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Summary
The success of MPAs in conserving fishing resources and protecting marine
biodiversity relies strongly on how well they meet their planned (or implicit)
management goals. From a review of empirical studies aiming at assessing the
ecological effects of Mediterranean and Macaronesian MPAs, we conclude that
establishing an MPA is successful for (i) increasing the abundance/biomass, (ii)
increasing the proportion of larger/older individuals, and (iii) enhancing the
fecundity of commercially harvested populations; also, MPAs demonstrated to be
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effective for (iv) augmenting local fishery yields through biomass exportation from
the protected area, and (v) inducing shifts in fish assemblage structure by increasing
the dominance of large predator species. However, the attraction for tourism and
diving due to ecological benefits of protection can cause damages likely to reverse
some of the MPA effects. Other expected effects are more subject to uncertainty,
and hence need more research, such as (vi) causing density-dependent changes in
life history traits and (vii) protecting the recruitment of commercially important
species, (viii) protecting marine biodiversity (including genetic diversity), (ix)
causing ecosystem-wide effects such as trophic cascades, and (x) increasing
community and ecosystem stability, thus promoting resilience and faster recovery
from disturbance. Meta-analysis of data arising from these case studies are used to
establish the overall effect of MPAs, and its relationship to MPA features, such as size
of no-take area or time since protection. Based on the review and the meta-
analyses, specific recommendations are provided for MPA management, regarding
the establishment of goals and objectives, site selection, MPA design and zoning,
planning, and monitoring. Finally, a series of recommendations for MPA research are
offered to drive future research in MPA issues in the Mediterranean and Macaronesia.
& 2008 Elsevier GmbH. All rights reserved.
Introduction

Coastal ecosystems are among the most produc-
tive of the planet, and play a major role in coastal
fisheries as nursery and feeding grounds (Martinez
et al., 2007). Coastal ecosystems are particularly
vulnerable to human actions causing the erosion of
marine biodiversity (Halpern et al., 2008; Jackson,
2008), and the Mediterranean Sea is no exception
(RAC/SPA, 2003; European Environment Agency,
2006). There is a general consensus on the role of
over-fishing as the primary anthropogenic distur-
bance causing local extinctions (Jackson et al.,
2001). Albeit oceans have lost much of their fish
biomass and megafauna due to hunting, other
causes can also explain marine species losses (Dulvy
et al., 2003). Key coastal habitats are being lost
globally at rates 2–10 times faster than those in
tropical forests (Balmford et al., 2005; Lotze et al.,
2006). Other sources of erosion of marine biodi-
versity are pollution (European Environment
Agency, 2006), invasion by alien species (Gollasch,
2006) and catastrophic shifts induced by global
warming (Harley et al., 2006). Importantly, how-
ever, over-fishing is likely to be the main facilitat-
ing factor for the synergistic effects of all other
sources of erosion of marine biodiversity (Jackson
et al., 2001). Recently, Worm et al. (2006) stated
that unless corrective measures are implemented
with urgency, stocks of fish species of commercial
interest will have completely collapsed by 2050,
causing upheavals in the global ecosystem through
the loss of particular functions played by key
species (Cury et al., 2008; but see Longhurst,
2007).

The solutions proposed by managers to address
this near-insurmountable problem are multiple
(Pauly, 2005; Pauly et al., 2002) and rely mainly
on (1) reducing fishing capacity through traditional
fisheries management measures (e.g. quotas, re-
ducing the fishing effort, regulating fishing equip-
ment) and (2) developing the internationally
advocated ecosystem-based fisheries management
(EBFM) approach, for which the overall ecosystem
complexity is perceived as critical for sustainable
use of marine resources (Cury, 2004; Jennings,
2004). The first set of strategies have not provided
the anticipated effects except in a few cases
worldwide, the causes for that being rooted in
multiple factors (Beddington et al., 2007; Dankel
et al., 2008; Daw & Gray, 2005; Hilborn, 2004;
Mace, 2004). For its part, EBFM is still ex-
ploring practical ways of effective implementation
(Francis et al., 2007; Longhurst, 2006; Misund &
Skjoldal, 2005; Sherman et al., 2005; Smith et al.,
2007).

Marine protected areas (MPAs) have been advo-
cated as a major tool for both protection of marine
biodiversity and conservation of marine resources
(Lubchenco et al., 2003; Pauly, 2005; Roberts
et al., 2005). Marine spatial planning of human
activities through the setting up of MPAs is viewed
as a tool for applying an EBFM (Agardi, 2005;
Browman & Stergiou, 2004; Gilliland & Laffoley,
2008; Pauly et al., 2002; Sissenwine & Murawski,
2004). In the Mediterranean, the number of MPAs
has been growing since the first establishment of
Port-Cros national park in 1963 (Badalamenti et al.,
2000; Francour et al., 2001; Fraschetti et al. 2005),
and a conservative estimate today would be of
some 94 MPAs (Abdulla et al., in press), which
however protect less than 1% of the Mediterranean
coastal area. These figures, which are representa-
tive of the situation worldwide, make it very
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difficult to reach the international targets to which
the EU has committed itself, for example the 2012
target adopted in the World Summit on Sustainable
Development (WSSD) (Wood et al., 2008).

The anticipated ecological effects of MPAs are
multiple and influence populations, communities
and ecosystems (Allison et al., 1998; Bohnsack,
1996; Dugan & Davis, 1993; Garcı́a-Charton &
Pérez-Ruzafa, 1999; Garcı́a-Charton et al., 2000;
Halpern, 2003; Jones et al., 1992; Palumbi, 2001;
Pelletier et al., 2005; Pinnegar et al., 2000; Plan
Development Team, 1990; Planes et al., 2000;
Roberts & Polunin, 1991; Rowley, 1994; Russ, 2002;
Sánchez-Lizaso et al., 2000; Ward et al., 2001).
However, not all these expected effects have been
empirically demonstrated, or, in some cases, even
assessed (Hilborn et al., 2004; Pelletier et al.,
2005, 2008; Sale et al., 2005); moreover, the
magnitude of the response to protection may vary
based on geographic location, the characteristics of
the species, the type of communities within the
MPA, and the design features of the MPA (Blyth-
Skyrme et al., 2006; Claudet et al., 2008).

Within this context, the European Commission
funded a 3-year (2005–2008) research programme
called ‘‘European Marine Protected Areas as tools for
FISHeries management and conservation’’ (EMPAFISH)
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Figure 1. Location of MPAs included as case studies in the E
Tabarca; (3) San Antonio; (4) Serra Gelada – Benidorm islets;
Medes Is.; (8) Cerbère-Banyuls; (9) Parc marin de la Côte Ble
(12) Ustica is.; (13) Gulf of Castellammare; (14) La Graciosa –

las Calmas; (16) Monte da Guia – Faial; (17) Formigas islets – D
around Malta; (20) Rdum Majjiesa – Ras Ir-Raheb.
to: (i) investigate the potential of different regimes
of MPAs in southern Europe as measures to protect
sensitive and endangered species, habitats and
ecosystems from the negative effects of fishing; (ii)
develop quantitative methods for assessing the
effects of MPAs; and (iii) provide the EU with a set
of integrated measures and policy proposals for the
implementation of MPAs as fisheries and ecosystem
management tools. The work carried out during the
project was mainly based on existing data on
ecological, fisheries and socio-economic aspects
of already established and mostly well-studied
MPAs (Figure 1). Among other tasks, the EMPAFISH
partners reviewed the ecological effects of MPAs
and conducted meta-analyses on the compiled
database. The aims of the present paper are to (i)
review the research made to date on the ecological
effects of MPAs in the Mediterranean and in the
Macaronesian archipelagos and (ii) present the
results of the meta-analyses of the EMPAFISH case
studies. Ultimately, the goal is to provide an answer
to the question: ‘‘Do the Mediterranean and
Macaronesian MPAs accomplish their expected
ecological effects?’’ and based on the above
results, to provide recommendations for MPA
management and research in this geographical
context.
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MPAFISH project. (1) Cabo de Palos – Islas Hormigas; (2)
(5) Columbretes is.; (6) Anti-trawling zones (SE Spain); (7)
ue; (10): Sinis – Mal di Ventre; (11) Bouches de Bonifacio;
Islotes del norte de Lanzarote; (15) La Restinga – Mar de
ollabarat bank; (18) Tuscany archipelago; (19) 25-NM FMZ
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Table 1. Expected ecological effects of MPAs (modified
from Ward et al., 2001; Pelletier et al., 2005).

