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Abstract 

 

Virulence characterization and antimicrobial resistance of major bacterial genera from 

diabetic foot infections 

Diabetes mellitus is a major chronic disease that continues to increase significantly. One of 

the most important and costly complications of diabetes is the development of foot ulcers, 

colonized by pathogenic and antimicrobial resistant bacteria, which may be responsible for 

impairing its successful treatment. Diabetic foot ulcer (DFU) bacterial communities can be 

organized in polymicrobial biofilms, which may be responsible for its chronicity. The ability of 

these communities to produce biofilm was evaluated and was higher when compared to 

biofilm formation by individual species. 

Staphylococcus aureus is one of the most prevalent species in diabetic foot infections (DFI). 

Staphylococci isolated from DFU in patients from the Lisbon area were identified, genotyped 

and screened for virulence and antimicrobial resistance traits. The isolates showed high 

genomic diversity, were resistant to important clinically antibiotics and expressed relevant 

virulence determinants. 

As biofilm formation is one of the most important virulence traits of S. aureus, the 

antimicrobial susceptibility patterns of biofilm-producing S. aureus strains were also 

analysed. The minimum biofilm inhibitory and eradication concentrations were determined for 

ten antimicrobial compounds. Staphylococci biofilms were resistant to antibiotic 

concentrations ten to thousand times higher than those effective for planktonic cells. 

Furthermore, the enterococci frequently isolated from DFI, were also identified and 

characterized, showing high antimicrobial resistance and important virulence traits. 

Since DFI are often caused by resistant bacteria, it is necessary to find alternatives to 

antibiotic therapy, such as phage therapy. The inhibitory potential of five bacteriophages, 

previously characterized, was evaluated against established biofilms formed by S. aureus, P. 

aeruginosa and A. baumannii. A significant cell reduction after phage exposure was 

observed, mainly after multiple treatments. 

DFI are very complex and studies on this topic are scarce. It is necessary to intensify 

research in order to develop more adequate therapeutic protocols for this type of infection. 

 

Keywords: Diabetic foot infections, biofilm, staphylococci, virulence determinants, 

antimicrobial resistance. 
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Resumo 

 

Caracterização da virulência e resistência a antimicrobianos dos principais géneros 

bacterianos envolvidos em infeções de pé diabético 

Diabetes mellitus é uma doença crónica com grande impacto em saúde pública e cuja 

incidência continua a aumentar significativamente em todo o mundo, atingindo atualmente 

mais de 400 milhões de pessoas. Uma das complicações mais importantes da diabetes e 

associada a gastos económicos significativos são as úlceras de pé diabético. Uma vez que a 

camada protetora de pele é danificada, os tecidos profundos ficam expostos à infeção 

bacteriana, a qual pode evoluir rapidamente. As infeções das úlceras de pé diabético são a 

causa mais comum de internamento hospitalar de pacientes diabéticos e uma importante 

causa de morbilidade, levando frequentemente à amputação dos membros inferiores. Estas 

infeções podem ser promovidas por bactérias potencialmente patogénicas e resistentes aos 

compostos antimicrobianos, prejudicando assim o sucesso do tratamento. As comunidades 

bacterianas presentes nas úlceras podem estar organizadas em biofilmes polimicrobianos, 

que contribuem para que as infeções se tornem crónicas e muito difíceis de resolver.  

Foi avaliada a capacidade de produção de biofilme por comunidades polimicrobianas de 

isolados bacterianos de pé diabético, utilizando um ensaio de microtitulação em placa com 

“Alamar Blue” (AB) e uma técnica de Hibridação In Situ Fluorescente Múltipla (MFISH). Esta 

avaliação foi realizada em três períodos de incubação distintos (24, 48 e 72 horas), depois 

da determinação da capacidade de formação de biofilme por 95 isolados de úlceras de pé 

diabético pertencentes a vários géneros bacterianos (Staphylococcus, Corynebacterium, 

Enterococcus, Pseudomonas e Acinetobacter). Todos os isolados apresentaram a 

capacidade de produzir biofilme às 24 horas, sendo que a quantidade de biofilme produzido 

aumentou com o tempo de incubação. Pseudomonas apresentou a capacidade mais 

elevada de produção de biofilme, seguida de Corynebacterium, Acinetobacter, 

Staphylococcus e por fim, Enterococcus. Foram encontradas diferenças estatisticamente 

significativas na capacidade de formação de biofilme entre os três períodos de incubação. 

As comunidades polimicrobianas produziram mais biofilme do que as espécies 

individualmente. As comunidades formadas por Pseudomonas + Enterococcus, 

Staphylococcus + Acinetobacter e Corynebacterium + Staphylococcus formaram mais 

biofilme do que as comunidades formadas por Enterococcus + Staphylococcus e por 

Enterococcus + Corynebacterium. O comportamento biológico das diferentes espécies 

bacterianas nos biofilmes polimicrobianos tem implicações clínicas muito importantes para o 

sucesso do tratamento deste tipo de infeções. A sinergia entre as bactérias presentes em 

biofilmes multiespécies foi descrita previamente, sendo que este trabalho representa o 

primeiro estudo sobre a evolução temporal da formação de biofilme por parte de 

comunidades polimicrobianas isoladas de úlceras de pé diabético, incluindo várias espécies.  
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Staphylococcus é um dos géneros bacterianos mais prevalentes nas infeções de pé 

diabético. Neste estudo, isolados de Staphylococcus (n = 53) obtidos a partir de úlceras de 

pé diabético de doentes da região de Lisboa foram identificados, caracterizados 

genotipicamente, e rastreados para genes de virulência e de resistência a antimicrobianos. 

A relação genética entre os isolados foi avaliada através da técnica de eletroforese em gel 

de campo pulsado (PFGE) e da tipagem de sequências “multilocus” (MLST) de 

representantes dos pulsotipos identificados. A reação em cadeia de polimerase (PCR) foi 

aplicada para deteção de doze genes de virulência e a técnica E-teste foi realizada para 

determinar a concentração mínima inibitória (MIC) em relação a dez antibióticos. Verificou-

se que Staphylococcus isolados de úlceras de pé diabético são genotipicamente muito 

variados, apresentam resistência a antibióticos importantes do ponto de vista clínico, 

nomeadamente ciprofloxacina e eritromicina, e expressam diversos determinantes de 

virulência. Essas propriedades sugerem que os estafilococos podem contribuir para a 

persistência e gravidade deste tipo de infeções, levando ao insucesso da terapêutica. Além 

disso, existe a possibilidade de eles poderem transmitir estas caraterísticas a outros 

microrganismos que partilham o mesmo nicho ecológico. Neste contexto, os pacientes 

diabéticos podem tornar-se um veículo de transmissão de clones bacterianos entre o 

ambiente hospitalar e a comunidade. 

S. aureus resistentes à meticilina (MRSA) têm emergido como um dos principais problemas 

clínicos e epidemiológicos a nível hospitalar. As estirpes MRSA têm a capacidade de resistir 

à ação da maioria dos antibióticos β-lactâmicos, mas também a uma vasta gama de outros 

agentes antimicrobianos pertencentes a diferentes classes, tornando o tratamento destas 

infeções muito difícil e dispendioso. Até à data, existem disponíveis duas cefalosporinas de 

quinta geração eficazes contra MRSA, a ceftarolina e o ceftobiprole, com espetro de ação 

semelhante. Tendo em conta que a formação de biofilme é uma das mais importantes 

caraterísticas de virulência de S. aureus e que o seu desenvolvimento desempenha um 

papel importante na patogénese da infeção, uma vez que representa um mecanismo de 

defesa bacteriano, os padrões de suscetibilidade antimicrobiana dos isolados de S. aureus 

produtores de biofilme foram analisados, através da determinação da concentração mínima 

inibitória de biofilme (MBIC) e da concentração mínima de erradicação de biofilme (MBEC), 

para dez antibióticos incluindo a ceftarolina. Foi igualmente avaliada a presença de genes 

relacionados com antibiótico-resistência pela técnica de PCR. Foi observado que 

relativamente aos antibióticos mais utilizados no tratamento de infeções de pé diabético, são 

necessárias concentrações muito mais elevadas para inibir a formação de biofilme por 

isolados de S. aureus in vitro, o que pode explicar o facto da monoterapia com estes 

agentes não ser frequentemente eficaz em erradicar a infeção. De facto, os biofilmes 

analisados foram resistentes a concentrações de antibióticos dez até mil vezes mais 

elevadas do que as necessárias para matar as células planctónicas correspondentes. Os 
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únicos antibióticos capazes de erradicar os biofilmes produzidos por 50% dos isolados de S. 

aureus foram a ceftarolina e a gentamicina. Os resultados sugerem que os padrões de 

sensibilidade aos antibióticos não podem ser extrapolados para infeções com biofilme 

estabelecido. 

Além de estafilococos, existem outras espécies bacterianas frequentemente identificadas 

em úlceras de pé diabético. Os enterococos são considerados bactérias oportunistas, mas 

nos últimos anos foram relacionados com infeções clínicas muito graves. Enterococcus sp. 

isolados a partir de infeções de pé diabético foram identificados por multiplex PCR, 

caracterizados pela análise de macro-restrição através de PFGE, e rastreados para 

características de virulência e resistência antimicrobiana. A maioria dos Enterococcus foi 

identificada como E. faecalis, espécie considerada mais patogénica dentro deste género 

bacteriano; genotipicamente os isolados mostraram elevada similaridade, revelando uma 

relação clonal. Todos os isolados foram considerados multirresistentes, produtores de 

citolisina e gelatinase, e a maioria mostrou ter capacidade de produzir biofilme, 

demonstrando a importância de Enterococcus no desenvolvimento das infeções de pé 

diabético e na sua persistência, especialmente em relação à sua capacidade de formação 

de biofilme e resistência a antibióticos clinicamente relevantes. 

Uma vez que estas infeções são frequentemente promovidas por bactérias resistentes, 

torna-se necessário encontrar alternativas terapêuticas, tais como a terapêutica fágica. Para 

além das bactérias Gram-positivas já mencionadas, estas complexas infeções de pé 

diabético incluem muitas vezes bactérias Gram-negativas altamente patogénicas, como 

Pseudomonas aeruginosa e Acinetobacter baumannii. Um dos objetivos do estudo foi 

verificar o efeito de cinco bacteriófagos, produzidos pela empresa TecnoPhage, e 

caracterizados anteriormente, em biofilmes formados pelas espécies bacterianas S. aureus, 

P. aeruginosa e A. baumannii. A aplicação dos bacteriófagos a células planctónicas revelou-

se eficaz às 4 horas após inoculação, mas às 24 horas pós-aplicação observou-se um 

ressurgimento do crescimento bacteriano. Em relação aos biofilmes e utilizando a atividade 

metabólica como medida da viabilidade celular determinada através da aplicação de AB, 

verificou-se uma redução celular significativa após a exposição aos fagos, quer às 4 quer às 

24 horas pós-aplicação, mas mais significativa às 4 horas. Um tratamento múltiplo, com 

aplicação de fagos a cada 4 horas, promoveu uma diminuição ainda mais significativa da 

atividade celular. Os efeitos inibitórios mais elevados para células planctónicas e biofilme 

ocorreu num índice de multiplicidade bacteriófago:bactéria de 10. Estes resultados reforçam 

o potencial clínico da terapêutica fágica para o tratamento de infeções de pé diabético. 

As infeções de pé diabético são uma realidade muito complexa e a epidemiologia dos 

agentes bacterianos envolvidos encontra-se em evolução. Os estudos disponíveis sobre 

este tema são escassos e é necessário intensificar a investigação quer na vertente 
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microbiológica quer na vertente clínica no sentido do desenvolvimento de protocolos 

terapêuticos adequados para este tipo de infeções.  

 

Palavras-Chave: Infeções de pé diabético, biofilme, estafilococos, determinantes de 

virulência, resistência antimicrobiana.        
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1.1. Introduction on Diabetic Foot Ulcer 

 

1.1.1. Definitions and epidemiology 

Diabetes mellitus (DM) is one of the most epidemic chronic diseases worldwide. Its prevalence 

is increasing mainly due to population growth, but also aging, urbanization and changing 

lifestyles that lead to reduced physical activity and increased obesity. The last World Health 

Organization (WHO) report states that in 2014 globally 422 million adults aged over 18 years 

were living with diabetes (WHO, 2016), an important rise comparing with the 108 million adults 

affected in 1980. In fact, the global prevalence has increased from 4.7% in 1980 to 8.5% in 

2014. Diabetes prevalence is expected to double by the year 2030, also as a result of better 

health care conditions, which will increase the longevity of people with diabetes (Wild, Roglic, 

Green, Sicree & King, 2004). 

Diabetes distribution varies substantially according to countries’ economic status. The majority 

of diabetic patients in developed countries are aged over 60 years, whereas in developing 

countries most people with diabetes are of working age, between 40 and 60 years (Shaw, 

Sicree & Zimmet, 2010). In Portugal, there were over 1 million cases of diabetes registered in 

2015. The cost associated to each diabetic patient was estimated to be about 1.880 euros 

(http://www.idf.org/membership/eur/portugal), proving that diabetes represents a significant 

health burden in Portugal. 

