) 0.152 (0.001) 0.386 (0.003)
merge-mult-srnn 0.319 (0.009) 0.155 (0.001) 0.393 (0.004)
inject-par-lstm 0.318 (0.006) 0.152 (0.001) 0.388 (0.003)
merge-concat-srnn 0.316 (0.006) 0.152 (0.001) 0.388 (0.001)
inject-par-srnn 0.297 (0.007) 0.148 (0.001) 0.381 (0.004)
inject-pre-lstm 0.291 (0.009) 0.150 (0.004) 0.383 (0.008)
vinyals 0.290 (0.005) 0.148 (0.002) 0.379 (0.002)
inject-init-lstm 0.281 (0.003) 0.146 (0.000) 0.379 (0.003)
inject-init-srnn 0.256 (0.007) 0.147 (0.001) 0.381 (0.003)
inject-pre-srnn 0.238 (0.005) 0.144 (0.003) 0.371 (0.008)
langmodel-srnn 0.085 (0.001) 0.097 (0.011) 0.260 (0.027)
langmodel-lstm 0.070 (0.010) 0.090 (0.001) 0.260 (0.028)

(a) CIDEr, METEOR, and ROUGE-L results.

BLEU-1 BLEU-2 BLEU-3 BLEU-4
merge-add-srnn 0.578 (0.008) 0.385 (0.005) 0.254 (0.005) 0.164 (0.005)
merge-mult-lstm 0.575 (0.008) 0.390 (0.007) 0.260 (0.005) 0.170 (0.005)
merge-add-lstm 0.569 (0.005) 0.378 (0.003) 0.249 (0.004) 0.162 (0.005)
merge-concat-lstm 0.569 (0.004) 0.374 (0.001) 0.243 (0.002) 0.156 (0.003)
merge-mult-srnn 0.562 (0.004) 0.379 (0.005) 0.252 (0.006) 0.166 (0.004)
mao 0.561 (0.009) 0.377 (0.009) 0.249 (0.009) 0.162 (0.009)
inject-post-srnn 0.555 (0.006) 0.375 (0.003) 0.249 (0.003) 0.164 (0.003)
merge-concat-srnn 0.551 (0.004) 0.366 (0.004) 0.241 (0.003) 0.156 (0.002)
inject-init-srnn 0.546 (0.003) 0.356 (0.001) 0.229 (0.001) 0.147 (0.001)
inject-par-lstm 0.544 (0.004) 0.365 (0.005) 0.240 (0.006) 0.155 (0.006)
inject-post-lstm 0.542 (0.012) 0.366 (0.008) 0.242 (0.006) 0.158 (0.005)
inject-pre-lstm 0.540 (0.019) 0.357 (0.013) 0.230 (0.008) 0.147 (0.007)
inject-pre-srnn 0.535 (0.013) 0.347 (0.008) 0.224 (0.006) 0.144 (0.005)
vinyals 0.535 (0.007) 0.354 (0.006) 0.228 (0.005) 0.144 (0.004)
inject-init-lstm 0.530 (0.004) 0.350 (0.004) 0.223 (0.004) 0.141 (0.004)
inject-par-srnn 0.529 (0.008) 0.354 (0.006) 0.234 (0.003) 0.151 (0.003)
langmodel-srnn 0.415 (0.044) 0.192 (0.027) 0.106 (0.002) 0.064 (0.005)
langmodel-lstm 0.401 (0.026) 0.176 (0.039) 0.099 (0.031) 0.059 (0.019)

(b) BLEU-1, BLEU-2, BLEU-3, and BLEU-4 results.

Table 4: Results of the caption generation metrics. Higher is better.

then, that visual information disrupts the processing of linguistic information, as
evidenced by the better performance of merge and post-inject models, compared
to pre- and par-inject. A better strategy seems to be to encode visual and
linguistic information separately prior to the creation of a mixed, or multimodal,
representation.