Population level 1. Protecting critical spawning stock
biomass of species from fishery-
related depletion

2. Rehabilitating population
structure

3. Increasing fecundity and
production of eggs and larvae

4. Density-dependent changes in life
history traits and parasitism

5. Exportation of biomass
6. Protection of recruitment

Community and
habitat level

7. Restoration of/changes in
assemblage structure

8. Protection of biodiversity
9. Indirect effects on algae and

invertebrates
10. Increasing ecosystem stability

and resilience
11. Detrimental effects due to non-

exploitative uses

J.A. Garcı́a-Charton et al.196
Part A – Ecological effects of Atlanto-
Mediterranean MPAs: a literature review

Ward et al. (2001) synthesised the literature on
MPAs and listed all the (i) ecological and fisheries-
related, (ii) economic, and (iii) social effects that
can be expected from the implementation of an
MPA (see also Pelletier et al., 2005). Ecological
effects were distinguished by these authors accord-
ing to those acting on populations, communities,
ecosystems, and habitats (Table 1). Many studies
have been made to date to assess such ecological
effects in Atlantic and Mediterranean MPAs (Planes
et al., 2008). This set of evidence (either positive,
neutral or negative) constitutes a strong body of
data which can be used to assess the pertinence of
MPAs as a tool for fisheries management and
ecosystem conservation. In this section we review
these results.
Expected ecological effects at population
level

Protecting critical spawning stock biomass of
species from fishery-related depletion

Most studies on Mediterranean and Macaronesian
MPAs made to date showed higher abundance and/
or biomass within MPAs compared to unprotected
sites, either for target species or for fish assem-
blages as a whole. A majority of studies focused on
fish populations (e.g. Bell, 1983; Claudet et al.,
2006a; Garcı́a-Charton et al., 2004; Garcı́a-Charton
& Planes, 2002; Garcı́a-Rubies & Zabala, 1990;
Guidetti et al., 2005; Harmelin et al., 1995;
Harmelin-Vivien et al., 2008; La Mesa & Vacchi,
1999; Macpherson et al., 2002; Reñones et al.,
2001). As further examples, Garcı́a-Charton et al.
(2007) have measured an important increase in
abundance and biomass of target species in Cabo de
Palos – Islas Hormigas marine reserve (Murcia,
Spain) after 11 years of protection (Figure 2). For
its part, in La Graciosa marine reserve (Lanzarote,
Canary archipelago, Spain), protection measures
have contributed to the increase and/or the
maintenance of the populations of certain heavily
exploited fishes, such as Sparisoma cretense,
Serranus atricauda and, to a lesser extent, Mycter-
operca fusca (Falcón et al., 2007b) (Figure 3).
Dimech et al. (in press) attributed differences in
the demersal assemblages of the Maltese outer
continental shelf inside and outside the 25-nautical
mile Fisheries Management Zone (FMZ) (an MPA
established for fisheries conservation that has been
in existence in one form or another since 1971;
Camilleri, 2003) around the Maltese Islands to
different fishing pressures inside (where fishing is
strictly regulated) and outside (where there are no
restrictions on fishing) the FMZ. These authors
found quantitative differences between the two
continental shelf assemblages with species groups
sensitive to trawling, such as elasmobranchs (for
example, Scyliorhinus canicula and Raja clavata),
being very common inside and practically absent
outside the 25 NM FMZ.

Other harvested populations may benefit from
protection measures. For example, Goñi et al.
(2001) showed that, depending on the season,
densities of spiny lobster (Palinurus elephas) were
6–20 times greater within the Columbretes marine
reserve (Spain) than in comparable fished areas.
Similarly, Follesa et al. (2008) found a progressive
percentage increase of P. elephas biomass values
both inside a re-stocking area in western Sardinia
and in surrounding zones once the protection
measures were implemented. This was also the
case with the giant limpet (Patella ferruginea),
once common in the Mediterranean, but which has
been driven to near extinction, mostly by human
collection (Laborel-Deguen & Laborel, 1991; Scotti
& Chemello, 2000). Remnant populations occur
mostly on islands, including in Capraia Island
(Tuscany Archipelago, Italy), where comparisons
of the abundances of these populations inside and
outside marine reserves (Benedetti-Cecchi et al.
unpublished data) show the importance of MPAs in
sustaining viable populations of this endangered
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Figure 2. Mean abundance against time of some large predatory species, and considering all the piscivouros species
together, in the Cabo de Palos – Islas Hormigas marine reserve (K), and in an unprotected control locality (Águilas) (J)
in the coast of Murcia (SE Spain) after the establishment of protection measures in 1995 (from Garcı́a-Charton et al.,
2007); 2nd-order polynomial regressions, and adjusted R2 and P-value of regressions for Cabo de Palos data are also
shown.
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species (Figure 4). Analogous results have been
obtained for the same species by Meier (2003) in
Bouches de Bonifacio marine park (Corsica,
France). Also, in Cerbère-Banyuls natural marine
reserve (France) Jacquet (1999) found larger
individuals of Mytilus galloprovincialis within the
protected area than in neighbouring sites.

As a result of halting human harvesting on
echinoderm species, the density of edible sea
urchins (Paracentrotus lividus) was three times
higher within the Cerbère-Banyuls natural marine
reserve, and the average test diameter was greater
(Lecchini et al., 2002). Similar results were
obtained in Ustica marine reserve (Italy) (Gianguzza
et al., 2006) and in the Capo Caccia e Isola Piana
marine reserve (Sardinia, Italy) (Pais et al., 2007).
Guidetti et al. (2004) provided evidence that intense
harvesting of P. lividus in southern Apulia (SE Italy)
may cause reduction in average size and biomass of
this echinoid because of the selective harvesting
of the largest individuals; however, densities of
P. lividus in fished and control areas did not change.
In another study on Miramare MPA (Italy), Guidetti
et al. (2005) failed to find an effect of protection on
sea urchins. However, compared to most other
Mediterranean MPAs which consist predominantly
of rocky bottoms, Miramare marine reserve is a very
particular case since it consists of sandy bottoms and
coastal defence works (breakwaters), and predatory
fishes could primarily feed upon other invertebrates
associated with muddy–sandy substrates in the
vicinity of the artificial structures, in contrast to
natural rocky habitats where they are known to prey
upon sea urchins.

Other studies carried out in the Mediterranean
give results contrary to expectations, and some-
times conflicting results are obtained by different
workers in the same MPAs. For example, Dufour
et al. (1995) failed to find the reserve effect
described 12 years before by Bell (1983) in Cerbère-
Banyuls natural marine reserve. Similarly, Palmeri
(2004) was not able to measure a significant effect
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and outside La Graciosa marine reserve (Canary Islands, Spain) (from Falcón et al., 2007b). Statistical significance of
the interaction between temporal and spatial factors is indicated for each species.
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of protection on fish assemblages in Ustica reserve
(Sicily, Italy) despite a positive effect found
previously in the same locality by La Mesa and
Vacchi (1999). Along the same lines, Tunesi et al.
(2006) did not detect a clear reserve effect on fish
fauna in ‘Cinque Terre’ MPA (Ligurian Sea, Italy).
Some of these controversial results could be linked
to the MPA not having been in existence for a
sufficiently long time to allow fish populations time
to recover (Garcı́a-Charton et al., 2004). For other
studies, it may be problems with sampling design;
studies may need to be made at broader temporal
and spatial scales to determine with confidence
whether the MPA had actually been effective in
enhancing fish abundance (Fraschetti et al., 2002;
Garcı́a-Charton & Pérez-Ruzafa, 1999; Garcı́a-Char-
ton et al., 2000; Guidetti, 2002).

Alternatively, in some cases these equivocal
responses of protected populations could be a
masking effect of habitat structure and depth, as
both environmental factors exert a great influence
on fish assemblages (Garcı́a-Charton et al., 2000,
2004). As an illustration of this, Garcı́a-Charton and
Planes (2002) effectively detected a significant
reserve effect on ichtyofauna at Cerbère-Banyuls
natural marine reserve, thus corroborating the
result of Bell (1983) (and contrary to Dufour
et al., 1995); a distinct analysis of the data of
Garcı́a-Charton and Planes (2002) at a larger spatial
scale using multivariate regression trees (Claudet
et al. unpublished work) confirms that the effects
of protection are more evident at shallow depths
(o10m), probably as a consequence of a re-
colonisation of shallow habitats in protected sites,
while in deeper sites habitat structure is more
important in explaining the observed differences.
Therefore, these and other environmental factors
(e.g. wind exposure) may enhance or reduce the
protection effects in any MPA.

As patterns of recovery of target fish are also
related to MPA management policies, a further cause
of responses of target populations, which are
contrary to expectations, is insufficient surveillance
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(Guidetti et al., 2008). If enforcement is lax, this
will lower the perceived effectiveness of manage-
ment plans, will increase the lack of compliance
with restrictions, and will likely lead to the
conclusion that marine reserves are ineffective.

