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Resumo 
 
A interacção sinergética entre colegas de uma equipa de futebol tem propriedades 

susceptíveis de serem estudadas através da Social Network Analysis (SNA). A análise de 

redes formadas pelos passes de colegas de equipa tem demonstrado que o sucesso 

colectivo está correlacionado com alta densidade de rede e coeficientes de clustering, bem 

como com centralização de rede reduzida. Apesar disso é importante evitar uma 

simplificação excessiva no estudo deste fenómeno, nomeadamente a consideração por 

igual na obtenção das métricas de rede dos eventos que estão na origem quer da 

performance colectiva de sucesso quer de insucesso. No presente estudo, investigamos se a 

densidade, o coeficiente de clustering e a centralização das redes podem prever o sucesso 

ou o insucesso da performance de uma equipa no futebol. Analisámos 12 jogos do Grupo 

C da UEFA Champions League 2015/2016, utilizando registos públicos das transmissões 

de TV. Realizaram-se análises de notação para categorizar as sequências ofensivas como 

bem-sucedidas ou mal-sucedidas e para recolher os dados das redes de passe e 

subsequentes métricas. Utilizou-se um modelo de regressão logística hierárquica para 

prever o sucesso das sequências ofensivas a partir da densidade, do coeficiente de 

clustering e da centralização das redes, utilizando a variável total de passes como variável 

moderadora. Os resultados confirmaram o efeito independente das métricas de rede. A 

densidade, ao contrário do coeficiente de clustering e a centralização, foi um preditor 

significativo do sucesso das sequências ofensivas, tendo-se registado uma relação negativa 

entre densidade e sucesso de sequências ofensivas. Para além disso, densidades reduzidas 

foram associadas a um número superior de sequências ofensivas, embora maioritariamente 

mal-sucedidas. Por outro lado, altas densidades foram associadas a um número inferior de 

sequências ofensivas bem-sucedidas, mas também a um menor número total de sequências 

e de "perdas de posse de bola" sem que a equipa atacante tivesse conseguido entrar na zona 

de finalização. Uma análise individual por equipa indicou que a relação entre a 

performance da equipa e a densidade é dependente da equipa. A aplicação de SNA aos 

desempenhos de sucesso e insucesso, de forma independente, de uma equipa de futebol é 

importante para minimizar uma possível simplificação excessiva  das sinergias efectivas de 

uma equipa. 

 

Palavras-chave: social network analysis, jogos desportivos colectivos, futebol de elite, 

análise de jogo, performance de peritos, sinergia de equipa  
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Abstract 
 

The synergistic interaction between teammates in soccer has properties that can be 

captured by Social Network Analysis (SNA). The analysis of networks formed by team 

players passing a ball in a match shows that team success is correlated with high network 

density and clustering coefficient, as well as with reduced network centralization. 

However, oversimplification needs to be avoided, as network metrics events associated 

with success should not be considered equally to those that are not. In the present study, 

we investigated whether network density, clustering coefficient and centralization can 

predict successful or unsuccessful team performance. We analyzed 12 games of the Group 

Stage of UEFA Champions League 2015/2016 Group C by using public records from TV 

broadcasts. Notational analyses were performed to categorize attacking sequences as 

successful or unsuccessful, and to collect data on the ball-passing networks. The network 

metrics were then computed. A hierarchical logistic-regression model was used to predict 

the successfulness of the offensive plays from network density, clustering coefficient and 

centralization, by using the number of total passes as a moderator variable. Results 

confirmed the independent effect of network metrics. Density, but not clustering 

coefficient or centralization, was a significant predictor of the successfulness of offensive 

plays. We found a negative relation between density and successfulness of offensive plays. 

However, reduced density was associated with a higher number of offensive plays, albeit 

mostly unsuccessful. Conversely, high density was associated with a lower number of 

successful offensive plays, but also with overall fewer offensive plays and “ball possession 

losses” before the attacking team entered the finishing zone. An individual team analysis 

indicated that a relationship between team performance and density is team dependent. 

Independent SNA of team performance is important to minimize the limitations of 

oversimplifying effective team synergies.  

 

Keywords: social network analysis, team sports, elite soccer, match analysis, expert 

performance, team synergy 
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Introduction 

 

In today’s society it is widely recognized the importance of teams in many areas of our 

daily lives (Duch, Waitzman, & Amaral, 2010). The team, rather than the individual, has 

become the basic work unit in many activities and organizations (Balkundi & Harrison, 

2006), and team sports are excellent examples revealing the importance of team dynamics 

for success (Duch et al., 2010). 

A team is a group of individuals working cooperatively and in a coordinated way to 

achieve a common goal (Zaccaroa, Rittmana, & Marks, 2001). Team performance is more 

than the sum of the interdependent individual performances, as individuals strive to 

coordinate between different roles and tasks (Anderson & Franks, 2001). In team sports 

performance individual players in a successful team act as a coherent unit, thus creating a 

team synergy (Araújo & Davids, 2016). 

Individual and collective behavior has been intensively studied in team sports performance 

analysis. The behavior of an individual player affects the team’s behavioral pattern (Vilar, 

Araújo, Davids, & Button, 2012), and conversely, teammates may influence the behavior 

of each individual player.  

 

Team Sports Analysis Literature Review 

There is no way of denying the great influence of the spatial and temporal interactions 

established by players and teams on team sports. Primary types of spatio-temporal data 

captured from team sports are the ones which basically allow us to know what, where and 

when events happen. Movement data describes where a player, or the ball, is located at a 

specific moment, whereas event data specifies which relevant actions happen during a 

match (Stein et al., 2017). Trajectories of players and objects (e.g., ball) can be captured on 

two ways: a) processing the images of fixed cameras used by optical tracking systems; b) 

using device tracking systems based on GPS or RFID attached to players’ clothes or 

embedded in the ball. Event data is mostly of two types: player events (e.g. passes and 

shots) and technical events (e.g. fouls, time-outs and start/end of period). These data may 

be obtained in part from the trajectories of the players or be directly captured using video 

analysis too. Movement and event data play a complementary role in team sport analysis 

and are the primary input used by the models and techniques described subsequently 

(Gudmundsson & Horton, 2016). 
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The great diversity of existing techniques is, in our view, the consequence of three main 

aspects. The first is the way information is captured, with technological advance and 

increasing influence of engineering on issues such as the placement of sensors or the use of 

drones in the capture of images. Secondly, this kind of data allows innumerable 

possibilities of study, always guided by theories and approaches of sports science. Such 

studies resulted in the expression of the phenomena through several indices and composite 

variables linked to individual and collective performance. These methods and variables are 

described in the next sub-section (Individual / collective indices and composed variables). 

Finally, and more recently, the proliferation of contributions and interactions between this 

area of knowledge and others, such as biology or computational science, combined with 

the increasing ability to capture and store large amounts of data, has originated new 

methodologies and perspectives on how to compute and analyze team sport data (data 

mining, information visualization and visual analytics), This issue will be discussed in 

subsequent sub-sections. 

 

Individual / collective indices and composed variables 

According to Araújo et al. (2015), individual behavior in a team is constrained by several 

factors, such as the player’s position in the field (in relation to the other teammates and 

opponents), strategic and tactical intents, playing phases (i.e., attacking and defending), 

game rules, etc. This perspective is corroborated by Stein et al. (2017), for whom the 

restriction of movement by a pitch and rules, driven by the predetermined objective, and 

influenced by the movement of own and opposing team players, is a big challenge when 

team data is analyzed. Consequently there are several techniques for capturing individual 

behavior that meet spatial criteria. One of the earliest works was done by Grehaigne 

(1988), who defined the playing area of each player, by recording their positions in the 

field every 30 seconds, according to a previous subdivision of the field into 40 equal 

squares. This work was a predecessor of many studies, and the division of playing area has 

been reported as a useful first step for a diversity of methods in behavior analysis in sport. 

About this topic, Gudmundsson and Horton (2016), in a survey on spatio-temporal analysis 

on team-sports, highlighted the intensity matrices and dominant regions.  

The existing studies of intensity matrices differ in the way the playing area was divided 

and the type of events studied. Several authors have divided playing area into rectangles of 

equal sizes (Bialkowski A. , Lucey, Carr, Yue, Sridharan, & Matthews, 2014; Borrie, 
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Jonsson, & Magnusson, 2002; Lucey, Bialkowski, Carr, Foote, & Matthews, 2012; 

Shortridge, Goldsberry, & Adams, 2014; Takuma, Yamamoto, & Yamazaki, 2014). 

However, the truth is that individual athletes' behavior is not subordinated to any 

symmetrical geometric logic, but rather to the relationships between players and their 

teammates, opponents, game objects (e.g. ball positioning) and game targets (e.g., goal, 

basket). Taking this into account, researchers have established spatial discretization from 

predefined assumptions of the players behavior, such as subdivisions into areas aligned 

with the penalty box in soccer  (Camerino, Chaverri, Anguera, & Jonsson, 2012) or 

considering the relative position of the players to the three-point line and the basket, as 

well as the expert intuition about shooting in basketball (Goldsberry & Weiss, 2013; 

Maheswaran et al., 2014). Another approach regarding the subdivision of the playing area 

is the polarization of the playing area, assuming that the behavior of the athletes is similar 

in locations equidistant to the goal or basket (Maheswaran, Chang, Henehan, & Danesis, 

2012; Reich, Hodges, Carlin, & Reich, 2006; Yue, Lucey, Carr, Bialkowski, & Matthews, 

2014). All these spatial discretization techniques allow producing intensity matrices by 

counting events that occur in each region previously created. Maheswaran et al. (2014) 

studied the regions visited by the players by extracting the location points from the 

trajectories of the players, while Bialkowski, Lucey, Carr, Yue, and Matthews (2014) 

performed a similar investigation on soccer, registering passes and touches made by the 

players in each region. Other authors went beyond the discrete spatial distribution of 

players location during the match, and obtained matrices of intensity for the shots (Franks, 

Miller, Bornn, & Goldsberry, 2015; Goldsberry & Weiss, 2013; Maheswaran et al., 2012; 

Reich et al., 2006; Shortridge et al., 2014) and passes (Borrie et al., 2002; Camerino et al., 

2012; Cervone, D'Amour, Bornn, & Goldsberry, 2014; Takuma et al., 2014) performed in 

each region.  

