Comparing State-of-the-Art Visual Features on Invariant Object Recognition Tasks

Nicolas Pinto!, Youssef Barhomi!, David D. Cox2, and James J. DiCarlo!

'"Massachusetts Institute of Technology, Cambridge, MA, U.S.A
2The Rowland Institute at Harvard, Cambridge, MA, U.S.A

Abstract

Tolerance (“invariance”) to identity-preserving image
variation (e.g. variation in position, scale, pose, illumina-
tion) is a fundamental problem that any visual object recog-
nition system, biological or engineered, must solve. While
standard natural image database benchmarks are useful for
guiding progress in computer vision, they can fail to probe
the ability of a recognition system to solve the invariance
problem [23, 24, 25]. Thus, to understand which com-
putational approaches are making progress on solving the
invariance problem, we compared and contrasted a vari-
ety of state-of-the-art visual representations using synthetic
recognition tasks designed to systematically probe invari-
ance. We successfully re-implemented a variety of state-of-
the-art visual representations and confirmed their published
performance on a natural image benchmark. We here report
that most of these representations perform poorly on invari-
ant recognition, but that one representation [2] ] shows sig-
nificant performance gains over two baseline representa-
tions. We also show how this approach can more deeply
illuminate the strengths and weaknesses of different visual
representations and thus guide progress on invariant object
recognition.

1. Introduction

Visual object recognition is an extremely difficult prob-
lem and a great deal of effort continues to be expended
to reach the goal of discovering visual representations that
solve that problem (identification and categorization). In-
deed, some of those representations are yielding perfor-
mance that appears to be quite impressive [10, 22, 9, 34],
perhaps even approaching human object recognition perfor-
mance under limited conditions [30]. However, understand-
ing what ideas are key to that progress, requires a clear focus
on the computational crux problem and a critical, system-
atic evaluation of how much progress is being made on that
problem by each state-of-the-art approach. The goal of the

present study is to tackle this issue. For example, are cur-
rent state-of-the-art representations all performing equally
well, or are some consistently better than others? Do they
each have weaknesses that might be overcome from learn-
ing from the strengths of each? Should we be satisfied with
the single performance figure provided by a given natural
images database, or can we more precisely determine what
components of the object recognition problem are easily
handled by each representation and what components are
limiting performance?

The computational crux of object recognition is known
as the “invariance” problem [33, 23]: any given object in
the world can cast an essentially infinite number of differ-
ent two-dimensional images onto the retina as the object’s
position, pose, lighting and background vary relative to the
viewer. Thus, to critically evaluate a visual representation
for object recognition, we must have ways of measuring its
ability to solve the invariance problem. Even though per-
formance evaluation is central in computer vision [3, 27],
we do not believe that any previously study has directly and
systematically tested state-of-the-art algorithms on solving
the invariance problem.

In particular, some groups [20, | 1] have employed tests
that try to directly engage the invariance problem, but these
test sometimes miss important components (e.g. failure to
use appropriate backgrounds), and they have not been ap-
plied to compare and contrast state-of-the-art representa-
tions. Other groups [18, 19] have compared various vi-
sual descriptors (including SIFT, steerable filters, spin im-
ages or shape context), but the focus of these studies was
not directly on the invariant object recognition problem, but
on correspondence matching using local features similar in
nature (i.e. “distribution-based” representations). A num-
ber of other recent evaluation studies (e.g. [34]), including
a comprehensive study by [37] have evaluated the perfor-
mance of state-of-the-art visual representations (and combi-
nations of those representations) using so-called “natural”
image databases (esp. Caltech-101 [8] or PASCAL VOC
[7]). However, because image variation is not explicitly
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Figure 1. Reproducing the state-of-the-art on Caltech-101. a)
Average accuracy with 15 training and 15 testing examples for
five state-of-the-art algorithms and two baselines (see Methods).
b) Reported vs reproduced performance showing the successful
re-implementation of published methods. The reported numbers
come from [21] (SLF), [35] (PHOG, PHOW and Geometric Blur)
and [23] (VI-like).

controlled, these tests may lack real-world image variation
(e.g. due to posing of photographs), making difficult or im-
possible to know how well the visual representations have
solved the invariance problem. Moreover, performance on
such tests may reflect successful exploitation of low-level
regularities (e.g. due to covariation of object identity with
background texture or color) and artifacts hidden in the test
sets (e.g. cropping cues, etc.). While these problems have
been pointed out in recent studies on natural image sets in
object and face recognition [27, 23, 32, 24, 25], systematic
tests that expose or circumvent them have not yet emerged.