An additional issue needs to be addressed, which
is the effects of MPAs on fish density and biomass at
regional scales. The positive effects of MPAs on fish
populations are likely to involve two mechanisms:
one is the positive effect of protection on fish
stocks discussed so far; the other involves a
redistribution effect, whereby MPAs would attract
fish from other areas by providing a safer environ-
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ment. These are two non-mutually exclusive
mechanisms through which protection may oper-
ate, but positive effects of MPAs on regional fish
abundances can only be expected if redistribution
effects are negligible. Future studies on MPAs
should therefore be designed to ensure comparison
of spatial patterns in fish abundance and biomass
from unprotected sites in geographical areas with
MPA networks and similar, unprotected sites, in
geographical areas far from MPAs. This approach
will help to evaluate the results of large-scale
marine bioregional spatial planning and manage-
ment (Gilliland & Laffoley, 2008; McGinnis, 2006).
Rehabilitating population structure
Because fishing activities exert a pressure mainly

on larger/older individuals of commercial species,
MPAs are expected to allow recovery of the
population structure of these species. For instance,
Harmelin-Vivien et al. (2007) observed in several
Mediterranean MPAs that mean fish size of several
species of groupers (Epinephelus marginatus,
E. costae and Mycteroperca rubra) decreased from
no-take zones to fished areas, and are generally
intermediate in the buffer areas (for example, in
Cabo de Palos – Islas Hormigas marine reserve;
Figure 5). Cases where larger individuals were
recorded in the buffer zones than in no-take areas
are probably due to the more complex habitat in
the former zones than in no-take areas for these
species; for example, in Cabrera Archipelago
national park (Balearic Islands, Spain), no-take
areas are restricted to bays and harbour a higher
number of small-sized individuals, as observed also
by Reñones et al. (1999). Serranus atricauda and
Sparisoma cretense populations changed their size
structure both inside and outside protected areas
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after the formation of La Graciosa and La Restinga
marine reserves (Canary Islands) (Brito et al.,
2006a, 2006b) (Figure 6). The same trend was
observed for spiny lobsters in the Columbretes
marine reserve (Goñi et al., 2006). Dimech et al.
(in press) found that elasmobranches were larger in
size inside the Maltese FMZ, while the outer shelf
region outside the FMZ had half the biomass and
abundance of demersal species than inside the
FMZ.
Density-dependent changes in life history traits
and in parasitism

Since abundance, mean size and age of targeted
populations increase within MPAs, density-depen-
dent changes in life history traits are also expected
to occur within MPAs (Sánchez-Lizaso et al., 2000;
Ziegler et al., 2007). Some of these changes may
even counteract other anticipated effects of
protection (G(ardmark et al., 2005). However, the
few studies made to date in the Mediterranean
which compare such features of marine organisms
in protected and exploited areas provide unclear
evidence for density-dependent responses. Growth
rate of juveniles of three Diplodus species did not
show differences between fished and unfished areas
(Planes et al., 1998). Post-spawners of Diplodus
sargus were better conditioned within the rocky
areas of the Cerbère-Banyuls natural marine
reserve than in adjacent unprotected rocky areas
(Lloret & Planes, 2003); however, the authors did
not find any significant effect of protection on
feeding or reproductive potential. It has been
repeatedly observed that natural mortality is high-
er within MPAs, but this is rather a result of
increased predation on juveniles than reduction in
fitness due to intra-specific competition (Macpher-
son et al., 1997, 2000; Planes et al., 1998, 2000;
Sánchez-Lizaso et al., 2000).

Reproductive traits may also be affected by
changes in the density of targeted populations,
usually through an increase of size and/or age of
sex reversal of hermaphroditic populations (Molloy
et al., 2008). For example, females of Diplodus
sargus (a protandric species) were present in
two different age distributions inside and outside
the Cerbère-Banyuls Natural Marine Reserve with
younger females outside, suggesting plasticity in
the age of sexual inversion in the case of an
exploited population (Lenfant, 2003). A deficit of
females of Diplodus sargus in exploited sites
was observed within Cabo de Palos – Islas Hormigas
MPA (González-Wangüemert, 2004), where the
proportion of females and hermaphrodite indivi-
duals was higher within the MPA as a consequence
of a greater mean size due to the reduced fishing
pressure.

A further effect of MPAs on reproductive poten-
tial is to promote the occurrence of spawning
aggregations as a result of increased density and
size (Sánchez-Lizaso et al., 2000), as observed for
E. marginatus in the Medes Islands (Zabala et al.,
1997), Cerbère-Banyuls, Port-Cros and Lavezzi
Islands marine reserves (Bodilis et al., 2003; Louisy
& Culioli, 1999). In Cabo de Palos – Islas Homigas,
dominant males of several grouper species per-
forming courtship activities and aggressive displays
were recurrently observed (J.A. Garcı́a-Charton,
pers. observ.). The increase in density and size of
fishes inside marine reserves can also facilitate the
spread of certain types of directly transmitted
parasitic diseases (Sasal, 2003; Sasal et al., 1996;
Sasal et al., 1997).

The key issue that needs to be elucidated for
understanding the importance of crowding in fish
population as a response to protection measures is
how long it takes, and to what extent the habitat
within MPAs becomes saturated (i.e. reaches its
carrying capacity to provide resources, such as food
or refuge, to fish species) (Sánchez-Lizaso et al.,
2000). Even if first effects on fish densities and
individual fish sizes can be rapid (Claudet et al.,
2006b; Halpern & Warner, 2003), recent studies
have highlighted that the length of time to full
recovery of fish assemblages within an MPA may be
considerable (several decades) (Claudet et al.,
2008; McClanahan et al., 2008; Micheli et al.,
2004; Russ & Alcala, 2004). This is in agreement
with historical studies and anecdotal evidence on
the historical status of marine populations, which
appear to have been much higher in the past than
at present (Jackson et al., 2001; Knowlton &
Jackson, 2008; Pauly, 1995; Pinnegar & Engelhard,
2008).

Ultimately, the effects of MPAs can reverse the
causes of evolutionary shifts on life history traits
due to the selective mortality of commercially
exploited fish species induced by fishing (Jørgensen
et al., 2007; Kuparinen & Merilä, 2007), as
predicted through eco-genetic modelling (e.g.
Dunlop et al., 2007), and confirmed by empirical
studies (e.g. Swain et al., 2007; Walsh et al., 2006).

Increasing fecundity and production of eggs and
larvae

By increasing abundance and age of targeted
organisms, MPAs are expected to enhance the
fecundity of marine populations, thus boosting
the production of eggs and larvae (Berkeley
et al., 2004; Birkeland & Dayton, 2005; Gerber &
Heppell, 2004; Plan Development Team, 1990;
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Planes et al., 2000). Nevertheless, few empirical
studies have measured this response of protected
stocks in the Mediterranean or elsewhere. As a
result of changes in abundance in the spiny lobster
population, the spawning potential in the Colum-
bretes MPA may have increased 6–20 times after a
10-year fishing ban (Goñi et al., 2003). The effects
of changes in age/size structure in the protected
population was minimised by the short period since
protection measures were implemented as com-
pared to the life span of spiny lobster (Goñi et al.,
2003), although the importance of greater male
size for the success of breeding pairs can be
emphasised.

Exportation of biomass and connectivity
MPAs are expected to enhance local fishery yields

through biomass exportation to surrounding non-
protected areas, as a result of increased densities
and fecundity of exploited species inside MPAs (Plan
Development Team, 1990). This can arise through
two main mechanisms: net emigration of adult and
juvenile fishes (‘‘spill-over effect’’); and, export,
of pelagic eggs and larvae from restored spawning
stocks inside the MPA (Alcala et al., 2005; Gell &
Roberts, 2003; Roberts & Polunin, 1991; Rowley,
1994). On the other hand, studies on the demo-
graphic connectivity of marine populations are
crucial to fully understand the functioning of MPAs
in terms of inter-element distance in an MPA
network (Palumbi, 2003; Sale et al., 2005), and
therefore for the correct design of marine reserves
(Laurel & Bradbury, 2006).

The study of biomass export from MPAs to
neighbouring areas can be done by analysing long-
term data (Roberts et al., 2001; Russ & Alcala,
1996, 2004), by measuring gradients of biomass
through the marine reserve border (Abesamis
et al., 2006; Chapman & Kramer, 1999; Kaunda-
Arara & Rose, 2004; Rakitin & Kramer, 1996), or
directly by performing tagging and acoustic track-
ing studies (e.g. Attwood & Bennett, 1994; Zeller &
Russ, 1998).

