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We analyze the transverse momentum broadening in the absence of radiation of an
energetic parton propagating through quark-gluon plasma via Soft Collinear Effective
Theory (SCET). We show that the probability for picking up transverse momentum k⊥
is given by the Fourier transform of the expectation value of two transversely separated
light-like path-ordered Wilson lines. The subtleties about the ordering of operators do
not change the q̂ value for the strongly coupled plasma of N = 4 SYM theory.

1. Introduction

One of the central discoveries made in experimental heavy ion collisions at the Rel-

ativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is that the

droplets of quark-gluon plasma produced in these collisions are sufficiently strongly

coupled that they are able to “quench jets” 1. In the high energy limit the par-

ton loses energy dominantly by inelastic processes that are the QCD analogue of

bremsstrahlung 2,3. It is crucial to the calculation of this radiative energy loss pro-

cess that the incident hard parton, the outgoing parton, and the radiated gluons

are all continually being jostled by the medium in which they find themselves: they

are all subject to transverse momentum broadening.

The transverse momentum broadening of a hard parton is described by P (k⊥)
a,

defined as the probability that after propagating through the medium for a distance

L the hard parton has acquired transverse momentum k⊥.
b The mean transverse

momentum picked up by the hard parton per unit distance travelled results in:

q̂ ≡ 〈k2
⊥
〉

L
=

1

L

∫

d2k⊥

(2π)2
k2
⊥
P (k⊥) . (1)

The quantity q̂ is called the “jet quenching parameter” because it plays a central

role in calculations of radiative parton energy loss 3,4, although it is defined via

aWe normalize P (k⊥) as
∫ d2k⊥

(2π)2
P (k⊥) = 1 .

bk⊥ is the two-dimensional vector ~k⊥ in transverse momentum space. We will also represent
two-dimensional vectors in transverse coordinate space by x⊥, again without the vector symbols.
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transverse momentum broadening only. Radiation and energy loss do not arise in

its definition, although they are central to its importance.

The calculation of parton energy loss and transverse momentum broadening

involves widely separated scales:

Q ≫ l⊥ ≫ T, (2)

where Q is the energy of the hard parton, l⊥ the momentum of the radiated gluon

transverse to that of the incident parton and T the soft scale characteristic of the

medium. We can ultimately hope for a factorized description, with physics at each

of these scales cleanly separated at lowest nontrivial order in a combined expansion

in the small ratio between these scales and in the QCD coupling α evaluated at

scales which become large in the high parton energy limit. And, most importantly,

we can aspire to having a formalism in which corrections to this factorization are

calculable systematically, order by order in these expansions. No current theoretical

formulation of jet quenching calculations is manifestly systematically improvable in

this sense. We take a small step toward such a description 5: we formulate the

calculation of transverse momentum broadening and the jet quenching parameter

in the language of Soft Collinear Effective Theory (SCET) 6, which has rendered the

calculation of many other processes involving soft and collinear degrees of freedom

systematically improvable. The problem that we analyze really does not use the

full power of SCET, and the bigger payoff from a SCET calculation will come once

radiation is included and once the analysis is pushed beyond the present leading

order calculation.

2. Set-up and relevance of “Glauber gluons”

Consider an on-shell high energy parton with initial four momentumc

q0 ≡ (q+0 , q
−

0 , q0⊥) = (0, Q, 0) (3)

propagating through some form of QCD matter, which for definiteness we will take

to be quark-gluon plasma (QGP) in equilibrium at temperature T although the

discussion of this paper would also apply to propagation through other forms of

matter. We will assume throughout that Q is very much larger than the highest

momentum scales that characterize the medium, which for the case of QGP means

Q ≫ T . Thus, we have a small dimensionless ratio in our problem:

λ ≡ T

Q
≪ 1 . (4)

In the high energy limit the momentum broadening is induced by the interaction

between the hard parton and gluons from the medium with momenta

p ∼ Q(λ2, λ2, λ) , (5)

cThe light cone coordinates are defined by q± = 1
2
(q0 ± q3).
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q
= iQ

