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Abstract 

 

In Life Itself and in Essays on Life Itself, Robert Rosen (1991, 2000) argued that 

machines were, in principle, incapable of modelling the defining feature of living 

systems which he claimed to be the existence of closed causal loops. Rosen’s 

argument has been used to support critiques of computational models in ecological 

psychology. This paper shows that Rosen’s attack on mechanism is fundamentally 

misconceived. It is, in fact, of the essence of a mechanical system that it contains 

closed causal loops. Moreover, Rosen’s epistemology is based on a strong form of 

indirect realism and his arguments, if correct, would call into question some of the 

fundamental principles of ecological psychology. 
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Introduction 

 

The pregnant question ‘What is Life?’ has received many different types of answer 

derived from a variety of different research strategies. One strategy is to examine the 

denizens of the world and to look for a common element or condition possessed by all 

living things and by nothing else. That common element, once identified, can then be 

proclaimed as the answer to the question. There are many difficulties with this 

strategy. One is that it is circular. It presupposes that living things can be identified in 

order that the essence of life can be extracted from them. A second difficulty is the 

essentialist assumption that there is a common thread binding all living things 

together. The forms of life may simply be too varied and disparate for this to be true.   

Another strategy is to proceed by a process of elimination. By becoming clear 

about what life is not, one hopes to become clearer about what it is. The bio-physicist 

Robert Rosen adopted essentially this strategy in his book Life Itself, Rosen (1991). 

Rosen’s principal target was the idea that living things were biological machines. In 

his note to the reader at the start of the book he said 

 

It has turned out that, in order to be in a position to say what life is, we must 

spend a great deal of time in understanding what life is not. Thus, I will be 

spending a great deal of time with mechanisms and machines, ultimately to 

reject them, and replace them with something else. 

 

  Rosen (1991, p.xv) 
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Rosen’s central argument reached the conclusion that ‘there can be no closed path of 

efficient causation in a mechanism’ (Rosen 1991, p.241). By contrast, in his view, 

organisms are characterised precisely by the presence of such paths: ‘a material 

system is an organism if, and only if, it is closed to efficient causation.’ (Rosen 1991, 

p.244) The centrality of the argument based on causal loops can be gauged from the 

fact that it is repeatedly reasserted in Essays on Life Itself and is also a key part of 

Rosen’s description of Life Itself in a short paper called Autobiographical 

Reminiscences which can be found on the Internet at ‘http://www.rosen-

enterprises.com/RobertRosen/RRosenautobio.html’. The statement there is clear and 

trenchant: 

 

I argue that the external, public, material world is full of closed causal loops, 

just as the internal, mathematical world is full of closed inferential ones 

(impredicativities). The “world” of the mechanism, or machine (or, as I call it, 

the simple systems), and which I believe is an artificial human limitation on 

reality, does not allow such loops. Accordingly, as a class, these simple 

systems are extremely poor, or limited, in entailment and hence extremely 

nongeneric. 

 

Rosen described the idea that science is essentially mechanistic as a prejudice and 

argued that it had ‘disastrous consequences’ (Rosen 1991, p.xvi). In particular he 

claimed that the assumption of mechanism made it impossible to answer the question 

‘What is life?’ This was not just dramatization for emphasis: that the charge was 

intended seriously is clear from the context.  
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[T]he initial presupposition that we are dealing with mechanism already 

excludes most of what we need to arrive an answer. No amount of refinement 

or subtlety within the world of mechanism can avail; once we are in that 

world, what we need is already gone. 

 

 (Rosen 1991, p.xvi) 

 

It is not immediately clear why the assumption of mechanism should be so damaging 

to the attempt to understand the essential characteristics of organisms. Theories are 

always wrong in some respects but rarely make it impossible to answer core 

questions. The explanation for the strength of Rosen’s anti-mechanism is to be found 

in his conception of science and his view of the relation between minds and the 

external world.  

Rosen’s critique of mechanistic ideas in biology has been endorsed by leading 

ecological psychologists including Michael Turvey and Robert Shaw (cf. Turvey and 

Shaw 1995; Shaw 2003; Turvey 2004). If the critique is correct it applies, among 

other things, to computational models of psychological processes because they are 

machine models. It thus becomes apparent that the critique is very wide ranging in its 

scope. It would show, if it were true, that the mainstream approach to cognitive 

science must be mistaken in its foundational assumption that the mind can be 

understood in computational terms. It would also show that proposals to deploy 

computational thinking in ecological psychology, for example the modelling of 

affordances as the configurations of Turing machines by Wells (2002), must be 

flawed or, at best, radically incomplete. Fortunately, for those who value machine 

models in psychology, Rosen’s critique is not correct. It is, in fact, fundamentally 
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misconceived because it is of the essence of a machine that it contains precisely the 

closed causal loops that Rosen claims cannot be realised in machines.  

This paper defends machine models and the mechanist philosophy against 

Rosen’s attack. The simplest, and most obvious, way to rebut Rosen’s critique is by 

displaying machines which exhibit closed loops. Several such machines are described 

and discussed. These machines provide conclusive counterexamples to Rosen’s 

central argument. A rebuttal along these lines alone, however, does not address the 

question of how Rosen came to reach his conclusions nor does it tackle the details of 

his arguments. These are valuable supporting exercises. The paper begins, therefore, 

with an overview of Life Itself  (Rosen 1991). It then summarizes and offers a critique 

of Rosen’s central argument. This is followed by discussion of some subsidiary 

arguments which appear principally in Essays on Life Itself. Turing machines are then 

introduced and are readily seen to exhibit closed causal loops. In the final section of 

the paper some aspects of Rosen’s philosophy and methodology are compared with 

some of the principles and methods of ecological psychology. 

 

Overview 

 

One of the curious features of Life Itself, which Rosen described as a book about 

biology, is that there is rather little in it which most people would recognize as 

biology and a great deal which looks like mathematics. Category theory, set theory 

and recursive function theory all feature in the development of the argument. The 

reason for this is that Rosen understood science in terms of a specific conception of 

Natural Law and in terms of an epistemology which laid fundamental emphasis on 

modelling relations between natural systems and the accounts that we give of them in 
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both natural and formal languages. The first task for a student of Rosen should, 

therefore, be to understand his epistemology and philosophy of science. 

 Science, Rosen said, is built on dualities and he suggested that ‘the most 

fundamental dualism’ is that between the self and everything else. Section 3B of Life 

Itself describes this dualism in Cartesian terms. According to Rosen the self 

encompasses or contains  

 

‘our perceptions, our thoughts, our ideas, our imaginings, our will, and the 

actions that spring from them. This is the inner world. Everything else is 

outside.’ 

 

 (Rosen 1991, pp. 40-1) 

 

That which is other than the self Rosen calls the ‘ambience’ and he thinks of science 

as a kind of relation between the self and the ambience. Science he says 

 

‘requires an external, objective world of phenomena, and the internal, 

subjective world of the self, which perceives, organizes, acts, and understands. 

Indeed, science itself is a way (perhaps not the only way) of bringing the 

ambience inside, in an important sense, a way of importing the external world 

of phenomena into the internal, subjective world that we apprehend so 

directly.’ 

 

 (Rosen 1991, p.41) 
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It is, I think, of great importance for ecological psychologists to understand, as this 

quotation shows, that Rosen’s epistemology is based on a strong form of indirect 

realism. It is a key part of the context needed to understand his attack on mechanism 

and it suggests, rather obviously, that Rosen’s philosophy is much less compatible 

with ecological psychology than some of his apologists may like to think. 

A ‘second basic dualism’ as Rosen describes it concerns how we take the 

ambience to be partitioned into systems and their environments. The way that Rosen 

characterizes this second dualism reinforces the point just made about his indirect 

realism. Talking about how we manage our perceptions of the external world he says,  

 

‘At this level, we have no universal principles to guide us, nothing given to us, 

like the distinction between the inner world of the self and the outer world, 

what we called the ambience. It rests rather on a consensus imputed to the 

ambience, rather than on some objective and directly perceptible property of 

the ambience.’ 