Another technique reviewed by Gudmundsson and Horton (2016) within the framework of 

spatial discretization is the dominant region. The method was introduced by Taki, 

Hasegawa, and Fukumura (1996). A player’s dominant region is the set of spatial points 

(area) that this player can reach before anyone else. In its simplest form, in which 

acceleration is not considered, dominant regions are equivalent to Voronoi cells (Fortune, 

1987). Fonseca, Milho, Travassos, and Araújo (2012) considering the minimum distance 

between two teammates and the size of players dominant regions, observed that the size of 

the dominant region was higher for the attacking team and that the behavior of the 

defending team is more unpredictable. In a different study, Ueda, Masaaki, and Hiroyuki 
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(2014) compared the team-area (the smallest enclosing orthogonal box containing all the 

field players of the defending team) with the dominant region, during the two phases of the 

game: attack and defense. The dominant regions of successful attacks were thinner than 

those of unsuccessful attacks. It was concluded that the dominant region is closely linked 

to offensive performance, so it may be possible to evaluate the performance of a group of 

players using the dominant region. In this respect it is very important to refer the motion 

model developed by Taki and Hasegawa (2000), who attempted to overcome research 

limitations already reported by Gréhaigne, Bouthier, and David (1997), in particular as 

regarding the validity of the assumption that all space inside a Voronoi cell is reachable in 

a shorter time by its designated player. Gréhaigne et al. (1997) considered that in order to 

accurately define points in space where a player could arrive before anyone else, it would 

be important to take into account the position, speed, acceleration and movement direction 

of the players.  

Several other researchers applied the same concept of dominant region as support for other 

methods and metrics. Perhaps the one that is more conceptually linked to the dominant 

region is the team’s dominant region, resulting from the union between all dominant 

regions of each of the team players. Variations in the size of this area were indicated as 

indicators of collective performance (Taki, Hasegawa, & Fukumura, 1996). Other authors 

have considered useful to weight the dominant regions of the players according to the 

distance to the opponent’s goal and/or the ball, in order to better express the contribution 

of the players to the team performance (Fujimura & Sugihara, 2005). Another metric 

already explored in this field is the player's passable area, which is the region where the 

player can potentially receive a pass (Fujimura & Sugihara, 2005; Taki & Hasegawa, 

2000). This concept is closely linked to the dominant region, since it is considered that the 

player is available to receive a pass when it is possible to determine a reasonable direction 

and speed of pass, such that the same player can intercept the ball before anyone else. 

However, the existing tools only allow considering as pass trajectory the shortest path 

between two players and the speed of the ball as a constant. It is important to develop more 

realistic models taking into account other trajectories (e.g. aerial, ball-spin) and variable 

ball speeds. Another promising topics derived from concept of dominant region are the 

spatial pressure applied by one team over the other (Taki, Hasegawa, and Fukumura, 1996) 

or investigation on player’s rebounding performance (Maheswaran, 2014) using the 

concept of Voronoi diagram, more concretely. 
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The collective coordination of a team has been captured by specific group-based measures, 

too. One of the most studied aspects is the team's center or centroid that is obtained by 

computing the mean lateral and longitudinal positional coordinates of each player in a team 

(Araújo, Silva, & Davids, 2015) and represents the relative positioning of both teams in 

forward-backward and side-to-side movement displacement. Frencken, Lemmink, 

Delleman and Visscher (2011) in a study of inter-team coordination in small-sided games 

observed that in many plays that ended in goal there was a cross between the centroid of 

the attacking team and the defending one. On the other hand Bartlett, Button, Robins, Dutt-

Mazumder, and Kennedy (2012) have reported that in 11 versus 11 soccer a clear 

convergence of the centroids of the teams in the plays that resulted in goal was not 

observed. Thus, the relationship between the cross of team's centroids and the creation of 

goal opportunities remains to be confirmed. Still in the analysis of team's centroid, 

Clemente, Couceiro, Martins, Mendes, and Figueiredo (2013) considered the centroid of 

the team according to the distance of each player to the ball, in the attempt to determine its 

influence in the plays. The authors reported large lateral oscillations of the team's weighted 

centroids, which were interpreted as a result of the effort of the attacking teams to 

destabilize the opposing defensive organizations by varying the attack corridor. 

Among the aspects of team coordination more commonly studied in team sports research is 

spatial dispersion of players on field. This is expressed by variables such as stretch index, 

team spread or effective playing space (Araújo & Davids, 2016). The stretch index 

measures the degree of expansion / contraction of occupied space lateral and longitudinally 

by a team throughout the game, by computing the mean of the distances between each 

player and the team's centroid. This index can be a radial measure or it can be calculated 

according to the axis expansion, providing different measures of longitudinal and lateral 

dispersion (Araújo, Silva, & Davids, 2015). Thus, the stretch index represents the mean 

deviation of each player from the spatial center (Bourbousson, Sève, & McGarry, 2010). 

Investigation on this topic has demonstrated the intermittent expansion and contraction 

patterns of competing teams in soccer and basketball, according to attacking and defending 

phases (Araújo, Silva, & Davids, 2015). In the work of Clemente, Couceiro, Martins, and 

Korgaokar (2012), the distances of the players to the pondered centroid were considered to 

calculate the stretch index, obtaining a stretch index that is also weighted. The results 

indicated a negative relationship between the stretch index values of the opposing teams, 

as well as lower values of the metric at times when the team did not have possession of the 

ball, compared to the values registered with possession of the ball. 
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Another dispersion measure that was reported by Moura, Martins, Anido, Barros, and 

Cunha (2012) is team spread, which is calculated as the square root of sums of the squares 

of the distances between all pairs of players not considering the goalkeeper. Authors 

observed a counter-phase relationship between expansion and contraction in defense, as 

well as greater dispersion values when teams were attacking. 

The effective playing space, which in the study of Ueda et al. (2014) was compared to the 

dominant region in both phases of the game - offensive and defensive, provides 

information on how the teams are stretched across the field. This information has been 

used by the authors, in a similar way to the studies of the last two mentioned metrics, to 

differentiate the moments in which the teams have the possession of the ball from the 

moments in which it does not (Frencken & Lemink, 2008). However Bartlett et al. (2012) 

state that the relation between measures of team dispersion and the defensive and offensive 

phases of the game is uncertain. 

Finally, as team behavior is a collective organization that emerges from the cooperation 

between teammates (Gréhaigne, Bouthier, & David, 1997; Peña & Touchette, 2012), the 

emergence of such collective behaviors can be assessed and understood through the 

measurement of key synergistic properties such as degeneracy, i.e., the structurally 

different components that perform a similar (but not necessarily identical) function in a 

given context (Araújo & Davids, 2016). The degeneracy of team behavior as a social 

relationship property can be captured by Social Network Analysis (SNA) (Grund, 2012; 

Peña & Touchette, 2012). SNA has been applied to soccer (Clemente, Martins, Couceiro, 

Mendes, & Figueiredo, 2014b), in particular to analyze ball-passing networks in a team. 

Later, in the section about SNA on soccer, this issue will be resumed.  

 

Data Mining 

Team sport analysis is a growing research field that has experienced problems in dealing 

with increasingly larger and more complex datasets. Data mining, which is a step in the 

process of knowledge discovery in databases that consists of applying specific algorithms 

in order to extract patterns (or models) on these data, has been very useful to deal with 

such problems, According to Fayyad, Piatetsky-Shapiro and Smyth (1996) the two main 

goals of data mining are prediction, which involves using some variables or fields in the 

database to predict unknown or future values of other variables of interest; and description, 

which focuses on finding patterns interpretable by humans that describe the data. There are 
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a variety of data mining techniques used to analyze large and complex datasets, with 

possible application to team sports data (Gudmundsson & Horton, 2016; Stein et al., 2017).  

Clustering is the grouping of objects that are more similar to each other than to those in 

other clusters, regardless of the definition of similar that may be established. According to 

Gudmundsson and Horton (2016) it’s possible to apply one of the clustering algorithms 

created by Lee, Han, and Whang (2007) to identify common movement patterns of 

individual or groups.  More specifically this technique has been used to find common 

behavioral patterns of individual players in soccer (Janetzko et al., 2014).  

Another data mining technique is classification, which according to Fayyad et al.  (1996) is 

the process of “learning a function that classifies a data item into one of several predefined 

classes”. This technique was successfully applied to detect dangerous situations in soccer, 

defined by the “shot on goal” criteria (Stein et al., 2015). Classifiers were firstly trained 

with several features that occurred shortly before the shot on goal and then they were 

applied on the data, which allowed to detect potentially dangerous situations, as well as 

periods where did not occur any shot on goal but whose feature values were similar to 

previously trained data.  

Regression is used when one intends to estimate the relationship between dependent and 

independent variables. This relationship is expressed in a function that can predict, with 

greater or less accuracy, future observations. Lucey, Bialkowski, Monfort, Carr, and 

Matthews (2014) have studied the offensive performance in soccer, having proposed a 

model, based on logistic regression, to estimate the probability of shooting succeed. This 

model determined that factors such as the game phase in which the shot has occurred, the 

defender proximity to shooter, the interaction of surrounding players, the speed of play and 

the shot location have a relevant effect in determining the likelihood of a successful shot. 

In another example, studying defensive performance in basketball, more specifically 

rebounding, Maheswaran et al. (2014) used linear regression to compute metrics for 

player's hustle and conversion, two of the three components (positioning was the other 

one) of authors' decomposition of rebound. The results have reported that the top-ranked 

players in these metrics were those who were also considered by experts as the best 

performers. 