In the Mediterranean, several authors have
surveyed biomass export by measuring gradients
of biomass across MPA limits, and in general they
reach the conclusion that spill-over effectively
occurs, although its spatial extent is moderate
(hundreds of metres). A significant non-linear
decline of CPUE of lobster (P. elephas) with
distance from the centre of the no-take zone, with
a depression at the boundary followed by a plateau
was observed at the Columbretes MPA (Goñi et al.,
2006). This depression was caused by local deple-
tion associated with concentration of fishing effort
at the reserve boundary, while the plateau suggests
that lobster export from the reserve is sufficient to
maintain stable catch rates up to 1500m from the
boundary. Analysis of recaptures of lobsters tagged
and released inside the reserve indicated that the
density gradient was caused by lobsters emigrating
from the reserve (Goñi et al., 2006). Similar results
using lobster mark-recapture data were obtained in
western Sardinia (Follesa et al., 2007), and in Torre
Guaceto MPA (Italy) for Diplodus spp. (Guidetti,
2006b).

Recently, the EC research project BIOMEX
(http://biomex.univ-perp.fr; BIOMEX, 2005) as-
sessed the export of fish biomass from MPAs to
neighbouring areas in a set of six littoral MPAs in the
western Mediterranean, using several complemen-
tary sampling methods. Using an underwater visual
census (UVC) technique, Harmelin-Vivien et al.
(2008) observed significant negative gradients in
mean fish biomass in all the reserves studied after
the effect of habitat had been removed, whereas
negative gradients in abundance were less conspic-
uous. A closer inspection of the shape of these
gradients suggest two main patterns of biomass
gradients, with a sharp decrease at the no-take
area/buffer zone boundary or at the buffer zone/
fished area boundary, probably as a consequence of
the strong fishing pressure exerted along the MPA
borders. Using baited underwater video (Stobart
et al., 2007), results similar to those obtained by
UVC were observed for a few fish species targeted
by fisheries (BIOMEX, 2005). Surveys of the dis-
tribution of eggs and larvae of selected target
species revealed high densities of eggs and larvae
inside the MPAs in comparison with adjacent areas
and decreasing gradients away from the core of the
MPAs (BIOMEX, 2005). Besides protection, the
distribution of eggs and larvae depends greatly on
hydrology and current patterns, on the inter- and
intra-species-specific differences in larvae beha-
viour, and on habitat features and the distribution
of adults (BIOMEX, 2005). Analyses of the spatial
distribution of fishing effort, of fishery production
and of revenues showed evidence of effort con-
centration and highest fishery production near the
no-take zone boundaries of all MPAs (Goñi et al.,
2008; Stelzenmüller et al., 2007). In most cases, a
significant decreasing slope of effort intensity and
CPUE from the core of the MPA was found (Goñi et
al., 2008). In Atlantic case studies, the abundance/
biomass of three exploited fish species (Sparisoma
cretense, Serranus atricauda and Mycteroperca
fusca) in La Restinga marine reserve responded
differently to the protection measures, by increas-
ing the abundance/biomass inside the no-take
zone as compared to the other zones of the
reserve (Falcón et al., 2007a). A gradient in

http://biomex.univ-perp.fr
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abundance/biomass of these species throughout
the zones with different protection levels within
the MPA was progressively taking place after the
implementation of protection measures, which can
be considered as evidence of spill-over from the
no-take zone to the neighbouring areas.

The few studies on the movement patterns and
homing of fish species by telemetry made to date
within the geographical scope of this article, in
general show strong site fidelity of adult and young
groupers (Astruch et al., 2007; Lembo et al. 2002).
Similar results where obtained for parrotfish (Spar-
isoma cretense) in Azorean waters, limiting this
species’ potential to benefit the fisheries through
spill-over to areas close to the reserve boundaries
(Afonso et al., 2008).

Connectivity between marine areas for a given
species can be studied by a variety of recently
developed techniques (Palumbi et al., 2003), such
as remote sensing, marine circulation modelling,
and tagging – including external (natural or
artificial), chemical (trace elements or stable
isotopes in otholiths) and genetic tags. Never-
theless, studies on connectivity are still scarce, in
particular in the Mediterranean and Macaronesian
context. González-Wangüemert et al. (2004)
showed by means of electrophoretic data that the
interchange of individuals between close popula-
tions of the white seabream (Diplodus sargus) in
the western Mediterranean probably occurs as a
response to complex paths through oceanographic
currents. At higher spatial scales, however, the
existence of exclusive alleles in each region
accounted for most of the genetic distances found
(Pérez-Ruzafa et al., 2006).

The use of otoliths to characterise local fish
populations has been also limited; for instance,
Gillanders et al. (2001) showed little variation in
otolith chemistry of two-banded bream (Diplodus
vulgaris) between locations along the south-west
Mediterranean coast of the Iberian Peninsula. For
their part, Mérigot et al. (2007) found significant
differences in otolith shape in the common sole
(Solea solea) according to both fish size and the
type of environment in which the fish live (i.e.
coastal lagoons versus marine sites), but also
between sites belonging to the same type.

Protection of recruitment
MPAs can affect recruitment of marine popula-

tions by protecting both spawner abundances (see
section ‘Increasing fecundity and production of
eggs and larvae’ above), and nursery habitats for
settlers and recruits (Planes et al., 2000). Several
studies in the Mediterranean and European Atlantic
archipelagos analysed relationships between both
settlers and recruits and their habitat (e.g. Biagi
et al., 1998; Bodilis et al., 2003; Dulčić et al., 1997;
Francour & Le Diréach, 1994; Garcı́a-Rubies &
Macpherson, 1995; Harmelin-Vivien et al., 1995;
La Mesa et al., 2002; Le Diréach & Francour, 1998;
Macpherson, 1998; Macpherson et al., 1997; Morato
et al., 2003; Planes et al., 1998; Raventós &
Macpherson, 2005; Vigliola et al., 1998). These
studies indicate that coastal fish species require
shallow areas (o5m) with rocky-boulder zones,
sandy beaches, or seagrass meadows to settle and/
or recruit on. Other environmental factors, such as
hydrodynamism, lunar cycle, or turbidity conditions
appeared to be less important. The availability in
MPAs of areas suitable for settlement and recruit-
ment of early juveniles can contribute to preser-
ving a well-structured population. However, a
general assessment of the degree to which existing
and planned MPAs are preserving these nursery
areas is still needed.
Expected ecological effects of MPAs at the
community level and on habitats

Protection of biodiversity
The role of MPAs to conserve biodiversity has

been repeatedly advocated (Beger et al., 2003;
Salm et al., 2000), but results to date are still
scarce and equivocal (Fraschetti et al., 2005;
Hughes et al., 2005; Sala & Knowlton 2006). By
preserving species and habitats simultaneously,
MPAs would guarantee the persistence of the
fundamental processes that sustain biological di-
versity through supporting the resilience of marine
communities in the face of human over-exploita-
tion and climate warming (Graham et al., 2008;
Hughes et al., 2003, 2005, 2007; Knowlton, 2004;
Mumby et al., 2006, 2007; but see Ledlie et al.,
2007).

A few studies have approached the problem of
maximising representativeness of a given MPA
network to gather the existing biodiversity (e.g.
Airamé et al., 2003; Leslie et al., 2003; Sala et al.,
2002) along with the ability of habitats to protect a
self-sustaining assemblage of exploited species
(e.g. Parnell et al., 2006), but this issue has seldom
been studied in the Mediterranean or Macaronesia.
As a unique example, Maiorano et al. (in press)
suggest a logical framework to be used for the
identification of areas to be targeted for multi-
species, spatially explicit conservation actions, and
they apply it to a case study along the Ligurian and
Tyrrhenian coasts (west-central Italy).

The detrimental effects of over-exploitation/
destruction of marine engineer species, which



ARTICLE IN PRESS

Giannutri Exposed
Giannutri Sheltered
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Figure 7. MDS plot showing differences in community
structure between exposed and sheltered shores on two
islands of the Tuscany Archipelago (Giannutri and
Capraia), illustrating the influence of factors other than
protection in structuring benthic assemblages (from
Benedetti-Cecchi et al., unpublished EMPAFISH data).
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include algae, seagrasses, sponges, molluscs, cni-
darians and bryozoans (Coleman & Williams, 2002)
make MPAs likely to boost marine biodiversity
through enhancing direct and indirect effects of
these habitat ‘formers’ on ecosystems (Garcı́a-
Charton et al., 2000). In addition, there is evidence
of faster recovery from disturbance of benthic
assemblages within MPAs than assemblages at
unprotected locations (Bevilacqua et al., 2006).