A major concern with diabetes is the high risk of patients in developing one of the many major 

complications associated with the disease, such as cardiovascular, including myocardial 

infarction, stroke, angina and heart failure, blindness or nephropathy (Hopkins, Burke, Harlock, 

Jegathisawaran & Goeree, 2015). A common and most devastating complication of diabetes is 

the development of diabetic foot ulcers (DFU). Historically, foot ulcers have been estimated to 

affect 1 to 4% of patients with diabetes annually, but a recent study in the United States 

indicated that the annual incidence may be as high as 6% (Rice et al., 2014). In Canada and 

United States, it was observed that diabetic patients have a 25% risk of developing a DFU in 

their lifetime (Hobizal & Wukich, 2012; Rice et al., 2014). 

A DFU can be defined as any full-thickness wound with skin necrosis or gangrene, below the 

ankle, induced by peripheral neuropathy or peripheral arterial disease in a diabetic patient, 

independently of its duration (Chuan, Tang, Jiang, Zhou & He, 2015). Most DFU are chronic 

wounds, defined in standard surgical textbooks as those that have not healed in 3 months. 

The most common forms are related to diabetes mellitus, venous stasis, peripheral vascular 

diseases and pressure ulcerations (Siddiqui & Bernstein, 2010). 

Acute wounds are caused by external damage to intact skin, including more severe traumatic 

wounds and are expected to heal within a predictable time frame, although the treatment 

required to facilitate healing will vary according to the type, location and wound depth. In 

contrast, chronic wounds are most frequently caused by endogenous mechanisms that 
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compromise the integrity of dermal and epidermal tissues, such as pathophysiological 

abnormalities including leg ulcers, foot ulcers and pressure sores that include compromised 

tissue perfusion as a consequence of impaired arterial supply (peripheral vascular disease) or 

impaired venous drainage (venous hypertension), and metabolic diseases such as diabetes 

mellitus (Eron et al., 2003). Wound healing is characterized by three phases of inflammation, 

fibroplasia and maturation, resulting in a fine scar with little fibrosis and a return to an almost 

normal tissue architecture and organ function; if a wound does not heal in an orderly sequence 

or timely, or if the healing process does not result in structural integrity, then the wound is 

considered chronic and the healing occurs with the formation of abundant granulation tissue 

and often with excessive fibrosis leading to scar contraction and loss of function (Stadelmann, 

Digenis & Tobin, 1998). 

DFU require minor or major amputations of lower limbs in 15% to 27% of cases. Infection is 

the preponderant factor for amputation in 50% of ulcers (Mendes & Neves, 2012), 

representing a major cause of morbidity and mortality and the most common cause of 

diabetes-related admission to hospitals, with huge financial, social and psychological 

consequences (Richard, Sotto & Lavigne, 2011; Mendes & Neves, 2012). A recent report 

estimated that the risk of hospitalization and lower-extremity amputation was approximately 56 

and 155 times greater for diabetic people who had a foot infection than for those without 

(Richard et al., 2011). In the longer term, DFU have recurrence rates of up to 70%, resulting in 

repeated interventions and progressive disability that increase sanitary costs (Mendes & 

Neves, 2012). In fact, nearly one in six patients die within 1 year after their first infection 

(Hobizal & Wukich, 2012).  

1.1.2. Pathophysiology 

DFU have a multifactorial nature, but it is well established that absolute or relative insulin 

deficiency is the primary biochemical abnormality that leads to the organic complications of 

diabetes mellitus. It has also been established that a persistent glycaemic control, with either 

insulin or oral antidiabetic drugs, is able to stop and probably regress DFU associated 

microvascular and macrovascular complications (Turner, 1998; Mendes & Neves, 2012). The 

two major underlying causes of diabetic foot complications are peripheral neuropathy and 

peripheral vascular disease, by several mechanisms (Figure 1). One of the most frequently 

described mechanisms is the polyol pathway, in which the hyperglycaemic state leads to an 

increase in the action of the enzymes aldose reductase and sorbitol dehydrogenase, resulting 

in the conversion of intracellular glucose to sorbitol and fructose. The accumulation of these 

sugar products causes a decrease in the synthesis of myoinositol, required by nerve cells for 

normal progression of the neural impulse (Clayton, 2009). Additionally, the chemical 

conversion of glucose results in a depletion of nicotinamide adenine dinucleotide phosphate, 

leading to accumulation of reactive oxygen species and diminished synthesis of the 
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vasodilator nitric oxide (Yagihashi, Mizukami & Sugimoto, 2011). These factors result in 

oxidative stress in the nerve cell and also in an increased vasoconstriction leading to ischemia, 

which will promote nerve cell injury and death (Clayton W., 2009). 

Several studies have also referred to a potential link between diabetic neuropathy and the 

mitochondria of sensory neurons located in dorsal root ganglia. These mitochondria are 

particularly vulnerable, because in the hyperglycaemic state they produce reactive oxygen 

species, which can damage mitochondrial DNA and membranes, impairing cell functions and 

leading to degeneration (Leinninger, Edwards, Lipshaw & Feldman, 2006; Said, 2007). 

It appears that the size of neurons is also important in diabetes because longer nerve fibres 

show an earlier decrease in the velocity of nervous impulse transmission. This is why the loss 

of sensation and reflexes are often observed in the feet first, then progress to other areas, in 

particular the hands, causing the “glove and stocking” syndrome, which symptoms include 

numbness, dysesthesia, sensory loss and nocturnal pain (Forbes & Cooper, 2013). The 

damage to the nerves of the intrinsic foot muscles leads to an imbalance between flexion and 

extension capacities of the affected foot, producing anatomic deformities that create pressure 

points, which gradually cause skin breakdown and ulceration (Bowering, 2001) (Figure 1). 

Moreover, the autonomic neuropathy leads to a decrease in sweat and oil gland function, so 

the foot becomes dry and keratinized prompting the development of cracks and fissures that 

constitute a portal for infection development in wounds (Clayton W., 2009). Advanced 

neuropathy is characterized by altered sensitivities to vibrations and thermal thresholds, which 

progress to loss of sensory perception. For this reason, many wounds go unnoticed and 

progressively worsening as the affected area is continuously subjected to repetitive pressure 

and forces from walk and weight (Forbes & Cooper, 2013). Hyperalgesia, paraesthesia and 

allodynia can also occur in a proportion of patients, with pain evident in 40 to 50% of those 

with diabetic neuropathy, decreasing life quality (Obrosova, 2009). 

Peripheral vascular disease plays a secondary role in DFU pathophysiology, as a 

consequence of the persistent hyperglycaemic state. In diabetes there is a decrease in 

endothelium-derived vasodilators leading to constriction, and an increase in thromboxane A2, 

a vasoconstrictor and platelet aggregation agonist, which leads to an enhanced risk for plasma 

hypercoagulability (Clayton W., 2009). Macroangiopathy is also observed, due to 

atherosclerosis, an obstructive disease of large vessels typically involving the tibial and 

peroneal arteries, resulting in capillary basement membrane thickening, altered nutrient 

exchange, tissue hypoxia and microcirculation ischemia (Hobizal & Wukich, 2012) (Figure 1). 

Cumulatively, these alterations can lead to occlusive arterial disease that result in ischemia in 

the lower extremity and an increased risk of ulceration in diabetic patients. Moreover, smoking, 

hypertension and hyperlipidaemia are other factors that contribute to the development of 

peripheral arterial disease in diabetic patients (Mulder, Tenenhaus & D’Souza, 2014). 
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1.1.3. Diagnosis and classification 

The establishment of the most adequate therapeutic protocol for DFU must take into account 

all the risk factors involved and a consistent DFU classification. This evaluation requires the 

careful assessment of the global medical, foot and wound history, a systemized and detailed 

physical examination and the execution of complementary diagnostic procedures (Mendes & 

Neves, 2012). 

Many DFU classification systems have been proposed to predict clinical outcome, but many of 

them have limitations. The International Working Group of the Diabetic Foot (IWGDF) 

developed the PEDIS classification system to categorize and define DFU objectively and 

facilitate communication between health-care providers, also allowing the prediction of 

associated health-care costs. In this system, all DFU are classified according to five categories 

that consider the most relevant signs and symptoms: perfusion, extent/size, depth/tissue loss, 

infection and sensation. Moreover, each subcategory is defined according to strict criteria 

based upon objective techniques, being applicable worldwide (Table 1) (Chuan et al., 2015).  

Comparing with previous systems, such as the Wagner and SINBAD systems (Site, Ischemia, 

Neuropathy, Bacterial, Infection and Depth), PEDIS predicts the clinical outcome more 

Figure 1. Diabetic foot infection pathophysiology. Diabetic foot ulcer 
results from a complex interaction of risk factors, in which neuropathy 
plays the central role and causes ulcerations due to trauma or excessive 
pressure in a deformed foot without protective sensibility. Once the 
protective layer of skin is broken, deep tissues are exposed to bacterial 
colonization and an infection can settle (original).  
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effectively, as its definition of DFU is based on more strict criteria based upon objective 

techniques and more comprehensive ulcer healing parameters. PEDIS DFU categorization is 

based on: 1) perfusion examination, essential for diagnosing peripheral arterial disease, 

resulting from the physical observation performed by a specialized health-care worker; 2) 

wound size measurement, which should be determined after debridement, if possible; 3) depth 

establishment, which is difficult to perform, allowing ulcers to be divided into lesions confined 

to the skin and those deeper than the skin; 4) infection diagnostic, mainly based on expert 

opinion; and finally, 5) sensation evaluation, by determining the presence or absence of 

protective sensation in the affected foot (Schaper, 2004).  

 

Table 1. PEDIS classification system by the International Working Group of the Diabetic Foot 

(IWGDF) that classifies all ulcers in five main categories. Adapted from Schaper et al. (2004). 

Categories Grades Description 

 

Perfusion 

grade 1 No symptoms or signs of peripheral arterial disease in the affected 
foot 

grade 2 Symptoms or signs of peripheral arterial disease but not of critical limb 
ischemia 

grade 3 Critical limb ischemia 

 

Extent 

 

Wound size after debridement (measured in square centimeters) 

 

Depth 

grade 1 Superficial full-thickness ulcer, non-penetrating deeper than the 
dermis  

grade 2 Deep ulcer, penetrating below the dermis to subcutaneous structures, 
involving fascia, muscle or tendon 

grade 3 All subsequent layers, including bone and/or joint 

 

  Infection 

grade 1 No symptoms or signs of infection 

grade 2 Infection involving the skin and the subcutaneous tissue. At least two 
of the following items are present: 

- local swelling or duration 

- erythema >0.5 to 2 cm around the ulcer 

- local tenderness or pain 

- local warmth 

- purulent discharge (thick, opaque to white or sanguineous 
secretion) 

grade 3 Infection involving structures deeper than skin and subcutaneous 
tissue or erythema >2 cm plus one of the items described above 
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grade 4 Any foot infection with two or more signs of a systemic inflammatory 
response syndrome: 

- temperature >38 or <36 °C 

- heart rate >90 beats/minute 

- respiratory rate >20 breaths/minute (or PaCO2 <32 mmHg) 

- white blood cell count >12.000 or <4.000 cells/mm3 

(or 10% band forms) 

 

Sensation 

grade 1 No loss of protective sensation 

grade 2 Loss of protective sensation 

PaCO2: partial pressure of carbon dioxide in the arterial blood. 

 

 

1.2. Diabetic Foot Infections 

 

1.2.1. Definition and pathophysiology 

Infection is a frequent (40-80%) and costly complication of DFU and represents a major cause 

of morbidity and mortality (Boyanova & Mitov, 2013). The healing impairment of DFU is 

caused by several factors that favour the overgrowth of bacteria, and has an essential role in 

the rapid spread of infection in diabetic ulcers (Jeffcoate & Harding, 2003) (Figure 2). These 

include intrinsic factors, such as neuropathy and vascular problems, and extrinsic factors, 

including callus formation and excessive local pressure. Traditionally, this set of predisposing 

abnormalities in diabetes has been referred to as “the pathogenic triad of neuropathy, 

ischaemia, and trauma” (Falanga, 2005). 

The significance of bacteria in wounds presents a continuum, from contamination through 

colonization, to critical colonization and, finally, to infection (Siddiqui & Bernstein, 2010). Some 

wound specialists believe that the presence of a high concentration of microorganisms, usually 

superior to >105 colony-forming units [CFU] per gram of host tissue, represents ‘increased 

bioburden’ or ‘critical colonization’ even in the absence of clinical evidence of infection. There 

is, however, no universal techniques to define critical colonization, no routine laboratory tests 

available for quantitative bacteriology and no convincing evidence of its association with 

adverse clinical outcomes, for example, failure of healing or development of overt infection 

(Spichler, Hurwitz, Armstrong & Lipsky, 2015). This threshold may be altered by the status of 

the immune system and number and type of bacteria involved. Signs of critical colonization 

include atrophy or deterioration of granulation tissue, discoloration of granulation tissue to 

deep red or grey, increased wound friability and increased drainage (Siddiqui & Bernstein, 

2010). 