 

 (Rosen 1991, p.41) 

 

The idea that there is a consensus that imputes or ascribes properties and meanings to 

the external world suggests the view that everyday reality is, in part, a social 

construction. Notice the striking contrast here with Gibson’s view of the external 

world as the locus of ecological reality: 

 

The world of physical reality does not consist of meaningful things. The world 

of ecological reality, as I have been trying to describe it, does. If what we 
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perceived were the entities of physics and mathematics, meanings would have 

to be imposed on them. But if what we perceive are the entities of 

environmental science, their meanings can be discovered. 

 

 (Gibson 1986, p. 33) 

 

The significance of the partition of the ambience into systems and their environments 

lies, says Rosen, in the fact that it leads us to treat the components in fundamentally 

different ways. Systems are described in terms of states and environments are 

described in terms of their effects on systems. This, Rosen says, is a source of 

fundamental trouble but it is of less concern for the present paper than the first basic 

dualism between the self and the ambience. Rosen takes perception of the external 

world to be mediated by the inner self. In section 3D of Life Itself he says that 

language plays ‘an essential role as an intermediary between the self and its 

ambience’ (p.43) but he does not say clearly in that section what the essential role of 

language is. Instead he describes the differences between natural and formal 

languages and between syntax and semantics and introduces what will become a key 

idea, namely the fact that the syntactic production rules of languages, both natural and 

formal, are vehicles for inferential entailment. Further discussion of inferential 

entailment in section 3E includes a brief discussion of Aristotle’s four categories of 

causation, a topic which is treated further in due course. A key point to note about 

inferential entailment is that it can be understood in terms of causal relations between 

syntactic elements. For example, given the rules of elementary arithmetic, the string 

of symbols 2 + 2 = ? entails, or can be said to cause, the symbol 4, whereas the string 
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2 – 2 = ? entails the symbol 0. In section 3G Rosen discusses entailment in the 

external world. The key question he asks is the following: 

 

‘[I]s there, in this external world, any kind of entailment, analogous to the 

inferential entailment we have seen between propositions in a language or 

formalism?’ 

 

 (Rosen 1991, p.55) 

 

The discussion which follows further confirms his view of perception as indirect. 

Rosen says, with explicit reference to Kant, that things in themselves are ‘inherently 

unknowable’ except through the perceptions they elicit in us and acknowledges that 

this is a potent source for scepticism. He concludes, nonetheless, that it is reasonable 

to posit relations of entailment between phenomena in the external world because 

natural language ‘imputes hordes of entailments to the ambience’ (p.56) without 

leading us seriously astray. These entailments are taken to be causal. Notice the 

second use of the term ‘impute’.  

 To summarize the discussion so far, Rosen has, before the end of chapter 3 of 

Life Itself made the following points: there is a fundamental distinction between the 

internal world of the self which, in Cartesian fashion, is known directly and 

indubitably and the external world which is known only indirectly. The internal world 

contains a variety of languages which instantiate systems of inferential entailment. 

Semantic projections from these inferential systems outwards onto the external world 

are generally reliable and support the assumption that the external world contains 

entities which are systematically related to one another by causal entailments. 
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 Building on this foundation, Rosen discusses natural law and modelling 

relations in section 3H. The point of this section is to discuss whether, and if so how, 

inferential entailment in the inner world can be related to causal entailment in the 

external world. Rosen argues that they can be related by the establishment of a 

modelling relation between them. According to his view modelling relations are 

possible by virtue of Natural Law which provides the explicit underpinning for 

science. Natural Law, in Rosen’s formulation of it, rests on two fundamental 

assertions: first, that events in the external world are ordered and exhibit systematic 

causal relations; second that these orderly causal relations can be grasped by the 

human mind.  

 

‘[T]he causal relations manifested by a natural system provide the orderliness 

required of the ambience. Inferential entailment in a formal system is a way of 

providing the orderliness required of the self. The art of bringing the two into 

correspondence, through the establishment of a definite modeling relation 

between them, is the articulation of the former within the latter; it is in effect 

science itself.’ 

 

 (Rosen 1991, p.59) 

 

A modeling relation is thus a form of congruence between entailment structures. 

Causal entailment in the external world is mapped onto inferential entailment in the 

inner world. If the mapping captures the essential features of the causal system, it will 

be possible to use the inferential structure of the formal system to make predictions 

about events in the external world. The discovery of the planet Pluto is a well known 
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example. Prior to its discovery, astronomers had modelled the orbits of the known 

planets in a mathematical model of the solar system. The mathematical model was a 

system of inferential entailment in Rosen’s terms whereas the actual orbits of the 

planets constitute a system of causal entailment. Calculations based on the model 

allowed the astronomers to predict the future positions of the planets. Observations 

showed that the model was faulty because the planets did not behave as the model 

predicted. Further mathematical reasoning, which can be described as the tracing of 

possible paths of entailment in a revised model, showed that the positional 

discrepancies of the known planets could be accounted for by the postulation of 

another planet beyond Uranus. The revised model was used to predict the position of 

this planet and telescopic search subsequently led to the discovery of Pluto.  

 Two points of particular importance should be noted about the modeling 

relation. First, models are essential because they provide the means whereby we 

obtain knowledge about the external world and its future behaviour. Second, there are 

two-way relations between  natural systems of causal entailment (N) and formal 

systems of inferential entailment (F). Rosen describes the situation thus: 

 

‘[T]he modeling process compares causal entailment in N with inferential 

entailment in F; if we are successful in establishing such a relation, then F is 

the model; N is a realization of that model. But it is essential to note that the 

roles of N and F can be interchanged. That is, instead of starting with a natural 

system N, and looking in effect for a formalism F that models it, we could 

start with a formal system F and ask for a natural system N whose causal 

entailment provides a model for inferential entailment in F.’ 
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 (Rosen 1991, p.61) 

 

Here, I think, we have reached the foundation of Rosen’s objections to machine 

models in biology and the basis for his belief that such models make it impossible to 

discover the causal principles governing organisms. The core problem, in his view, is 

that mechanistic philosophy starts with a formal machine model in the inner world 

and projects this onto the outer world. It assumes, that is, that organisms are machines 

and will be found to exhibit causal entailments that are congruent to the inferential 

entailments found in machines. This is a double mistake in Rosen’s view: it is wrong 

because, as a matter of fact, organisms exhibit patterns of causal entailment that are 

not, and cannot be, captured by the patterns of inferential entailment available in 

machines, and it is wrong because the strategy prevents us from understanding the 

patterns of causal entailment that do exist in organisms. Formal models are our 

windows on the external world and the machine model is a window that makes it 

impossible to understand how organisms work. It is this, in Rosen’s view, that makes 

mechanism such a pernicious philosophy of biology. 

From this standpoint there are two major issues for Rosen to tackle. First, 

machine models must be characterized and shown to be inadequate; second, an 

analysis of the kind of modeling strategy needed to provide the theoretical foundation 

for biology has to be given. Notice that it is not enough for Rosen simply to reject 

mechanism. On his view, models are an essential part of the process of theory 

construction and development. A critique of mechanism leaves a gap that has to be 

filled by formal models of some kind. Chapters 4 to 10 of Life Itself are concerned 

with these issues and the final chapter outlines Rosen’s proposal that biology should 
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be based on relational models and compares the proposed relational biology with 

existing theories and models. 

 

The anti-mechanist argument of Life Itself 

 

Rosen’s anti-mechanist argument is complex and multi-faceted. It is also obscure in 

places. Even his most ardent supporters would hardly claim that Rosen’s exposition is 

always clear. I think, however, that the following list of propositions is a fair 

summary of the principal points of the argument and, roughly, of its sequence. I have 

indicated in parentheses the primary places in Life Itself in which the points of the 

argument are presented and/or elaborated. It should also be noted that some points 

depend on earlier chapters of the book. Points 5-7, for example, draw on the material 

of chapter 6, and the argument in chapters 9 and 10 draws on the ideas about 

relational modeling developed in chapter 5. 