To illuminate the progress of state-of-the-art visual rep-
resentations in solving invariant object recognition, we
re-implemented five state-of-the-art visual representations
(some bio-inspired, some not), and we probed the ability
of each representation to solve invariant object recognition
tasks in which ground truth is known. Specifically, we used
a synthetic image approach outlined in Figure 2 because it
allows: parametric control of the invariance problem, con-
trol of shape similarity, control of the number of object ex-
emplars in each category, control of background and color
covariance. We compared the obtained performance with
both a Pixels baseline representation and a well-established
baseline representation that approximates the first level of
primate visual processing (VI-like representation). We also
used this approach to ask how well each visual represen-
tation handle each of these underlying types of invariance,
which is difficult or impossible using prevailing “natural”
object recognition tests.

2. Methods
2.1. Visual Representations

In the following, we give an overview of the visual fea-
tures used in our experiments along with their key param-
eters. We refer to the corresponding publications for more

details. Note that the terms “descriptors”, “features” and
“representations” are used interchangeably throughout the

paper.

2.1.1 ‘‘Baseline” Features

We used two simple image representations — Pixels and V1I-
like — designed to serve as baselines against which the per-
formance of state-of-the-art features can be measured. For
both baseline representations, training and testing data were
normalized to have zero-mean and unit-variance feature-
wise (using the training data only), and a simple linear ker-
nel was used for classification (see Section 2.1.3).

Pixels: In the Pixels representation, each image was sim-
ply rescaled to 150 by 150 pixels, converted to grayscale
and then unrolled as a feature vector. The resulting feature
vector represents an almost entirely unprocessed represen-
tation of the original image.

V1-like: Inthe VI-like representation, features were taken
without any additional optimization from Pinto et al’s
VI1S+ [23]. This visual representation consists of a col-
lection of locally-normalized, thresholded Gabor wavelet
functions spanning a range of orientations and spatial fre-
quencies and is based on a first-order description of pri-
mary visual cortex V1. VI-like features have been proposed
by neuroscientists as a “null” model for object recognition
since they do not contain a particularly sophisticated rep-
resentation of shape or appearance, nor do they possess
any explicit mechanism designed to tolerate image varia-
tion (e.g. changes in view, lighting, position, etc. [5, 23]).
In spite of their simplicity, these features have been shown
to be among the best-performing non-blended features set
on standard natural face and object recognition benchmarks
(i.e. Caltech-101, Caltech256, ORL, Yale, CVL, AR, PIE,
LFW [23, 24, 25]), and are a key component of the best
blended solutions for some of these same benchmarks [22].
We used publicly available code for these features with two
minor modifications to the published procedure. Specif-
ically, no PCA dimensionality reduction was performed
prior to classification (the full vector was used) and a differ-
ent regularization parameter was used (C' = 10, 000 instead
of C = 10).

2.1.2 State-of-the-art Features

We considered a diverse set of five state-of-the-art features.
Most were chosen on the basis of their high-performance on
Caltech-101 (arguably still the most widely used multi-class
object recognition benchmark today [10, 9, 22]). Effort was
made to span a wide range of different approaches to object
recognition: models that were bio-inspired, and those that



are not; distribution-based and non-distribution-based mod-
els, and models with a custom kernel (e.g. Spatial Pyra-
mid) and models with a simple linear one. To promote
experimental reproducibility and ease distribution, we re-
implemented all but one of these models (SLF, see below)
from the ground up using only free, open-source software
(e.g. Python, NumPy, SciPy, Shogun, OpenCYV, etc.).

SIFT: SIFT descriptors [15] were computed on a uniform
dense grid from a 150 by 150 pixels grayscale image with
a spacing of 10 pixels and a single patch size of 32 by 32
pixels. The result was then unwrapped as a feature vec-
tor. Training and testing data were normalized to have zero-
mean and unit-variance feature-wise (using the training data
only), and SVM classification was done using a linear ker-
nel.

PHOW: PHOW (Pyramid Histogram Of visual Words) is
a spatial pyramid representation of appearance [2, 35, 12].
To compute these features, a dictionary of visual words was
first generated by quantizing the SIFT descriptors with k-
means clustering. We fixed the dictionary size to 300 ele-
ments, and the SVM kernel to a three-level spatial pyramid
kernel with x? distance [12].