Table 1. (continuation) 
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A diabetic foot infection (DFI) is defined as any infra-malleolar infection in a person with 

diabetes mellitus. These infections may include paronychia, cellulitis, myositis, abscesses, 

necrotizing fasciitis, septic arthritis, tendonitis and osteomyelitis. However, the most common 

and classical lesion is the infected diabetic “mal perforans” foot ulcer, in which, after the 

breach of the protective layer of skin, underlying tissues are exposed to bacterial colonization; 

this wound may progress to become actively infected, involving deeper tissues. This sequence 

of events can be rapid, occurring over days or even hours especially in ischemic limbs (Lipsky, 

2004a). Although most infections, such as cellulitis, remain superficial, in around 25% of the 

cases will spread from the epidermal layer to deeper regions, reaching subcutaneous tissues 

and bones, as observed in necrotic fasciitis, septic arthritis and osteomyelitis (Noor, Zubair & 

Ahmad, 2015).  

Wound contaminants are likely to originate from three main sources: the environment, 

including exogenous microorganisms in the air or those introduced by traumatic injury; the 

surrounding skin; and endogenous sources, involving mucous membranes, such as the 

gastrointestinal, oropharyngeal and genitourinary mucosae (Bowler, Duerden & Armstrong, 

2001). After colonization, transition to infection occurs when bacterial proliferation overcomes 

the host's immune response (Siddiqui & Bernstein, 2010). This transition involves a multitude 

of microbial and host factors, including type, location, size and depth of the wound, the level of 

blood perfusion of the wound, the health and immune status of the host, the microbial load and 

the virulence potential expressed by the microorganisms involved. The immunocompromised 

state of diabetic patients, namely the neutrophil dysfunction, constitutes a relevant aspect 

because facilitates infections. The hyperglycaemia state seems to be the main factor altering 

the neutrophil chemotaxis, phagocytosis and intracellular killing of bacteria (Boyanova & Mitov, 

2013). 

Due to frequent infections, diabetic patients are more exposed to antibacterial agents, which 

can lead to increased antibiotic resistance rates; also, the presence of peripheral vascular 

disease can leads to poor antibiotic penetration in the infected tissue, favouring the 

development of antibiotic resistance (Lipsky et al., 2012a). There is a vicious cycle in which 

the infections can worsen the glycaemic control of the diabetic patient and, vice-versa, the 

poor glycaemic control and other factors associated with DM can facilitate or aggravate the 

development of infections (Figure 2). 

 

1.2.2. DFI diagnosis 

DFI diagnosis begins with a clinical suspicion accompanied by a comprehensive history and 

physical exam, validated with a complete laboratory evaluation, microbiology assessment and 

diagnosis imaging. Since all chronic wounds are colonized by microorganisms, the DFI 

diagnosis is based on clinical findings. According to the Infectious Disease Society of America 

(IDSA) guidelines, infection is present if there is obvious purulent drainage and/or the 
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presence of two or more signs of inflammation (erythema, pain, tenderness, warmth or 

induration), being divided in four grades of severity according to the extension of tissue 

involved and the presence of systemic toxicity or metabolic derangement (Hobizal & Wukich, 

2012). In some patients, especially those with peripheral neuropathy or vasculopathy, 

symptoms and signs may be diminished, leading some clinicians to evaluate the presence of 

“secondary” findings before diagnosing infection, such as foul odour and the presence of 

friable or discoloured granulation tissue (Spichler et al., 2015).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3. Microbiology of DFI 

 

1.3.1. Bacteria involved in DFI 

To properly identify the microorganisms involved in DFI it is important to choose the correct 

sampling procedure. Tissue biopsy following initial debridement and cleansing of superficial 

debris is known as the most advantageous and standard sampling method. However, due to 

fear of infections spreading and loss of adjacent structure in limb and ischemia tissue, 

sometimes biopsy is not advisable, being replaced by swab sampling. This method renders 

sample collection easier and can be performed in any kind of wound. This method is widely 

used for the identification of causative microorganisms and antimicrobial susceptibility testing, 

despite the fact that isolated bacteria also include colonizers (Noor et al., 2015). 

Figure 2. Interplay among factors associated with diabetes, infections and 

antibiotic resistance in diabetic patients (original). 
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In the presence of a large volume of wound fluid, sampling by needle aspiration can be 

performed, being well established as the most useful procedure for sampling purulent fluid 

from intact cutaneous abscesses (Bowler et al., 2001). Cultures of specimens obtained from 

patients with mixed infections generally yield 3 to 5 isolates, including Gram-positive and 

Gram-negative aerobes and anaerobes (Lipsky, 2004a). Many studies from western countries 

report that prevailing microorganisms cultured from DFI are Gram-positive aerobes (Dang, 

Prasad, Boulton & Jude, 2003; Citron, Goldstein, Merriam, Lipsky & Abramson, 2007; Mendes 

et al., 2012), whereas studies from eastern countries have described the presence of Gram-

negative aerobes as predominant organisms (Gadepalli et al., 2006; Zubair, Malik, Ahmad & 

Rizvi, 2011; Noor et al., 2015). 

Generally, aerobic Gram-positive cocci are the predominant microorganisms that colonize and 

cause acute DFI, with Staphylococcus aureus being the most common isolated pathogen, 

followed by Staphylococcus epidermidis and Streptococcus spp., especially the ones 

belonging to β-haemolytic groups (Shankar, Mohan, Premalatha, Srinivasan & Usha, 2005; 

James et al., 2007; Galkowska et al., 2009; Tascini et al., 2011). Staphylococci are perhaps 

the most virulent pathogens in DFI, showing a correlation between specific virulence genotypic 

markers from DFU isolates and ulcer outcome (Sotto, Lina & Richard, 2008). Chronic wounds 

develop a more complex colonizing microbiota and infections are more frequently 

polymicrobial, often including aerobic or facultative Gram-positive bacteria such as 

Enterococcus and Corynebacterium, Gram-negative bacilli such as Pseudomonas aeruginosa 

and Acinetobacter, and obligate anaerobic bacteria (Citron et al., 2007; Dowd et al., 2008a; 

Zubair et al., 2011; Małecki, Rosiński & Adamiec, 2013; Sekhar, Vyas, Unnikrishnan, 

Rodrigues & Mukhopadhyay, 2014). In fact, foot ulcers with ischemia and deep tissue necrosis 

have been reported to present anaerobic growth (Hobizal & Wukich, 2012; Lipsky, Richard & 

Lavigne, 2013; Noor et al., 2015). It is also important to remember that fungi have also been 

reported in DFI and can be a major contributor to the bioburden or biofilm formation in wounds 

(Dowd et al., 2011). 

Acute infections in patients who have not recently received antimicrobials are often 

monomicrobial, being the majority promoted by an aerobic Gram-positive coccus, whereas 

chronic infections are often polymicrobial (Noor et al., 2015). The pathogenic role of each 

isolate in a polymicrobial infection is often unclear, but some studies suggest that the 

interactions of organisms within these polymicrobial communities lead to the production of 

virulence factors, such as collagenases, proteases and haemolysins, and short-chain fatty 

acids that cause inflammation, obstructed wound healing, increasing the chronicity of infection 

(Noor et al., 2015). The impaired host defences around necrotic soft tissue or bone may allow 

low-virulence colonizers, such as coagulase-negative staphylococci and Corynebacterium spp. 

(“diphtheroids”), to assume a pathogenic role (Lipsky, 2004a).  
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Generally, the presence of one microorganism generates a niche for the colonisation by other 

pathogenic microorganisms; on the other hand, two or more non-pathogenic microorganisms 

together can cause disease. The major polymicrobial interactions that have been studied are 

synergism and antagonism. In synergy there is a cooperative interaction between two or more 

species of microbes, allowing increased growth, virulence, antimicrobial tolerance and 

enhanced production of exopolysaccharide (EPS) (Brogden, Guthmiller & Taylor, 2005). 

Antagonism, also called antibiosis, is characterized by the suppression of one microbial 

species by another; it can include production of chemical signs and factors inhibiting the 

growth of neighbours and/or storage of nutrients that promote their starvation (Gabrilska & 

Rumbaugh, 2015).  

Hospitalization, surgical procedures and, especially, prolonged or broad-spectrum antibiotic 

therapeutics may predispose patients to colonization and/or infection with antibiotic-resistant 

microorganisms. Among hospitalized patients, the prevalence of methicillin-resistant 

Staphylococcus aureus (MRSA) in DFI can range from 15 to 30%, depending on the 

geographical location of affected patients (Hobizal & Wukich, 2012). Although MRSA strains 

have been previously isolated mainly from hospitalized patients, community-associated strains 

are now becoming common, being already associated with severe outcomes in patients with 

DFI (Dang et al., 2003). For example, the first reported cases of vancomycin-resistant S. 

aureus in the United States and in Europe have been isolated from diabetic patients with foot 

infections (Lipsky, 2004a; Melo-Cristino, Resina, Manuel, Lito & Ramirez, 2013). 

In summary, bacterial genera frequently associated with DFI include Staphylococcus, 

Enterococcus, Corynebacterium, Pseudomonas and Acinetobacter.  

 

1.3.2. Staphylococci 

1.3.2.1. Generalities and classifications 

Staphylococcus, named after the Greek words staphyle (bunch of grapes) and kokkos (berry), 

is a genus of Gram-positive bacteria frequently associated with surgical and skin infections, 

respiratory disease and food poisoning (Licitra, 2013). They were observed for the first time in 

1880, by the Scottish surgeon Sir Alexander Ogston that observed staphylococci in pus 

samples from a surgical abscess in a knee joint, describing them as “the masses looked like 

bunches of grapes.” In 1884, German physician Friedrich Julius Rosenbach differentiated the 

bacteria species by the colour of their colonies growing in agar medium: S. aureus (from the 

Latin aurum, gold) due to the presence of carotenoids, and S. albus (Latin for white); S. albus 

was later renamed as S. epidermidis due to its ubiquitous presence on human skin (Orenstein, 

2008). Staphylococci are characterized by being non-motile, non-spore-forming, spherical cells 

with 0.5 to 1.5 µm in diameter, usually forming clusters; they are facultative anaerobes with 
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complex nutritional requirements including several amino acids and vitamins B; they tolerate 

high concentrations of sodium chloride and are resistant to heat (Becker & Eiff, 2011). 

Staphylococci are catalase-positive and their cell wall peptidoglycan structure contains 

multiple glycine residues in the cross-bridge, responsible for their susceptibility to lysostaphin 

action (Plata, Rosato & Wegrzyn, 2009). The Staphylococcus genus is traditionally divided into 

two groups based on the bacteria’s ability to produce coagulase, an enzyme that causes blood 

clotting by converting fibrinogen to fibrin: coagulase-positive staphylococci (CoPS), the group 

that includes S. aureus, a frequent ethological agent of diseases that exhibits resistance to a 

growing number of therapeutic agents; and the coagulase-negative staphylococci (CoNS), a 

group composed by common skin commensals (Figure 3). CoNS include S. epidermidis and 

S. haemolyticus as the most prevalent species, along with S. capitis, S. hominis, S. simulans, 

S. warneri and S. saprophyticus (Becker, Heilmann & Peters, 2014) (Figure 3).  

 

 

 

 

 

 

 

 

 

 

 

 

S. aureus is the most pathogenic species of the genus Staphylococcus, implicated in both 

community-acquired and nosocomial infections and associated with considerable morbidity 

and mortality rates (Carbon, 2000). It has been estimated that about 20 to 30% of the 

population are permanently colonized by this bacterium, constituting healthy carriers, while 

other 30% are transient carriers. The anterior nose nares are the most frequent location for S. 

aureus colonization, followed by skin, perineum, pharynx, and less frequently, the 

gastrointestinal tract, axillae and vagina (Wertheim et al., 2005). Colonization represents an 

increased risk of infection particularly for the immunocompromised host. In such cases, S. 

aureus can be responsible for the development of bacteraemia, infective endocarditis as well 

as osteoarticular, skin and soft tissue, pleuropulmonary and device-related infections (Tong, 

Davis, Eichenberger, Holland & Fowler, 2015).  

Figure 3. Clinical and epidemiological classification of staphylococcal 

species. Adapted from Becker et al. (2014). 
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Staphylococcus, especially S. aureus, is by far the most common and virulent pathogen in DFI 

(Jones, Edwards, Finch & Jeffcoate, 1985; Sotto et al., 2008; Lipsky et al., 2013). Many 

studies have described a high S. aureus prevalence in these infections, ranging from about 

50% (Dang et al., 2003; Citron et al., 2007; Galkowska et al., 2009; Mendes et al., 2012) to 

30% (Richard et al., 2011; Tascini et al., 2011; De Vries, Ekkelenkamp & Peters, 2014; 

Zenelaj, Bouvet, Lipsky & Uckay, 2014). These studies also describe CoNS as the second 

most frequently encountered aerobic Gram-positive isolates. MRSA have emerged as a 

serious and common problem in patients with diabetic foot ulcers, and infections promoted by 

such strains may result in prolonged stay hospital and increased economic costs (Tentolouris 

et al., 2006). High rates of MRSA were already reported in several studies on DFI, normally 

representing 20 to 40% of all S. aureus isolates (Bowling, Salgami & Boulton, 2007; Tascini et 

al., 2011; Boyanova & Mitov, 2013); also one study described a 68% MRSA rate in DFI (Malik, 

Mohammad & Ahmad, 2013). In case of diabetic foot osteomyelitis, the majority of infections 

are polymicrobial, with S. aureus being the most common etiologic agent, isolated in about 

40% of cases, followed by S. epidermidis, isolated in about 25% (van Asten et al., 2015). 