 

1. A system, natural or formal, is a machine if it simulates, or can simulate, 

something else. Simulation is what machines do (7B, 7D, 7E). 

2. Simulation involves a fundamental distinction between hardware and software 

(7D, 9A, 9B, 9D). 

3. A natural system, N, is a mechanism if and only if all of its models are 

simulable (8B). 

4. A natural system, N, is a machine if and only if it is a mechanism such that at 

least one of its models is already a mathematical machine (8B). 

5. If N is a mechanism it has a unique largest model (8C). 

6. If N is a mechanism it has a finite set of minimal models (8D). 
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7. The largest model of a mechanism is the direct sum of its minimal models and 

is therefore synthetic (8E). 

8. In mathematical machines efficient causality and material causality are 

segregated into disjoint structures; hardware is the embodiment of efficient 

cause while material cause is embodied in software (9A, 9B). 

9. Hardware entails the flow of software states from input to output, but software 

cannot entail hardware (9B, 9D). 

10. A hardware component can only be entailed by another hardware component 

(9E).  

11. A system S1 in which a previously unentailed hardware component is entailed 

must have more states than S0 the system in which the component was 

unentailed (9E). 

12. The larger system S1 will itself have at least one unentailed hardware 

component (9F). 

13. Only in the limit as n approaches infinity will every component in a system Sn 

be entailed (9F). 

14. Such a system cannot be a mechanism because a mechanism has a finite 

largest model (9F). 

15. Hardware cannot be entailed by adding further constraints to existing 

components because this involves splitting states into direct summands and 

leads to an infinite regress of fractionation. Such a regress contradicts the fact 

that a machine has a finite set of minimal models (9F). 

16. The argument of points 1 – 15 shows that there can be no closed path of 

efficient causation in a mechanism (9G). 

17. Organisms exhibit closed paths of efficient causation (10A, 10C). 
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18. Organisms are not machines (10B). 

 

The argument is vulnerable to a range of criticisms and fails to establish the central 

claim made in point 16. I shall discuss its principal weaknesses but it will be useful, 

before doing this, to consider briefly the distinction between efficient and material 

causes that is mentioned in points 8 and 16.  

The distinction stems from Aristotle’s classification of ‘causes’ into four 

types, material, efficient, formal and final. There is a consensus among contemporary 

scholars that the Greek word ‘αιτιον’ which has traditionally been translated as 

‘cause’ should, in fact, be translated as ‘because’ (Hocutt, 1974; Moravscik, 1974). 

The four-fold distinction made by Aristotle is, therefore, best thought of as a 

classification of different types of explanation not different types of causes. The only 

type that would be considered causal in modern terminology is the category of 

efficient cause. Rosen uses Aristotle’s terminology primarily to distinguish causal 

relations among the hardware components of a system which he describes as instances 

of efficient causation, from causal relations in software which he describes as 

instances of material causation (cf. Life Itself, sections 5H, 9D). Part of the reason 

why Rosen uses Aristotle’s terminology stems, I think, from the fact that he wants to 

compare entailment in material systems with entailment in formal systems and is able 

to do this by using Aristotle’s analysis to distinguish the different types of cause in 

both cases. The discussion in section 3G of Life Itself (p.57) seems to me to support 

this understanding. However, given the fact that material ‘causes’ in the Aristotelian 

scheme of things are not causes as we would understand them the distinction obscures 

more than it clarifies. It is, in any event, not a significant aspect of the argument. 

What is significant is Rosen’s claim that the causal relations between hardware 
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components of a system are distinct from the causal relations embodied in software. It 

should, of course, be remembered that in any real machine to which the 

hardware/software distinction applies, software components are just as real and 

material as hardware and, therefore, just as much subject to causal influence. The 

distinction which Rosen marks by the use of the terms ‘efficient’ and ‘material’ is, 

therefore, a distinction of causal role, not causal type. Provided, then, it is understood 

that the central claim in point 16 of Rosen’s argument refers to causal relations among 

the hardware components of machines, and provided also that the causal roles of 

hardware and software are distinguished where necessary, nothing is lost by ignoring 

or eliding the distinction between so-called efficient and material causes. 

Turning now to the status of the argument itself, point 1, which takes 

simulation to be the key criterion for distinguishing machines from other systems, is 

simply wrong. Most machines do not simulate. Think of the functions of the everyday 

machines which surround us: refrigerators cool things; cars transport us from place to 

place; scissors cut things; pianos produce music; and so forth. None of these machines 

is a simulator. Machines which do simulate, of which computers are the most obvious 

examples, are a special, highly organized class. Rosen’s definition of a machine is, 

therefore, far too narrow. However, even if it were correct, the definition does not 

establish what he wishes to establish. Part of his reason for focusing on simulation as 

the key activity of machines is his belief that there is a fundamental divide between 

simulation and modelling. He claims that whereas a model lays bare the entailment 

structure of the system it models, a simulation hides it. 

 

‘In causal terms, simulation involves the conversion of efficient cause, the 

hardware of that being simulated, into material cause in the simulator. In 
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essence, this means that one can learn nothing about entailment by looking at a 

simulation.’ 

 

 (Rosen 1991, p.193) 

 

This is an extraordinary claim which, once again, is simply wrong. If it were true 

there would be absolutely no point in the many computer simulations, for example of 

airflows over aircraft wings and the development of weather patterns, which are used 

to study causal relations in complex systems. Far from hiding the details of causal 

interactions in the systems which are modelled, simulations enable them to be studied 

in great detail and at a variety of time scales. A simulation is rather like a high speed 

film of the impact of a bullet on a particular material in which time can be slowed 

down on playback precisely to enable the investigator to understand better the 

extremely rapid succession of causal interactions between the bullet and the material 

on which it impacts. A simulation should, if anything, be described as a kind of 

‘supermodel’.  

 It is worth pursuing this point a little further because Rosen’s claim about 

simulation is couched in terms of the unhelpful distinction between efficient and 

material causes which is a source of confusion rather than clarification. Suppose we 

were to construct a simulation of the impact of a bullet on a sheet of glass. To do this 

we would need, inter alia, to construct a simulation of the bullet, a simulation of the 

sheet of glass and a simulation of the dynamic relations between them. One obvious 

way to do this would be by constructing symbolic representations of the terms of the 

simulation in a computer program. Thus the bullet might be represented as an array of 

quantities which collectively simulate its shape, mass, density, velocity and so forth 
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and the glass might be represented as a lattice or similar regular structure. It is this 

process of translating into software the causally active components of the hardware 

system represented in the simulation that Rosen refers to as the conversion of efficient 

cause into material cause. It should immediately be clear that whether or not one can 

learn anything about entailment in such a simulation depends not on the process of 

conversion but on whether one has chosen the correct aspects of the system to 

represent. A simulation which included only the name of the maker in the 

representation of the bullet and the reflection of the external environment in the 

representation of the glass would not be informative about the impact of the bullet on 

the glass but a simulation which included detailed representations of the salient 

characteristics of the bullet and the glass and which modelled the changing dynamics 

of the relationship between them at a microsecond time scale might be extremely 

informative. The quality of a simulation depends on the quality of the modelling on 

which it is based. It is simply incorrect to claim that the conversion of terms which a 

simulation requires hides the entailment structures of the system simulated. 

Point 2 of the argument is correct. There is a fundamental distinction between 

hardware and software, at least in computers that simulate. However, the distinction 

does not support the argument in the way that Rosen wishes to develop it in points 8 

and 9.  