Another group of data mining techniques is summarization. Several techniques, some more 

complex than others, are used in order to find a compact description of the data (Stein, 

2017; Fayyad, Piatetsky-Shapiro, & Smyth, 1996). Among the simplest techniques is the 

calculation of the mean and standard deviation or the dimensional reduction. Examples of 
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more complex summarization techniques include, for example, clustering and the 

determination of centroids as representative elements of clusters, a technique widely used 

in team sports analysis and discussed earlier. Another relevant example is the work of 

Perin, Vuillemot, and Fekete (2013), which offers compact yet expressive standard 

visualizations of soccer phases. 

Change and deviation detection and dependency modeling, respectively used in the 

detection of outliers and in the identification of significant relationships between variables, 

can also be interesting methods to team sport analysis. According to Stein et al. (2017) 

change and deviation detection can be used to identify players whose performance 

distinguishes, positively or negatively, from that of other players, while dependency 

modeling can be applied to identify events that occur in the condition of other relevant 

events take place, such as a goal scored or conceded. 

 

Information Visualization 

Information visualization is a recent and growing research field that has developed useful 

tools for the communication of information obtained from spatiotemporal datasets. These 

techniques may be very useful when exploring a dataset in search of insights as interesting 

patterns and descriptive features (Fekete, van Wijk, Stasko, & North, 2008; Stein, 2017). 

Among the examples of techniques we find in sport are statistical techniques such as the 

presentation of scatter plots or parallel coordinate plots or more sophisticated and 

specialized techniques such as today's so-called live-covers of sporting events made online 

which offer textual descriptions of key events in real-time as well as graphs with different 

type of information about players or teams. One of the most common approaches is the use 

of heat maps, which are intuitive, simple to obtain and very versatile. There are many 

examples on literature applied to different sports, such as an attempt to discover the best 

shooters in the NBA by visualizing the spread and range of shooters (Goldsberry, 2012); a 

similar work in ice hokey visualizing the shot distances using radial heat maps (Pileggi, 

Stolper, Boyle, & Stasko, 2012); and the work of Silva et al. (2014) on youth soccer, who 

has observed that more skillful players displayed higher spatial unpredictability compared 

to less-skilled players on the smaller fields, but not on larger fields, where levels of 

predictability were identical for both groups. Recently, Perin et al. (2013) has developed a 

system of visual exploration of phases in soccer, using various visualization tools such as a 
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passing network, time line and sidebars for various detailed information, allowing multiple 

comparisons between players, teams and further examination of the phases of a game. 

 

Visual Analytics 

Visual analytics methods, characterized by their interdisciplinary, can combine several 

research areas such as data mining and visualization, among others, thus consisting on the 

combination of automated analysis techniques with interactive visualizations for an 

effective understanding, reasoning and decision making from the study of large and 

complex data sets (Keim et al., 2008). This integrative character of visual analytics allows 

researchers of different research areas, such as team sport, to contribute with their specific 

knowledge during the analysis process (data mining) to obtain immediate specialized 

visual feedback of the results (visualization) (Stein, 2017). 

 

Match Analysis on Soccer Literature Review 

The unique nature of soccer, with the constant flow of the ball and few scores, especially 

when compared with other sports, makes simple statistics such as the number of assists or 

scored goals being inadequate as collective or individual performance measures. 

Fortunately this situation has changed and in recent times, especially since the UEFA Euro 

Cup 2008, a number of unprecedented statistical information in soccer has been made 

available for analysis. Obtaining and publishing a significantly higher amount of statistical 

data allows a more detailed analysis of the phenomenon, as testifies the proliferation of 

match analysis applied to soccer in last decades (Peña & Touchette, 2012). 

Sarmento et al. (2014) proposed to classify studies on match analysis depending on the 

type of analysis performed in: descriptive, comparative and predictive analysis. 

Descriptive research has been mainly focused on measuring the physical demands, through 

methods like kinematic and notational analyses (Bradley, Di Mascio, Peart, Olsen, & 

Sheldon, 2010; Di Salvo et al. 2007; Gregson, Drust, Atkinson, & Di Salvo, 2010; Vigne, 

Gaudino, Rogowski, & Alloatti, 2010). At the same time some researchers have done 

comparative studies, associating the performance level with different variables like playing 

position (Barros et al., 2007; Bloomfield, Polman, & O'Donoghue, 2007; Dellal et al., 

2011; Di Salvo et al., 2010; Rampinini, Coutts, Castagna, Sassi, & Impellizzeri, 2007), 

competitive level (Hughes & Franks, 2005; Lago-Ballesteros & Lago-Peñas, 2010), game 

result, quality of opposition and match location (Castellano, Blanco-Villaseñor, & Álvarez, 
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2011; Lago & Martín, 2007; Lago-Peñas & Dellal, 2010; Taylor, Mellalieu, James, & 

Shearer, 2008). For many years match analysis research has focused on kinematic analysis 

or notational analysis (Clemente, Martins, Kalamaras, Wong, & Mendes, 2015), enabling 

the general description of technical, tactical and physical variables as an attempt to 

quantify the activity of players. 

Despite of the importance of descriptive and comparative research, by the beginning of this 

century one of the main critics in literature used to be the need to move beyond the 

description of behaviors and progress towards prediction of performance (Sarmento et al., 

2014; Gréhaigne, Mahut, & Fernandez, 2001). Another frequently pointed research 

limitation has been the fact that studies were being done disregarding situational and 

interactional contexts in which such performances had happen (Sarmento et al., 2014).  

Subsequently, over the last few decades there has been increasing interest in identifying 

and classifying teams and their properties (Araújo, Silva, & Davids, 2015; Clemente, et al, 

2015). Having this on mind some researchers on match analyses have tried to find 

associations of cause/effect in different interactional situations, having the aim to 

determine the most effective ways of playing. The relevance of this kind of studies is 

generally recognized, since match analysis has played a relevant role in improvement of 

sports (Clemente, Martins, Couceiro, Mendes, & Figueiredo, 2014) and has allowed the 

development of new methods to analyze the team’s behavior, in order to measure the 

tactical and collective performance (Duarte et al., 2012). Thus, research on match analysis 

has evolved from studies that considered athletes as independent and autonomous units to 

studies in which the main focus is the relationship between individuals in a given context 

(Lusher, Robins, & Kremer, 2010). 

 

Social Network Analysis in Soccer 

SNA has been applied on soccer at different levels: i) micro- analysis on and individual 

level; ii) meso-analysis on the players’ contribution for the team performance; and iii) 

macro-analysis on global interaction of the team (Clemente et al., 2014b). On the past few 

years several studies have explored these three levels of analysis with different approaches 

and different objectives. One of the common purposes of many studies is the identification 

of methods and metrics in order to identify the properties of the connection between 

players in the network (Clemente et al., 2014b), and thus finding a “quantifiable 

representation of a team’s style using network theory” (Peña & Touchette, 2012).  
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These studies demonstrated that some metrics are useful to characterize styles of play and 

cooperation among teammates (Cotta, Mora, Merelo-Molina, & Merelo, 2011), as well as 

the relation between individual actions and team tactical behavior (Passos et al., 2011).  

Centrality metrics have been used to identify the most influential tactical positions within a 

team. For example, by analyzing the in-degree and out-degree centrality of the Portugal 

national soccer team players, Mendes, Clemente and Martins (2015) found that during the 

FIFA World Cup 2014 the central midfielders were the key players in the attacking-

building process. A similar study examining degree centrality and degree prestige of 

Switzerland national team players during the same competition showed that the key 

players receiving the ball were also the midfielders, suggesting this team has a style of play 

based on attacking building (Clemente, Martins, Kalamaras, Oliveira, Oliveira, & Mendes, 

2015b). Thus, network metrics such as density, heterogeneity and centralization are 

effective for characterizing the cooperation between players (Clemente, Couceiro, Martins, 

& Mendes, 2015a). More recently it was compared the importance of each tactical position 

to build the offensive process of national teams participating in the 2014 FIFA World Cup. 

Similarly, it was found that central midfielders are the most influential players in attacking 

process of most teams. These results were obtained from an analysis of out-degree, in-

degree, closeness and betweenness values of participating players on competition 

(Clemente, Martins, Wong, Kalamaras, & Mendes, 2015d). Finally, in a study by Duch, 

Waitzman and Amaral (2010) that characterized the performance of the players at UEFA 

Euro 2008, it was proposed a measure of individual and collective performance, flow 

centrality - "the betweenness centrality of the player with regard to the opponent's goal". It 

has been noted that the metric provides sensible results, in agreement with the subjective 

views of analysts and spectators. 

Analyses of network heterogeneity and centrality reveal that team offensive play has many 

variations and short patterns that increase collective unpredictability (Clemente et al., 

2014b). Furthermore, high total links and high density can convey the team’s greater 

ability to pass the ball between all players and to function as a whole, as well as to 

decentralize the network (Clemente, Martins, & Mendes, 2014a). For example, a study 

analyzing team ball-passing networks in 760 matches of the English Premier League 

(Grund, 2012) showed that high levels of network intensity were associated with increased 

team performance (goals scored), and centralized interaction patterns with decreased team 

performance. More recently, similar research analyzing ball-passing networks of teams 

competing at the FIFA World Cup 2014 (Clemente F. M., Martins, Kalamaras, Wong, & 
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Mendes, 2015c) revealed significant differences in density, total links and clustering 

coefficient between teams reaching different stages of the competition. These findings 

further demonstrate an association between higher density, total links and clustering 

coefficient with performance variables such as goals scored, overall shots, and shots on 

goal (Clemente et al., 2015c).  