 

1.3.2.2. Staphylococci virulence traits 

S. aureus virulence determinants can be divided into cell wall-anchored (CWA) surface 

proteins (adhesins) and secreted factors (exotoxins). These factors allow this bacterial species 

to adhere to surfaces/tissues and avoid or invade the host immune system causing toxic 

effects. 

1.3.2.2.1. Cell wall-anchored (CWA) surface proteins 

The first step of staphylococcal invasion is bacterial adherence that can occur via direct 

interaction with host cells or via interaction with host-factor binding proteins (Schroeder et al., 

2009). These include autolysins, adhesins, binding proteins, clumping factors, iron 

transporters and surface proteins. 

Direct S. aureus adherence to a surface may be mediated by the major autolysin Atl that has 

both adhesive and enzymatic functions. It is involved in the initial attachment of the cells to a 

polymeric surface and in biofilm formation. It also binds to vitronectin, suggesting a role in not 

only colonizing polymer surfaces, coated materials and host tissue (Heilmann, Hartleib, 

Hussain & Peters, 2005). This enzyme also participates in the hydrolysis of cell wall 

peptidoglycan, leading to autolysis and  release of extracellular DNA (eDNA), which has been 

shown to be an important component of staphylococcal biofilms (Becker et al., 2014). S. 

aureus Atl is highly homologous to the S. epidermidis autolysin/adhesin AtlE, which is involved 

in the attachment to polymer surfaces. Recently, homologous Atl proteins with similar 

functions were also reported for other CoNS, such as S. caprae (AtlC), S. saprophyticus (Aas), 
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S. lugdunensis (AtlL) and S. warneri M (AtlWM), as well as a novel autolysin/adhesin Aae in S. 

epidermidis (Becker et al., 2014).  

S. aureus has numerous CWA surface proteins that promote bacterial adherence to host 

glycoproteins, including the “microbial surface components recognizing adhesive matrix 

molecules” (MSCRAMM) (Extremina, Costa, Aguiar, Peixe & Fonseca, 2011) (Figure 4). 

MSCRAMM bind to host molecules such as collagen, fibronectin and fibrinogen, and appear to 

play a key role in the onset of endovascular, bone, joint and prosthetic-device infections. 

Different MSCRAMM may adhere to the same host-tissue component and different S. aureus 

strains may have different MSCRAMM groups, being related with particular infections (Gordon 

& Lowy, 2008). 

Fibronectin binding proteins A and B (FnbpA and FnbpB) are also MSCRAMM that participate 

in the attachment of bacterial cells to biofilm extra-cellular matrix components, to fibronectin 

and to plasma clots, also having an invasive function. A fibrinogen-binding protein, Fbe, has 

also been identified in S. epidermidis (Hartford, O’Brien, Schofield, Wells & Foster, 2001; 

Hussain et al., 2009). The collagen binding protein, Cna, is necessary for S. aureus adherence 

to collagenous tissues and cartilage (Elasri et al., 2002). 

Clumping factors A and B (ClfA and ClfB) mediate clumping and adherence of S. aureus cells 

to fibrinogen in the presence of fibronectin. These proteins are also antiphagocytic, protecting 

bacteria from opsonophagocytosis by degradation of complement element, C3b. S. 

lugdunensis expresses a fibrinogen-binding surface protein (Fbl) with considerable similarity to 

S. aureus ClfA (Geoghegan et al., 2010; Becker et al., 2014). Finally, serine-aspartate repeat 

proteins C, D and E (SdrC, SdrD, SdrE) are fundamental to the adhesion prior to nasal 

colonization (Geoghegan et al., 2010). 

Besides MSCRAMM, CWA surface proteins include many more molecules. Belonging to the 

Near-iron transporter (NEAT) Motif Family, the domain proteins capture heme group from 

hemoglobin and help bacteria to survive in the host, where accessibility to iron is restricted. 

Heme group is transported via several CWA proteins called iron-regulated surface (Isd) 

proteins, to a membrane transporter and then to the cytoplasm, where haemoxygenases 

promote the release of free iron trough the lysis of the heme group (Geoghegan et al., 2010). 

Protein A is a cell wall-associated protein that binds to the Fc domain of immunoglobin G 

(IgG), produced by over 95% of S. aureus strains, being encoded by the staphylococcal 

protein A (spa) gene (Adesida et al., 2006). The N-terminal region of protein A comprises a 

tandem array of five separately folded three-helical bundles that can bind to several different 

ligands. Protein A induces a defective binding of IgG to the surface of S. aureus cells, 

disrupting opsonization and phagocytosis; it also exhibits the ability to bind to the von 

Willebrand factor, a large glycoprotein that mediates platelet adhesion at sites of endothelial 

damage, playing a role in adherence and induction of endovascular diseases (Adesida et al., 

2006; Plata et al., 2009). 
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The G5-E Domain Family includes S. aureus surface protein G (SasG) and the plasma-

sensitive surface protein (Pls), which are very similar in structure and organization to the 

accumulation-associated protein Aap of S. epidermidis. Both proteins promote cell aggregation 

and biofilm formation. The Pls protein, once processed by plasmin, participates in both 

fibrinogen and fibronectin binding (Hussain et al., 2009). 

Non-proteinaceous adhesins are also observed, including the polysaccharide intercellular 

adhesin PIA, also known as poly-N-acetylglucosamine [PNAG], and cell wall teichoic acids. 

PIA is encoded by the intercellular adhesion operon, icaADBC that was first identified in S. 

epidermidis, being also present in S. aureus, in which it is involved in biofilm formation 

(Schroeder et al., 2009). In S. epidermidis, biofilm production is also mediated by proteins, 

namely the accumulation-associated protein Aap and extracellular matrix-binding protein 

(Embp) (Schommer et al., 2011).  

 

1.3.2.2.2. Secreted factors (exotoxins) 

Another important virulent feature of S. aureus is the ability to secrete toxins (Figure 4), 

playing an active role in impairing host immunity action. These secreted factors can be 

classified into four categories: superantigens, cytolytic toxins, exoenzymes and miscellaneous 

proteins. 

The superantigens are a group of powerful immune-stimulatory proteins that induce different 

human diseases, and include staphylococcal enterotoxins (SE) A-E and G-J, toxic shock 

syndrome toxin-1 (TSST-1) and exfoliative toxins (ET) A, B and D. These toxins were initially 

described as being responsible for specific acute staphylococcal toxaemia syndromes, such 

as: toxic shock syndrome (TSS) and staphylococcal scarlet fever (SSF), both promoted by 

TSST-1, SE type B and SE type C; scalded skin syndrome (SSSS), related to ET; and 

staphylococcal food poisoning due to SE (Podbielska, Galkowska & Olszewski, 2011). TSST-1 

cross-links the T-cell receptor with major histocompatibility complex class II (MHC-II) on 

antigen-presenting cells, triggering large-scale T-cell activation and massive cytokine release, 

leading to an overwhelming systemic inflammatory response syndrome, resulting in septic 

shock with organ failure (Tong et al., 2015). SE have the same action mechanism of TSST-1, 

causing diarrhoea and vomiting when ingested, and are responsible for staphylococcal food 

poisoning (Podbielska et al., 2011). ET toxins, associated with SSS, cause separation within 

the epidermis, by promoting intra-epidermal cleavages between the living layers and the 

superficial dead layers (Jarraud, Mougel & Thioulouse, 2002).   
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The cytolytic toxins, α-hemolysin, β-hemolysin, γ-hemolysin, leukocidin and Panton-Valentine 

leucocidin (PVL), have different structures and targets but share a similar function on host 

cells. They form β-barrel pores in the cytoplasmic membranes of target cells, namely 

leucocytes, erythrocytes, lymphocytes and platelets, causing leakage of their content or cell 

lysis (Costa et al., 2013). PVL targets mononuclear and polymorphonuclear cells and causes 

cell death by necrosis or apoptosis, being strongly associated with community-associated 

MRSA (CA-MRSA). PVL toxin consists of two synergistic proteins, LukF-PVL and LukS-PVL, 

encoded by lukF and lukS, present on a temperate bacteriophage (Rossney et al., 2007). 

Haemolysins cause pore formation on susceptible host cell membranes, triggering alterations 

in ion gradients, loss of membrane integrity, activation of stress-signalling pathways and cell 

death (Bien, Sokolova & Bozko, 2011). Leukocidin is a multicomponent protein toxin forming 

an octameric pore, composed of four LukF and four LukS subunits, and therefore haemolytic. 

It is only present in 2% of all S. aureus isolates collected from severe dermonecrotic lesions 

(Podbielska et al., 2011). 

Nearly all strains of S. aureus secrete several other extracellular enzymes whose functions 

include the disruption of host tissues, inactivation of host antimicrobial mechanisms, 

acquisition of nutrients for bacterial growth and facilitation of bacterial dissemination. These 

exoenzymes include lipases, nucleases, proteases, hyaluronidase and staphylokinase (Bien et 

al., 2011). Lipases inactivate fat acids; nucleases cleave nucleic acids; proteases, that include 

serine, cysteine and aureolysin, inactivate the host defense mechanisms, including antibodies, 

Figure 4. Structural and secreted pathogenic factors of S. aureus. 

Adapted from Gordon et al. (2008). 

 

A, surface and secreted proteins; B and C, cross-sections of cell-envelope; 

TSST-1, toxic shock syndrome toxin 1. 
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and destruct the tissue proteins, promoting invasiveness; and hyaluronidases degrade 

hyaluronic acid (Costa et al., 2013). Staphylokinase contributes to bacteria spread by 

activating plasminogen, promoting clot disruption and destruction of fibrin fibres that hold cells 

together (Bokarewa, Jin & Tarkowski, 2006). 

Other specific proteins produced by staphylococci have a profound impact on the innate and 

adaptive immune system and include: staphylococcal complement inhibitor (SCIN), a C3 

convertase inhibitor which blocks the formation of C3b on the surface of the bacterium, 

impairing phagocytosis by human neutrophils; S. aureus extracellular fibrinogen binding 

protein (Efb) that inhibits both classical and alternative pathways of complement activation; 

chemotaxis inhibitory protein of S. aureus (CHIPS) and formyl peptide receptor-like-1 inhibitory 

protein (FLIPr) that block neutrophil receptors for chemo-attractants; and the extracellular 

adherence protein (Eap) that blocks migration of neutrophils from blood vessels into the tissue 

(Bien et al., 2011; Costa et al., 2013).  

Another S. aureus strategy that might play a role in bacterial survival in biofilms is phage 

induction. Stress factors, like nutrient limitation, unfavourable oxygen concentrations and high 

cell densities in biofilms, lead to phage release resulting in cells lysis (Gilbert, Collier & Brown, 

1990). This lysis may can promote biofilm persistence because the remaining cells obtain 

nutrients from the lysed ones (Resch, Fehrenbacher, Eisele, Schaller & Götz, 2005).  

1.3.2.2.3. Virulence regulatory systems 

To control the production of virulence determinants during infection, S. aureus expresses 

several regulatory systems that “cross-talk” to ensure that specific genes are expressed only in 

favourable conditions. These systems can be divided in two main categories: two-component 

signal transduction systems and global transcriptional regulators. The two-component 

regulatory systems include the accessory regulator gene (agr) and the staphylococcal 

accessory element gene (sae) (Cheung, Bayer, Zhang, Gresham & Xiong, 2004). 

The agr locus regulates more than 70 genes, 23 of which are related to virulence. This system 

is responsible for upregulating the expression of many exoproteins and downregulating the 

synthesis of cell wall-associated proteins, such as Spa, through the negative regulation of the 

spa gene expression (Bien et al., 2011). The sae locus codes for another Two-Component 

Regulatory System (TCRS) that regulates the expression of many virulence factors involved in 

bacterial adhesion, toxicity and immune evasion. This includes the upregulation of α-, β- and 

γ- haemolysins and the downregulation of spa (Goerke et al., 2005). 

Several global regulatory systems have been identified in S. aureus, including the 

staphylococcal accessory regulator A gene (sarA), and its several homologues, such as 

staphylococcal accessory regulator S (sarS) and T (sarT) (Bronner, Monteil & Prévost, 2004); 

sarA upregulates the expression of some virulence factors (e.g. α- and β-haemolysins) and 

downregulates others. Opposite to the agr system, sarS binds to the spa promoter and 
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activates its expression; in turn, agr down-regulates sarS and maybe also spa expression, by 

suppressing its activator sarS (Tegmark, Karlsson & Arvidson, 2000). 

The regulation of virulence determinants may also involve sigma factors (σ), which are 

proteins that bind to the RNA polymerase core to form an holoenzyme linking to specific 

promoters (Schmidt, Manna, Gill & Cheung, 2001). S. aureus has two sigma factors: the 

primary sigma factor, σA, responsible for the expression of housekeeping genes essential for 

growth, and the alternative sigma factor σB, which regulates the expression of different genes 

involved in cellular functions (e.g. stress response) and of at least 30 virulence genes (Deora 

& Misra, 1996; Deora, Tseng & Misra, 1997). σB upregulates capsule, FnbpA and coagulase 

production, and downregulates haemolysins and serine protease A expression. All the 

mentioned regulators constitute an interactive network, influencing each other, to ensure that 

specific virulence genes are expressed only when required (Costa et al., 2013). 