PHOG: PHOG (Pyramid Histogram Of Gradients) is a
spatial pyramid representation of shape [2, 35] based on
orientations gradients (HOG [4]) of edges extracted with a
Canny detector. We fixed the angular range to 360 degrees,
the number of quantization bins to 40, and the SVM kernel
to a four-level spatial pyramid kernel with x? distance.

Geometric Blur: The Geometric Blur shape descriptors
[1, 36] are generated by applying spatially varying blur on
the surrounding patch of edge points in the image (extracted
by the boundary detector of [16]). We fixed the blur parame-
ters to « = 0.5 and § = 1, the number of descriptors to 300
and the maximum radius to 50 pixels. For the SVM classi-
fication, we used the kernelized distance D“ from [36] (Eq.
1) with no texture term as described in [35].

SLF: The bio-inspired Sparse Localized Features (SLF)
[21] are an extensions of the C2 features from the Serre et
al. HMAX model [31, 28]. For this representation, we took
advantage of the MATLAB code provided by the authors.
Here, the SVM classification was based on a linear kernel
with normalized training and testing data (zero-mean and
unit-variance feature-wise). Interestingly, we found that it
was unnecessary to use the feature selection procedure de-
scribed in [21] to match the level of Caltech-101 perfor-
mance achieved in that work. We suspect that our slightly

higher observed performance level was due to differences
in SVM formulation and regularization parameters.

2.1.3 Classification

For classification we used L2-regularized Support Vector
Machines (libsvm solver from the Shogun Toolbox') with
a regularization constant C' = 10, 000. Each representation
was used to produce either a simple linear, or custom (for
PHOW, PHOG and Geometric Blur) kernel. Multi-class
problems were addressed with a one-versus-rest formula-
tion.

Classifiers were trained using a fixed number of exam-
ples. Except when stated otherwise, we use 150 training
and 150 testing examples for each class. The performance
scores reported are the average of performances obtained
from five random splits of training and testing sets, the er-
ror bars represent the standard error of the mean. The same
image splits were used for all the representations.

2.2. Synthetic Image Set Generation

A key feature of the evaluation procedure described in
this study is the use of object test sets where the ground-
truth range of variation in object view is known. In partic-
ular, we chose to use rendered three-dimensional objects,
which allow for large numbers of test images to be gener-
ated with minimal effort, while preserving tight controls on
the distribution of view variation within the set.

For each category of objects (cars, planes, boats, ani-
mals), five 3D meshes (purchased from Dosch Design and
Turbosquid.com) were rendered using the POV-Ray ray-
tracing package onto a transparent background, and this im-
age was overlaid onto a randomly selected background im-
age from a set of more than 2,000 images of natural scenes
(Figure 2a). Background images were selected randomly,
and no background was ever reused within a given train-
ing / test set. While backgrounds often contain information
that is helpful for recognizing objects, we made no effort
to associate objects with context-appropriate background,
in order to better focus the test set on object recognition per
se. All images were made to be grayscale to avoid any color
confound.

In Figures 3a and 4a, object views were varied simul-
taneously (“composite variation”) along four axes: posi-
tion (horizontal and vertical), scale, in-plane rotation and
in-depth rotation. In order to roughly equate the effects of
each of these kinds of view variation, we defined a view
change “quantum” for each axis of variation, such that each
kind of variation, on average, produced an equivalent pixel
change in the image, as defined by a pixel-wise Euclidean
distance. The average pixel change associated with a full,
non-overlapping translations of the objects’ bounding boxes

lhttp://www.shoqunftoolbox.orq
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Figure 2. Object rendering procedure. a) 3D object meshes were rendered using view parameters drawn from a uniform random
distribution, and then composited onto randomly selected natural background images. b) Examples of view variation ranges used in this
study, spanning from no view variation (top) to relatively large amounts of “composite variation” (i.e. all four types of variation included:

position, scale, in-plane rotation and in-depth rotation).

was taken as the “standard” unit of pixel variation, and all
other view change units were equalized to this unit.

Separate test and training sets were generated for each
of a series of view-variation ranges, spanning from no view
variation (Figure 2b, top) to a relatively large amount of
variation (Figure 2b, bottom). For each range, view param-
eters were drawn independently along each of the four axes,
with a uniform random distribution, and all object exem-
plars were included as part of the random image draw. Im-
portantly, for a given range, a successful recognition system
must not only correctly recognize objects with view param-
eters at the extremes of the range, but must also correctly
recognize objects across the entire range.