The effects of protection measures on benthic
assemblages, however, are subject to confusion
with other factors, because in addition to indirect
trophic effects there is a wide array of environ-
mental and anthropogenic factors influencing dis-
tribution, community structure and diversity at
multiple spatial and temporal scales (Benedetti-
Cecchi, 2001; Benedetti-Cecchi et al., 2003; Vaselli
et al., 2008). As a further example, differences in
benthic community structure between exposed and
protected conditions are highlighted by data
collected during the EMPAFISH project within MPAs
in the Tuscany Archipelago (Figure 7).

Comparisons of fish species diversity between
MPAs and neighbouring unprotected sites have
rendered positive, negative or neutral results
(Claudet et al., 2006a, 2008; Garcı́a-Charton
et al., 2004; Halpern, 2003). On the other hand,
and because harvesting is likely to produce loss of
genetic diversity from exploited populations (Al-
lendorf et al., 2008), MPAs can increase such
genetic variation. Again this subject has been
seldom approached within the geographical scope
of the present review. As an example, although
Lenfant (2003) failed to find genetic differences
between populations of Diplodus sargus inside and
outside the Cerbère-Banyuls marine reserve, Pérez-
Ruzafa et al. (2006) showed significant differences
in allelic richness for the same species at a broader
spatial scale, so that the three MPAs included in this
study together provided 97.3% of the total number
of alleles found in all the western Mediterranean
populations studied. In addition, the populations
sampled in islands tended to have lower allelic
richness, lower mean observed heterozygosity and
higher heterozygote deficit, than coastal zones
(Pérez-Ruzafa et al., 2006). Therefore, this study
suggests that fish sanctuaries act as reservoirs for
rare alleles, thus precluding their extinction;
nevertheless, more insight is needed on this crucial
aspect.

Restoration of/changes in assemblage structure
Marine reserves are expected to induce shifts in

fish assemblage structure, derived mainly from the
fact that some particular species (in general, large,
long-lived predators) are highly vulnerable to fish-
ing, and thus are likely to benefit most from
protection measures (Bohnsack, 1996; Plan Devel-
opment Team, 1990; Roberts & Polunin, 1993). In
the Mediterranean, serranids, sciaenids, sparids,
and the larger labrids appear to have benefited
most from protection (e.g. Bell, 1983; Bayle-
Sempere & Ramos-Esplá, 1993; Claudet et al.,
2006a; Francour, 1994; Garcı́a-Charton et al., 2004;
Garcı́a-Charton & Planes, 2002; Garcia-Rubies &
Zabala, 1990; Guidetti, 2006a, 2006b; Guidetti
et al., 2005, 2008; Harmelin et al., 1995; Harmelin
& Marinopolous, 1993; Harmelin-Vivien et al., 2008;
La Mesa & Vacchi, 1999; Macpherson et al., 2000,
2002; Micheli et al., 2004; Reñones et al., 2001). As
a further example of this, Garcı́a-Charton et al.
(2007) have measured a 3-fold linear increase in
abundance of piscivore fish species within Cabo de
Palos – Islas Hormigas marine reserve after 12 years
of protection, as compared to an unprotected
locality (Figure 2). Ultimately, top predators would
become dominant in restored sites, similar to what
is observed in the ‘‘pristine’’, undisturbed sites
(Jackson et al., 2001; Jackson & Sala, 2001; Sandin
et al., 2008; Stevenson et al., 2007), to which
conditions of protected marine sites would attain in
the long-term (McClanahan et al., 2007; Russ et al.,
2005).

These changes in the species composition and
relative abundance of fish species are likely to
produce shifts in ecological functioning of the
protected ecosystems (Micheli & Halpern, 2005),
as indicated by means of trophic models (McClanahan
& Sala, 1997; Sala, 2004). However, functional
studies are still scarce in the case of Mediterranean
MPAs. As an exception, the consequences for
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food-web structure of protecting marine commu-
nities from trawling have been explored in the Gulf
of Castellammare trawling ban zone (Sicily, Italy)
using stable isotopes of carbon and nitrogen
(Badalamenti et al., 2002, 2008). The observed
eight-fold increase in fish biomass (Pipitone et al.,
2000) has not been accompanied by substantial
size-related trophodynamic shifts in any of the
three species of fish studied (anglerfish Lophius
budegassa, Mediterranean hake Merluccius merluc-
cius and red mullet Mullus barbatus). Furthermore,
the exclusion of trawling had limited effect on fish
trophic level at size and no systematic effect on the
sources of production supporting any of these three
species at the sizes sampled, thus discounting a
large bottom-up influence on fish trophodynamics
(Badalamenti et al., 2008). Very recently, Mouillot
et al. (2008) proposed a new index (called ‘‘con-
servation of biological originality’’, or CBO index)
that can be used to test whether protected areas
may protect preferentially the most original
species and whether restorative management
promotes the re-establishment of the most func-
tionally unique species with particular habitat
requirements. Its application in the Bonifacio Strait
Natural Reserve (Corsica, France) showed that
functional originality was significantly protected i
n the fish assemblage, so that species with the
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most original functional trait combinations became
more abundant after the establishment of protec-
tion measures.

As for populations, the effect of MPAs on fish
assemblages can be modified (or even obscured) by
the interferential effect of variations in habitat
structure. Moreover, if we take into account that in
general Mediterranean MPAs are established in
complex rocky habitats, important target species
that associate more with habitats that include a
higher proportion of Posidonia oceanica stands
and/or sand patches (e.g. small serranids, sea
breams, mullids, etc.) (Garcı́a-Charton & Pérez-
Ruzafa, 2001) can be little affected by protection
(Garcı́a-Charton et al., 2004) when the habitats
included are not suitable for them. Environmental
differences among protected sites may be larger than
protection effects, and habitat heterogeneity within
sites can thus lead to patterns of fish abundance
independent of protection effects (Figure 8).
Indirect effects on algae and invertebrates
Empirical and theoretical studies suggest that

changes in the abundance of predatory fish can
cause ecosystem-wide effects such as trophic
cascades (Pinnegar et al., 2000). The cascading
effect from predatory fish to sea urchins and
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macroalgae (Guidetti, 2006a; Hereu, 2006; Sala,
Boudouresque, & Harmelin-Vivien, 1998) could lead
to the dominance of erect algae whenever pre-
dators are abundant within MPAs, thus counter-
acting the formation of coralline barren areas
dominated by sea urchins. Coralline barrens,
occurring along the Mediterranean coast when sea
urchin (Paracentrotus lividus) densities exceed a
threshold of 7–9 urchins per m2 (Hereu, 2004;
Verlaque, 1987), can be exceptionally extended in
some places – e.g. Ustica island (Cianciolo et al.,
2005; Palmeri, 2004); eastern Adriatic coast
(Guidetti & Dulčić, 2007; F. Badalamenti & J.A.
Garcı́a-Charton, pers. observ.). It has been hy-
pothesised that this ecological shift will occur only
once the density of fish predators of sea urchins
reaches a threshold of about 15 adult sea breams
per 100m2 (Guidetti & Sala, 2007). Analogously, the
density of the sea urchin Diadema aff. antillarum in
the Canarian archipelago varies spatio-temporally,
and can reach more than 12 individualsm�2

(Hernández et al., 2008; Tuya et al., 2006), causing
large extensions of barren ground, likely related to
a generalised decrease in predation pressure due to
fishing (Clemente, 2007; Hernández et al., 2005,
2007, 2008). Nevertheless, predation is often not of
sufficient magnitude to substantially alter dense
sea urchin populations and cause community-level
effects, and other factors, such as predator
diversity, refuge availability, recruitment variabil-
ity, destructive harvesting practices, diseases, and
physical conditions can modify the interactions
between predatory fish, sea urchins and algae,
enabling the persistence of a mosaic of stands of
erect algae interspersed with areas dominated by
encrusting species (Bruno & O’Connor, 2005;
Clemente et al., 2007; Guidetti, 2007; Guidetti
et al., 2003; Hereu et al., 2004, 2005; Hernández
et al., 2008; Micheli et al., 2005; Sala, 2004;
Sala et al., 1998; Tomás et al., 2004). In any case,
restoration of these rocky reefs may be accelerated
by intervening and reducing sea urchin populations,
as recommended by McClanahan et al. (1996) for
Kenyan coral reefs.

Increasing ecosystem stability and resilience
Increased biodiversity within MPAs is likely to

increase community and ecosystem stability
(Allison et al., 2003; Benedetti-Cecchi, 2006;
McCann, 2000), and thus reduce the variability of
ecological responses to disturbance (Fraterrigo &
Rusak, 2008; Pauly et al., 2002) and increase
community resilience (Hughes et al., 2005). This
could be the phenomenon underlying the hypothe-
sised minimisation of the temporal variations in the
abundance of protected populations over the
course of an annual cycle (the so-called ‘‘buffer
effect’’) (Francour, 1994). Nevertheless, other
factors besides the number of species are likely
to be responsible for community resistance and
resilience induced by the establishment of protec-
tion measures, such as the role and identity, spatial
distribution, and evenness of the species structur-
ing the community (Bulleri & Benedetti-Cecchi,
2006).