Points 3 and 4 of the argument inherit the deficiencies of point 1. They are 

also rather strangely worded. One does not normally think of calling a system a 

machine if and only if its models are of a particular kind. Rosen explains this curious 

usage in terms of Natural Law: 
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‘[T]his peculiarity stems only from my expression of these concepts in terms 

of the models of N, rather than try to talk directly about N itself. This is all that 

Natural Law entitles us to do.’ 

 

 (Rosen 1991, p.203) 

 

The point is interesting, not so much for what it tells us about the argument but for the 

fact that it is a further indication of the indirect realism which provides the foundation 

for Rosen’s epistemology. In his view we have to discuss natural systems in terms of 

their models because these are all that is directly available to us. 

 Points 5, 6, and 7 are lemmas to the main argument. They are used to support 

points 14 and 15. There are both general and specific comments to be made. The 

important general comment is that the arguments of points 5-7 rest on the discussion 

of models in chapter 6. I do not propose to go into the material of chapter 6 in great 

detail but I think it is clear that it does not establish the fundamental claims about 

models that Rosen wants to make. The distinction between analytic and synthetic 

models that Rosen develops in Chapter 6 is based on equivalence relations over sets. 

Analytic models are constructed in terms of Cartesian products and synthetic models 

in terms of direct sums of disjoint subsets. Rosen takes the analytic/synthetic 

distinction to be applicable to models of any kind, but it is not clear that the concept 

of an equivalence relation is a suitable tool for developing a generally applicable 

typology of models or for exhibiting the relationship between a model and the system, 

natural or formal, of which it is a model. In order for an equivalence relation to be 

specified the elements of the set on which it is defined have to be known and it is 

precisely this that is not generally known when a model of a natural system is being 
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developed. Rosen himself acknowledges this obvious disanalogy in his discussion of 

the equivalence relations over a set S that he calls ‘observables’: 

 

I cannot emphasize too strongly that, in the formal world, S is already a 

determinate entity (in this case, a set), so that in general, looking at S as 

imaged in the spectrum f(S) of an observable inevitably “loses information” 

about S. In the case of a natural system, on the other hand, the counterpart of S 

is initially unknown, veiled completely in its noumenal and phenomenal 

shrouds. The whole purpose of measurement in this case is to provide 

information about it. 

 (Rosen 1991, p.157) 

 

It is hard to understand, given the above, why Rosen persists in using equivalence 

relations over sets as the basis for his definition of types of models of natural systems. 

He suggests on the page following the quotation just given that set theory provides ‘a 

formidable battery of inferential structure’ (p.158) to study a given set S but the 

various operations on a set, which include the generation of further sets, tell us about 

the structure of the set not about the system which the set represents. Consider a 

simple example to make the point clear. The Cartesian product of a set with itself, a 

structure about which Rosen says a great deal, is the set of ordered pairs of its 

elements. Suppose, as a result of observation, we have developed a simple model of a 

car in terms of the set CAR  = {body, wheels, engine, transmission}. This is a very 

simple model but it is a start. The Cartesian product of the model, CAR × CAR is the 

set of ordered pairs {(body, wheels), (body, engine), (body, transmission), (wheels, 
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engine), (wheels, transmission), (engine, transmission)}. Does the Cartesian product 

tell us anything we didn’t already know about the car? Rather clearly, the answer is 

no. The Cartesian product tells us something about the structure of the set but not 

about the system of which the set is a model. The difficulty with Rosen’s view is that 

he assumes that the structures of sets like Cartesian products are somehow necessarily 

informative about the models represented by the original sets. In general that is not 

the case. In order to improve the model we need to make further observations of the 

car, not engage in an analysis of the set that constitutes the original model.  

The more specific points to be made concern the status of the argument that 

purports to establish point 5, the claim that every machine has a unique largest model. 

The argument in section 8C of Life Itself is faulty. It takes the form of a reductio ad 

absurdum. Starting from the assumption that N is a mechanism but that the category 

of all its models C(N) contains no largest model, Rosen claims that we can find an 

infinite sequence of increasingly refined models. Because N is a mechanism, all its 

models must be simulable and each of them must have a program of finite length. We 

can then form the intersection of all the models and, by hypothesis, this is also a 

model. Unless the sequence of models terminates after a finite number of iterations, 

the model formed from the intersection is larger than any of the other models. 

Because it is simulable it must also have a program. The conclusion of the argument, 

according to Rosen, is the following: 

 

We thus end up with a countable family of distinct programs, each of which is 

a distinct word of finite length on a finite alphabet. This is clearly impossible. 

 

 (Rosen 1991, p.205) 
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In fact it is perfectly possible. Thus even if the premises of the argument were correct, 

which is questionable, the conclusion would not follow. The decimal representations 

of the integers, for example, are the elements of a countably infinite set of distinct 

words of finite length on a finite alphabet and integers are commonly used to 

represent programs. It is also always possible to extend a program without altering its 

functionality by adding new instructions which do nothing (cf. Rogers 1967, p.22, 

Theorem III ). This possibility contradicts the assertion that a machine must have a 

unique largest model. Given the failure of the argument for a largest model, the 

argument for a finite family of smallest models is of less interest because Rosen’s 

argument requires both points 5 and 6. It is, however, pertinent to ask what is meant 

by a ‘minimal’ model. Various possibilities exist but it is hard to form a clear idea of 

what Rosen intended.  

 Points 8, 9, and 10 constitute the heart of the argument because they purport to 

show that the distinction between hardware and software in machines entails the 

segregation of causal factors which, ultimately, is the basis for the claim that 

machines cannot contain closed loops of ‘efficient’ causation. There are two principal 

flaws in the argument. The first is the fact that, contrary to Rosen’s view, machines 

can and do have causal entailments flowing from software to hardware. There is no 

incompatibility between this fact and the fact that hardware and software are distinct 

parts of a machine. In consequence, there can be closed loops of entailment in 

machines involving both hardware and software. Rosen is unable to see this because 

he thinks of the partition between hardware and software as ‘absolute’ (cf section 9D, 

p.228). The second flaw in Rosen’s argument is that it simply fails to recognize the 

possibility that there can be direct causal links between the hardware components of a 
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machine, as well as links via software, and there is no reason why these links cannot 

form loops. Indeed, as I show in the discussion of Turing machines, it is of the 

essence of a Turing machine that there are such closed loops. I think the explanation 

for Rosen’s failure to see this is reasonably straightforward. In the argument presented 

in chapter 9 of Life Itself, Rosen treats hardware as whatever it is that executes a 

mapping from inputs to outputs. Given a simple function f : A  B which Rosen 

takes to represent a component of a machine,  f  constitutes the hardware which, as 

Rosen puts it, induces the software flow from the input set A to the output set B. He is 

at pains to point out, in section 9B (p.222) that the hardware and the flows it induces 

are different things and that the essence of hardware is to generate flows (p.224). As a 

result of this way of looking at things, when he comes to consider a system with more 

than one component, (cf. Figure 9C.2, p.224) he assumes that all components are of 

the same type and that the only function of the hardware is to induce flows on 

software. He simply misses the possibility that there can be direct links between the 

different hardware components representing other types of causal interaction than the 

generation of software flows. The kind of causal interaction needed can be described 

as a ‘component-component’ interaction. There is no argument in Life Itself to say 

that such interactions cannot exist in machines and in fact they both can and do exist. 

The combined effect of the two flaws is to make Rosen’s picture of what can be done 

with machines irretrievably narrow and limited. 

 Points 11 to 18 of the argument depend entirely on the earlier points. They 

contribute nothing extra. Since the earlier points do not in fact support the claims 

made, the argument as a whole fails. The failure of the argument shows that machine 

models of organisms are perfectly possible but it also shows that Rosen’s criterion, 

which claims that a material system is an organism if and only if it is closed to 
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efficient causation, is invalid. Machines can be closed to efficient causation in just the 

same way as organisms but are not organisms simply by virtue of that fact.  