 

Aim 

Despite these recent advances, research in the field has remained focused on the 

association between ball-passing network metrics and coarse-grained team performance 

variables (e.g. goals scored, shots, shots on goal, or competition stage reached) (Grund, 

2012; Clemente et al., 2015c), which implies that team performance outputs and network 

properties metrics are measured simultaneously (Grund, 2012). However, since ball-

passing network analysis offers an overall picture of events occurring during a certain 

period of time, typically a synthesis of several complete matches, the events leading to 

successful or unsuccessful team performance are included in the same analyses. Thus, it 

remains unknown whether specific network properties and successful (or unsuccessful) 

team behavior are associated. Furthermore, although previous research based on ball-

passing networks suggests that high density (Clemente et al., 2015c) and low centralization 

(Grund, 2012) are associated with successful teams, the relation between clustering 

coefficients and team performance is more uncertain (Peña & Touchette, 2012; 

Gudmundsson & Horton, 2016). Thus, the aim of this study was to test whether team 

network density, centralization and clustering coefficient can be used to predict the 

outcome of offensive plays. Finally, we also studied if the characteristics that lead to team 

success in offensive plays in soccer were conspicuous in the performance of each high-

level team, i.e., more than a style of play of a team, we tested if these characteristics are 

indicators of successful play of any high level team.  
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Method 

 

Sample 

The choice of the sample for the study was based on some important assumptions. Firstly it 

was a central concern that the collective processes express, as far as possible, the training 

stimuli. Taking this into account, this study deliberately focused on club-teams rather than 

on national teams because club-teams train and compete together for longer consecutive 

periods of time. We analyzed the 12 games of the Group Stage of the UEFA Champions 

League Group C of 2015/2016 season. The four teams analyzed were Club Atlético de 

Madrid (CAM); Football Club Astana - Астана Футбол клубы (FCA); Galatasaray Spor 

Kulübü (GSK) and Sport Lisboa e Benfica (SLB).  

 

Procedures 

Our analysis focused on collective offensive processes. Offensive play is a set of attacking 

actions performed by a team between recovering and losing ball possession. According to 

Garganta (1997) a team is in possession of the ball, and therefore in attacking process, 

when any of its players respect, at least, one of the following conditions: i) holds at least 

two consecutive contacts with ball, ii) performs a positive pass (allowing the maintenance 

of ball possession), and iii) performs a shot (finishing). We considered that a team is in 

possession of the ball when it performs a positive pass, i.e., it maintains ball possession 

after the pass. 

The video footage used in the analysis was obtained from TV broadcasters. We started by 

categorizing all offensive plays as successful when the attacking team entered the finishing 

zone, which was previously reported as a proxy variable for scored goals when measuring 

successfulness in soccer (Tenga, Ronglan, & Bahr , 2010). The concept of finishing zone 

was based on Gréhaigne et al’s longitudinal division of the soccer field into four equal 

areas (Gréhaigne et al., 2001). These areas are designated according to the direction of the 

attack as follows: defensive zone, pre-defensive zone, pre-offensive zone and offensive 

zone. The offensive zone in elite soccer was defined as the finishing zone (Lago, Lago, 

Rey, Casáis, & Domínguez, 2012) (see Figure 1).  

Successful offensive plays (SOPs) include plays that finished with a shot at the goal and 

those where the team retained ball possession until entering the finishing zone. 
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Unsuccessful offensive plays (UOPs) were all the plays where the team lost ball possession 

without meeting either of the SOP criteria. Neutral plays were offensive plays where a 

team did not lose ball possession but also did not meet the SOP criteria. This neutral 

category included all offensive plays that were initiated: (i) from an offensive corner kick; 

(ii) in an offensive throw-in; and (iii) from offensive free kicks with a first pass directly 

into the finishing zone. The neutral offensive plays were not included in the present 

analysis. 

The offensive plays were identified and categorized with Longomatch software from every 

pass performed in the 12 matches. The players who passed and received the ball were 

registered for each offensive play. A number from one to 11 was assigned to each player 

according to his initial position within the team’s tactical system. The same number was 

assigned to players performing the same tactical position. Taking into account their 

different stoppage times, each half of the match was divided into three fractions with the 

same duration. Next, two adjacency matrices of offensive plays (successful and 

unsuccessful) for each opposing team were created for the six periods of the match, in a 

total of 24 adjacency matrices per match (see Figure 2). Each of these adjacency matrices 

was then imported to the software NodeXL to compute the networks and their metrics. All 

statistical procedures were performed using SPSS Statistics 24.  
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Figure 1. Longitudinal division of football field for definition 
of finishing zone. 
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Predictor Variables 

 

Density 

Density measures the interconnectedness of nodes (players) in a network (team), i.e. it is 

the ratio of existing ties (passes) between teammates relative to the possible number of 

such ties (Balkundi & Harrison, 2006). In ordered relations, as in the teammates 

interactions, the possible directed links in a digraph of n nodes are 𝑛 (𝑛 − 1). The graph’s 

density Δ is defined as the ratio between the total registered links (ℒ) and the maximum 

number of possible connections. It is calculated as: 

 

Δ =
ℒ

𝑛  (𝑛 − 1) 

 

Match  

Team 1 

SOPs 

Period 1 Adjacency 
Matrix 

Period 2 Adjacency 
Matrix 

Period 3 Adjacency 
Matrix 

Period 4 Adjacency 
Matrix 

Period 5 Adjacency 
Matrix 

Period 6 Adjacency 
Matrix 

UOPs 

Team 2 

SOPs 

UOPs 

1st Step 

•   Cut-off of 
offensive plays 
of each team 

2nd Step 

•   Categorization 
of offensive 

plays 

3rd Step 

•   Fragmentation 
of match in six 

periods of 
similar duration 

4th Step 

•   Passes Coding 
•   Creation of 

adjacency 
matrices 

Figure 2. Process of creation of adjacency matrices.  
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Thus, density is a fraction with a minimum of 0 (no lines/arcs present) and a maximum of 

1 (all lines/arcs are present) (Wasserman & Faust, 1994). Considering specifically soccer 

team passing networks, as analyzed in present study, values of density closer to 1 suggest a 

very intense relationship between teammates, with most players interacting with each other 

through passing. Such strong relationships increase mutual interdependence between 

teammates (Sparrowe, Linden, Wayne, & Kraimer, 2001), which promote cooperation and 

a coordination of efforts. 

 

Clustering Coefficient 

Clustering is a measure of the degree to which nodes in a network tend to cluster together 

(Peña & Touchette, 2012). The clustering coefficient, originally introduced by Watts & 

Strogatz (1998), quantifies how close a node and its neighbors in a graph are to becoming a 

complete subgraph.  

In directed graphs, the local clustering coefficient of a vertex expresses the ratio of the 

links between the vertices that are connected to it. Thus, local clustering coefficient (𝐶!) of 

a given vertex i is the fraction of the number of connections 𝑎!" between 𝑘! vertices in its 

neighborhood, divided by the maximum number 𝑘!    𝑘! − 1  of possible links between 

them: 

 

𝐶! =
𝑎!" ,𝑎!" ∈ 𝐸
𝑘! 𝑘! − 1

 

 

We used a variant of the clustering coefficient - the average local clustering coefficient - to 

measure the clustering level throughout the network: 

 

𝐶 =
1
𝑛 𝐶!

!

!!!
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Centralization 

The centrality of a group or network is the degree of inequality of the distribution of 

positions/ "weights" of different elements within the network. A network is therefore more 

centralized when one of its elements is clearly more central than all other group members. 

Conversely, a network is decentralized when all its elements have the same value of 

centrality (Grund, 2012). 

There are several measures of centrality and researchers do not always agree on how 

“group centrality” or “centralization” should be assessed.  We used degree centrality for 

quantifying the relative influence of each player on the total number of passes within a 

network. Thus, centralization conveys how central the most central player is when 

compared to the other players in the network. This metric was originally described by 

Freeman (1978) and is calculated as the sum of the differences between the vertex with the 

highest degree centrality and all other vertexes; divided by a value depending only on the 

size of the network: 

 

𝐶! =
deg 𝑣∗ − deg(𝑣)!

!!!

𝑛! − 3𝑛 + 2  

 

where deg (𝑣∗) is the largest value of centrality degree in the network, deg (𝑣) is the value 

of each vertex centrality degree, and the denominator is the maximum possible sum of 

differences in i = 1 vertex centrality for a graph of n vertexes (Freeman, 1978). 

In the context of a soccer match, zero centralization indicates that all players have the same 

level of interaction during the game. Conversely, a centralization value very close to one 

suggests that a player is the key-player of the team and that other players have a strong 

tendency to play with him (Clemente et al., 2015a). 

 

Analysis 

A hierarchical logistic regression model was used to predict the successfulness of offensive 

plays from the number of passes performed and the network metrics (density, clustering 

coefficient and centralization). Two blocks were defined. In the first block, only the 

predictor total passes was introduced. In the second block, we introduced the network 

metrics. By defining total passes as moderator variable we could test the possible 

independent effect of the network metrics. Preliminarily, the data was screened for 
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collinearity problems and outliers. Following the recommendations in Belsley et al. (1980), 

we diagnosed collinearity when conditioning indexes were greater than 30 for a given 

dimension and the variance proportions were greater than 0.5 for more than one variable. 

The latter was true for the pairs of variables “clustering coefficient and centralization” and 

“total passes and density”, however, both of these dimensions registered conditioning 

indexes below 30  (12.224 and 22.655, respectively). Thus, it was not necessary to 

transform or eliminate any predictor-variable. Next, we obtained z-scores and searched for 

outliers greater than 3.29 (Tabachnick & Fidell, 2013). A single outlier was identified (z-

score = 4.378) and removed. Additionally, four SOP cases were removed because they 

registered “no passes”. After these preliminary procedures, 283 of the initial 288 cases 

were kept for further analysis, corresponding to 144 cases of UOP and 139 of SOP.  

In a logistic regression, Exp (𝛽! ) represents the odds-ratio of success versus failure 

(categories of the model’s dependent variable) when variable 𝑋! increases by one unit with 

respect to the odds-ratio of success versus failure, when 𝑋!  stays constant. Density, 

clustering coefficient and centralization vary between zero and one, therefore, we 

converted these metrics to a scale of zero to ten to adjust adequately model sensitivity. 

Consequently, the odds ratios presented for these variables refer to a unit change of 0.1. 

 

 

Results 

 

Characterizing the four potential predictors by team (see Table 1), it can be seen that the 

GSK and SLB teams are those that, in the four potentially predictor variables, are closer to 

the mean value. In a different way, we realize that both the CAM and FCA teams move 

away from these averages, each of which is the team that registers, for the four metrics, the 

highest and lowest values, respectively. 