6 Conclusion

This paper presented a systematic evaluation of a number of variations on archi-
tectures for image caption generation and retrieval. The primary focus was on
the distinction between what we have termed ‘inject’ and ‘merge’ architectures.
The former type of model mixes image and language information, training an
RNN to vectorise an image-language prefix mixture. By contrast, merge archi-
tectures maintain a separation between an RNN subnetwork, which encodes a
linguistic string, and the image vector, merging them late in the process, prior
to a prediction module. These models are therefore compatible with approaches
to image caption generation using a ‘multimodal’ layer (Kiros et al., 2014b,a,
Mao et al., 2014, 2015a, Hendricks et al., 2016, Song and Yoo, 2016). A re-
lated, though distinct question we addressed concerns the stage at which image

22

merge-concat-srnn
mao
merge-concat-lstm
merge-add-lstm
inject-post-lstm
merge-add-srnn
inject-par-lstm
inject-par-srnn
merge-mult-lstm
inject-init-lstm
merge-mult-srnn
inject-pre-lstm
vinyals
inject-post-srnn
inject-init-srnn
inject-pre-srnn
langmodel-srnn
langmodel-lstm
human-all
human-one

known vocab used
6.560% (0.344%)

6.339% (0.124%)
6.321% (0.370%)
6.231% (0.115%)
6.169% (0.191%)
5.926% (0.193%)
5.795% (0.094%)
5.737% (0.647%)
5.710% (0.234%)
5.539% (0.154%)
5.391% (0.441%)
5.341% (0.173%)
5.332% (0.464%)
5.260% (0.585%)
3.444% (0.199%)
3.242% (0.138%)
0.121% (0.000%)
0.117% (0.017%)
56.771%
32.520%

Unigram entropy

5.756 (0.077)
5.815 (0.015)
5.729 (0.057)
5.736 (0.012)
5.931 (0.053)
5.625 (0.047)
.832 (0.035)
722 (0.166)
.591 (0.069)
798 (0.041)
.567 (0.076)
.768 (0.076)
.787 (0.066)
.646 (0.098)
.413 (0.045)
.391 (0.011)
.154 (0.023)
.081 (0.242)
8.210

8.109

[RERRC R RO R W WO R e e

bigram entropy
7.596 (0.149)
7.754 (0.059)
7.620 (0.141)
7.620 (0.034)
7.894 (0.061)
7.399 (0.100)
7.756 (0.070)
7.548 (0.211)
7.402 (0.104)
7.725 (0.055)
7.307 (0.115)
7.689 (0.106)
7.689 (0.136)
7.465 (0.182)
7.092 (0.089)
6.970 (0.098)
3.057 (0.080)
2.992 (0.148)
12.428
11.846

Table 5: Results of the caption diversity metrics. Higher is better.

R@1
mao 21.927% (0.390%)
merge-add-srnn 21.913% (0.204%)

R@5
47.647% (0.577%)
47.740% (0.343%)

R@10
59.813% (0.294%)
59.420% (0.412%)

merge-concat-srnn
merge-concat-lstm
merge-add-lstm
inject-post-srnn
merge-mult-lstm
merge-mult-srnn
inject-post-lstm
inject-par-srnn
inject-par-lstm
inject-pre-lstm
vinyals
inject-init-lstm
inject-init-srnn
inject-pre-srnn

21.833% (0.141%)
21.573% (0.639%)
21.233% (0.213%)
20.987% (0.312%)
20.947% (0.542%)
18.900% (0.283%)
18.447% (0.571%)
18.040% (0.142%)
17.247% (0.184%)
14.860% (0.212%)
14.787% (0.360%)
14.513% (0.148%)
7.233% (0.431%)
7.100% (0.435%)

47.420% (0.445%)
47.313% (0.262%)
46.773% (0.710%)
46.233% (0.236%)
46.520% (0.107%)
43.820% (0.242%)
43.733% (0.766%)
42.120% (0.261%)
41.727% (0.407%)
37.620% (0.306%)
37.773% (0.186%)
37.447% (0.346%)
22.093% (0.670%)
22.267% (0.451%)

59.647% (0.446%)
59.480% (0.247%)
58.793% (0.238%)
58.653% (0.217%)
58.600% (0.482%)
56.033% (0.554%)
55.913% (0.457%)
54.993% (0.489%)
54.333% (0.421%)
50.287% (0.520%)
50.660% (0.157%)
49.780% (0.748%)
33.013% (0.591%)
32.980% (0.425%)

Table 6: Results of the image retrieval metrics. Language model architectures
were left out as they cannot be used to retrieve. Legend: R@1,5,10 - recall at
1, 5, 10. Higher is better.

information is incorporated in the generation process, with inject architectures
permitting a variety of strategies for early or late insertion.