It remains possible that Rosen’s positive proposal, based on the concept of an 

(M,R)-system, provides a different criterion for distinguishing organisms from 

machines. However, the description of an (M,R)-system in Life Itself is muddled and 

inconsistent and has been criticized by Landauer and Bellman (2002). In any case, the 

crucial concept of self-replication was shown to be consistent with mechanistic 

hypotheses by John von Neumann as early as 1948. The entailment of replication by 

the functions of metabolism and repair is, therefore, unlikely to distinguish organisms 

from machines. Rosen claims (p.234) that von Neumann’s construction rests on an 

equivocation between software and hardware but that is not correct. Von Neumann’s 

discussion of the logic of self-reproduction makes clear and consistent use of the 

distinction between hardware and software. He shows that a machine can, in 

principle, reproduce itself if it has access to a store of elementary parts (hardware) and 

contains a set of instructions (software) for its own construction which can be copied 

and passed to its clones. 

 

Rosen’s contradictory accounts of open systems 

 

The argument of Life Itself is the major, but not the only source of Rosen’s anti-

mechanism. In Essays on Life Itself, a collection of papers written mainly after Life 

Itself was published and brought to press by Rosen’s daughter after his death, other 

related arguments can be found. One such type of argument concerns a distinction 

between simple and complex systems which Rosen used to argue for the fundamental 

separation of organisms from machines. The argument is different in form from the 
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central argument of Life Itself and is worth separate comment. It centres on the 

concept of an open system and tackles the question of how open systems can be made 

amenable to analytical study. Different versions of the argument appear in two 

chapters of Essays on Life Itself. They come to contradictory conclusions. 

In Chapter 1 of Essays on Life Itself, Rosen discusses open systems in the 

context of Schrödinger’s famous essay What is Life? In the section of Chapter 1 

entitled The Forcing of Open Systems Rosen defines an open system as follows: 

 

A system that is open in any sense is one whose behaviors depend on 

something outside the system itself, whereas in a closed system, there is no 

outside. 

 

 Rosen (2000, p.21) 

 

Rosen says that physics has typically had trouble in modelling open systems and that 

one way to deal with them is to try to internalise the external influences so as to get a 

bigger system which is closed and to deal with that. However, he says, this strategy 

does not generally work: 

 

Indeed, what we end up with in this fashion is generally a bigger open system, 

which is in some sense even more open than the one we started with…[W]hat 

one typically ends up with after carrying out such a strategy is the entire 

universe, which is not very helpful. 

 

 Rosen (2000, p.21-2) 
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After some further discussion of other possibilities for augmenting open systems 

Rosen concludes that the resulting models are still not generally stable and that further 

expansions of the model to include more of the external forces acting on the system 

are needed. At this point, he says, ‘we have a glimpse of an incipient infinite regress 

establishing itself.’ Rosen (2000, p.24). The regress can be avoided, Rosen says, if the 

forces internalised at stage N of an expansion process have already arisen at earlier 

stages. 

 

A source for such an Nth-stage internalised forcer is a mechanism for its 

replication, expressed in terms of the preceding N-1 stages, and not requiring a 

new N+1 stage. Thus replication is not just a formal means of breaking off a 

devastating infinite regress, but it serves to stabilize the open system we 

arrived at in the Nthstage. 

 

 Rosen (2000, p.24) 

 

At this point the crux of the argument has been reached. Rosen claims that the price to 

be paid for escaping the infinite regress is that the systems thus arrived at are 

complex, non-computable and contain closed loops. 

 

Breaking off such an infinite regress does not come for free. For it to happen, 

the graphs to which we have drawn attention, and which arise in successively 

more complicated forms at each step of the process, must fold back on each 

other in unprecedented ways. In the process, we create (among other things) 
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closed loops of efficient causation. Systems of this type cannot be simulated 

by finite-state machines (e.g., Turing machines); hence they themselves are 

not machines or mechanisms. In formal terms, they manifest impredicative 

loops. I call these systems complex. 

 

 Rosen (2000, p.24) 

 

The particular point to notice is the claim that it is the process of breaking off the 

infinite regress of system expansions which generates complex systems.  

The argument in chapter 1 contradicts and is contradicted by another of 

Rosen’s arguments in chapter 20 of Essays on Life Itself. In chapter 20 Rosen 

discusses the differences between therapeutic interventions in medicine and control 

engineering. His target is the idea that an organism is a biological machine. If this 

were so, he says, we would expect therapies to have few or no side effects whereas in 

practice side effects are the rule. To explain why this is the case Rosen constructs an 

argument which uses temperature control as an example. A room without temperature 

control is an instance of an open system. If the room is large the temperature may 

appear to be constant, but it will eventually change ‘because the room is open to 

ambient influences we do not see directly.’ Rosen (2000, p.299). A first level of 

control over the room temperature can be achieved by installing a thermostat. 

However, in order to close the room to the effects of changes in the ambient 

temperature in this way, the system as a whole has had to be enlarged.  

 

The thermostat itself is new material structure, which we have had to bring 

into the system to control the effects of unpredictable temperature fluctuations. 
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The thermostat closes the room off to ambient temperature, but it itself is now 

open to other interactions—i.e., to new sources of noise. For instance, parts of 

it may corrode because of humidity and oxygen in the air in our room…[W]e 

may indeed end up with more noise than we had originally. 

 

 Rosen (2000, pp.300-301) 

 

Notice the strong parallel here with the first example. In each case, the effect of 

internalising a source of noise or openness is to produce, potentially, a more open or 

noisier system. Rosen again explores the possibility of further expansions of the 

system to bring the new sources of noise under control and again the possibility of an 

infinite regress is noted: 

 

Even in this simple example, we see an incipient and deadly infinite regress 

yawning before us…The real question arising here is whether, and if so, when, 

this potential infinite regress can be broken off. 

 

 Rosen (2000, p.301) 

 

As with the first example, Rosen says that the regress can be broken off if the system 

can be turned back on itself. 

 

[I]t is conceivable that such a potential infinite regress actually breaks off. It 

will do so if, and only if, we can arrange matters so that the noise arising at the 

Nth step of this sequence produces consequences that are subject to controls 
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instituted at earlier stages. In such a case, the sequence breaks off at the Nth 

stage. 

 

 Rosen (2000, p.303) 

 

Rosen notes that the example of the thermostatically controlled room is characterised 

by a single state variable but says that the analysis can be generalised to deal with any 

finite number of state variables. 

 

The analysis, of course, grows increasingly complicated, but, in effect, we 

now have a much larger family of cascading control loops, each of which 

creates the potentiality for infinite regress. 

 

 Rosen (2000, p.303) 

 

The crux of the argument has again been reached. In the earlier example Rosen 

claimed that the price to be paid for breaking off the infinite regress was that the 

resulting systems were complex. In the latter example, however, he reaches the 

opposite conclusion: 

 

[I]f every such cascade breaks off after a finite number of steps, then the 

system itself, and its environment, must both be simple. Conversely, if a 

system (or its environment) is not simple, then there must be at least one 

cascade of simple controls that does not break off…A system that is not 

simple in this sense (i.e., is not a mechanism) I call complex. 
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 Rosen (2000, p.304) 

 

To drive home the point, a little later in the chapter Rosen argues that ‘[t]here is a 

sense in which complex systems are infinitely open’ Rosen (2000, p.307) and it is for 

this reason, he claims, that side effects are the norm rather than the exception in 

medical interventions.  

 The contradictory nature of the two arguments cited is perfectly clear. In one 

case Rosen argues that the existence of a break point that prevents an infinite regress 

of system openings leads to complex systems, in the other he argues that the break 

point leads to simple systems. In one case he argues that complexity is the result of 

system closure, in the other that complex systems are ‘infinitely open’. The core 

problem is that the distinctions he wants to insist on, between organisms and 

machines, and between simple and complex systems are not to be had on his terms. 