As described above, the genes and products of the ica locus [icaR (regulatory) and icaADBC 

(biosynthetic) genes] are necessary for biofilm formation and virulence in Staphylococcus and 

are upregulated in response to anaerobic growth, in conditions similar to biofilm environment. 

A strong negative regulation is conferred by icaR, whereas the protein regulator of biofilm 

formation, Rbf, represses transcription of icaR leading to increased ica gene expression 

(Archer et al., 2011). However, biofilms can occur in an ica-independent manner through the 

action of the accumulation-associated protein (Aap) (Hennig, Nyunt Wai & Ziebuhr, 2007). 

Another important component of the staphylococcal biofilm matrix is eDNA, first documented 

in Pseudomonas aeruginosa (Steinberger & Holden, 2005). The opposing activities of the cid 

and irg operon, regulators of murein hydrolase and cell death, control the cell lysis and 

genomic DNA release during biofilm development in S. aureus. eDNA has the ability to 

increase biofilm adherence (Mann et al., 2009). The regulatory factors involved in S. aureus 

biofilm formation are summarized in the Figure 5.  

1.3.2.2.4. Phenotypic switching 

Regarding staphylococci virulence traits, it is also important to refer that chronic and 

exacerbated staphylococcal infections have been associated with altered phenotypes, 

resulting from mutations. These bacteria evolved fitness-compensatory mechanisms and 

reversible stress-resistance mechanisms such as phenotypic switching. This ability consists in 

a reversible conversion of phenotypic states due to environmental changes, based on an 

on/off mechanism that can greatly accelerate the adaptive evolution of bacteria, having an 

impact on antibiotic susceptibility and virulence factors expression (Sousa, Machado & 

Pereira, 2011). 
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This morphologic heterogeneity of staphylococci is particularly associated to the “small 

colonial variant” (SCV), a specific phenotype resulting from a switch of the wild-type 

phenotype, which can also be assumed for CoNS SCV (Becker et al., 2014). The SCV 

phenotype is characterized by a reduced growth rate and drastic changes in cellular 

metabolism: the colonies are tiny, typically 10 times smaller, with reduced or lost pigmentation 

Figure 5. Regulatory factors involved in S. aureus biofilm formation. 
Adapted from Archer et al. (2011). 

 
- PIA-dependent biofilm formation: expression of the icaADBC gene cluster results in PIA 

expression and biofilm formation; icaADBC can be suppressed by icaR, resulting in 
downregulation of PIA and thus biofilm formation; the icaR expression can be 
downregulated by the protein Rbf, leading to upregulation of icaADBC, PIA production and 
biofilm formation. Additionally, anaerobic conditions induce expression of the icaADBC gene 
cluster, PIA production and biofilm formation. 

- PIA-independent biofilm formation: in ica-deleted mutants, PIA-independent biofilm 
formation can be mediated through cell wall-associated proteins. 

- eDNA and biofilm formation: eDNA leads to enhanced biofilm formation. DNase treatment 
degrades eDNA and inhibits eDNA-mediated biofilm formation. DNA release is arbitrated 
through cell lysis and controlled by irg and cidA gene expression. Upregulation of irg gene 
results in inhibition of cellular lysis, DNA release and biofilm formation, although cidA 
expression enhances cellular lysis, DNA release and biofilm formation. 

      The biofilm formation is regulated by a complex interaction of agr, sar and σ systems. 
  

  

icaADBC, intercellular adhesion biosynthetic genes; PIA, polysaccharide intercellular antigen; icaR, 
intercellular adhesion regulatory gene; Rbf, protein regulator of biofilm formation; eDNA, 
extracellular DNA; lrg, regulator of murein hydrolase and cell death; cidA, regulator of murein 
hydrolase and cell death; agr, accessory gene regulator; sar, staphylococcal accessory regulator; σ, 

sigma factors. 
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and haemolysis when compared to their wild-type counterparts. They are located 

intracellularly, which provides a survival niche in the host environment, shielding SCV from 

host defences and antimicrobial agents, representing a major challenge concerning disease 

management (Proctor et al., 2006). 

 

1.3.2.3. Staphylococci antimicrobial resistance ability 

The WHO published in the past February its first ever list of antibiotic-resistant "priority 

pathogens” in which Staphylococcus aureus is referred to as belonging to the high priority 

category (http://www.who.int//mediacentre/news/releases/2017/bacteria-antibiotics-needed/). 

Before the introduction of antibiotics in the 1940s, invasive staphylococcal infections were 

often fatal and penicillin greatly reduced the corresponding mortality; however, just few years 

after its introduction, the first clinical cases of MRSA were identified (Costa et al., 2013). In 

1960, around 80% of all S. aureus strains were resistant to penicillin. Methicillin, a semi-

synthetic antibiotic derived from penicillin but resistant to β-lactamase inactivation was 

introduced in 1959 (Deurenberg et al., 2007b). However, in 1961 there were reports from the 

United Kingdom that S. aureus isolates had acquired resistance to methicillin and, rapidly 

MRSA were reported in several countries, until becoming endemic  in many hospitals 

worldwide (Chambers & Deleo, 2009; Carvalho, Mamizuka & Filho, 2010). Methicillin 

resistance is associated with acquisition of a large transmissible genetic element known as 

staphylococcal cassette chromosome mec (SCCmec). SCCmec elements are currently 

classified into types based on the nature of the mec and ccr gene complexes, and further 

classified into subtypes according to their joining (“junkyard”) regions DNA segments, which 

constitute non-essential components that may carry additional antimicrobial resistance 

determinants (Hiramatsu, Katayama, Yuzawa & Ito, 2002). 

The ccr gene complex consists of cassette chromosome recombinase (ccr) genes (ccrC or 

ccrA and ccrB pair) encoding recombinases which mediate the integration and excision of 

SCCmec and surrounding genes (Carbon, 2000). The ccr complex is currently classified into 

eight types, while to date, 11 types and several subtypes have been reported for the SCCmec 

element (http://www.sccmec.org/Pages/SCC_TypesEN.html). 

The mec gene complex consists of mecA, encoding for the penicillin binding protein (PBP) 

PBP2a, regulatory genes and associated insertion sequences, and is classified into six 

different classes: A, B, C1, C2, D and E (http://www.sccmec.org/Pages/SCC_TypesEN.html). 

PBP2a consists of a transpeptidase with low affinity for β-lactams that replaces the wild type 

PBP and is directly responsible for resistance to methicillin and all other β-lactam antibiotics 

(Liu, 2009). 

The first MRSA isolate, the archaic clone, harboured the SCCmecI and circulated in hospitals 

throughout Europe, disappearing from European hospitals in the 1980s for unknown reasons. 

In the mid to late 1970s, new MRSA strains containing SCCmecII and SCCmecIII emerged, 



21 
 

leading to a worldwide pandemic of MRSA (Chambers & Deleo, 2009). For a long time MRSA 

infections were limited to hospitalized patients, but during the 1990s CA-MRSA infections 

among healthy individuals without associated risk factors were reported. 

These types have genetic differences: SCCmec types I, II and III are characteristic of hospital-

acquired MRSA (HA-MRSA) strains and show resistance to multiple classes of antibiotics; 

while SCCmec types IV, V and VI are generally associated with CA-MRSA strains, which in 

most cases do not contain additional antimicrobial resistance genes, and therefore, only show 

resistance to β-lactam antibiotics (Enright et al., 2002; Robinson & Enright, 2003; Lindsay, 

2013). Moreover, these types affect distinct populations and cause different clinical 

syndromes: CA-MRSA infections tend to occur in previously healthy children and young adults 

and have been linked to soft-tissue and severe infections; HA-MRSA strains are usually 

isolated from older adults and immunocompromised people, being a common cause of 

invasive infections, pneumonia and bacteraemia (David & Daum, 2010). The evolution of 

sequence-based molecular methods for bacterial genotyping, particularly the multilocus 

sequence typing (MLST) technique, has made possible to unravel the molecular epidemiology 

of S. aureus and to distinguish between HA-MRSA and CA-MRSA strains. MLST is based on 

the sequencing conserved genes, known as housekeeping genes, allowing to group strains 

into clonal complexes (CC). The vast majority of nosocomial MRSA strains detected worldwide 

belong to five CC: 5, 8, 22, 30 and 45 (Enright et al., 2002). 

The global distribution and impact of HA-MRSA infections led to an increase in the 

administration of vancomycin, the main antimicrobial agent used for treatment of serious 

infections by methicillin-resistant staphylococci and biofilm producing strains. Fortunately, 

resistance to vancomycin among such isolates remains rare, with less than 15 cases reported 

worldwide (Archer et al., 2011). The glycopeptides vancomycin and teicoplanin exercise their 

effect by binding irreversibly to the terminal D-alanyl-D-alanine (D-Ala-D-Ala) of the bacterial 

cell wall precursors, inhibiting the synthesis of the S. aureus cell wall (Sieradzki, Pinho & 

Tomasz, 1999). The reduced susceptibility to vancomycin in vancomycin-intermediate MRSA 

(VISA) strains is due to the synthesis of an unusually thickened cell wall containing D-alanyl-D-

alanine dipeptides capable of binding to vancomycin, effectively sequestering this compound, 

thereby reducing the availability of the drug that cannot reach its intracellular target molecules 

(Appelbaum, 2006). The genetic basis responsible for these cell wall alterations has not yet 

been determined. On the other hand, vancomycin resistance in vancomycin-resistant MRSA 

(VRSA) occurs due to the plasmid-mediated transfer of the vanA gene cluster, which includes 

vanR, vanS, vanH, vanA and vanX genes, usually carried by the mobile genetic element 

Tn1546 from vancomycin-resistant enterococci (VRE) (Weigel, 2003). If vancomycin 

resistance emerges, linezolid or daptomycin may be alternatives, which may be responsible 

for the development of reduced susceptibility to these antibiotics (Fraimow, 2009). 
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Recently significant increases in the percentage of resistant staphylococcal isolates were also 

described regarding oxacillin, ciprofloxacin, clindamycin, erythromycin and gentamicin (Becker 

et al., 2014). Staphylococcal antibiotic resistance represents a serious clinical problem 

worldwide and the establishment of adequate therapeutic protocols for treating life-threatening 

infections continues to be a very difficult challenge. 

 

1.3.3. Enterococci 

The term "enterococcus" has its origin at the end of the 19th century when Thiercelin 

described a saprophytic coccus, of intestinal origin, capable of causing infection (Lewis & 

Zervos, 1990). In same year, MacCallum and Hastings characterized a similar organism from 

a lethal case of endocarditis, which called Mycrococcus zymogenes. The name Streptococcus 

faecalis (faecalis, relating to feces) was first used in 1906 by Andrewes and Horder, who 

isolated this organism from a patient with endocarditis and considered that this streptococcus 

was "so characteristic of the human intestine that the term 'Streptococcus faecalis' justly be 

applied to it" (Murray, 1990). At last, the same term was used for organisms that could be grew 

at 10 and 45°C, in 6.5% NaCl, and at pH 9.6 and which survived 60°C for 30 minutes. These 

and many others characteristics became widely used to distinguish between enterococci and 

non-enterococcal streptococci. These descriptions constitute the basis for the paradigm of 

enterococci classification as pathogenic bacteria or as a commensal opportunist (Lebreton, 

Willems & Gilmore, 2014). 

Enterococci are non-sporing facultative anaerobes and obligatory fermentative 

chemoorganotrophs, with an optimal growth temperature of 35°C, catalase negative (with the 

exception for some species), usually homofermentative, producing lactic acids through 

glucose fermentation, without gas production (Klein, 2003). They are primarily located in the 

human and mammals small and large intestines, particularly in the jejunum, ileum, cecum and 

recto-sigmoid. Therefore, they are frequently found in human feces, especially E. faecalis and 

E. faecium, and are common in the oral cavity, being rarely found in the stomach (Bik et al., 

2006). 

Enterococci taxonomy has considerably changed and at the present the genera includes 35 

recognized species (http://www.antimicrobe.org/new/b03.asp). Two major bacterial species 

account for the vast majority of enterococcal infections: E. faecalis is the most common one, 

causing 80 to 90% of such infections, while Enterococcus faecium about 10 to 15%. The 

primary sites of infection are the urinary tract and the soft tissues adjacent to the intestines 

where enterococci are resident. E. faecalis is generally non-pathogenic to healthy humans, 

being an extremely adaptable organism capable of surviving in hard environmental conditions 

(Ballering et al., 2009). 