A two-block hierarchical logistic regression was used to predict the successfulness of 

offensive plays. In the first block, the total number of passes (hereafter referred to as ‘total 

passes’) was the only predictor-variable. This model performed significantly better than a 

constant-only model (𝐺(!,!!!"#)! = 7.484,𝑝 =  0.006), but it did not satisfy goodness-of-fit 

criteria (Hosmer and Lemeshow test: 𝜒(!,!!!"#)! = 25.342 p = 0.001), and it produced a 

Nagelkerke r2 of 0.035. Network metrics were added in a second block (Table 2). This 
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second model performed better than a constant-only model (𝐺(!,!!!"#)! = 15.484,𝑝 =

  0.004) and satisfied goodness-of-fit criteria (Hosmer and Lemeshow test: 𝜒(!,!!!"#)! =  

 7.187; p = 0.517), achieving a Nagelkerke r2 of 0.071. The first-block model correctly 

classified 56.2% of the known cases, 66.7% of the UOP cases, and 45.3% of the SOP 

cases. The second-block model correctly classified 69.5% of the UOP cases and 47.5% of 

the SOP cases, with an overall correct classification of 58.7% of the cases. Thus, adding 

the second block to the model increased the number of correct classifications by 2.5%. 

Table 1. Characterization of offensive plays’ successfulness potential predictor variables. 

  

Overall 
n = 283 

Team 

CAM 
n = 70 

FCA 
n = 72 

GSK 
n = 69 

SLB 
n = 72 

Total Passes 24,12 ± 15,16 30,10 ± 15,96 17,72 ± 11,37 24,46 ± 15,91 24,39 ± 14,73 

Density 0,17 ± 0,09 0,20 ± 0,09 0,14 ± 0,08 0,18 ± 0,09 0,18 ± 0,08 

Clustering 
Coefficient 0,21 ± 0,14 0,25 ± 0,14 0,14 ± 0,12 0,21 ± 0,14 0,22 ± 0,12 

Centralization 0,32 ± 0,10 0,35 ± 0,09 0,28 ± 0,10 0,32 ± 0,11 0,31 ± 0,09 

Data are reported as mean ± SD. 

Table 2. Binary Logistic Regression Model of offensive plays' successfulness. 

  

𝛽 (S.E.) Wald p Exp 
(𝛽) Exp (𝛽) 95% C.I 

 
   Lower Upper 

Total Passes 0.079 (0.034) 5.475 0.019 1.082 1.013 1.156 

Density  -1.320 (0.591) 4.994 0.025 0.267 0.084 0.850 

Clustering Coefficient  0.179 (0.193) 0.858 0.354 1.196 0.819 1.747 

Centralization  0.189 (0.143) 1.759 0.185 1.208 0.914 1.597 

Constant -0.615 (0.469) 1.719 0.190 0.541  

Successful Offensive Play (SOP) is the reference category of successfulness predicted in the model. 



Successful team synergies 

 20 

Classification was unimpressive, with 69,5% of the UOP (specificity) and 47,5% of the 

SOP correctly predicted (sensibility), for an overall success rate of 58,7%. We tested the 

model's discriminant power (between UOP and SOP) with a ROC curve (see Figure 3), 

and its classification capacity was confirmed (ROC c = 0,609; p = 0,002; 95% CI [0.544, 

0675]).  

 

Total number of passes and density were the significant predictors among the four 

considered variables. The total number of passes was positively associated with the 

successfulness of offensive plays. A one-pass-increase augmented the probability of 

successful offensive plays by 8.2% (Exp (𝛽) = 1.082; see Table 2). More significantly, a 

10% decrease in density increased the chances for a successful offensive play by 73.3% 

(Exp (𝛽) = 0.267; see Table 2).  

Results for overall data show that offensive plays with density values between 0 and 0.25 

are mostly UOPs (see Figure 4). It is also noted that the majority of offensive plays 

expressed densities between 0.1 and 0.25. For values higher than 0.25 the cases are mostly 

SOPs, having also been observed an increasing mean predicted probability of SOP 

occurrence (see Figure 5). Otherwise, if we consider the clustering coefficient, it was 

verified that UOPs are characterized by clustering coefficients between 0 and 0.3, while 

SOPs most frequently expressed clustering coefficients between 0.2 and 0.45. The mean 

Figure 3. ROC curve of regression model of offensive play’s successfulness. 
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predicted probability of SOPs occurrence grows as offensive plays expressed higher 

clustering coefficients. Furthermore, it was observed that the centralization of UOPs varied 

between 0 and 0.45, with greater frequencies for values between 0.2 and 0.4. On the other 

hand, SOPs conveyed centralizations between 0.2 and 0.65, but mostly between 0.3 and 

0.45. As verified for the other metrics, SOPs mean predicted probability accompanied the 

increasing centralization.  

When we look at the results of the model team-by-team we found that the associations 

observed for the general data remained with respect to clustering coefficient coefficients 

and centralization. The same was not true in the case of density, since the SLB team 

presented a more erratic relationship, having registered for values of density higher than 

A B C 

Figure 5. Relation between values of mean predicted probability and density (A), 
clustering coefficient (B) and centralization values (C), colored by frequencies. 

A B C 

Figure 4. Frequencies of SOP and UOP cases according to: density (A), clustering 
coefficient (B) and centralization values (C). 
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0.25, some cases with mean predicted probability of SOPs occurrence either high or low 

(see Figure 6).  

 

 

 

A 

B 

C 

Figure 6. Team-by-team relation between values of mean predicted probability and 
density (A), clustering coefficient (B) and centralization values (C), colored by 
frequencies. 
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Regarding the relationship between the moderator variable, total passes, and the network 

metrics, there were some differences between SOPs and UOPs, considering all network 

metrics (see Figure 7). For density the relation seems similar until the value of 0.25 - as the 

density increases the number of passes also increases. While this is true also for values 

greater than 0.25, it’s important to note that offensive plays which combined high densities 

with high pass numbers were mostly SOPs. In addition, UOPs were characterized by 

having concomitantly expressed values of clustering coefficient and of total number of 

passes lower than SOPs, not having, for example, been verified any UOP with clustering 

coefficient equal or superior to 0.5 or a total number of passes equal to or greater than 60. 

This tendency for lower combinations between total number of passes and clustering 

coefficient seems to be maintained in case of centralization, with a great frequency of 

A 

B 
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UOPs for centralizations between 0 and 0.3 combined with total numbers of passes 

between 0 and 40. Otherwise SOPs registered higher centralizations (between 0.2 and 0.6) 

combined with also higher number of total passes (between 0 and 80).  

 

 

Discussion 

 

Network characteristics such as density, clustering coefficient and centralization have been 

reported as good descriptors of game style in soccer teams, as they can be associated with 

metrics of success such as goals scored, shots, shots on goal, and competition stage 

reached by teams. However, since network analysis describes events occurring during 

entire matches, performance outputs and network properties metrics cannot be measured 

simultaneously. In this study, we attempted to clarify the association between specific 

network properties and successful (or unsuccessful) team behavior.  

Our model was able to classify 58.7% of the events correctly, however, it performed better 

at identifying UOPs (69.5%) than SOPs (47.5%). These results suggest that these network 

metrics (density, clustering coefficient and centralization) can more accurately describe the 

team behaviors associated with UOPs (i.e. losing ball possession) than the behaviors 

leading to SOPs (i.e. moving into the finishing zone or shooting on goal). Thus, the model 

C 

Figure 7.  Relation between total passes values and density (A), clustering coefficient (B) 
and centralization values (C) for SOP and UOP cases. (see previous page). 
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can accurately pinpoint the collective behaviors that the teams should avoid in order to 

ensure success.  

The total number of passes and density were the most relevant variables in our model. 

Total passes was introduced in the study as a moderator variable to assess the independent 

influence of the network metrics on team performance. The improvement in the model 

obtained by adding the second block confirmed the metrics’ independent influence. We 

observed a positive association between total passes and team performance. Each pass 

increment in a set of offensive plays occurring within a 15 minute-period resulted in the 

teams being 8.2 % more likely to move into the finishing zone or to shoot on goal. The 

density of a ball-passing network increases whenever two players who were not yet 

connected pass the ball between them; in this way, high density is probably associated to 

high occurrence of these differentiated links. This greater variability of pass patterns, 

which is expressed in qualitatively distinct connections over a given period, may occur for 

different reasons. For example, greater collective dynamics and high player mobility can 

result in passes between players who regularly play in distant areas.  

It has been shown that strong cooperation between teammates makes teams stronger and 

more successful (Balkundi & Harrison, 2006). Thus, how can we explain our results 

showing that density has a negative effect (albeit small) on the successfulness of offensive 

plays? As can be seen in Figure 1, for density values ranging from 0 to 0.25 our model 

predicts mostly UOP outcomes. When we consider only events classified as SOP, there is a 

high number of offensive plays with density values ranging from 0.1 to 0.25, followed by a 

decrease. This drop in the number of offensive plays for higher density values could 

explain the negative association between density and SOPs. Indeed, despite being 

associated with fewer SOPs overall, higher densities are more likely to lead to SOPs (see 

Figure 2). Thus, our results suggest that density values lower than 0.25 are associated with 

a higher number of offensive plays, albeit mostly unsuccessful ones. Conversely, for 

density values above 0.25 there may be fewer offensive plays overall but most are 

successful. It is unlikely though that this negative association between density and SOPs is 

simply due to the higher number of errors and losses that result from the players’ greater 

efforts to maintain connections in high-density scenarios (Burt, 1997). Instead, it seems 

more plausible that the reduction in SOP outcomes observed for density values above 0.25 

explains that negative association. Indeed, these offensive plays with high-density values 

are characterized by a higher number of passes (see Figure 2), which could explain why 

there are fewer (but more successful) offensive plays in the same period of time. For 
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example, these high-density values may result from longer ball-possession times, fewer 

ball possession losses, or specific losses in advanced zones of the field (finishing zone). 