Both organisms and machines are systems with closed causal loops and the distinction 

between complex and simple systems, if there is one, does not demarcate organisms 

from other machines. 

 

Rosen’s subordinate arguments  

 

Life Itself and Essays on Life Itself also contain subordinate arguments which deserve 

mention. An argument which is largely implicit in Life Itself but which is given 

greater prominence in Essays on Life Itself claims that machines cannot contain closed 

causal loops because such loops are ‘impredicative’ and are forbidden in formal 

 31



systems such as Turing’s. One instance of this argument, from Rosen’s 

autobiographical sketch, was mentioned in the introduction. Here is another: 

 

Impredicativity…was identified as the culprit in the paradoxes springing up in 

Set Theory. Something was impredicative…if it could be defined only in 

terms of a totality to which it itself had to belong…Formalizations are simple 

systems (in my sense) and, in particular, cannot manifest impredicativities or 

self-references or “vicious circles”. This is precisely why such a simple world 

seemed to provide a mathematical Eden, inherently free from paradox and 

inconsistency. Alas, as Gödel showed, it was also free of most of mathematics. 

We cannot dispense with impredicativity without simultaneously losing most 

of what we want to preserve. 

 

 (Rosen 2000, pp.293-4)  

 

There are several flaws in this argument. One is the implicit claim that all closed 

loops are impredicative. They are not: the closed loops in the finite state control 

automata of Turing machines are not necessarily defined impredicatively although 

they may be. Thus, closed causal loops could be found in machines even if 

impredicative loops were forbidden. Another is the claim that formalizations cannot 

manifest self-references. They both can and do. The recursive definitions that Turing 

used in the construction of his universal machine are frequently self-referential. Third, 

it is misleading to suggest that impredicativity was identified as the culprit in the 

paradoxes identified in set theory. It is true that Bertrand Russell thought it to be the 

source of the problem, at least with respect to the paradox that he devised, but it has 
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been clear since the analysis of Gödel (1944) that impredicative properties are 

troublesome only under very special circumstances. The idea, therefore, that abstract 

machines such as Turing machines cannot exhibit closed causal loops because these 

are always impredicative and hence forbidden is mistaken. 

 A second argument, related to the first, is the claim that machines are, as 

Rosen puts it, ‘non-generic’, exceptionally rare, and feeble in their entailment 

structures. The point is hinted at in the quote above with the idea that formalization 

loses most of what is needed from mathematics and that formalizations cannot 

‘manifest’ impredicative loops. In another passage from Essays on Life Itself Rosen 

sums up his view of the attempts at formalization which he attributes to Hilbert’s 

program: 

 

The status of all these formalizations is informative. They turn out to be 

infinitely feeble compared with the original mathematical systems they 

attempted to objectivize. Indeed, these attempts to secure mathematics from 

paradox by invoking contructibility, or formalizability, end up by losing most 

of it. This is one of the upshots of Gödel’s celebrated Incompleteness Theorem 

(Gödel 1931), which showed precisely that “self-referential” statements (e.g., 

“this proposition is unprovable in a given formalization”), which are perfectly 

acceptable in the context of ordinary Number Theory, fall outside that 

formalization. 

 

 (Rosen 2000, p.92) 
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One claim that Rosen seems to be making in this quotation is that self-referential 

statements cannot be constructed, and hence are not expressible, in formal systems. 

That appears to be the force of the suggestion that they ‘fall outside’ a formalization. 

This shows a misunderstanding of what Gödel achieved. The point that Gödel made 

was not that you can’t express or construct a self-referential statement in a formal 

system. It was precisely the opposite. Gödel showed that you could construct a self-

referential statement as a well-formed formula of any formal system powerful enough 

to contain arithmetic. In the sketch of his proof at the start of the famous 1931 paper, 

having explained how formulas of Russell and Whitehead’s system Principia 

Mathematica could be used to express metamathematical notions, Gödel went on to 

explain that the proof rested on the construction of a specific proposition using the 

formalism of PM: 

 

We now construct an undecidable proposition of the system PM, that is, a 

proposition A for which neither A nor not-A is provable. 

 

 (Gödel 1931, p.147) 

 

The crucial point was that the undecidable proposition was both syntactically well-

formed and asserted its own unprovability. From this Gödel showed that if the formal 

system containing the proposition was consistent the proposition had to be true and 

hence unreachable by a finite sequence of inferences from the axioms. Thus the 

formal system was incomplete. The proof rests on a fundamental distinction between 

constructibility and provability which Rosen seems not to have fully grasped. A short 

but telling passage from Life Itself supports this suggestion: 
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[G]iven any finite set of axioms for Number Theory, there are always 

propositions that are in some sense theorems but are unprovable from those 

axioms (unless, of course, the axioms are inconsistent to begin with—in which 

case everything is a theorem). 

 

 (Rosen 1991, p.35) 

 

The crucial point, which Rosen explicitly fudges, is that unprovable propositions are 

not theorems in any sense. They are syntactically well-formed formulas but they 

cannot be reached by finite sets of inferences from the axioms. It is precisely this 

point that distinguishes constructible, but unprovable, propositions from theorems of 

the system. To say, therefore, that unprovable propositions are ‘in some sense’ 

theorems clouds exactly the distinction that needs to be kept clear. The distinction 

between constructibility and provability undermines the claim that closed or 

impredicative loops cannot be expressed in formal systems. 

A second point which Rosen makes is that formalizations are in some sense 

‘infinitely feeble’. Rosen repeatedly asserts that mechanisms are a vanishingly small 

proportion of mathematical systems. The assertion rests, I think, on the distinction 

between countable and uncountable infinities. This distinction was originally made by 

the mathematician Georg Cantor in the late nineteenth century. Cantor showed, using 

the technique of diagonalization, that, in a strictly definable sense, there are infinitely 

many more real numbers than natural numbers even though there are infinitely many 

of these. The natural numbers are countably infinite but the real numbers are 

uncountably infinite. Turing machines can be paired one for one with the natural 
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numbers and this shows that there are countably, infinitely many of them. In 

comparison with the uncountably infinite number of real numbers the Turing 

machines can be said to be a vanishingly small proportion of mathematical systems 

It is very hard, however, to know what to make of the distinction between 

countable and uncountable infinities because the sizes, even of countably infinite 

collections, violate our everyday intuitions about collections of things. If one thinks, 

for example, about natural numbers, it seems to common sense that the totality of 

them can be divided into two halves, the odd numbers and the even ones. For any 

finite totality which is divisible into two halves, each half clearly has half as many 

members as the totality. If I have five green apples and five red ones I have ten apples 

in total with the green apples forming half the totality and the red ones the other half. 

By the same token, because there are n odd numbers and n even numbers, there 

should be 2n natural numbers in total. But it isn’t so. Infinite totalities don’t work like 

that. There are exactly as many odd numbers as there are natural numbers and exactly 

as many even ones. Countably infinite totalities are all of the same size even though 

they appear to common sense to have different numbers of elements. Given this, it is 

very hard to know what follows from the fact that countable infinities are infinitely 

small compared with uncountable ones even though there is a clear mathematical 

sense in which this is so. What Rosen is suggesting seems to rely on combining this 

point with the supposed exclusion of closed loops from the world of machines. Look, 

he says, the collection of machines is infinitely small by comparison with the 

collection of real numbers. Moreover, there are no closed loops in the collection of 

machines. Thus this collection must be infinitely feeble in the properties it can 

express. If it really were the case that there were no closed loops in machines the 

argument might have some force. As it is, we have infinitely many machines with as 
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many closed loops as we care to define. That is a perfectly satisfactory foundation on 

which to construct a mathematical account of biological,  and for that matter 

psychological, systems. 