While both types of architectures have been exploited in the literature, the
inject architecture has been more popular. Yet, there has been little systematic
evaluation of its advantages compared to merge. Our experiments show that
the late binding architectures such as merge and post-inject are superior to
early and mixed binding architectures such as init-inject, pre-inject, and par-
inject, in any of the configurations used in the experiments. This is the case
whether the models are evaluated on the basis of perplexity, n-gram overlap
against the test set, or vocabulary diversity (though all models turn out to be
highly conservative on the latter set of measures). Late binding architectures
also perform better in image retrieval tasks.

Two main conclusions can be drawn from this work. First, our results show
that treating image features on a par with linguistic information, and ‘mixing’
them in the sequence processing part of the model, is not optimal. Rather, as
in the late binding models, it seems better to separate the linguistic encoding
and image features, merging them at the end. In short, in multimodal tasks

23

where language is being grounded in visual information, the latter should not
be treated as ‘another word’. Another explanation for why late binding should
be better than early binding is because by treating the images as words, the RNN
is effectively having to deal with a much larger vocabulary, since the vocabulary
would include all the images in the training set apart from all the different words.
This can compromise performance. In general it seems that introducing ‘extra’
information to the RNN disrupts the RNN’s encoding process, which can be
seen from the fact that par-inject architectures perform worse than post-inject.

A second set of conclusions is related to our view of the function of RNNs.
As noted in Section 2, we postulate two perspectives, a continuous and a discon-
tinuous view. The latter makes one important feature of RNNs explicit: at any
time step, the RNN is encoding a prefix, and the result is used to predict the
next element in the sequence. Thus, the RNN is not really ‘generating text’;
were the RNN truly generating the text, then it would need to know which
image it was generating text for, as in an early binding model, but this seems
to degrade performance compared to the late binding alternative. Against this
background, it becomes clearer why late binding architectures outperform early
binding ones: prediction in these architectures is based on a language prefix
and an image, which are put together prior to the prediction stage. In sum, it
is better to keep the RNN exclusively for encoding linguistic information, that
is, interpreting sequences for other layers in the neural network. It would seem
that making the RNN do more than simply encoding a linguistic sequence is
not ideal.

The work presented here opens up some avenues for future research. As
we noted at the outset, there are some similarities between our view of deep
learning architectures and previous work on neural machine translation models
(Sutskever et al., 2014, Bahdanau et al., 2014). In future work, we hope to in-
vestigate whether conditioning by merge is also the best method of conditioning
the sentence generator in a language translation model or a model for other
sequence-to-sequence tasks, such as question answering. This would also shed
light on the similarities and differences between a range of NLP tasks, as shown
by other work on sequence-to-sequence modelling (Sutskever et al., 2014).

Furthermore, by keeping language and image information separate, merge
architectures lend themselves to potentially greater portability and ease of train-
ing. For example, it should be possible in principle to take the parameters of
the RNN and embedding layers of a general text language model and transfer
them to the corresponding layers in a caption generator. This would reduce
training time as it would avoid learning the RNN weights and the embedding
weights of the caption generator from scratch. As understanding of deep learn-
ing architectures evolves in the NLP community, one of our goals should be to
maximise the degree of transferability among model components.

24

References

Anderson, P., Fernando, B., Johnson, M., and Gould, S. (2016). SPICE: Se-
mantic Propositional Image Caption FEvaluation, pages 382-398. Springer
International Publishing, Cham.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural Machine Translation by
Jointly Learning to Align and Translate. CoRR, abs/1409.0473.

Banerjee, S. and Lavie, A. (2005). METEOR: An automatic metric for MT
evaluation with improved correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evaluation measures for machine
translation and/or summarization, volume 29, pages 65-72.

Bernardi, R., Cakici, R., Elliott, D., Erdem, A., Erdem, E., Ikizler-Cinbis, N.,
Keller, F., Muscat, A., and Plank, B. (2016). Automatic Description Gener-
ation from Images: A Survey of Models, Datasets, and Evaluation Measures.
Journal of Artificial Intelligence Research, 55:409-442.

Chen, X. and Zitnick, C. L. (2014). Learning a recurrent visual representation
for image caption generation. CoRR, abs/1411.5654.

Chen, X. and Zitnick, C. L. (2015). Mind’s eye: A recurrent visual represen-
tation for image caption generation. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Institute of Electrical and Electron-
ics Engineers (IEEE).