This hypothesis is consistent with our observation that qualitatively differentiated links are 

associated with high densities, which likely reflects a greater unpredictability of passing 

patterns. Furthermore, it was previously proposed that greater variability of action and less 

exposure to the opponent could result from decentralized passing patterns (Gréhaigne et 

al., 1997). Such characteristics of offensive plays associated with high-density values 

contribute to an offensive process that creates goal-scoring opportunities and are more 

effective for maintaining ball possession in advanced areas. Interestingly, offensive plays 

with similar characteristics have been observed in successful teams at the FIFA World Cup 

2014 (Clemente et al., 2015c). 

When we analyse the results team by team, we confirm what several authors have already 

stated: teams that reach more advanced stages of competitions have higher average values 

of density (Clemente et al., 2015c). Thus CAM team, the first classified in the group and 

finalist of the competition, had the highest mean density (0,20 ± 0.09) and FCA team, 

fourth in the group, had the lowest value (0,14 ± 0.08). 

As for the association between density values and the success of offensive plays (see 

Figure 6), we found that for CAM and GSK teams, the relation between density and 

success is similar to what was previously exposed to the overall values of all teams. Still, 

for CAM team the failure is more unlikely to occur at values of density lower than those 

verified for all of the other teams, since from the density value of 0.2 CAM team does not 

register any set of offensive plays with mean predicted probability less than 0.5. It is 

curious to note, however, that the same trend does not occur for all teams. As far as FCA 

team is concerned, the fact that it did not register densities above 0.3 makes it impossible 

to draw conclusions about the measure of the success of supposed offensive plays that 

would reflect these density values.  Nevertheless, the set of offensive plays that registered 

the highest mean predicted probability was the only one located above densities of 0.3, 

which may be indicative. What was more curious was to verify that for SLB team it was 

difficult to establish any association between any values of density and the offensive plays’ 

successfulness. Although some sets of offensive plays with densities between 0.35 and 

0.40 expressed a fairly high predicted probability of being SOP, the trend for the remaining 

observations is even slightly negative. This last observation may help to explain, along 

with the previous described, the odd-ratio that expresses the negative association between 
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the global values of density and the success of offensive plays, and seems to suggest that 

relation between density and successful performance isn’t independent of team effect. 

We found that the clustering coefficient is not a significant predictor of the successfulness 

of offensive plays, thus corroborating previous research (Gudmundsson & Horton, 2016; 

Peña & Touchette, 2012). However, our model indicates that a 10% increase in the 

clustering coefficient augments by 19.6% the probability of an SOP outcome (see also 

Clemente et al., 2015c).  Furthermore, the association between high values of number of 

passes and clustering coefficient (see Figure 7) is in line with findings of Yamamoto 

(2009). High clustering coefficient values express the subgroup formation within the team 

itself; when these subgroups are created based on passes between teammates, as in the 

present study, the players performing in close areas tend to be linked together, thereby 

explaining the high clustering coefficients. This could reflect an offensive style choice 

based on short combinations between players, as previously observed for the Spain, 

Germany and Netherlands national teams at the FIFA World Cup 2010 (Cotta, Mora, 

Merelo-Molina, & Merelo, 2011; Peña & Touchette, 2012). Thus, the modest contribution 

of the clustering coefficient to the predictive value of our model suggests that different 

offensive styles may lead to successful team performance, depending, for example, on the 

players’ individual qualities or on different strategic options. Further investigation is 

needed to clarify this issue. 

Our results demonstrate that centralization is not consistently associated with 

successfulness of offensive plays, which is in agreement with findings by Fewell, 

Armbruster, Ingraham, Petersen, and Waters (2012) showing that there is no strong 

relationship between centralization and team performance. However, we found a positive 

effect of centralization on successful team performance, as a 10% increase in centralization 

increases by 20.8 % the chances of an SOP. This result contradicts a previous report 

showing that higher centralization is associated with worse team performance (goals 

scored) (Grund, 2012). This discrepancy could, however, be explained by the different 

methodologies in these studies, as discriminating successful and unsuccessful 

performances probably influenced the relationship between centralization and successful 

team performance in our study.  

In summary, our results suggest that network density can accurately predict the ability of a 

team to enter the finishing zone or to shot on goal in elite soccer. Furthermore, this study 

gives new insights into the association between network density and team performance 

(Balkundi & Harrison, 2006). First, we showed that low network density may be 
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associated with a higher overall number of offensive plays but which were mostly 

unsuccessful. Second, high density was associated with fewer and/or longer offensive 

plays, which reduces the possibilities of a team moving into the finishing zone (hence 

decreasing total SOPs), thus resulting in a negative association between density and SOPs. 

Finally, we considered that high density may also be associated with fewer ball-possession 

losses before the teams reach the finishing zone (hence increasing probability of SOPs), 

thereby supporting the density-performance hypothesis. Analyzing team-by-team it was 

found that relation between team performance and density seems to depend on style of 

play. 

Some practical implications can be inferred from the present findings. Success of teams 

that express high densities in their offensive processes is eventually dependent on the 

creation of numerous lines of pass to the player with the ball. In light with ecological 

dynamics (Araújo, Davids, & Hristovski, 2006), this might be enhanced in the training 

sessions by manipulating task constraints, such as: i) using different relationships among 

depth / width of the field, to facilitate a team entering the finishing zone using different 

space channels; (ii) performing ball possession games with numerous mini-goals dispersed 

in the field, so that the player with the ball searches for 360° lines of pass; iii) performing 

games with varied ratios between the number of players and the area, to induce variability 

in the distance of the lines of pass and the type of passes required. On the other hand, for 

teams that express a lower density, some task constraints may be: i) establishment of a 

time limit for the performance of offensive plays, in order to enhance the entries in the 

finishing zones with fewer connections; ii) performing small-sided games with few players 

(1x1, 2x2, 3x3) to promote brief attacking actions with stable connections; iii) improving 

relationships between specific players, according to preferential links, by placing such 

players in the same team in small-sided games or in the training of specific collective 

actions among them. 

We tested a model that analyzed the specific associations between the characteristics of a 

team’s ball-passing network and the outcome of its offensive plays (entering the finishing 

zone and shot on goal vs losing ball possession). Previous studies had not differentiated 

these different outcomes, which may explain our results revealing a negative relation 

between density and team performance. Finally, we demonstrated that neither clustering 

coefficient nor centralization significantly contribute to the prediction of team performance 

successfulness, possibly indicating that diverse offensive styles can be equally effective for 

a team to succeed.   
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Abstract 

The synergistic interaction between teammates in association football has properties that can be 
captured by Social Network Analysis (SNA). The analysis of networks formed by team players 
passing a ball in a match shows that team success is correlated with high network density and 
clustering coefficient, as well as with reduced network centralization. However, 
oversimplification needs to be avoided, as network metrics events associated with success should 
not be considered equally to those that are not. In the present study, we investigated whether 
network density, clustering coefficient and centralization can predict successful or unsuccessful 
team performance. We analyzed 12 games of the Group Stage of UEFA Champions League 
2015/2016 Group C by using public records from TV broadcasts. Notational analyses were 
performed to categorize attacking sequences as successful or unsuccessful, and to collect data on 
the ball-passing networks. The network metrics were then computed. A hierarchical logistic-
regression model was used to predict the successfulness of the offensive plays from network 
density, clustering coefficient and centralization, by using total passes as a moderator variable. 
Results confirmed the independent effect of network metrics. Density, but not clustering 
coefficient or centralization, was a significant predictor of the successfulness of offensive plays. 
We found a negative relation between density and successfulness of offensive plays. However, 
reduced density was associated with a higher number of offensive plays, albeit mostly 
unsuccessful. Conversely, high density was associated with a lower number of successful 
offensive plays, but also with overall fewer offensive plays and “ball possession losses” before 
the attacking team entered the finishing zone. Independent SNA of team performance is important 
to minimize the limitations of oversimplifying effective team synergies.  

1 Introduction 

The team, rather than the individual, has become the basic work unit in many activities and 
organizations (Balkundi & Harrison, Ties, leaders, and time in teams: strong inference about 
network structure's effects on team viability and performance., 2006), and team sports are 
excellent examples revealing the importance of team dynamics for success (Duch, Waitzman, & 
Amaral, 2010). A team is a group of individuals working cooperatively and in a coordinated way 
to achieve a common goal (Zaccaroa, Rittmana, & Marks, 2001). Team performance is more than 
the sum of the interdependent individual performances, as individuals strive to coordinate 
between different roles and tasks (Anderson & Franks, 2001). In team sports performance, 
individual players in a successful team act as a coherent unit, thus creating a team synergy 
(Araújo & Davids, 2016). 
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Individual and collective behavior has been intensively studied in team sports performance 
analysis. The behavior of an individual player affects the team’s behavioral pattern (Vilar, Araújo, 
Davids, & Button, 2012), and conversely, the teammates may influence the behavior of each 
individual player. Team behavior is a collective organization that emerges from the cooperation 
between teammates (Gréhaigne, Bouthier, & David, 1997; Peña & Touchette, 2012). The 
emergence of such collective behaviors can be assessed and understood through the measurement 
of key synergistic properties such as degeneracy, i.e., the structurally different components that 
perform a similar (but not necessarily identical) function in a given context (Araújo & Davids, 
2016). The degeneracy of team behavior as a social relationship property can be captured by 
Social Network Analysis (SNA) (Grund, 2012; Peña & Touchette, 2012). SNA has been applied 
to association football or soccer (Clemente F. M., Martins, Couceiro, Mendes, & Figueiredo, 
2014), in particular to analyze ball-passing networks in a team. These studies demonstrated that 
some metrics are useful to characterize styles of play and cooperation among teammates (Cotta, 
Mora, Merelo-Molina, & Merelo, 2011), as well as the relation between individual actions and 
team tactical behavior (Passos, Davids, Araújo, Paz, Minguéns, & Mendes, 2011). Centrality 
metrics have been used to identify the most influential tactical positions within a team. For 
example, by analyzing the in-degree and out-degree centrality of the Portugal national football 
team players, Mendes et al. (2015) found that during the FIFA World Cup 2014 the central 
midfielders were the key players in the attacking-building process. A similar study examining 
degree centrality and degree prestige of Switzerland national team players during the same 
competition showed that the key players receiving the ball were also the midfielders, suggesting 
this team has a style of play based on attacking building (Clemente F. M., Martins, Kalamaras, 
Oliveira, Oliveira, & Mendes, 2015). Thus, network metrics such as density, heterogeneity and 
centralization are effective for characterizing the cooperation between players (Clemente F. M., 
Couceiro, Martins, & Mendes, 2015).  