Little is known about the main mechanisms used by enterococci to colonize the gastro-

intestinal (GI) tract of either healthy individuals or hospitalized patients. The exposure of 
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hospitalized patients to antibiotics results in major modifications of the gut microbiota, which 

facilitates colonization of the GI tract by drug-resistant enterococci (Donskey et al., 2000). In 

such conditions, indigenous commensal enterococci can act as opportunistic pathogens and 

translocate across the mucosal barrier to cause systemic infections in immune-compromised 

hosts. However, infection more commonly results from the colonization, overgrowth and 

translocation of hospital-adapted antibiotic-resistant strains with enhanced pathogenicity 

(Donskey, 2004). In fact, Enterococcus have emerged in recent years as pathogenic 

microorganisms associated with serious nosocomial infections, despite their usually low level 

of virulence. They cause infection almost exclusively in hospitalized patients who have 

significantly compromised immune defences. Such hospital-related strains are frequent, 

especially in intensive care units, where enterococci can be transmitted via the hands of 

clinical staff (Dufour, Leung & Lévesque, 2012).  

Enterococcus is one of the most frequently isolated genera from DFU (James et al., 2007; 

Bowling, Jude & Boulton, 2009) and several studies reported a frequency of approximately 

20% (Gadepalli et al., 2006; Mendes et al., 2012; Swarna, Madhavan, Gomathi & 

Thamaraiselvi, 2012; Małecki et al., 2013) or even as high as 35% (Citron et al., 2007). In 

compromised patients, such as diabetics, enterococci can act as opportunistic pathogens 

(Tascini et al., 2011). Currently, there is increasing evidence that diabetes is a risk factor for 

vancomycin resistant enterococci (VRE) (Boyanova & Mitov, 2013).  

 
1.3.3.1. Enterococci virulence traits 

The pathogenicity islands of Enterococcus were first identified in an E. faecalis multi-drug 

resistant (MDR) strain in the 1980’s and included virulence traits associated with surface 

proteins, namely the enterococcal surface protein Esp, the secreted cytolysin toxin and 

aggregation substances. Other important virulence factors produced by enterococci include 

haemolysin, gelatinase and surface adhesins (Giridhara Upadhyaya, Ravikumar & Umapathy, 

2009). 

In order to cause disease, enterococci must first adhere to host tissues. They express surface 

adhesion proteins, such as the aggregation substance previously mentioned, that allow them 

to bind to human intestinal cells (John & Carvalho, 2011). Escape to the immune system is 

facilitated by cytolysin that can lyse macrophages and neutrophils, representing an advantage 

for growth and survival (Clewell, 2007). Enterococcal cytolysin consists of two structural 

subunits, coded in an operon of five genes, in which the extracellular activator serine protease 

gene, cylA, activates the cytolysin precursor components (Semedo et al., 2003). 

Biofilm formation may be an important factor in the pathogenesis of enterococcal infections 

(Figure 6) and previous results suggest that E. faecalis produce biofilm more frequently than 

E. faecium. Biofilm formation seems to be dependent on environmental conditions, since, for 

example, high osmolality has a negative effect, but the exact mechanisms involved in biofilm 
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formation by enterococci are still unknown (Mohamed & Huang, 2007). E. faecalis gelatinase 

(GelE) is an extracellular zinc metalloprotease that can hydrolyse gelatin, collagen and casein, 

and seems to be essential for biofilm formation (Mohamed & Murray, 2005). The fsr locus (E. 

faecalis regulator) in E. faecalis, which includes the fsrA, fsrB and fsrC genes, being 

homologue of the staphylococcal agrBCA loci, has been characterized and seems to have a 

similar effect (Qin, Singh, Weinstock & Murray, 2000). 

Enterococcal surface protein (Esp) is associated with increased virulence, colonization and 

persistence in the urinary tract and also with biofilm formation; in fact, the esp gene has been 

identified as a marker with high prevalence in vancomycin-resistant E. faecium (VREF) clones 

among hospitalized patients (Willems et al., 2001). 

 
1.3.3.2. Enterococci antimicrobial resistance ability 

Traditionally, treatment for serious enterococcal infections was based on the synergistic 

effects of an aminoglycoside and a cell wall-active antibiotic such as ampicillin or vancomycin 

(John & Carvalho, 2011). However, these organisms have been exposed to multiple antibiotics 

in hospital settings, thus providing them an evolutionary pressure for the selection of 

mechanisms involved in resistance genes transfer, including conjugation via plasmid, as well 

as transfer of resistance genes via transposons or bacteriophages (Moellering, 1992). 

Considering that enterococci reside in the GI tract, they can exchange resistance genes with 

other bacterial genera present in the same ecological niche (Sung & Lindsay, 2007). 

Enterococci are resistant to many antibiotics: some have acquired resistance to 

aminoglycosides via aminoglycoside-modifying enzymes, to tetracyclines via acquisition of 

resistance genes such as tetM and tetN, to chloramphenicol via chloramphenicol 

acetyltransferase and to glycopeptides via enzymes that modify or remove the vancomycin 

target (Courvalin, 2006). There are also strains of enterococci that produce β-lactamases 

capable of inactivating penicillin, ampicillin and related drugs, acquired via transferable 

plasmids (Herman & Gerding, 1991). 

In terms of vancomycin resistance, six gene clusters have been discovered that appear to be 

associated with this phenotype (VanA to VanG) (Courvalin, 2006). Some Enterococcus strains 

have the potential to be reservoirs of glycopeptide resistance genes and transfer them to more 

virulent pathogens such as MRSA (Sung & Lindsay, 2007): in fact, it has been demonstrated 

that the genes conferring the VanA phenotype could be transferred from E. faecium to MRSA 

(Noble, Virani, & Cree, 1992). The phenotype VanA, with high-level resistance to vancomycin 

and teicoplanin, and VanB, with variable resistance to vancomycin, are the most common 

forms of acquired glycopeptide resistance, being transferable via plasmids or transposons 

(Woodford, Johnson, Morrison & Speller, 1995). The VanA phenotype has been found in 

approximately 60% of VRE and VanB found in approximately 40% of such isolates (Clark, 

Cooksey, Hill, Swenson & Tenover, 1993) 
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The emergence of MDR enterococci over the past 50 years has substantially increased and 

antibiotic resistant enterococci are now leading causes of nosocomial infection worldwide 

(Lebreton et al., 2014). 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

1.3.4. Other bacteria frequently involved in DFI 

1.3.4.1. Corynebacterium 

The genus Corynebacterium, a member of the class Actinobacteria, includes aerobic, 

asporogenous, irregular shaped Gram-positive ubiquitous rods that belong to the human skin 

microbiota. Nearly all strains are catalase and oxidase positive and express a range of 

pigments (Bernard, 2012). Until now, there are 88 established species: 53 are occasional or 

rare causes of infection in humans, being accidentally transmitted by zoonotic contact, with the 

remaining 35 species originating solely from animals, including birds, the environment, water, 

foodstuffs or synthetic materials (Bernard & Funke, 2012). Corynebacterium is increasingly 

being recognized as a relevant opportunistic pathogen under specific circumstances, 

especially for immunocompromised patients, with prosthetic devices, or committed to 

hospitals/nursing homes for long-term periods (Funke, von Graevenitz, Clarridge & Bernard, 

1997).  

The species C. urealyticum, C. amycolatum, C. jeikeium and C. striatum have been reported 

as the most important pathogens of this genus. However, the most significant pathogen of this 

group is Corynebacterium diphtheriae, the primary cause of diphtheria (Riebel, Frantz, 

Adelstein & Spagnuolo, 1986; Renom et al., 2007).  

Different studies have described high resistance rates in Corynebacterium regarding several 

antimicrobials, such as β-lactams, aminoglycosides, quinolones, macrolides, lincosamides and 

DFU, diabetic foot ulcer; FISH, Fluorescent In Situ Hybridization. 

Figure 6. Biofilm-producer E. faecalis DFU strain (left) after FISH (×1000; original); 
polymicrobial biofilm formed by Corynebacterium (green) and E. faecalis (red) DFU 
strains after FISH (right) (×1000; original).  
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tetracyclines (Goldstein et al., 2003; Gómez-Garcés, Alos & Tamayo, 2007). The high level of 

macrolide resistance is of particular concern due to its wide use in infections caused by these 

microorganisms, being an alternative to β-lactams and tetracyclines (Ortiz-Pérez et al., 2010). 

Macrolide resistance is mainly due to the presence of methylase enzymes that are codified by 

erm, with the presence of the ermX methylase gene being definitively linked to the resistant 

macrolide-lincosamide-streptograminB (MLSb) phenotype, expressed as resistance to 

erythromycin and clindamycin and also associated with resistance to other antimicrobial 

agents, including chloramphenicol and trimethoprim-sulfamethoxazole (Roberts et al., 1999). 

Mutations in gyrA have also been linked to quinolone and vancomycin resistance in 

coryneform bacteria, being inappropriate to recommend glycopeptides as first-line drugs for 

the treatment of these infections, since some corynebacteria are intrinsically vancomycin 

resistant (Bernard, 2012). 

Bessman, Geiger & Canawati in 1992 referred the importance of this organism in DFI; 

afterword several studies have reported a high prevalence of Corynebacterium in foot ulcers 

(Citron et al., 2007; Gontcharova, Youn, Sun, Wolcott & Dowd, 2010; van Asten et al., 2015), 

being in some cases the most frequently isolated species (Dowd et al., 2008a). Although often 

considered non-pathogenic since it belongs to the human skin and mucous membranes 

microbiota, this genus appears to be a common and prevalent microorganism in polymicrobial 

DFI. 

1.3.4.2. Pseudomonas aeruginosa 

Pseudomonas aeruginosa has emerged worldwide as one of the most relevant pathogen in 

health care institutions, contributing significantly to high morbidity and mortality in hospitalized 

patients (Peleg et al., 2009). After S. aureus, P. aeruginosa is the bacterial species most 

frequently isolated from diabetic foot ulcers, as reported by several studies (Sekhar et al., 

2014), representing about 7 to 23% of total DFI isolates. In a study conducted by Swarna et al. 

in 2012, it was the most frequently isolated bacteria from DFI (Swarna et al., 2012). P. 

aeruginosa may cause severe tissue damage in diabetics and should never be ignored as 

insignificant in DFU because it may result in sepsis and in the need for amputation 

(Sivanmaliappan & Sevanan, 2011).  

P. aeruginosa is a non-fermentative Gram-negative, rod-shaped (Figure 7), asporogenous and 

monoflagellated bacterium that has an incredible nutritional versatility 

(http://www.antimicrobe.org/new/b112.asp). It is an opportunistic pathogen causing severe 

infections, including ventilator-associated pneumonia, urinary and peritoneal dialysis catheter 

infections, bacterial keratitis, otitis externa and burn wound infections. P. aeruginosa plays a 

particularly important role in patients with cystic fibrosis, in whom chronic and recurrent 

infections of the sinopulmonary tract by P. aeruginosa are common (Driscoll, Brody & Kollef, 

2007).  
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The mechanisms involved in P. aeruginosa adhesion have been increasingly investigated over 

the last decade. Flagella and type IV pili, cup fimbria and pel genes are involved in bacterial 

adhesion, being also observed that P. aeruginosa is able to produce biofilm through a complex 

and highly regulated mechanism, in which each stage has a unique phenotype (Bonfiglio et al., 

1998; Sauer et al., 2002; Macé et al., 2008). The pathogenicity of these organisms is based on 

their ability to produce a variety of toxins and proteases and also to resist to phagocytosis 

(Sivanmaliappan & Sevanan, 2011). 

Besides being noted for its metabolic versatility and its exceptional ability to colonize a wide 

variety of environments, P. aeruginosa is also relevant due to its intrinsic resistance to a wide 

diversity of antimicrobial agents (Carmeli, Troillet, Eliopoulos & Samore, 1999). The antibiotic 

agents to which these strains are not regularly resistant include fourth-generation and some 

third-generation cephalosporins (cefepime, ceftazidime and cefoperazone), β-lactam/β-

lactamase inhibitor combinations (piperacillin/tazobactam and ticarcillin/clavulanic acid), 

ureidopenicillin (piperacillin), carboxypenicillins (ticarcilin), aminoglycosides (gentamicin, 

tobramycin and amikacin), monobactams (aztreonam), polymyxins (colistin), some quinolones 

(levofloxacin and ciprofloxacin) and carbapenems (imipenem, meropenem and ertapenem) 

(Driscoll et al., 2007; Sivanmaliappan & Sevanan, 2011); however, cross-resistance between 

these agents has been reported. P. aeruginosa exhibits resistance to a variety of 

antimicrobials including β-lactams, with carbapenems being often used for treating infections 

caused by β-lactam resistant P. aeruginosa, and also by strains resistant to aminoglycosides 

and fluoroquinolones, the traditional antipseudomonal antimicrobials (Murugan & Lakshmi, 

2010).  

1.3.4.3. Acinetobacter baumannii 

Acinetobacter baumannii is another common Gram-negative DFI isolates, besides 

Enterobacteriaceae as E. coli, Proteus spp., Klebsiella spp. and Enterobacter spp. (Ramakant 

et al., 2011). A. baumannii represents approximately 2 to 5% of total DFI isolates as described 

in several studies (Ge et al., 2002; Gadepalli et al., 2006; Dowd, Sun et al., 2008; Mendes et 

al., 2012; Swarna et al., 2012; Malik et al., 2013). The same reports referred that 

Acinetobacter DFI isolates showed significant antimicrobial resistant profiles associated to 

biofilm production. 