3. Results

The main goal of this study was to test state-of-the-art
artificial visual representations on truly difficult, systematic
tests of invariant object recognition where ground truth is
known [23]. To do this, we first verified that we had suc-
cessfully re-implemented each visual representations (see
Methods). We used the Caltech-101 image categorization
task [8] as a point of reference. Despite many serious con-
cerns raised about the Caltech-101 set [27, 23], that test is
still widely used in the object recognition community and
thus most state-of-art algorithms have reported accuracy on
Caltech-101 in the literature [1, 36, 35, 21, 12]. Specifically,
for each representation, we compared the Caltech-101 per-
formance of our re-implementation with the performance
reported in the literature. As Figure 1b shows, in all cases,
we succeeded in matching (or slightly exceeding) the re-
ported performance of all representations on the Caltech-
101 set. These results provide an independent replication of
the original authors’ results, and that we have succeeded in

re-implementing these state-of-the-art algorithms.

3.1. Basic-level Object Recognition

With successful re-implementations of a collection of
state-of-the-art algorithms in hand, we proceeded to test
each representation on basic-level invariant object recogni-
tion tasks and to benchmark these results against a simple
Pixels baseline representation and the V1I-like baseline rep-
resentation (see Methods).

In Figure 3, we show the performance of all seven vi-
sual representations (including the Pixels and VI-like base-
line representations) as we gradually increase the difficulty
of the “cars vs. planes” task by increasing four types of ob-
ject variation (position, scale, in-plane rotation and in-depth
rotation) at the same time in a fixed mixture (“composite
invariance”, see Methods Section 2.2). Even though all
of the state-of-the-art representations consistently outper-
formed Pixels and performed approximately equally well
on the standard Caltech-101 “natural” task (Figure 1), the
results in Figure 3 reveal clear differences among the mod-
els. Several state-of-the-art models are clearly below the
V1-like baseline and, in some case, below the Pixels base-
line. Most interestingly, the results show that one represen-
tation (SLF) has made clear gains on the composite invari-
ance problem (see Discussion).

Given that there is no single test of basic-level recogni-
tion, we next considered the possibility that the results in
Figure 3a are simply due to particular parameter choices
one necessarily has to make when testing a visual represen-
tation (e.g. number of training examples, number of objects,
particular choice of objects, etc). Specifically, we picked
an intermediate level of composite variation that best re-
vealed the differences among the representations (see high-
lighted section in Figure 3a and, using this level of compos-
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Figure 3. Performance on object recognition tasks with controlled composite variation. a) Average accuracy of each representation
on a series of “cars vs planes” tasks in which the composite variation is gradually increased. The inset shows the performance of the five
state-of-the-art features from the literature relative to the Pixels representation. b) Performance relative to Pixels on the composite variation
3 (cf. inset in a)) with a new draw of “cars” and “planes” images, more training examples, other objects (‘“animals vs boats”), and more

object classes (“animals vs boats vs cars vs planes”).

ite variation, we created four new object recognition tests
using: a new set of “cars” and “planes” images, three times
as many example images for training (450 instead of 150),
two completely new objects (“animals” and “boats”), and
a test with four basic object categories (“animals”, “boats”,
“cars”, “planes”) instead of two (Figure 3b). In all cases, we
found that the relative performance of each representation
(i.e. performance relative to the other representations) was
largely unaffected by these testing parameter choices. We
quantified this robustness by computing Spearman’s rank
correlation of performance in all pairs of these basic level
recognition tasks, and found very high values (mean = 0.95,
min = 0.86). In sum, these results show that, at least for the
currently considered set of state-of-the-art models, our tests
of basic-level recognition are largely robust to: the exact
set of images (at a given level of composite variation) the
number of training examples, the exact categories of basic
object used and the number of categories.