Analyses of network heterogeneity and centrality reveal that team offensive play has many 
variations and short patterns that increase collective unpredictability (Clemente F. M., Martins, 
Couceiro, Mendes, & Figueiredo, 2014). Furthermore, high total links and high density can 
convey the team’s greater ability to pass the ball between all players and to function as a whole, 
as well as to decentralize the network (Clemente, Martins, & Mendes, 2014). For example, a 
study analyzing team ball-passing networks in 760 matches of the English Premier League 
(Grund, (2012) showed that high levels of network intensity were associated with increased team 
performance (goals scored), and centralized interaction patterns with decreased team 
performance. More recently, similar research analyzing ball-passing networks of teams competing 
at the FIFA World Cup 2014 (Clemente F. M., Martins, Kalamaras, Wong, & Mendes, 2015) 
revealed significant differences in density, total links and clustering coefficient between teams 
reaching different stages of the competition. These findings further demonstrate an association 
between higher density, total links and clustering coefficient with performance variables such as 
goals scored, overall shots, and shots on goal (Clemente F. M., Martins, Kalamaras, Wong, & 
Mendes, 2015).  

Despite these recent advances, research in the field has remained focused on the association 
between ball-passing network metrics and coarse-grained team performance variables (e.g. goals 
scored, shots, shots on goal, or competition stage reached) (Grund, 2012; Clemente F. M., 
Martins, Kalamaras, Wong, & Mendes, 2015), which implies that team performance outputs and 
network properties metrics are measured simultaneously (Grund, 2012). However, since ball-
passing network analysis offers an overall picture of events occurring during a certain period of 
time, typically a synthesis of several complete matches, the events leading to successful or 
unsuccessful team performance are included in the same analyses. Thus, it remains unknown 
whether specific network properties and successful (or unsuccessful) team behavior are 
associated. Furthermore, although previous research based on ball-passing networks suggests that 
high density (Clemente F. M., Martins, Kalamaras, Wong, & Mendes, 2015) and low 
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centralization (Grund, 2012) are associated with successful teams, the relation between clustering 
coefficients and team performance is more uncertain (Peña & Touchette, 2012; Gudmundsson & 
Horton, 2016). Thus, the aim of this study was to test whether team network density, 
centralization and clustering coefficient can be used to predict the outcome of offensive plays.   

 

2 Materials and Methods 

2.1 Sample 

This study deliberately focused on club-teams rather than on national teams because club-teams 
train and compete together for longer consecutive periods of time. Our sample comprises 12 
matches played in Group C of the UEFA Champions League 2015/2016 Group Stage. The four 
teams analyzed are here identified as CAM, FCA, GSK and SLB. 

2.2 Procedures 

Our analysis focused on collective offensive processes. Offensive play is a set of attacking actions 
performed by a team between recovering and losing ball possession. We considered that a team is 
in possession of the ball when it performs a positive pass, i.e., it maintains ball possession after 
the pass. 

The video footage used in the analysis was obtained from TV broadcasters. We started by 
categorizing all offensive plays as successful when the attacking team entered the finishing zone, 
which was previously reported as a proxy variable for scored goals when measuring 
successfulness in football (Tenga, Ronglan, & Bahr , 2010). The concept of finishing zone was 
based on Gréhaigne et al’s longitudinal division of the football field into four equal areas 
(Gréhaigne, Mahut, & Fernandez, 2001). These areas are designated according to the direction of 
the attack as follows: defensive zone, pre-defensive zone, pre-offensive zone and offensive zone. 
The offensive zone in elite soccer was defined as the finishing zone (Lago, Lago, Rey, Casáis, & 
Domínguez, 2012).  

Successful offensive plays (SOPs) include plays that finished with a shot at the goal and those 
where the team retained ball possession until entering the finishing zone. Unsuccessful offensive 
plays (UOPs) were all the plays where the team lost ball possession without meeting either of the 
SOP criteria. Neutral plays were offensive plays where a team did not lose ball possession but 
also did not meet the SOP criteria. This neutral category included all offensive plays that were 
initiated: (i) from an offensive corner kick; (ii) in an offensive throw-in; and (iii) from offensive 
free kicks with a first pass directly into the finishing zone. The neutral offensive plays were not 
included in the present analysis. 

The offensive plays were identified and categorized with Longomatch software from every pass 
performed in the 12 matches. The players who passed and received the ball were registered for 
each offensive play. A number from one to 11 was assigned to each player according to his initial 
position within the team’s tactical system. The same number was assigned to players performing 
the same tactical position. Taking into account their different stoppage times, each half of the 
match was divided into three fractions with the same duration. Next, two adjacent matrixes of 
offensive plays (successful and unsuccessful) for each opposing team were created for the six 
periods of the match, in a total of 24 adjacent matrixes per match. Each of these adjacent matrixes 
was then imported to the software NodeXL to compute the networks and their metrics. All 
statistical procedures were performed using SPSS Statistics 24. 
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2.3 Predictor Variables 

2.3.1 Density 
Density is the interconnectedness of nodes (players) in a network (team), i.e. it is the ratio of 
existing ties (passes) between teammates relative to the possible number of such ties (Balkundi & 
Harrison, Ties, leaders, and time in teams: strong inference about network structure's effects on 
team viability and performance., 2006). In ordered relations, as in the teammates interactions, the 
possible directed links in a digraph of n nodes are 𝑛 (𝑛 − 1). The graph’s density Δ is defined as 
the ratio between the total registered links (ℒ) and the maximum number of possible connections. 
It is calculated as: 

Δ =
ℒ

𝑛  (𝑛 − 1) 

Thus, density is a fraction with a minimum of 0 (no lines/arcs present) and a maximum of 1 (all 
lines/arcs are present) (Wasserman & Faust, 1994).  

 

2.3.2 Clustering Coefficient 
Clustering is a measure of the degree to which nodes in a network tend to cluster together (Peña 
& Touchette, 2012). The clustering coefficient, originally introduced by Watts & Strogatz (1998), 
quantifies how close a node and its neighbors in a graph are to becoming a complete subgraph.  

In directed graphs, the local clustering coefficient of a vertex expresses the ratio of the links 
between the vertices that are connected to it. Thus, local clustering coefficient (C) of a given 
vertex i is the fraction of the number of connections 𝑎!" between 𝑘! vertices in its neighborhood, 
divided by the maximum number 𝑘!    𝑘! − 1  of possible links there between: 

𝐶! =
𝑎!" ,𝑎!" ∈ 𝐸
𝑘! 𝑘! − 1

 

We used a variant of the clustering coefficient - the average local clustering coefficient - to 
measure the clustering level throughout the network: 

𝐶 =
1
𝑛

𝐶!
!

!!!
 

 

2.3.3 Centralization 
The centrality of a group or network is the degree of inequality of the distribution of positions/ 
"weights" of different elements within the network. A network is therefore more centralized when 
one of its elements is clearly more central than all other group members. Conversely, a network is 
decentralized when all its elements have the same value of centrality (Grund, 2012). 

There are several measures of centrality and researchers do not always agree on how “group 
centrality” or “centralization” should be assessed.  We used degree centrality for quantifying the 
relative influence of each player on the total number of passes within a network. Thus, 
centralization conveys how central the most central player is when compared to the other players 
in the network. This metric was originally described by Freeman (1978) and is calculated as the 
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sum of the differences between the vertex with the highest degree centrality and all other 
vertexes; divided by a value depending only on the size of the network: 

𝐶! =
deg 𝑣∗ − deg(𝑣)!

!!!

𝑛! − 3𝑛 + 2  

where deg (𝑣∗) is the largest value of centrality degree in the network, deg (𝑣) is the value of each 
vertex centrality degree, and the denominator is the maximum possible sum of differences in i = 1 
vertex centrality for a graph of n vertexes (Freeman, 1978). 

In the context of a football match, zero centralization indicates that all players have the same level 
of interaction during the game. Conversely, a centralization value very close to one suggests that 
a player is the key-player of the team and that other players have a strong tendency to play with 
him (Clemente F. M., Couceiro, Martins, & Mendes, 2015). 

 

2.4 Analysis 

A hierarchical logistic regression model was used to predict the successfulness of offensive plays 
from the number of passes performed and the network metrics (density, clustering coefficient and 
centralization). Two blocks were defined. In the first block, only the predictor total passes was 
introduced. In the second block, we introduced the network metrics. By defining total passes as 
moderator variable we could test the specific influence of the network metrics. Preliminarily, the 
data was screened for collinearity problems and outliers. Following the recommendations in 
Belsley et al. (1980), we diagnosed collinearity when conditioning indexes were greater than 30 
for a given dimension and the variance proportions were greater than 0.5 for more than one 
variable. The latter was true for the pairs of variables “clustering coefficient and centralization” 
and “total passes and density”, however, both of these dimensions registered conditioning indexes 
below 30  (12.224 and 22.655, respectively). Thus, it was not necessary to transform or eliminate 
any predictor-variable. Next, we obtained z-scores and searched for outliers greater than 3.29 
(Tabachnick & Fidell, 2013). A single outlier was identified (z-score = 4.378) and removed. 
Additionally, four SOP cases were removed because they registered “no passes”. After these 
preliminary procedures, 283 of the initial 288 cases were kept for further analysis, corresponding 
to 144 cases of UOP and 139 of SOP.  