Detrimental effects due to non-exploitative uses
Inside MPAs, human activities are being changed

in two ways; man as a top predator is generally
absent (i.e. removed or limited extractive uses),
but in exchange is often present in great numbers
as a visitor. MPAs provide goods and services (i.e.,
attractive underwater flora and fauna, reef struc-
tures and seascapes) that contribute to creating
heavy tourist loads within them (Badalamenti
et al., 2000; Davis & Tisdell, 1995; Dearden
et al., 2006). Physical injury to, or the removal
of, a certain species or set of organisms due to
visitor trampling on the shore and adjacent shallow
water, and scuba-diving or boat anchoring in the
sub-littoral, may affect not only an individual
population but also, through direct and indirect
effects, the whole structure of a community and
even the features of the seascape (Francour et al.,
2001; Milazzo et al., 2002a).

Scuba-diving is now one of the major forms of
commercial use of MPAs around the world (Davis &
Tisdell, 1995). The impact of this recreational
activity has been approached mostly by comparing
the rate of damage of some fragile species
particularly to the presence of divers in frequented
versus non- (or less-) frequented sites and/or by
direct observations of scuba-divers’ behaviour
(Barker and Roberts 2004). Sala et al., (1996) used
the bryozoan Pentapora fascialis to estimate the
likely repercussions of diving onto the coralligenous
community in the Medes Islands marine reserve,
and observed that this species was 9–10-fold less
dense and significantly smaller in size in diver-
frequented compared to unfrequented sites. For
their part, Garrabou et al. (1998) further studied
the same species in the same location, taking
advantage of the re-opening of a diving spot in a
previously protected site to test experimentally the
effect of the presence of divers; they observed that
diving drastically reduced the density (by �50% in
one year, and by 92% after three years) and height
of colonies. High levels of recreational activity did
not affect the degree of injury to colonies of the
cnidarian Paramuricea clavata in the same marine
reserve, although colony death by detachment was
the main source of mortality in the MPA, so that
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Figure 9. Mean losses in density (7standard error of the
mean) of fleshy erect algae, Myriapora truncata and
Clavellina dellavallei in 1-m2 quadrats with experimen-
tally increasing diving intensity in flat (white) and
inclined (grey) bottoms in the Cabo de Palos – Islas
Hormigas marine reserve (from Herrero et al., unpub-
lished data). P-values of factor Diving intensity in analysis
of variance are indicated (factor Slope and its interaction
with Diving intensity are not significant in all cases).
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diving activity was estimated to increase the
natural mortality rate of the species by a factor
of three (Coma et al., 2004). Direct observations at
Ustica on the interactions between divers, sub-
stratum and marine organisms in eight common
sub-tidal habitats revealed that scuba-diving
causes a variety of disturbances to the marine
biota (Milazzo et al., unpublished data). A similar
study by Herrero et al. (unpublished data) in the
Cabo de Palos – Islas Hormigas marine reserve
showed that the number and intensity of interac-
tions was significantly reduced by applying simple
management measures, such as diver briefings just
before diving, and always having a guide to lead the
diving groups. Also, Herrero et al. (unpublished
data) observed that spatio-temporal variability of
algal cover was high and therefore masked any
effect of damage due to diving erosion, and that
none of the invertebrate taxa included in the
analyses showed differences in their density or
cover that could be clearly attributed to the
activity of recreational divers. Instead, the white
sea-fan Eunicella singularis showed significantly
higher proportion of colonies fallen as a conse-
quence of divers’ passing, and a higher degree of
necrosis in the dived sites compared to the no-use
area. In addition, experimental simulations of
diving impact showed that successive passes by a
diver caused the detachment of a quantifiable
amount of algae, and detached fragments of the
fragile invertebrate species Clavelina dellavallei
and Myriapora truncata, causing a signifi-
cant change in their respective cover or density
(Figure 9). In general, while disturbance by recrea-
tional divers may be relatively minor on an
individual basis, such disturbance becomes ecologi-
cally important to the structure of benthic assem-
blages when many divers are concentrated in a small
area. In this case, restricting the number of divers –

particularly within marine caves – is necessary.
Boat anchoring also has negative impacts in

MPAs. A negative effect of anchors on Posidonia
oceanica meadows was evidenced in Port-Cros
national park by Garcı́a-Charton et al. (1993),
corroborating the results of seminal studies by
Robert (1983) and Porcher (1984). In the Ustica
Island MPA, anchoring simulation experiments
revealed that the damage on Posidonia oceanica
was dependent on the type of anchor used, and
weighing was critical during the anchoring process
(Milazzo et al., 2004a). Further experimental
simulations to investigate the response of
P. oceanica to different intensities of damage at
different levels of substratum compactness re-
vealed that disturbance was higher where the
substratum was highly penetrable (Ceccherelli
et al., 2007). Conversely, the number of leaves
per shoot by the end of the study was similar among
all treatment combinations, suggesting that this
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was the only phenological feature that showed full
recovery.

Trampling by visitors – even at low intensities –

may be non-sustainable for shallow-water algal
assemblages (Milazzo et al., 2002b). The removal of
macroalgal fronds caused short-term changes in the
associated assemblages and after trampling dis-
turbance ceased, macroalgal recovery was very
rapid (less than six months) (Milazzo et al., 2004b).
At Ustica, the intervals between two tourist sea-
sons should guarantee a complete recovery of the
system, and no particular management solution –

other than monitoring – needs to be adopted.
Fish-feeding influenced the coastal fish assem-

blages and caused significant changes in the local
distribution (Milazzo et al., 2005) and behaviour
(Milazzo et al., 2006) of several species. The non-
natural aggregations of fishes around snorkellers,
which result from fish-feeding, also have negative
effects on local prey populations (Milazzo et al.,
2006). Effective management should seek to limit
such activity to specified areas so that human
impacts are not felt throughout an entire MPA. The
assessment of a snorkelling trail in the Cerbère-
Banyuls MPA revealed no evidence for negative
effects of snorkellers, either on fish assemblages or
on algae (Claudet J., Lenfant P. & Schrimm M.,
unpublished data).

There is evidence that in Mediterranean MPAs,
‘marine-based’ tourism and human recreational
activities are increasing, however research and
monitoring on their effects on the ecosystem
functioning are still scarce; this highlights a strong
need for substantial research efforts. From a
management perspective, areas impacted by tour-
ism are no longer natural, and while activities like
those investigated provide good public relations
and public education opportunities, they do not
necessarily fulfil conservation goals, and they
devalue the usefulness of an MPA for research and
for other objectives. Non-regulatory approaches,
banning or limitation of human presence are the
most common management solutions to be adopted
on a case-by-case basis.
Years sir zone (Ha)

0

Figure 10. Effects of Mediterranean and Macaronesian
marine reserves on commercial fish densities as a
function of years since protection and (A) the size of
the no-take zone and (B) the size of the buffer zone, as
inferred by meta-analysis on data issued from EMPAFISH
case studies. Planes give the fitted effect. The size of the
points is proportional to the weight of each study. Stems
indicate the distance between the calculated weighted
effect size and the fitted effect (from Claudet et al.,
2008).
Part B – Ecological effects of Atlanto-
Mediterranean MPAs: a meta-analytical
approach

The effectiveness of MPAs regarding fisheries and
ecosystem restoration goals has been widely
studied (see the present review), but very few
attempts have been made to generalise the
ecological effects of MPAs (but see Claudet et al.,
2008; Côté et al., 2001; Guidetti & Sala, 2007;
Halpern, 2003; Micheli et al., 2004; Ojeda-Martı́nez
et al., 2007). The effects of MPAs vary both in
direction and magnitude (Claudet et al., 2008;
Halpern & Warner, 2003). Characteristics of MPAs
(e.g., age, location, zonation scheme, enforcement,
regulation, size, distance from other protected
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areas, protected habitats) have often been invoked
as potential sources of heterogeneity in the
responses of marine assemblages to protection (Côté
et al., 2001; Guidetti et al., 2008; Guidetti & Sala,
2007; Halpern, 2003; Halpern & Warner, 2003;
Micheli et al., 2004).