3.2. Subordinate-level Object Recognition (Faces)

The absolute level of recognition performance must de-
pend on the degree of 3D structural similarity of the objects
in the test set. Specifically, while objects involved in tests
of basic-level recognition (e.g. cars vs. planes vs. boats,
etc.) are moderately to highly dissimilar in terms of 3D
structure, objects in so-called, subordinate-level [17] tasks
of recognition (e.g. one face vs. another face) share com-
mon 3D structure that makes tasks intrinsically more chal-
lenging. Thus, we used the same approach as in Figure 3
(but with lower absolute levels of view variance) to test the
performance of the state-of-the-art representations on a face

recognition task. The results are shown in Figure 4. As
with the basic-level recognition task, we found that most,
but not-all, state-of-the-art representations performed below
the V1I-like baseline representation and that the relative per-
formance of the representations on the face task was largely
robust to the number of training examples, the particular
choice of faces, and the number of faces (mean Spearman’s
rank correlation = 0.92, min = (0.85).

To ask if a representation’s performance on basic-level
recognition is predictive of its performance on subordinate-
level recognition, we directly compared the results in the
“cars vs. planes” task (Figure 3) and the “face vs. face”
task (Figure 4). Figure 5 shows the performance of all rep-
resentations on both tasks using a range of different testing
conditions (as outlined in Figures 3 and 4). We found that
the absolute performance level on each task is highly cor-
related (Figure 5a). However, when performance is plotted
relative to the Pixels (Figure 5b) and VI-like baselines (Fig-
ure 5c¢), the data reveal that one of the state-of-the-art rep-
resentations (PHOW, see purple points) is reasonably good
at basic-level invariant object recognition but quite poor at
subordinate-level (face) recognition, and that one represen-
tation (SLF, see red points) is a clear stand-out with respect
to the VI-like baseline on both basic- and subordinate-level
recognition tasks (see Discussion).

3.3. Individual Types of View Variation

We next considered the possibility that our tests (e.g.
Figure 3) were over-weighting some types of variation rel-
ative to others (see Methods Section 2.2, and [23] for a de-
scription of how the relative mix of types of object varia-
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Figure 5. Comparison of performance on basic-level and
subordinate-level object recognition tasks. a) We plot the ac-
curacy of the representations on five tasks at composite variation 3
(original, new draw, more training, other objects and more objects;
see Figures 3 and 4 for details). b) Same data re-plotted relative to
Pixels representation. c¢) Same data re-plotted relative to VI-like
representation.

tion in Figure 3 was chosen). Without an operational goal
(e.g. matching human performance), it is impossible to ex-
actly determine if one type of variation is under- or over-
weighted in recognition tasks, even when ground truth is
known. However, for the present study, we sought to de-
termine if our conclusions about the relative performance
of the state-of-the-art representations would be strongly al-
tered by our current weighting of each of these four type
of view variation. Specifically, we created four new basic-
level recognition tests in which we fully removed one type
of variation from each test (and made sure that the remain-
ing composite variation was at a level that put all the rep-
resentations in a performance regime that was not on the
ceiling or the floor, analogous to the highlighted region in
Figure 3). We found that the relative performance of all the
state-of-the-art representations on these four basic-level ob-
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ject recognition tasks (Figure 6) was very similar to that
found with the full composite invariance tests (Figure 3;
mean Spearman’s rank correlation between results in these
two figures was 0.90, min = 0.64). This suggests that, at
least for the currently considered set of state-of-the-art mod-
els, our tests of basic-level recognition are not strongly de-
pendent on composite variation “mixture” in the test.

To ask what type of tolerance is least difficult and most
difficult for each representation without regard to absolute
performance, we created four new tests of basic level recog-
nition (“cars vs. planes”) that each contained only one
type of object variation (position-only, scale-only, in-plane-
rotation-only, and in-depth-rotation-only tests). To fairly
compare each representation’s degree-of-difficulty in han-
dling each type of variation, we equated these four tests in
that the amount of variation produced an equal degree of
difficulty for the pixel representation (10% absolute perfor-
mance drop, see Figure 7). The results show that most of the
state-of-the-art representations have the least difficulty with
position variation, and tend to have more difficulty with
(e.g.) in-depth variation. For example, these tests reveal that
the representation of [21] which was designed with position
and scale variation in mind [28, 31] is much less sensitive
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to position variation than it is to in-depth rotation (i.e. pose)
variation.

3.4. The influence of background

Because background structure and its covariance with
object identity are fully known, the testing methods used
here can also expose visual representations that rely
strongly on these cues. For example, Figures 3 and 4 show
that one of the state-of-the-art visual representations, Ge-
ometric Blur, performs very poorly on most of our tests,
but Figure 8 shows that, when we perform the tests on
no background, the same representation now performs at
a very high level. Taken together, this suggests that this vi-
sual representation is seriously impaired by clutter or leans
heavily on background features to perform categorization.
When natural images are used and background covariance
is brought to zero (as in all our testing), this limitation of the
representation is revealed. We emphasize that these effects
are difficult or impossible to uncover in standard “natural”
tests, but are very easy to uncover using a synthetic test set
approach (see Discussion).