Chung, J., Giilgehre, C., Cho, K., and Bengio, Y. (2014). Empirical Evalu-
ation of Gated Recurrent Neural Networks on Sequence Modeling. CoRR,
abs/1412.3555.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Ima-
geNet: A large-scale hierarchical image database. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition. Institute of Electrical and Elec-
tronics Engineers (IEEE).

Devlin, J., Cheng, H., Fang, H., Gupta, S., Deng, L., He, X., Zweig, G., and
Mitchell, M. (2015). Language Models for Image Captioning: The Quirks and
What Works. CoRR, abs/1505.01809.

Donahue, J., Hendricks, L. A., Guadarrama, S., Rohrbach, M., Venugopalan,
S., Saenko, K., and Darrell, T. (2015). Long-term Recurrent Convolutional
Networks for Visual Recognition and Description. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Institute of Electrical
and Electronics Engineers (IEEE).

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Aistats, volume 9, pages 249-256.

Harnad, S. (1990). The symbol grounding problem.

25

Hendricks, L. A., Venugopalan, S., Rohrbach, M., Mooney, R., Saenko, K.,
and Darrell, T. (2016). Deep Compositional Captioning: Describing Novel
Object Categories without Paired Training Data. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Institute of Electrical
and Electronics Engineers (IEEE).

Hessel, J., Savva, N., and Wilber, M. J. (2015). Image Representations and
New Domains in Neural Image Captioning. CoRR, abs/1508.02091.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8):1735-1780.

Hodosh, M., Young, P., and Hockenmaier, J. (2013). Framing Image Descrip-
tion as a Ranking Task: Data, Models and Evaluation Metrics. Journal of
Artificial Intelligence Research, 47(1):853-899. Flickr8k.

Karpathy, A. and Fei-Fei, L. (2015). Deep Visual-Semantic Alignments for Gen-
erating Image Descriptions. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). Institute of Electrical and Electronics En-
gineers (IEEE).

Kiros, R., Salakhutdinov, R., and Zemel, R. S. (2014a). Multimodal neural
language models. In Proceedings of The 31st International Conference on
Machine Learning, page 595603.

Kiros, R., Salakhutdinov, R., and Zemel, R. S. (2014b). Unifying visual-
semantic embeddings with multimodal neural language models. arXiv
preprint arXiv:1411.2539.

Krause, J., Johnson, J., Krishna, R., and Fei-Fei, L. (2016). A hierarchical
approach for generating descriptive image paragraphs. In ArXiv.

Lin, C.-Y. and Och, F. J. (2004). Automatic evaluation of machine translation
quality using longest common subsequence and skip-bigram statistics. In
Proceedings of the 42nd Annual Meeting on Association for Computational
Linguistics - ACL 04. Association for Computational Linguistics (ACL).

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar,

P., and Zitnick, C. L. (2014). Microsoft COCO: Common objects in context.
In Computer Vision — ECCV 2014, pages 740-755. Springer Nature.

Liu, S., Zhu, Z., Ye, N., Guadarrama, S., and Murphy, K. (2016). Optimiza-
tion of image description metrics using policy gradient methods. CoRR,
abs/1612.00370.

Lu, J., Xiong, C., Parikh, D., and Socher, R. (2016). Knowing when to
look: Adaptive attention via A visual sentinel for image captioning. CoRR,
abs/1612.01887.

26

Ma, S. and Han, Y. (2016). Describing images by feeding LSTM with struc-
tural words. In 2016 IEEFE International Conference on Multimedia and Ezpo
(ICME). Institute of Electrical and Electronics Engineers (IEEE).

Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., and Yuille, A. (2015a). Deep
Captioning with Multimodal Recurrent Neural Networks (m-RNN). ICLR.

Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., and Yuille, A. (2015b). Learn-
ing like a Child: Fast Novel Visual Concept Learning from Sentence Descrip-
tions of Images. In 2015 IEEFE International Conference on Computer Vision
(ICCV), Santiago, Chile. Institute of Electrical and Electronics Engineers
(IEEE).

Mao, J., Xu, W., Yang, Y., Wang, J., and Yuille, A. L. (2014). Explain images
with multimodal recurrent neural networks. NIPS Deep Learning Workshop.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient Estimation
of Word Representations in Vector Space. CoRR, abs/1301.3781.