2q+Q−q2
⊥+iǫ

6 n

= igtanµ 6 n
q

µ, a

q′

q
=

−igµν

2q+Q−q2
⊥+iǫ

δab

= −2 ig q− (taG)bc gνρnµ

q

µ, a

q′

ν, bµ, a

ν, b ρ, c

(a) (b)

Fig. 1. Feynman rules for collinear partons interacting with Glauber gluons: (a) collinear quarks;
(b) collinear gluons in Feynman gauge (α = 1). The light cone vectors are defined as n̄ ≡
1√
2
(1, 0, 0,−1) and n ≡ 1√

2
(1, 0, 0, 1).

as first established by Idilbi and Majumder 7, who made the first attempt to extend

SCET to describe hard jets in a dense medium. Gluons in this kinematic regime are

conventionally called “Glauber gluons”. After absorbing or emitting Glauber glu-

ons, the momentum of the hard parton is of order q ∼ Q(λ2, 1, λ). We shall refer to

modes with momenta of this parametric order as “collinear”. The parton is only off-

shell by of order λ2Q2 ∼ T 2, and further absorption or emission of Glauber gluons

keeps the parton off-shell by of the same order.d And yet, repeated absorption and

emission of Glauber gluons continually kicks the hard parton and can result in sig-

nificant transverse momentum broadening. The interaction vertex of each Glauber

gluon with the parton is governed by αs(T ) and so can be strongly coupled. At a

heuristic level, one can imagine Glauber gluons as a gluon background surrounding

the parton and as a result of frequent small kicks from this background, the par-

ton will undergo Brownian motion in momentum space. The effective Lagrangian

governing the interaction between collinear partons and Glauber gluons is derived

using SCET in Refs. 5,7. The Feynman rules are given in Fig. 1.

3. Optical theorem and momentum broadening

Our goal is to compute the probability distribution P (k⊥) defined in the introduc-

tion, and the field theory tools we use to perform this computation are the S matrix

and the optical theorem.

We shall imagine a cubic box with sides of length L that is filled with the

medium, and that satisfies periodic boundary conditions, leading to the quanti-

zation of momenta. We denote the single-particle in state describing the incident

hard parton and the final state by |α〉 and |β〉, respectively.e Since we are ignoring

radiation, the only out states that we need consider are also single-particle states.

dAs does absorption or emission of ”ultrasoft” modes with momenta ∼ Q(λ2, λ2, λ2). They are
simply a subset of the Glauber modes and thus are included in our analysis. So too are all modes
whose momenta are proportional to even higher powers of λ. Interestingly this is true also for
modes with momenta ∼ Q(λ2, λ, λ), and our analysis of Glauber gluons applies to them also.
eThe box states have unit norm.
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q′0q′1q′m−1q0 q1 qn−1 k k

p′1p′2p′m−1p′mpnpn−1p2p1

y′1y′2y′m−1y′mynyn−1y2y1

Fig. 2. Leading diagram for the transverse momentum broadening of a hard (collinear) parton, in
the absence of any radiation. All the gluons are Glauber gluons.

The S-matrix element Sβα is defined as the probability amplitude for the process

α → β. As usual, we first isolate the identity part of the S-matrix, Sβα = δβα+iMβα,

in so doing defining the interaction matrix elementMβα. Conservation of probability

implies unitarity for the S-matrix:

2ℑMαα =
∑

β

|Mβα|2 . (6)

At this formal level, (6) would still be valid if we were including the effects of

radiation, meaning that final states |β〉 would include many particle states. We

are interested in computing the probability for the process α → β, where both

states describe single particles and the final state β differs from the initial state α

only in its value of k⊥. No other quantum numbers change. In particular, β = α

corresponds to k⊥ = 0. From the box normalizationf we obtain

P (k⊥) = L2

{ |Mβα|2 β 6= α

1− 2ℑMαα + |Mαα|2 β = α .
(7)

We first compute twice the imaginary part of the forward scattering amplitude,

2ℑMαα, by cutting the appropriate diagrams. Once we know 2ℑMαα we can use

the unitarity relation (6) to read off
∑

β |Mβα|2. Knowing the box normalization,

we will immediately be able to identify P (k⊥).