In a logistic regression, Exp (𝛽!) represents the odds-ratio of success versus failure (categories of 
the model’s dependent variable) when variable 𝑋! increases by one unit with respect to the odds-
ratio of success versus failure, when 𝑋! stays constant. Density, clustering coefficient and 
centralization vary between zero and one, therefore, we converted these metrics to a scale of zero 
to ten to adjust to model sensitivity. Consequently, the odds ratios presented for these variables 
refer to a unit change of 0.1. 
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3 Results 

A two-block hierarchical logistic regression was used to predict the successfulness of offensive 
plays. In the first block, the total number of passes (hereafter referred to as ‘total passes’) was the 
only predictor-variable. This model performed significantly better than a constant-only model 
(𝐺(!,!!!"#)! = 7.484,𝑝 =  0.006), it did not satisfy goodness-of-fit criteria (Hosmer and 
Lemeshow test: 𝜒(!,!!!"#)! = 25.342 p = 0.001), and it produced a Nagelkerke r2 of 0.035. 
Network metrics were added in a second block (Table 1). This second model performed better 
than a constant-only model (𝐺(!,!!!"#)! = 15.484,𝑝 =  0.004) and satisfied goodness-of-fit criteria 
(Hosmer and Lewenshow test: 𝜒(!,!!!"#)! = 7.187; p = 0.517), achieving a Nagelkerke r2 of 0.071. 
The first-block model correctly classified 56.2% of the known cases, 66.7% of the UOPs and 
45.3% of the SOPs. The second-block model correctly classified 69.5% of the UOPs and 47.5% 
of the SOPs, with an overall correct classification of 58.7% of the cases. Thus, adding the second 
block to the model increased the number of correct classifications by 2.5%. 

 
Total number of passes and density were significant predictors among the four considered 
variables. The total number of passes was positively associated with the successfulness of 
offensive plays. A one-pass-increase augmented the probability of successful offensive plays by 
8.2% (Exp (𝛽) = 1.082; see Table 1). More significantly, a 10% decrease in density increased the 
chances for a successful offensive play by 73.3% (Exp (𝛽) = 0.267; see Table 1). Furthermore, for 
density values ranging from 0 to 0.25 there is a similar relation between total passes and number 
of either SOPs or UOPs (see Figure 2), despite the higher frequency of UOPs (see Figure 1). 
However, for density values above 0.25, as the number of total passes increases, we see a 
tendency for a decrease in both SOPs and UOPs, but a predominant occurrence of SOPs in 
relation to UOPs. 

TABLE 1 | Binary Logistic Regression Model of offensive plays' successfulness. 

  

𝜷 (S.E.) Wald p Exp (𝜷) Exp (𝜷) 95% C.I 

 Lower Upper 

Total Number of Passes 0.079 (0.034) 5.475 0.019 1.082 1.013 1.156 

Density scores -1.320 (0.591) 4.994 0.025 0.267 0.084 0.850 

Clustering Coefficient scores 0.179 (0.193) 0.858 0.354 1.196 0.819 1.747 

Centralization scores 0.189 (0.143) 1.759 0.185 1.208 0.914 1.597 

Constant -0.615 (0.469) 1.719 0.190 0.541  

Successful Offensive Play (SOP) is the reference category of successfulness predicted in the model. 
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FIGURE 2 - Relationship between density and total passes, for SOP and UOP outcomes, 
according to the second-block logistic regression model. 

FIGURE 1 - Frequencies of density values, according to the category 
of offensive play’s successfulness. 
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4 Discussion 

Network characteristics such as density, clustering coefficient and centralization have been 
reported as good descriptors of game style in soccer teams, as they can be associated with metrics 
of success such as goals scored, shots, shots on goal, and competition stage reached by teams. 
However, since network analysis describes events occurring during entire matches, performance 
outputs and network properties metrics cannot be measured simultaneously. In this study, we 
attempted to clarify the association between specific network properties and successful (or 
unsuccessful) team behavior.  

Our model was able to classify 58.7% of the events correctly, however, it performed better at 
identifying UOPs (69.5%) than SOPs (47.5%). These results suggest that these network metrics 
(density, clustering coefficient and centralization) can more accurately describe the team 
behaviors associated with UOPs (i.e. losing ball possession) than the behaviors leading to SOPs 
(i.e. moving into the finishing zone or shooting on goal). Thus, the model can accurately pinpoint 
the collective behaviors that the teams should avoid in order to ensure success.  

The total number of passes and density were the most relevant variables in our model. Total 
passes was introduced in the study as a moderator variable to assess the specific influence of the 
network metrics on team performance. The improvement in the model obtained by adding the 
second block confirmed the metrics’ specific influence. We observed a positive association 
between total passes and team performance. Each new pass in a set of offensive plays occurring 
within a 15 minute-period resulted in the teams being 8.2 % more likely to move into the 
finishing zone or to shoot on goal. The density of a ball-passing network increases whenever two 
players who were not yet connected pass the ball between them; in this way, high density is 
probably associated to high occurrence of these differentiated links. This greater variability of 
pass patterns, which is expressed in qualitatively distinct connections over a given period, may 
occur for different reasons. For example, greater collective dynamics and high player mobility 
can result in passes between players who regularly play in distant areas.  

It has been shown that strong cooperation between teammates makes teams stronger and more 
successful (Balkundi & Harrison, Ties, leaders, and time in teams: strong inference about network 
structure's effects on team viability and performance., 2006). Thus, how can we explain our 
results showing that density has a negative effect (albeit small) on the successfulness of offensive 
plays? As can be seen in Figure 1, for density values ranging from 0 to 0.25 our model predicts 
mostly UOP outcomes. When we consider only events classified as SOP, there is a high number 
of offensive plays with density values ranging from 0.1 to 0.25, followed by a decrease. This drop 
in the number of offensive plays for higher density values could explain the negative association 
between density and SOPs. Indeed, despite being associated with fewer SOPs overall, higher 
densities are more likely to lead to SOPs (see Figure 2). Thus, our results suggest that density 
values lower than 0.25 are associated with a higher number of offensive plays, albeit mostly 
unsuccessful ones. Conversely, for density values above 0.25 there may be fewer offensive plays 
overall but most are successful. It is unlikely though that this negative association between 
density and SOPs is simply due to the higher number of errors and losses that result from the 
players’ greater efforts to maintain connections in high-density scenarios (Burt, 1997). Instead, it 
seems more plausible that the reduction in SOP outcomes observed for density values above 0.25 
explains that negative association. Indeed, these offensive plays with high-density values are 
characterized by a higher number of passes (see Figure 2), which could explain why there are 
fewer (but more successful) offensive plays in the same period of time. For example, these high-
density values may result from longer ball-possession times, fewer ball possession losses, or 
specific losses in advanced zones of the field (finishing zone). This hypothesis is consistent with 
our observation that qualitatively differentiated links are associated with high densities, which 
likely reflects a greater unpredictability of passing patterns. Furthermore, it was previously 
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proposed that greater variability of action and less exposure to the opponent could result from 
decentralized passing patterns (Gréhaigne, et al. (1997). Such characteristics of offensive plays 
associated with high-density values contribute to an offensive process that creates goal-scoring 
opportunities and are more effective for maintaining ball possession in advanced areas. 
Interestingly, offensive plays with similar characteristics have been observed in successful teams 
at the FIFA World Cup 2014 (Clemente F. M., Martins, Kalamaras, Wong, & Mendes, 2015). 

We found that the clustering coefficient is not a significant predictor of the successfulness of 
offensive plays, thus corroborating previous research (Gudmundsson & Horton, 2016; Peña & 
Touchette, 2012). However, our model indicates that a 10% increase in the clustering coefficient 
augments by 19.6% the probability of a SOP outcome (see also Clemente F. M., Martins, 
Kalamaras, Wong, & Mendes, 2015). High clustering coefficient values express the subgroup 
formation within the team itself; when these subgroups are created based on passes between 
teammates, as in the present study, the players performing in close areas tend to be linked 
together, thereby explaining the high clustering coefficients. This could reflect an offensive style 
choice based on short combinations between players, as previously observed for the Spain, 
Germany and Netherlands national teams at the FIFA World Cup 2010 (Peña & Touchette, 2012; 
Cotta, Mora, Merelo-Molina, & Merelo, 2011). Thus, the modest contribution of the clustering 
coefficient to the predictive value of our model suggests that different offensive styles may lead 
to successful team performance, depending, for example, on the players’ individual qualities or on 
different strategic options. Further investigation is needed to clarify this issue. 

Our results demonstrated that centralization is not consistently associated with successfulness of 
offensive plays, which is in agreement with findings by Fewell, et al. (2012) showing that there is 
no strong relationship between centralization and team performance. However, we found a 
positive effect of centralization on successful team performance, as a 10% increase in 
centralization increases by 20.8 % the chances of an SOP. This result contradicts a previous 
report showing that higher centralization is associated with worse team performance (goals 
scored) (Grund, 2012). This discrepancy could, however, be explained by the different 
methodologies in these studies, as discriminating successful and unsuccessful performances 
probably influenced the relationship between centralization and successful team performance in 
our study.  

In summary, our results suggest that network density can accurately predict the ability of a team 
to enter the finishing zone or to shot on goal in elite football. Furthermore, this study gives new 
insights into the association between network density and team performance (Balkundi & 
Harrison, Ties, leaders, and time in teams: strong inference about network structure's effects on 
team viability and performance., 2006). First, we showed that low network density may be 
associated with a higher overall number of offensive plays but which are mostly unsuccessful. 
Second, high density was associated with fewer and/or longer offensive plays, which reduces the 
possibilities of a team moving into the finishing zone (hence decreasing total SOPs), thus 
resulting in a negative association between density and SOPs. Finally, we considered that high 
density may also be associated with fewer ball-possession losses before the teams reach the 
finishing zone (hence increasing probability of SOPs), thereby supporting the density-
performance hypothesis. 

We tested a model that analyzes the specific associations between the characteristics of a team’s 
ball-passing network and the outcome of its offensive plays (entering the finishing zone and shot 
on goal vs losing ball possession). Previous studies had not differentiated these different 
outcomes, which may explain our results revealing a negative relation between density and team 
performance. Finally, we demonstrated that neither clustering coefficient nor centralization are 
significant predictors of team performance successfulness, possibly indicating that diverse 
offensive styles can be equally effective for a team to succeed.  
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