 

Causal loops in Turing machines 

 

The principal line of defence to Rosen’s anti-mechanist claim does not depend on the 

fact that Rosen’s arguments about open systems are contradictory or that the central 

argument of Life Itself is unsound. The principal defence of mechanism rests on the 

demonstration that Turing machines, which underpin mathematical and computational 

thinking about mechanisms, contain closed causal loops. This demonstration falsifies 

Rosen’s fundamental claim. A Turing machine is an abstract entity but one that could 

perfectly well be built. In this section I provide a very brief introduction to Turing 

machines focused on the issue of closed loops. A full account of Turing’s work and its 

place in psychology can be found in Wells (2006). Readers are also encouraged to 

study Turing (1936), the seminal paper in which Turing set out his theory.  

 A Turing machine is a model of a human agent engaged in a paper and pencil 

calculation. This simple fact is not often mentioned in psychological discussions of 

computational models but it is of great significance and bears consideration by 

ecological psychologists. I shall take a few moments to comment on it in the light of 

Rosen’s epistemology which constitutes the framework for his objections to machine 

models. Rosen says, as reported in the overview, that the primary feature of natural 

law is to bring systems of causal entailment in the external world into correspondence 

with systems of inferential entailment in the inner world of the self. He also made the 

important point that one could start from either side. Starting from the external world 
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the primary entity is a natural system whose causal entailments one attempts to 

discover and model in formal terms. Starting from the internal side, the primary entity 

is a formal system for whose inferential entailments one attempts to find a matching 

natural system. One of Rosen’s principal objections to the machine metaphor, 

particularly in the form in which it was inherited from Descartes, was precisely that it 

started from a formal model and attempted to force the phenomena of life to fit that 

model. Even worse, the Cartesian machine metaphor was incompletely specified. 

Near the beginning of Life Itself in a discussion of Descartes, Rosen says of him: 

 

What he had observed was simply that automata, under appropriate conditions, 

can sometimes appear lifelike. What he concluded was, rather, that life itself 

was automaton-like. Thus was born the machine metaphor, perhaps the major 

conceptual force in biology, even today. Descartes took this fateful step with 

only the haziest notion of what a mechanism or automaton was (Newton was 

still a generation away), and an even dimmer notion of what an organism was. 

 

 (Rosen 1991, p.20) 

 

It appears from what Rosen says later in the book that, at the time of writing it, he felt 

there was still no canonical machine model on which to base his assessment. At the 

start of chapter 7, for example, he refers to ‘the vague concept of machine’ (p.182) 

and although he refers to Turing in that chapter he does so in a way that suggests he 

was unaware of the derivation of Turing’s machine model from the example of a 

human calculating with paper and pencil. Had he been aware of this derivation he 

would hardly have claimed as he did (p.185) that Turing machines are the formal 
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counterparts of clockwork, i.e. the machinery that drives the hands of a clock, and he 

would also hardly have claimed that his quasi-Newtonian definition of an algorithm in 

section 7C of Life Itself  ‘is essentially a Turing machine’ (p.189). Neither of these 

claims is accurate. It is a great pity that Rosen was unaware of the origins of Turing’s 

modeling enterprise because Turing machines are exactly the kinds of models that 

Rosen proposes are needed to embody natural law. Turing began by observing the 

natural system of causal relations that is involved in a paper and pencil computation. 

From this he abstracted what he felt were the essential components and used these to 

construct his formal model. He was then able to use the model in the way Rosen says 

that models should be used, to reflect on and reason about causal relations in the 

natural system modelled. One important result was the construction of the universal 

machine, which is a simulator par excellence. What the universal machine shows is 

not, as Rosen asserts, that simulation hides the details of the modelled system from 

the observer. Quite the contrary: a simulation makes available in an explicit symbolic 

format the details of the entailment structures that the model expresses. Turing’s 

universal machine also demonstrates why symbolic notations are so important for 

almost all systematic human activities. Among other important characteristics they 

make available, in forms that do not have to be remembered, structures of inferential 

entailment that model causal relations in the external world that we find useful or 

pleasing or both. 

The Turing machine has two primary components, a finite control automaton, 

which is a model of the mind of the human, and a one-dimensional tape which is a 

model of the paper on which a human writes out a calculation. For present purposes, 

the structure of the finite control automaton is of particular importance. Closed causal 

loops are most evident there although they are also found in the dynamic relationship 
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between the automaton and the tape. Turing machines were originally devised to 

explore the issue of effectiveness in calculation and the numbers they can compute, 

which are called the computable numbers, are a subset of the real numbers and 

include irrational numbers like π which have infinite decimal expansions. The 

opening sentence of Turing’s paper makes a point which is of fundamental 

importance in the present context. He said: 

 

The “computable” numbers may be described briefly as the real numbers 

whose expressions as a decimal are calculable by finite means. 

 

 (Turing 1936, p.230) 

 

The point to note is that computable numbers like π which have indefinitely long 

decimal expansions are nevertheless said to be calculable by ‘finite means’. What this 

means is that a finite structure or set of resources, the control automaton, which is 

defined in advance of the calculation is sufficient to produce the endless sequence of 

digits representing a number like π. The way this is done, and has to be done, is to 

build the finite control structure with components connected in loops whose 

processing can be iterated as many times as necessary. It is thus of the essence of a 

Turing machine that its fixed processing resources are structured as one or more 

closed loops. It is precisely because this is so that infinite sequences can be produced 

by finite means. Let us consider three examples briefly. Much more extensive 

discussion can be found in Wells (2006). 

 The first example is one of the simplest Turing machines imaginable. It was 

defined by Turing in his 1936 paper and outputs the endless sequence 010101…I shall 
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call the machine TM1. The finite control automaton of TM1 has four internal states, 

which we can call q1, q2, q3 and q4. These, collectively, can be described as a set Q = 

{q1, q2, q3, q4}. Internal states describe the causal relations among the parts of a 

Turing machine in an abstract way. The concept of state, as it is defined and used in 

Turing machine theory, is very different from the concept of state used by Rosen in 

Life Itself. In Turing machine theory states are relational entities, the sorts of things 

that Rosen calls ‘components’ in Chapter 5 of Life Itself. The operations of TM1 are 

described by two functions, each of which takes the ‘configurations’ of TM1 as its 

arguments. A configuration is an ordered pair consisting of an internal state and an 

input. One function determines the next state of TM1, the other its output. The next 

state function is more important for present purposes. This function is a map from Q 

to Q and is implemented as a closed loop of entailments. The starting state of the 

machine is q1: q1 entails q2, q2 entails q3, q3 entails q4 and q4 entails q1.  Once 

started, the machine cycles endlessly through this processing loop. It is precisely 

because the four internal states of its control automaton are structured as a closed loop 

that the fixed, finite machine TM1 can output the infinitely long sequence 010101… 

TM1 provides a definitive and conclusive rebuttal of Rosen’s lengthy and complex 

argument in Life Itself. TM1 is a machine and it has a closed causal loop of the kind 

that Rosen says machines cannot have. The causal relations between the states which 

implement the loop are of the type that I described as component-component 

interactions in the discussion of points 8 – 10 of Rosen’s argument from Life Itself. 

TM1, by itself, is quite sufficient to rebut Rosen’s argument but it is worth 

considering briefly two more examples. The first is a machine used to illustrate the 

argument made by Wells (2002) that the configurations of Turing machines provide 

natural and informative models of Gibsonian affordances. The machine is called HP 

 41



and is described in detail in Wells (2002, pp.163-7). Like TM1, HP has four internal 

states, but whereas TM1 has a single closed loop connecting its states, HP has six 

closed loops. In addition, it also makes use of closed loops connecting its internal 

states with symbol structures on its tape, which is its environment. This is not a 

feature of TM1. Most Turing machines are like HP in this respect, however, and it is 

partly because these machines have causal loops connecting their internal states to 

their environments that they are potentially of such interest and importance to 

ecological psychology. 

 Finally, it is worth remarking that universal Turing machines, the abstract 

ancestors of contemporary digital computers, exhibit complex patterns of closed loops 

to implement their processing. It is not possible to construct a universal machine 

which does not have such loops and they involve both hardware and software. Thus it 

is of the essence of Turing machines, in general, that they contain closed causal loops.  