A recent meta-analysis (Claudet et al., 2008) has
shed light on the processes underlying such
patterns of heterogeneity by examining the re-
sponse of fish species to protection in the EMPAFISH
set of MPAs. There was an overall positive effect of
MPAs on the density of commercially exploited fish.
Mean densities were 2.5 times larger inside the no-
take zones (i.e. marine reserves) compared to the
adjacent fished areas. This effect was, however,
heterogeneous, suggesting that the effects of
protection on commercially exploited fishes varied
among MPAs. Part of the observed heterogeneity
was attributable to time since protection and to
the antagonistic effects of the size of the no-take
and buffer zones (Claudet et al., 2008) (Figure 10).
The older European marine reserves are more
effective than newly established reserves in in-
creasing catchable sizes of populations of target
fish species and in conserving fish species richness
(Claudet et al., 2008). A strong cumulative effect
of time since enforcement of protection can be
expected for marine reserves, suggesting that the
evaluation of their efficacy for re-stocking
exploited populations or preserving biodiversity
should be framed in a temporal context. The
response of commercial species to protection is
also reserve size dependent. The reserve size-
dependency of the response to protection has
strong implications for the spatial management of
coastal areas since marine reserves are used for
spatial zoning (Claudet et al., 2006a). Increasing
the size of the no-take zone resulted in increased
density of harvested fishes within the reserve
compared to outside (Claudet et al., 2008). In
contrast, increasing the size of the buffer zone
reduced the effectiveness of the reserve (Claudet
et al., 2008). However, our limited understanding
of the underlying mechanisms cautions against
blind acceptance of this conclusion and further
research is needed towards understanding the
distribution of fishing effort in the buffer zones
and adjacent areas. Moreover, buffer zones are
multiple use areas, and the choice of size is a
complex problem involving ecology as well as
economics and politics. In the case in which the
establishment of a buffer zone is required for
coastal management purposes, our results suggest
that increasing the size of the no-take zone could
be a solution mitigating the potentially negative
effects of this buffer zone.
Life history and biological/ecological character-
istics of fish species may also affect their differ-
ential response to protection, and therefore
contribute to explaining differences in effective-
ness among marine reserves. Another meta-analysis
on the same EMPAFISH database (Claudet et al.
unpublished work) showed that densities of target
fishes were larger in protected than unprotected
areas for large-bodied species and, contrary to
previous theoretical findings, also for mobile
species, even with large home range sizes or yearly
displacements. Time of protection strongly af-
fected large species. Even if a positive response
to protection was found for non-territorial species
with medium to high home ranges and yearly
displacements whatever the size of the reserve,
the size of the no-take zone had strong effects on
these species. The probability that such species
benefit from protection increased in large marine
reserves that encompass a larger proportion of
their displacement range. Increased sizes of buffer
zones have negative effects on species with the
highest level of displacement. Non-commercial
species, whether exploited or not, rarely showed
a direct response to protection, either because
fishing activities were not detrimental or when the
latter is not true, because other indirect effects
are reversing the beneficial effects of protection.
Implications for management of this second possi-
bility are strong since the prevalent ecosystem
approach to marine conservation and fisheries
management implies that MPAs should ensure
protection to a wide range of species with different
life history, biological traits and ecological strate-
gies.
Summary, recommendations and
perspectives

Do the Mediterranean and Macaronesian
MPAs accomplish their expected ecological
effects?

From the above review, a considerable amount of
empirical evidence emerges to illustrate the
ecological effects of MPAs in the Mediterranean
and Macaronesia. Hence, we can assert that
establishing an MPA in this geographical context is
very likely to reverse the population and ecosystem
impacts of fisheries on coastal areas (e.g. Goñi,
1998; Kaiser et al., 2006; Lewison et al., 2004;
Myers & Worm, 2003; Tudela, 2000) by: (i) increas-
ing the abundance and/or biomass of target species
(fish, decapods, other invertebrates) within MPAs
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compared to unprotected sites; (ii) allowing the
recovery of a more ‘‘natural’’ population structure
of these commercially harvested populations, by
increasing the proportion of larger/older indivi-
duals; (iii) enhancing the fecundity of these
populations; (iv) enhancing local fishery yields
through biomass exportation to surrounding non-
protected areas; and, (v) inducing shifts in fish
assemblage structure, chiefly by increasing the
dominance of large predator species. However, this
increased health of the ecosystem becomes in turn
an attractor for tourism and diving; if the sub-
sequent over-frequentation is not controlled, da-
mage can occur and some of the MPA effects
reversed.

Other expected effects are more subject to
uncertainty, or, at best, would need more research,
such as: (vi) causing certain density-dependent
changes in the life history traits of target species;
(vii) protecting the recruitment of commercially
important species; (viii) protecting marine biodi-
versity (including genetic diversity); (ix) causing
ecosystem-wide effects such as trophic cascades,
and conceivably counteracting detrimental cata-
strophic shifts in coastal ecosystems; and, (x)
increasing community and ecosystem stability,
consequently promoting resilience and faster re-
covery from disturbance.

From the meta-analytical approach performed to
ascertain the global effects of Mediterranean and
Macaronesian MPAs included as EMPAFISH case
studies (Claudet et al., 2008; Claudet unpublished
work), further lessons can be extracted. Firstly, the
meta-analysis confirmed the wide occurrence of
positive responses to protection by fish species
targeted by fishing. Moreover, this response is
higher in the case of large-bodied species and,
unexpectedly, occurs also for very mobile species.
On the contrary, species with no commercial value
rarely responded to protection measures. Also, it is
increasingly clear that the effects of MPAs,
although detectable after a few (2–3) years, build
up over time so that these effects become more
evident the longer the MPA remains functional;
their actual importance and magnitude are there-
fore to be perceived only after several decades. In
addition, the size of the no-use zone (i.e. part of
the MPA where all human activities, including
fishing, are banned) appears to exert a significant
influence on the magnitude of the ‘‘reserve effect’’
on fish abundance and biomass; more controver-
sially, increasing the size of the buffer area (i.e.
part of the MPA where some uses – e.g. fishing,
diving, or swimming are allowed) seems to reduce
the effectiveness of the MPA. The latter statement,
however, needs further corroboration.
Recommendations for MPA management

From the above considerations, it can be
concluded, as it has been done by other authors
in other geographical contexts (Roberts et al.,
2001; Rodrigues et al., 2004; Schrope, 2001), that
in the Mediterranean and in Macaronesia, MPAs
represent an efficient way to conserve marine
fishing resources, as well as to protect ecosystems
from human nuisances. On the other hand, even in
the case of fishing effort being efficiently managed,
MPAs have additional properties (such as buffering
against wide fluctuations of stock size, or being
robust policy measures in the face of assessment
uncertainty) that make them desirable as fisheries
management tools. In addition, the spatial and
permanent character of MPAs often makes them
easier to implement than other fisheries manage-
ment tools.

Ecological goals and objectives of MPAs should
be laid out clearly before the MPA is created, or
even designed, as they are the basis for the design;
for instance, to increase the abundance and/or
biomass within MPAs or to protect the recruitment
of commercially important species probably require
different MPA designs. Goals and objectives should
also be defined such that attainment of those
objectives can be assessed. Undefined or broadly
vague objectives should be avoided as MPA effec-
tiveness cannot then be monitored and evaluated
(Claudet & Pelletier, 2004). Nevertheless, we
caution that a degree of uncertainty remains on
the effects of MPAs, and also that some expected
benefits still need to be supported by empirical
evidence; thus, the benefits the MPA are going to
supply should not be exaggerated, unless additional
scientific information is provided (see below). In
addition, it should be clearly stated that goals and
objectives are attained in the long-term, because,
although many benefits will become apparent soon
after protection, full ecosystem recovery will
require decades to tens of decades to occur. Among
MPA goals, MPA research and monitoring is to be
considered as an explicit objective of MPA creation,
since MPAs constitute true natural experiments of
species, communities and ecosystem recoveries
from decades or centuries of fisheries exploitation,
and are practically the only places left where this
knowledge can be obtained.

Site selection criteria to establish new MPAs
should be based on sound scientific information. To
ensure that MPA objectives can be achieved, it is
crucial that the criteria used to designate MPA
areas include concerns of environmental quality,
importance of the site for reproduction of over-
exploited or protected species, and presence of
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high biodiversity. Particularly good candidate sites
are also those that match these criteria, but are
embedded in an otherwise poor environment. The
connectivity of marine populations should also
ensure the recovery of biodiversity under these
circumstances.