The leading diagrams for the forward scattering amplitude are given in Fig. 2,

with the dashed line indicating where we cut the diagram and with all gluon lines

being Glauber gluons. We will essentially consider the Glauber gluon insertions

as external background fields and average them over the thermal ensemble only

at the end of the calculation. That is, we first consider the propagation of the

hard parton in the presence of one background field configuration, analyzing this

problem including arbitrarily many interactions with the background field. The

nonperturbative physics of the medium does not enter this calculation. We shall

then stop, leaving unevaluated in our answer the average over a thermal ensemble.

fAs a consequence of the box normalization we have
∑

β = L2
∫ d2k⊥

(2π)2
.
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We evaluate the forward scattering amplitude in the Q → ∞ limit. We make

the statement of this limit precise

Q ≫ k2
⊥
L ∼ q̂L2 . (8)

The physical significance of this criterion is that in the regime (8) the distance

L that the hard parton propagates through the medium is short enough that the

trajectory of the hard parton in position space remains well-approximated as a

straight line, even though it picks up transverse momentum.

The final result for the probability distribution P (k⊥) is

P (k⊥) =

∫

d2x⊥ e−ik⊥·x⊥ WR(x⊥) , (9)

where R is the SU(N) representation to which the collinear particle belongs and

WR(x⊥) is the expectation value of two light-like Wilson lines separated in the

transverse plane by the vector x⊥. Note that WR(x⊥) depends only on the proper-

ties of the medium. It is independent of the energy of the hard parton, meaning that

so are P (k⊥) and q̂ in the limit in which this hard parton energy is taken to infinity.

Transverse momentum broadening without radiation thus does “measure” a field-

theoretically well-defined property of the strongly coupled medium. This is the kind

of factorization that we hope to find in a systematically improvable calculation once

radiation is included. Eq. (9) has been obtained previously by Casalderrey-Solana

and Salgado and by Liang, Wang and Zhou using different methods 8.

4. q̂ evaluation in N = 4 SYM theory revisited

With P (k⊥) in hand, it is easy to obtain the jet quenching parameter q̂

q̂ =

√
2

L−

∫

d2k⊥

(2π)2
k2⊥

∫

d2x⊥ e−ik⊥·x⊥ WR(x⊥) . (10)

Crucially, and as a consequence of our field-theoretical formulation, we find that

the ordering of operators in the expectation value WR(x⊥) is not that of a standard

Wilson loop — the operators (like the color matrices) are path ordered, whereas in

a standard Wilson loop operators are time ordered. Because the operators are path

ordered, the expectation value should be described using the Schwinger-Keldysh

contour with one of the light-likeWilson lines on the Im t = 0 segment of the contour

and the other light-like Wilson line on the Im t = −iǫ segment of the contour. This

subtlety throws into question the calculation of q̂ in the strongly coupled plasma of

large-Nc N = 4 supersymmetric Yang-Mills (SYM) theory reported in Refs. 9.

We have to revisit the strong coupling calculation, and our procedure 5 is a spe-

cific example of the more general discussion of Lorentzian AdS/CFT given recently

by Skenderis and Van Rees in Refs. 10, which we have followed. The subtleties

introduced in the gravity calculation, corresponding to the subtlety of operator or-

dering in the field theory, turn out not to change the results of Refs. 9 for WR(x⊥)

and q̂ in N = 4 SYM theory. In fact, they solidify these results since it now turns
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out that there is only one extremized string world sheet that is bounded by the

light-like Wilson lines, and it is the one identified on physical grounds in Refs. 9.

We quote the result

q̂ =
π3/2Γ(3

4
)

Γ(5
4
)

√
λT 3 . (11)

This turns out to be in the same ballpark as the values of q̂ inferred from RHIC

data on the suppression of high momentum partons in heavy ion collisions 9.
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