4. Discussion

Our testing of invariant object recognition revealed that
most of the state-of-the-art representations consistently per-
formed at or below the performance of the VI-like base-
line representation (which also achieves the highest perfor-
mance on the Caltech-101 set). To the extent that this model
represents a “null” baseline that lacks mechanisms to per-
form invariant recognition, this suggests that other state-of-

the-art representations perhaps also rely heavily on view-
specific information, or covariation with backgrounds, to
achieve their performance. Interestingly, the bio-inspired
model SLF (an extension of Serre et al.’s C2 features [31])
stood out in all of our tests, performing consistently bet-
ter than both baselines, suggesting that it contains com-
putational ideas that are useful for solving invariant object
recognition. It remains to be seen how this visual represen-
tation and other emerging representations compare to unfet-
tered human performance and the performance of high-level
neuronal representations on these tasks.

Our results also revealed that the performance of some
representations was highly dependent on the details of the
task under test. For example, the performance of Geo-
metric Blur descriptors degraded rapidly with the inclusion
of background content uncorrelated to object identity, and
PHOW, while reasonably good at basic-level object catego-
rization tasks, was no better than the pixel representation at
the subordinate-level task (face identification).

The synthetic testing approach used here is partly mo-
tivated by previous work on photographic approaches like
NORB [13]. However, while NORB-like databases are
challenging and costly to obtain, the synthetic approach of-
fers the potential to draw on large numbers of objects and
generate an essentially infinite number of images with pre-
cise control of all key variables at low cost. The approach
easily allows exploration of the individual underlying dif-
ficulty variables (e.g. position, scale, background, etc.) to
better learn from the best ideas of each representation. Be-
cause the synthetic approach offers the ability to gradually
“ratchet up” the task difficulty (e.g. increasing levels of
composite variation in the test) and because only hundreds
of images are needed instead of thousands, it can be used to
efficiently search for better visual representations [26].

Although it is widely understood that performance eval-
uation is critical to driving progress, such performance eval-
uation is much easier said than done. Over the last decade,
tests based on known ground truth have fallen out of fashion
in computer vision [6] while a number of “natural” image
test sets (e.g. Caltech-101, PASCAL VOC) continue to be
used almost exclusively as evidence of progress in solving
object recognition [10, 9, 22, 34]. While these test sets are
laudable because they encourage systematic comparison of
various algorithms, they can also be dangerous when hid-
den confounds exist in the sets, or when it is not clear why
the sets are difficult. Indeed, despite the fact that these rep-
resentations are highly competitive on large, complex “nat-
ural” image sets and the expectation [ 4] that many of these
representations should be capable of dealing “fairly well”
with simpler synthetic invariance tests, our results show
that many of these representations are surprisingly weak on
these tests, even though these synthetic sets remain trivially
easy for human observers.
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Figure 7. Degree of difficulty of each type of view variation for each representation. The amount of each type of variation was chosen
to produce a 10% approximate decrease in performance for the Pixels baseline. We here show the change in average performance due to
each type of variation (i.e. change relative to each representation’s performance in the “no variation” task (composite variation 0) in Figure
3). The axes are normalized by the maximum decrease (or increase, for Geometric Blur) of performance for each representation. Thus,
each plot shows the relative degree of difficulty for each type of variation (from the representation’s point of view; -1 is most difficult).
Even though this figure suggests that Geometric Blur benefits from more position and scale variations, that is only a by-product of the
overall poor performance of this representation and floor effects (see Figure 3).

While there is no perfect evaluation tool, we believe
that a synthetic testing approach is an important comple-
ment to ever-improving photographic-based image sets (e.g.
LabelMe [29]). We share the desire and ultimate goal of
evaluating algorithms on “real-world” tasks, and we share
the concern that ill-considered synthetic testing approaches
may not be predictive of real world performance. But in the
world of modern computer graphics, a synthetic testing ap-
proach offers a powerful path forward as it can ultimately
produce images that are indistinguishable from real-world
photographs, yet still have all ground truth variables known
and under parametric control.
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