The process of designing and zoning an MPA,
which should be intimately linked to the stated
objectives, has usually involved little scientific
justification in the past throughout the region
(Badalamenti et al., 2000; Francour et al., 2001;
Fraschetti et al., 2002). However, identifying
meaningful ecological variables represents an im-
portant tool for decision making. In particular, in
addition to considerations of reproductive output,
dispersal, mobility, connectivity and size of the
organisms to be protected, value should also be
ascribed to spatial heterogeneity of habitats, as
additional driving information for the zoning and
implementation of MPAs. MPAs should ideally
include as many habitat types as possible, because
critical information is often lacking on species life
cycles and habitat preferences throughout the life
span of these species. From our results, we
conclude that large MPAs are preferred to small-
to-medium-sized ones; in addition, sizes of each
zone within the MPA should be scaled to maximise
the size of the no-take area relative to buffer
zones. Present models (e.g. Pérez-Ruzafa et al.,
2008 – this volume) suggest that an upper limit
seems to exist, further from which the ideal is to
build a network of several MPAs.

The planning of management measures for MPAs
should comprise the development of specific pro-
tocols and metrics to monitor and assess enforce-
ment levels within MPAs (see Guidetti et al., 2008).
Specifically, tourism activities (especially diving)
should be oriented towards a sustainable use of the
protected area; in particular, quotas should be
established and adequately enforced in order to
keep human frequentation below the carrying
capacity of the MPA. As an important (and often
neglected) issue, planning activities should include
the provision of time and resources to conduct
rigorous baseline ‘before’, in addition to ‘after’
studies, with a view to monitoring studies to be
conducted in MPAs (see below).

The monitoring of MPAs constitutes a key
element in their long-term success. This monitoring
should be comprehensive and holistic, integrating
concerns related to biological and ecological vari-
ables with socio-economic and governability ones
(Pomeroy et al., 2005). This means that monitoring
should ideally begin before the design and imple-
mentation process, and have continuity in order to
show the long-term evolution of key variables
during the time span of the protected area.
Experimental designs for ascertaining the effects
of MPA should include the monitoring of a number
of areas in protected and non-protected zones,
including therefore spatial and temporal replica-
tion (Edgar et al., 2004; Fraschetti et al., 2002;
Garcı́a-Charton & Pérez-Ruzafa, 1999; Garcı́a-
Charton et al., 2000; Guidetti, 2002). Monitoring
actions should be undertaken on a periodic basis,
and always under the direct advice of competent
scientific personnel, as our experience highlights
the need for more coordinated and continuous
monitoring activities, including the currently lack-
ing assessment of achievement of conservation
goals.
Recommendations for MPA research

In order to better understand the way MPAs work,
and to build a set of criteria to design adequate
MPA networks, we need more studies to fulfil the
following MPA research gaps (see also Sale et al.,
2005):
�
 Effects of MPAs on fish density and biomass at
regional scales, comparing the spatial patterns
in fish abundance and biomass from unprotected
sites in geographical areas with MPAs and similar,
unprotected sites, in geographical areas far from
MPAs, taking advantage of existing and (above
all) future MPAs as true ecological experiments
at broad geographical scales.

�
 Importance of density-dependent shifts in life

history traits within MPAs (individual and popula-
tion growth, reproductive potential, feeding
behaviour and diet, natural mortality, etc.),
and capability of these changes to reverse
evolutionary shifts due to the selective mortality
of commercially exploited fish species induced
by fishing.

�
 Biological and ecological mechanisms ultimately

responsible for the ‘‘spill-over effect’’ (i.e. net
emigration of adult and juvenile fishes), through
tagging and acoustic tracking studies.

�
 Study of habitat selection in fish and the spatial

distribution and continuity of habitats inside and
outside MPAs (using GIS), in order to assess
ability of protected habitats to support a self-
sustaining assemblage of exploited species, as
well as to allow fish movements to occur.

�
 Connectivity of marine populations subject to

protection, by tagging studies (using external,
chemical or genetic tags), coupled with studies
aimed at ascertaining the larval dispersal of key
species, and hydrodynamic studies to establish
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the patterns of oceanographic currents at multi-
ple spatial and temporal scales.

�
 Capacity of (and the characteristics required by)

MPAs to protect colonisation, settlement and
recruitment of marine populations of important
species.

�
 Ability of existing and/or planned MPA networks

to maximise the representativeness of marine
biodiversity (including genetic, habitat – seas-
cape, species and functional diversity), by
developing the adequate methodological im-
provements.

�
 Degree to which MPA-driven changes in structur-

al properties of marine communities, such as the
number, identity, and relative abundance of
individual species and species groups, are able
to cause shifts in the ecological functioning of
the ecosystem.

�
 Generality, extent and ecological mechanisms of

trophic cascades within MPAs (e.g. predatory
fish–sea urchins–macroalgae), and their ability
to counteract undesirable ecosystem-wide ef-
fects of fishing (e.g. expansion of urchin barren
grounds).

�
 Role of MPAs in promoting resilience and faster

recovery of marine ecosystems from human-
driven disturbances (including climate change).

�
 Effectiveness and feasibility of possible restora-

tion actions within MPAs (e.g. manual reduction
of sea urchin numbers) to be taken in order to
accelerate the reversal of the detrimental
effects of over-fishing.

Concluding remarks

Bearing these research gaps in mind, priority
operational objectives should be established for
future EU research strategy relevant to this topic
(Garcı́a-Charton et al., 2008). However, due to the
urgency of adopting management measures in the
face of the rapid biodiversity loss, the situation
requires managers to plan more in the long-term
and more with a precautionary perspective, and
scientists to think more in the short-term – such as
giving answers to managers without being abso-
lutely sure of their conclusions (thus presenting
associated levels of uncertainty), until these
research gaps are adequately fulfilled.
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Clemente, S., Hernández, J. C., et al. (2006a).
Valoración ‘‘in situ’’ de las poblaciones de especies
indicadoras del efecto reserva en la reserva marina de
La Graciosa y los islotes del norte de Lanzarote.
Viceconsejerı́a de Pesca del Gobierno de Canarias.
Universidad de La Laguna (107pp.)

Brito, A., Barquı́n, J., Falcón, J. M., González, G.,
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l’impact de la réserve Naturelle Marine de Cerbère/
Banyuls comme source d’exportation de poissons
littoraux adultes vers les zones avoisinantes. Rapport
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Milazzo, M., Chemello, R., Marcos, C., et al. (2000).
Evaluating the ecological effects of Mediterranean
marine protected areas: Habitat, scale and the
natural variability of ecosystems. Environmental Con-
servation, 27, 159–178.

Garcı́a-Rubies, A., & Macpherson, E. (1995). Substrate
use and temporal pattern of recruitment in juvenile
fishes of the Mediterranean littoral. Marine Biology,
124, 35–42.

Garcia-Rubies, A., & Zabala, M. (1990). Effects of total
fishing prohibition on the rocky fish assemblages of
Medes Islands marine reserve (NW Mediterranean).
Scientia Marina, 54, 317–328.

G(ardmark, A., Jonzén, N., & Mangel, M. (2005). Density-
dependent body growth reduces the potential of
marine reserves to enhance yields. Journal of Applied
Ecology, 43, 61–69.

Garrabou, J., Sala, E., Arcas, A., & Zabala, M. (1998).
The impact of diving on rocky sublittoral communities:
A case study of a bryozoan population. Conservation
Biology, 12, 302–312.

Gell, F. R., & Roberts, C. M. (2003). Benefits beyond
boundaries: The fishery effects of marine reserves.
Trends in Ecology and Evolution, 18, 448–456.

Gerber, L. R., & Heppell, S. S. (2004). The use of
demographic sensitivity analysis in marine species
conservation planning. Biological Conservation, 120,
121–128.

Gianguzza, P., Chiantore, M., Bonaviri, C., Cattaneo-
Vietti, R., Vielmini, I., & Riggio, S. (2006). The effects
of recreational Paracentrotus lividus fishing on dis-
tribution patterns of sea urchins at Ustica Island MPA
(Western Mediterranean, Italy). Fisheries Research,
81, 37–44.



ARTICLE IN PRESS

Ecological effects of EU Atlanto-Mediterranean MPAs 215
Gillanders, B. N., Sánchez-Jerez, P., Bayle-Sempere,
J. T., & Ramos-Esplá, A. A. (2001). Trace elements in
otholits of the two-banded bream from a coastal
region in the south-west Mediterranean: Are there
differences among location? Journal of Fish Biology,
59, 350–363.

Gilliland, P. M., & Laffoley, D. (2008). Key elements and
steps in the process of developing ecosystem-based
marine spatial planning. Marine Policy, 32, 787–796.

Gollasch, S. (2006). Overview of introduced aquatic
species in European navigational and adjacent waters.
Helgoland Marine Research, 60, 84–89.
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maturity, fecundity and reproductive potential of a
protected population of the spiny lobster Palinurus
elephas (Fabricius, 1787) from the western Mediter-
ranean. Marine Biology, 143, 583–592.
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