Mnih, A. and Hinton, G. (2007). Three new graphical models for statistical
language modelling. In Proceedings of the 24th international conference on
Machine learning - ICML ’07. Association for Computing Machinery (ACM).

Nina, O. and Rodriguez, A. (2015). Simplified LSTM unit and search space
probability exploration for image description. In 2015 10th International
Conference on Information, Communications and Signal Processing (ICICS).
Institute of Electrical and Electronics Engineers (IEEE).

Oruganti, R. M., Sah, S., Pillai, S., and Ptucha, R. (2016). Image description
through fusion based recurrent multi-modal learning. In 2016 IEEE Inter-
national Conference on Image Processing (ICIP). Institute of Electrical and
Electronics Engineers (IEEE).

P. Kingma, D. and Ba, J. (2014). Adam: A Method for Stochastic Optimization.
CoRR, abs/1412.6980.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: a method
for automatic evaluation of machine translation. In Proceedings of the 40th
annual meeting on association for computational linguistics, pages 311-318.
Association for Computational Linguistics.

Pascanu, R., Mikolov, T., and Bengio, Y. (2012). Understanding the exploding
gradient problem. Computing Research Repository (CoRR) abs/1211.5063.

Rennie, S. J., Marcheret, E., Mroueh, Y., Ross, J., and Goel, V. (2016). Self-
critical sequence training for image captioning. CoRR, abs/1612.00563.

Roy, D. (2005). Semiotic schemas: A framework for grounding language in
action and perception. Artificial Intelligence, 167(1-2):170-205.

27

Simonyan, K. and Zisserman, A. (2014). Very Deep Convolutional Networks for
Large-Scale Image Recognition. CoRR, abs/1409.1556.

Song, M. and Yoo, C. D. (2016). Multimodal representation: Kneser-ney
smoothing/skip-gram based neural language model. In 2016 IEEE Inter-
national Conference on Image Processing (ICIP). Institute of Electrical and
Electronics Engineers (IEEE).

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, 1., and Salakhutdinov,
R. (2014). Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1):1929-1958.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning
with neural networks. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N. D., and Weinberger, K. Q., editors, Advances in Neural Information Pro-
cessing Systems 27, pages 3104-3112. Curran Associates, Inc.

Theano Development Team (2016). Theano: A Python framework for fast
computation of mathematical expressions. arXiv e-prints, abs/1605.02688.

Vedantam, R., Zitnick, C. L., and Parikh, D. (2015). CIDEr: Consensus-based
image description evaluation. In 2015 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). Institute of Electrical and Electronics
Engineers (IEEE).

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015). Show and tell: A
neural image caption generator. In 2015 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). Institute of Electrical and Electronics
Engineers (IEEE).

Wang, M., Song, L., Yang, X., and Luo, C. (2016). A parallel-fusion RNN-LSTM
architecture for image caption generation. In 2016 IEEFE International Con-
ference on Image Processing (ICIP). Institute of Electrical and Electronics
Engineers (IEEE).

Wu, Q., Shen, C., van den Hengel, A., Liu, L., and Dick, A. R. (2015). Image
captioning with an intermediate attributes layer. CoRR, abs/1506.01144.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A. C., Salakhutdinov, R., Zemel,
R. S., and Bengio, Y. (2015). Show, Attend and Tell: Neural Image Caption
Generation with Visual Attention. In Proceedings of The 32nd International
Conference on Machine Learning, volume abs/1502.03044, page 20482057.

Yang, Z., Yuan, Y., Wu, Y., Salakhutdinov, R., and Cohen, W. W. (2016).
Encode, review, and decode: Reviewer module for caption generation. CoRR,
abs/1605.07912.

Yao, T., Pan, Y., Li, Y., Qiu, Z., and Mei, T. (2016). Boosting image captioning
with attributes. CoRR, abs/1611.01646.

28

You, Q., Jin, H., Wang, Z., Fang, C., and Luo, J. (2016). Image captioning
with semantic attention. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Institute of Electrical and Electronics Engineers
(IEEE).

Young, P., Lai, A., Hodosh, M., and Hockenmaier, J. (2014). From image de-
scriptions to visual denotations: New similarity metrics for semantic inference
over event descriptions. Transactions of the Association for Computational
Linguistics, 2:67-78.

Zhou, L., Xu, C., Koch, P., and Corso, J. J. (2016). Image caption generation
with text-conditional semantic attention. CoRR, abs/1606.04621.

29