 

Rosen and ecological psychology 

 

Rosen’s principal concern in Life Itself and in Essays on Life Itself was fundamental 

theory in biology and he says relatively little which is specific to psychology. The 

general thrust of his theorizing, however, appears to be antithetical to the interests and 

motivations of ecological psychology. His epistemology, as the overview shows, 

assumes a strong form of indirect realism. He also used the (untenable) distinction 

between simple and complex systems to rule out at least some of the methods that 

have been discussed favourably in the ecological psychology literature and his 

emphasis on the importance of closed loops of causation within the organism 

downplays the significance of the environment. 

 42



 

Organisms and environments 

 

Rosen’s epistemology is concerned with the sources of answers to ‘why’ questions 

about systems of various kinds. He perceives a spectrum of possibilities. At one 

extreme are systems with components about which ‘why’ questions can be answered 

only by reference to the environment within which the system is embedded. 

According to his view, mechanisms are systems of this kind: 

 

Most of the “why?” questions we can ask about such a system are 

unanswerable within the system, and therefore, must be referred to its 

environment. Put another way: most elements of an abstract block diagram 

arising from a mechanism are unentailed. 

 

 (Rosen 1991, pp. 248-9) 

 

Rosen’s view is that organisms lie at the other end of the spectrum. It is generally, he 

claims, possible to answer ‘why’ questions about organisms from within the organism 

without the need to make reference to the environment: 

 

My claim is that organisms lie at the other extreme as far as entailment is 

concerned. Their abstract block diagrams manifest maximal entailment; in 

particular, if f denotes a component of such a system, the question “why f ?” 

has an answer, in terms of efficient causation, within the system. 
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 (Rosen 1991, p. 249) 

 

Setting aside for the sake of the discussion the fact that the distinction between 

mechanisms and organisms doesn’t hold for the reasons discussed earlier, it is 

curious, given Rosen’s view of organisms as essentially self-contained systems, that 

ecological psychologists should view his work favourably. As the quotations show, 

Rosen’s view implies that organisms can be understood as largely independent of 

their environments whereas it is a fundamental principle of ecological psychology that 

organisms and their environments exist in relationships of mutuality and reciprocity 

and that each has to be understood in terms of the other. This has always been a clear 

feature of Gibson’s work: 

 

The fact is worth remembering because it is so often neglected that the words 

animal and environment make an inseparable pair. Each term implies the 

other. No animal could exist without an environment surrounding it. Equally, 

although not so obvious, an environment implies an animal (or at least an 

organism) to be surrounded. 

 

 (Gibson 1979/1986, p. 8) 

 

The reciprocity of animals and environments implies that perception involves causal 

loops connecting the animal to the environment. Gibson was very clear about this 

when he developed the concept of a perceptual system: 
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Instead of looking to the brain alone for an explanation of constant perception, 

it should be sought in the neural loops of an active perceptual system that 

includes the adjustments of the perceptual organ. Instead of supposing that the 

brain constructs or computes the objective information from a kaleidoscopic 

inflow of sensations, we may suppose that the orienting of the organs of 

perception is governed by the brain so that the whole system of input and 

output resonates to the external information. 

 

 (Gibson 1966, p.5) 

 

Rosen, by contrast, viewed the relation between organism and environment in the 

classical representationalist sense that ecological psychologists reject. He also, as 

reported earlier, specifically endorses the traditional view of perception as indirect: 

 

As philosophers have pointed out for millennia, all we perceive directly are 

our selves, together with sensations and impressions that we normally interpret 

as coming from “outside” (i.e., from the ambience), and that we merely 

impute, as properties and predicates, to things in that ambience. The things in 

themselves, the noumena, as Kant calls them, are inherently unknowable 

except through the perceptions they elicit in us; what we observe are 

phenomena, which are to an equally unknowable extent corrupted by our 

perceptual apparatus itself (which of course also sits partly in the ambience). 

 

 Rosen (1991, p.56) 
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One further corollary of Rosen’s emphasis on the organism as an essentially self-

explanatory system, all of whose ‘why’ questions have intra-systemic answers, is a 

denial of the value of evolutionary explanation.  

 

To me, it is easy to conceive of life, and hence biology, without evolution. But 

not of evolution without life. Thus, evolution is a corollary of the living, the 

consequence of specialized somatic activities, and not the other way 

around…biology is wrapped up with soma and how it operates; thus we 

cannot invoke evolution as an explanatory or causal principle for these 

purposes. 

 

 (Rosen 1991, p. 255) 

 

Once again the contrast with Gibson’s views is striking. The facts of evolution came 

to play a central part in the development of his ecological theory of visual perception. 

 

[T]he fact of information in the light falling upon an organism, is the situation 

to which animals have adapted in the evolution of ocular systems. The visual 

organs of the spider, the bee, the octopus, the rabbit, and man are so different 

from one another that it is a question whether they should all be called eyes, 

but they share in common the ability to perceive certain features of the 

surrounding world when it is illuminated. The realization that eyes have 

evolved to permit perception, not to induce sensations, is the clue to a new 

understanding of human vision itself. 
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 (Gibson 1966, p.155) 

 

Methodological issues. 

 

One of the consequences of Rosen’s mistaken supposition that machines cannot 

exhibit closed causal loops was the distinction between what he called simple and 

complex systems. All mechanisms and all systems that could be simulated on 

computers were said to be simple. A system was complex if, and only if, it had non-

computable models. This claim, alone, has a consequence that ought to make 

ecological psychologists wary of Rosen’s work. The consequence is that dynamical 

systems theory is an inadequate theoretical basis for the study of living systems. The 

reason for this is that it is based on computable equations. Rosen was quite clear about 

its insufficiency: 

 

[T]o assert that organisms, or human systems, are thus complex, is a radical 

thing to do. For one thing, it says that differential equations, and systems of 

differential equations (i.e. dynamical systems), which are inherently simulable, 

miss most of the reality of a complex system…just as any attempt to 

formalize, for example, Number Theory misses most of its theorems. 

 

 (Rosen 2000, p.325) 

 

Many ecological psychologists believe that dynamical systems theory offers a 

particularly useful set of tools for studying the complex interplay of organismic and 

environmental variables that characterizes human situated activity. If Rosen were 
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correct, this belief would be erroneous. I should perhaps add that the claim made by 

some proponents of dynamical systems theory, for example Port and van Gelder 

(1995), that dynamical systems approaches are an alternative to computational ones is 

also a mistake. Rosen was right about that. 

 

Conclusion 

 

The anti-mechanist arguments of Robert Rosen have been used by some ecological 

psychologists to support an attack on computational methods and mechanist thinking 

generally. Close examination of Rosen’s views shows that his epistemology assumes 

a strong form of indirect realism and his arguments, if valid, would constitute a denial 

of some of the fundamental principles on which ecological psychology is based. 

However, his arguments are not valid and do not show that organisms have properties 

which cannot be captured by machine models. For me this is important because I 

believe that anti-mechanist thinking in contemporary ecological psychology is based 

on a restricted view of the possible types of computational model and is acting as a 

barrier to the development of a genuinely ecological form of computational 

psychology. Computational thinking in psychology need not, and should not, be tied 

to models derived from stored program, serial, digital computers. A genuine 

alternative, which is distinctively ecological, can be built on the foundations laid by 

Turing in his groundbreaking paper of 1936. In recognition of the striking parallels 

between Turing’s work and Gibson’s ecological approach I have suggested that the 

alternative approach should be called ‘ecological functionalism’ (Wells, 2006). Had 

Rosen been aware of the possibilities which open up when one combines Turing’s 

account of inferential entailment in the world of machines with Gibson’s account of 
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causal entailment in the ecological world I think he might have reconsidered his anti-

mechanism. 
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