The genus Acinetobacter is formed by a genetically diverse group of aerobic Gram-negative 

non-fermenting bacteria (Rao, Karthika & Singh, 2008). The most relevant species is A. 

baumannii, an important short rod (coccobacillus), considered to be an opportunistic pathogen 

(Figure 7) with the ability to colonize and persist in the hospital setting and on medical devices 

(Lee et al., 2008). It was previously reported as an important pathogen in wounded soldiers 

returning from Iraq and Afghanistan, in patients affected by tsunami in Southeast Asia in 

December 2004 and survivors from the earthquake that occurred in Turkey in 1999. Since 
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these patients are often transferred to tertiary care centers, sometimes in distant geographic 

areas, they may become a source of transmission in previously non-endemic hospitals (Abbo, 

Carmeli, Navon-Venezia, Siegman-Igra & Schwaber, 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

A. baumannii nowadays represents a significant problem especially in intensive care units, 

causing pneumonia, wound and urinary tract infections, bacteraemia and meningitis (Espinal, 

Martí & Vila, 2012). The mortality rate associated to Acinetobacter nosocomial infections is 

high, ranging from 26 to 68% (Ibrahim & Somily, 2012). It ranks second after P. aeruginosa 

among the nosocomial, aerobic, non-fermentative, Gram-negative bacilli pathogens (Rao et 

al., 2008). A. baumannii can survive for extended periods on fingertips and on inanimate 

objects such as glass, plastic and other environmental surfaces, even in dry conditions 

(Jawad, Heritage & Snelling, 1996). The survival of A. baumannii has been attributed to its 

ability to form biofilms that, added to desiccation resistance, may enhance colonization and 

persistence in the hospital environment and also increase the probability of acquiring 

antimicrobial resistance genes, that confer ability to cause nosocomial infections and 

outbreaks (Espinal et al., 2012). Biofilm formation in A. baumannii is multifactorial and diverse, 

being dependent on the adhesion surface; however, many of the molecular mechanisms 

responsible for bacterial attachment remain obscure (Gaddy & Actis, 2009). Several reports 

have shown that csuC and csuE, which belong to a gene cluster encoding pili assembly 

proteins, are required for the early steps of biofilm formation (Tomaras, Dorsey, Edelmann & 

Actis, 2003). 

A significant association between biofilm production and resistance to a variety of antimicrobial 

agents has been reported in A. baumannii (Peleg et al., 2009; Swarna et al., 2012). Whereas 

multi-drug resistance is rarely found in community isolates of A. baumannii, the prevalence of 

the MDR phenotype among hospital isolates has increased during the last decade, and MDR 

Figure 8. P. aeruginosa (left picture) and A. baumannii (right picture) DFU strains 
after FISH (×1000; original). 

DFU, diabetic foot ulcer; FISH, Fluorescent In Situ Hybridization. 
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A. baumannii has become a leading pathogen in many hospitals worldwide (Falagas, Bliziotis 

& Siempos, 2006). Therefore, A. baumannii infections represent a global medical challenge. 

 

 

1.4. Biofilms in DFI 

 

1.4.1. Introduction  

Bacteria exist as suspended growth forms known as “planktons” that multiply rapidly, are 

highly motile and are more susceptible to the effects of antibiotics, environment and host 

factors. Under nutrient limitations bacteria grow more slowly, have restricted mobility and are 

termed “sessile”, ultimately forming large aggregates known as biofilms. 

A biofilm can be defined as “a community of bacteria and their extracellular polymers that is 

attached to surfaces” (Sekhar, Ohri & Chakraborti, 2010). The concept of biofilm was first 

addressed by the Dutch scientist Antonie van Leeuwenhoek, in the seventeenth century, who 

described “animalcules” as the accumulation of tiny living animals in the plaque of his own 

teeth (Dufour et al., 2012); however the general theory of biofilm occurrence was only 

established in 1978 by Costerton, Geesey & Cheng (1978). This theory stated that the majority 

of bacteria grow in matrix-enclosed biofilms adherent to surfaces in all nutrient-sufficient 

ecosystems; he stated that these bacteria persisted in coordinated, spatially organized, and 

metabolically integrated biofilm communities. 

The definition of biofilm has evolved over the last 25 years, becoming a more dynamic concept 

in which single-cell organisms assume a temporary complex process that is multifaceted and 

dynamic in nature. Costerton et al. in 1995 stated that the cellular adhesion triggered the 

expression of genes controlling the production of bacterial components required for adhesion 

and biofilm formation, emphasizing that the process of biofilm production was regulated by 

specific genes transcribed during initial cell attachment. 

1.4.2. Biofilm formation  

Formation of biofilms involves several stages (Figure 8). The first step is a reversible 

attachment of the bacterial cells to a biotic or abiotic surface, mediated by weak Van der 

Waals, Lewis acid-base and electrostatic forces. This transient attachment is reinforced by 

host and tissue-specific adhesins located on the bacterial surface, such as LPS and 

exopolysaccharides, or by appendages such as pili and fimbriae that allow the establishment 

of irreversible interactions (Kaplan, 2010). 

The second stage of biofilm development involves the multiplication of bacteria on the 

attached surface forming micro-colonies, and the synthesis of an extracellular polymeric matrix 

that strongly attaches the bacterial mass to the underlying surface. This matrix also contributes 

to biofilm-mediated antimicrobial resistance, either by acting as a diffusion barrier, or by 
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binding directly to antimicrobial agents and preventing their access to the biofilm cells (Mah & 

O’Toole, 2001). Microorganisms account for less than 10% of the biofilm dry mass, with the 

self-produced polymeric matrix representing 90% of it. This matrix is mainly composed by EPS 

that can vary greatly between biofilms, depending on the microorganisms present, the shear 

forces experienced, the temperature and the availability of nutrients. The EPS is commonly 

called “the dark matter of biofilms” due to the large range of matrix biopolymers that include 

polysaccharides, proteins, pili, flagella, nucleic acids, lipids and eDNA (Flemming & 

Wingender, 2010). 

In the third step occurs the development of mature biofilms, composed by macro-colonies 

containing multiple layers of packed cells gathered into “mushroom” and “tower-like” 

structures. Macro-colonies are surrounded by water channels that allow the exchange of 

nutrients and cell signalling (Hall-Stoodley, Costerton & Stoodley, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final stage of biofilm development comprises the individual or group detachment of cells 

from mature biofilms and their dispersal into the environment. This is an essential stage of the 

biofilm life cycle that allows the translocation of cells to new locations where they can attach, 

allowing biological dispersal, bacterial survival and disease transmission (Kaplan, 2010). 

There are diverse mechanisms of biofilm dispersal used by different bacterial species, 

including the production of extracellular enzymes that degrade adhesive components in the 

EPS: extracellular polymeric substances. 

EPS: extracellular polymeric substances. 

Figure 8. Schematic representation of the biofilm formation steps: initial 
attachment to surface, cell proliferation with formation of a monolayer and 
biofilm maturation and cell dispersal. Adapted from Dufour et al. (2012). 
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biofilm matrix, such as glycosidases, proteases and deoxyribonucleases (Boles & Horswill, 

2008). The deoxyribonuclease known as thermonuclease has been implicated in cell 

detachment from S. aureus biofilms, and may function as an endogenous mediator of biofilm 

dispersal in this species (Mann et al., 2009). 

Alternative mechanisms of biofilm dispersal include the production of biofilm colonies 

containing internal cavities that become filled with planktonic cells, which can be released into 

the surrounding medium. These cavities have been observed in biofilms produced by the 

human pathogens such as Aggregatibacter actinomycetemcomitans, P. aeruginosa, Serratia 

marcescens and S. aureus (Boles, Thoendel & Singh, 2005; Ma et al., 2009). 

1.4.3. Biofilm and Quorum Sensing 

In 2000, Watnick & Kolter (Watnick & Kolter, 2000) compared biofilm to a “bustling city”, in 

which microbes are distributed geographically based on the environment and neighbourhood, 

being considered “social” organisms able to communicate with each other. Cell-to-cell 

communication is generally carried out by secrete signalling molecules, produced and 

released by bacteria in response to population density variations, through a process called 

quorum sensing. Low molecular weight molecules called “autoinducers” are synthesised 

intracellularly and released in response to population increases, reaching a quorum sensing 

threshold that triggers signal transduction cascades resulting in changes of cellular gene 

expression with a consequent increased transcription of biofilm-specific genes (Ng & Bassler, 

2009). Autoinducers have been shown to control several stages of biofilm formation, including 

surface attachment, matrix synthesis, formation of fluid channels and pillar-like architecture 

and dispersal (Hall-Stoodley et al., 2004; Stanley & Lazazzera, 2004). 

Acyl homoserine lactones (AHL) are the major and best-studied class of autoinducers used by 

Gram-negative proteobacteria for interspecies quorum sensing. The first AHL autoinducer was 

discovered in the bioluminescent marine bacterium Vibrio fischeri, in which two proteins LuxI 

and LuxR are essential for control of bioluminescence (Sensing, Fuqua, Parsek & Greenberg, 

2001). 

One of the best-studied AHL quorum sensing systems include the LasI/LasR-RhlI/RhlR of P. 

aeruginosa that controls virulence factor gene expression and biofilm formation (Winson et al., 

1995). Another autoinducer produced by P. aeruginosa is the 2-heptyl-3-hydroxy-4-quinolone, 

also known as Pseudomonas quinolone signal or PQS, that mediates cell death, DNA release 

and induces dispersal of wild-type P. aeruginosa biofilms cultured in microplate wells (Dong, 

Zhang, An, Xu & Zhang, 2008). 

Gram-positive bacteria primarily use modified oligopeptides as autoinducers in quorum 

sensing systems. Staphylococci produce and secrete a number of peptide signals called 

phenol-soluble modulins (PSM) that accumulate in the extracellular environment. Evidences 

suggest that two of these peptides may play a role in biofilm dispersal, namely the δ-toxin 
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produced by S. epidermidis and S. aureus and the autoinducing peptide I (AIP-I) produced by 

S. aureus (Novick & Geisinger, 2008). When the density of AIP throughout the bacterial 

community reaches the quorum sensing threshold, the agr gene expression is induced. This 

result in the upregulation of the expression of detergent-like peptide, a protease and a 

thermostable nuclease, leading to release of bacterial cells from the mature biofilm (Archer et 

al., 2011). Autoinduction is not only responsible for biofilm formation, but also for many other 

processes, such as expression of virulence factors and biosynthesis of antibiotics (Dickschat, 

2010).  

1.4.4. Multi-drug resistance in biofilm 

Inadequate exposure to antimicrobial agents is one of the principal factors underlying 

chemotherapeutic failure and presumably limits the efficacy of some agents regarding biofilm-

associated infections (Lynch & Robertson, 2008). 

Biofilm bacteria are particularly recalcitrant to antibiotic treatments due to many mechanisms 

that makes them up to 1000-fold more resistant to antibiotics than their planktonic counterparts 

(Høiby, Bjarnsholt, Givskov, Molin & Ciofu, 2010). The first experiment showing that biofilm 

cells were more tolerant to drugs than planktonic cells was probably performed by 

Leeuwenhoek, when he failed to kill in situ plaque bacteria present on his teeth using 

prolonged rinsing with vinegar, while the treatment was effective if they were first removed 

from the teeth and mixed with vinegar in the laboratory (Dufour et al., 2012). 

It is important to distinguish between tolerance and resistance, although their distinction 

remains ambiguous. “Resistance” is used to describe the inherited ability of microorganisms to 

grow at high concentrations of an antibiotic, independently of treatment duration, and is 

quantified by the MIC of a particular antibiotic, whereas “tolerance” is more generally used to 

describe the ability, inherited or not, of microorganisms to survive transient exposure to high 

concentrations of an antibiotic without a change in the MIC, which is often achieved by slowing 

down an essential bacterial process (Brauner, Fridman, Gefen & Balaban, 2016).  

Regardless the resistance mechanisms, bacterial biofilms use several strategies to prevent a 

drug to hit its target and can include one or more of the following: destruction of the antibiotic, 

for example by β-lactamases; restricted penetration of the antimicrobial agent through the 

biofilm matrix; direct binding of the antibiotics to the EPS matrix; altered growth rate of biofilm 

bacteria present in the inner layers; target modifications (Dufour et al., 2012). In fact, biofilm 

structure and the extracellular polymeric substances represent an impermeable barrier to 

drugs, limiting antimicrobial penetration inside the biofilm and shielding its cells. Already in 

1994, Suci et al. demonstrated the occurrence of delayed penetration of ciprofloxacin into P. 

aeruginosa biofilms, requiring 21 minutes in contrast with the usual 40 seconds (Donlan & 

Costerton, 2002). Upon antibiotic exposure, cells at the top of the biofilm interface die due to 

their closer contact with the antimicrobial compound, while bacteria embedded deep inside the 
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biofilm are able to survive. This cannot be applicable to all antibiotics because the EPS matrix 

provides little or no barrier to some of them (Donlan, 2002).  

The development of dormant persister cells is another mechanism of resistance phenotype in 

biofilms (Dufour et al., 2012). This phenotype was first described in S. aureus in 1942 by 

Hobby et al., who found that 1% of cells were not killed by penicillin and became persister cells 

(Wood, Knabel, & Kwan, 2013). Persisters are not mutants, as they reach this state without 

undergoing any genetic change. They are phenotypic variants of actively dividing cells 

produced stochastically in the population and arising due to a state of dormancy, in which cells 

are metabolically inactive. This allows them to survive to stressful conditions and prevents 

death because some antibiotics only target dividing cells; for this reason persister cells are 

extremely tolerant to high concentrations of antibiotics (Lewis, 2008). 

Another mechanism related to biofilm resistance to antimicrobial agents is that biofilm-

associated cells grow significantly more slowly than planktonic cells and, as a result, take up 

antimicrobial agents more slowly. This occurs especially in the microbial cells present in the 

biofilm deeper layers where nutrients and oxygen are limited, leading to a lower growth rate 

that may account for the enhanced tolerance toward antibiotics and persistent infections 

(Sekhar et al., 2010). As some antibiotics only target dividing cells, persister cells are 

extremely tolerant to high concentrations of antibiotics (Lewis, 2008). 

One of the mechanisms more explored to explain the recurrence of biofilm infections, is the 

drug efflux systems that represent a key mechanism of resistance in Gram-negative bacteria, 

being also found in Gram-positives. These systems pump solutes out of the cell, allowing the 

microorganisms to regulate their internal environment by removing toxic substances, including 

antimicrobial agents, metabolites and quorum sensing signal molecules (Soto, 2013). 

Moreover, bacteria in biofilms are protected against stress factors, and can switch to more 

tolerant phenotypes when they are under environmental stressors, such as starvation, heat or 

cold shock. These general stress responses in bacteria are regulated by sigma factors (Dufour 

et al., 2012). 

Furthermore, mobile antibiotic resistance genes, associated with plasmids and transposons 

can be shared among bacteria occupying the same environment by horizontal gene transfer, 

especially in bacterial communities (Sherrard, Tunney & Elborn, 2014). 

Finally, the role of quorum sensing and intracellular signalling molecules in antimicrobial 

resistance of biofilms has also been investigated, and studies have shown that the use of 

quorum sensing inhibitors were able to enhance susceptibility of P. aeruginosa biofilms to 

antimicrobial treatments (Bjarnsholt et al., 2005). However, these cell-cell communication 

mechanisms are not yet fully understood and require further investigation. Figure 9 

summarises some of the bacterial mechanisms of antimicrobial resistance in biofilms. 
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1.4.5. Biofilm in infectious diseases 

Several pathogens associated with chronic infections are linked to biofilm infections. Persistent 

bacterial infections are typically biofilm-related diseases, developing slowly, rarely resolved by 

immune defences, and with the ability to persist for a long time in the human body (James et 

al., 2007). In fact, 80% of bacterial chronic inflammatory and infectious diseases involve 

biofilms (Wood, Hong & Ma, 2011).  

About 60 to 70% of hospital-acquired infections are due to biofilms as they have the ability to 

colonize biomedical devices, including prosthetic heart valves, orthopaedic devices, vascular 

prostheses and urinary catheters. The most frequent organisms that colonize implanted 

medical devices are staphylococci and enterococci, two commensal inhabitants of the human 

skin microbiota, upper respiratory tract, lower gastro-intestinal tract and urogenital tract 

(Bryers, 2009).  

A vast majority of chronic wounds involve polymicrobial interactions that usually occur within 

biofilms (Sauer et al., 2002). Biofilms are responsible for the non-healing nature of chronic 

wounds, where their presence not only delays the wound healing process, but also 

Figure 9. Antibiotic resistance mechanisms in bacterial biofilms. 

Adapted from Sherrard et al. (2014). 



35 
 

complicates treatment outcomes. In fact, polymicrobial wound infections that involve biofilms 

exhibit increased tolerance to antibiotic treatment as compared to monomicrobial infections 

(Wei, Chong & Kline, 2016). Infected DFU share these characteristics and it has been 

hypothesized that biofilm may play a role in these infections (Neut, Tijdens-Creusen, Bulstra, 

van der Mei & Busscher, 2011). In view of the diverse population observed in DFU, Dowd et 

al. in 2008 introduced the concept of functional equivalent pathogroups (FEP) (Dowd et al., 

2008a). Their hypothesis suggested that single non-pathogenic species might not cause 

disease, but when in mixed populations, the synergistic effect obtained contribute to the 

chronicity of diabetic foot wounds. The presence of FEP could explain the failure of antibiotic 

monotherapies, because diverse pathogenic biofilms are more stable than less diverse ones. 

 

 

1.5. DFU Treatment 

 

1.5.1. Therapeutic protocols 

1.5.1.1. Debridement, wound healing agents and surgery 

Based on National Institute for Health and Clinical Excellence strategies, diabetic DFU healing 

must be managed by a multidisciplinary team, that consists of a general practitioner, a nurse, 

an educator, an orthotic specialist and a podiatrist, being sometimes necessary to consult 

other specialists such as vascular surgeons, infectious disease specialists, dermatologists, 

endocrinologists, dieticians and orthopaedic specialists (National Institute for Health and Care 

Excellence [NICE], 2015). A holistic approach with a multi-disciplinary team can reduce 

amputation rates, lowering the associated costs and leading to better quality of life for patients 

with DFU (Yazdanpanah, Nasiri & Adarvishi, 2015). 

First of all, foot self-management is considered the cornerstone to prevent DFU, and 50% of 

DFU cases can be prevented by effective education (Mensing et al., 2004). Patients with DFU 

should be educated about risk factors and the importance of foot care including the need of 

self-inspection, foot temperature monitoring, appropriate daily foot hygiene, use of proper 

footwear and regular blood sugar control. In fact, glucose control is the most important 

metabolic factor, being reported that inadequate blood sugar control is the primary cause of 

DFU (McMurry, 1984). A greater elevation in blood glucose level is associated with a higher 

potential for suppressing inflammatory response and decreasing the host’s response to 

infection (Alavi et al., 2014). 

Debridement, consisting in the removal of necrotic and senescent tissues as well as foreign 

and infected materials from the wound, is considered as the first and most important 

therapeutic step allowing the wound closure and decreasing the possibility of limb amputation 

(Davis, Martinez & Kirsner, 2006). Debridement also seems to decrease bacterial counts and 
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stimulates production of local growth factors. Moreover, it also reduces pressure, allows for the 

evaluation of the wound bed and facilitates wound drainage (DiPreta, 2014). There are 

different kinds of debridement techniques including surgical, enzymatic, autolytic, mechanical 

and biological. The debridement method of choice may depend on the patient’s level of 

comfort and the practitioner’s level of expertise (Lebrun, Tomic-Canic & Kirsner, 2010).  

A long time used debridement technique that is categorized as biological debridement, is 

maggot debridement therapy (MDT), indicated for open wounds and ulcers that contain 

gangrenous or necrotic tissues, with or without infection (Mumcuoglu, 2001). In this method, 

sterile and live forms of Lucilia sericata larvae are applied to the wound to achieve 

debridement, disinfection and ultimately wound healing, due to a powerful autolytic enzyme 

secreted by the larvae that liquefies necrotic tissues, stimulating the healing process and 

destroying bacterial biofilms (Sherman, 2009). MDT was routinely used until the mid-1940s, 

becoming rare with the advent of antibiotics; however, it is now considered by many therapists 

as a practical solution for many non-healing wounds. Many studies have reported that MDT 

can significantly diminish wound odour and bacterial count, including MRSA, prevent hospital 

admission and decrease the number of outpatient visits of individuals with DFU (Bowling et al., 

2007). 

Despite its advantages, adequate debridement must always be accompanied by the 

application of topical wound healing agents, dressings or wound closure procedures, which 

may be expensive (Yazdanpanah et al., 2015). The use of offloading techniques, commonly 

known as pressure modulation, is considered the most important component for the 

management of neuropathic ulcers in patients with diabetes, promoting DFU healing (Mendes 

& Neves, 2012). Many types of devices can offload the infected wound, but it is important to 

choose one that permits easy inspection.  

Over the last decades, novel dressings have appeared for DFU management, aiming to 

enhance the life quality of patients, alleviate pain, deliver drugs and reduce odours. Ideally, 

dressings should confer moisture balance, protease sequestration, growth factor stimulation, 

antimicrobial activity, oxygen permeability and the capacity to promote autolytic debridement, 

facilitating the production of granulation tissues and the re-epithelialization process (Moura, 

Dias, Carvalho & De Sousa, 2013). Dressings are used based on DFU characteristics and can 

include natural or synthetic polymers that have been combined or cross-linked for this 

purpose. Hydrogels have been found to be the most popular choice of dressing for all DFU 

types but do not yet represent a practical option since application of these compounds tends 

be very expensive and difficult to regulate/control (Cos, Toté, Horemans & Maes, 2010).  

Surgery procedures for DFU healing include non-vascular and vascular foot surgery, and in 

some cases amputation. While the primary goal of DFU management focuses on limb salvage, 

in some cases amputation may offer a better functional outcome. Surgical procedures range 

from drainage and excision of infected and necrotic tissues, to revascularization of the lower 
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extremity and reconstruction of soft-tissue defects or mechanical misalignments (Lipsky, 

2004a). Unfortunately, surgical treatment of diabetic foot infections is based on even less-

structured evidence than that for antibiotic therapy (Citron et al., 2007).  

1.5.1.2. Antibiotic therapy 

Antibiotic therapy is always relevant in the treatment of chronic wounds when clinically 

infected, but the role of systemic antibiotics is limited by the lack of blood supply to the wound 

surface. Systemic antibiotics have a clear role in infected wounds with surrounding cellulitis, 

but their efficacy in the routine treatment is limited (Hernandez, 2006). Antibiotic therapy is 

associated with frequent adverse effects, high financial costs and increasing risk of antibiotic 

resistance dissemination; therefore, the reasonable use of antibiotics for DFI treatment is a 

very crucial concern for clinicians (Chu et al., 2015). According to the 2012 clinical practice 

guidelines for the diagnosis and treatment of DFI established by the Infectious Diseases 

Society of America (IDSA) (Lipsky et al., 2012b), it is recommended that, in the case of 

infected wounds, the clinicians send appropriately obtained specimens for culture prior to 

starting empiric antibiotic therapy. The empiric antibiotic regimen is based on the severity of 

the infection and the most probable etiologic agent(s), and the definitive protocol is based on 

the results of appropriately culture and sensitivity testing from a wound specimen as well as 

the patient’s clinical response to the empiric regimen. The duration of antibiotherapy for DFI 

should be based on the severity of infection, presence or absence of bone infection and 

clinical response to therapeutics. In fact, it can generally be discontinued when signs and 

symptoms of infection are resolved (Lipsky et al., 2012a). In a recent study, Chu et al. (Chu et 

al., 2015) demonstrated that continuing antibiotic regimens could improve clinical outcomes for 

patients with moderate/severe infections when signs and symptoms have resolved, but more 

studies are required. 

Topical antibiotics have been accepted as useful in the presence of high bacterial counts that 

translate into a highly exudative wound, but their role in colonized wounds is less clear 

(Mustoe, 2004). Their use is controversial because the lack of proved efficacy, the reports of 

cytotoxicity and the risk of antibiotic-resistance induction. Regardless of the decision to initiate 

topical antimicrobial therapeutics, general consensus exist about the fact that a protracted 

courses of antibiotics may inhibit wound healing and promote the development of resistant 

organisms (O’Meara, Cullum, Majid & Sheldon, 2001; Mendes, 2014). Antiseptics may be 

preferable to topical antibiotics because of decreased rates of bacterial resistance and contact 

susceptibility (Richmond, Vivas & Kirsner, 2013). 

Sometimes, if all these treatment protocols fail or cannot be considered, amputation is the only 

possible option rendering novel approaches a major necessity.  
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1.5.1.3 Advanced therapeutics 

Advanced therapeutics for DFU treatment are also available. Hyperbaric oxygen therapy 

(HBOT) has shown promise in the treatment of serious cases of non-healing DFU, which are 

resistant to other therapeutical methods, but does not substitute antibiotic therapy, local humid 

therapy or surgical wound debridement (Barnes, 2006). It involves intermittent administration 

of 100% oxygen, usually in daily sessions, but has a limited availability and is expensive. This 

treatment aims to increase oxygen delivery to ischemic tissues, which may help fight infection 

and improve wound healing in the high-risk foot (Lipsky, 2004b). 

Another technique reported to stimulate DFU healing is Electrical Stimulation (ES). It can 

improve common deficiencies that have been associated with faulty wound healing in DFU, 

such as poor blood flow, infection and deficient cellular response (Thakral et al., 2013). ES 

also has an antibacterial effect by stimulating growth factors and collagen synthesis 

(Santamato et al., 2012). This therapy is safe, inexpensive and easy to perform. 

Negative pressure wound therapy (NPWT) is a non-invasive wound closure system that uses 

controlled and localized negative pressure to help heal chronic and acute wounds. While 

available evidences for the efficacy of NPWT in DFU patient treatment are promising, this 

method does not replace but is used in association with surgical wound debridement to 

improve blood circulation in all DFU patients (Vikatmaa, Juutilainen, Kuukasjärvi & 

Malmivaara, 2008).  

Bio-engineered skin (BES) has been used during the last decades as a new therapeutic 

method to treat DFU. This method replaces the degraded extra cellular matrix, introducing a 

new one with cellular components that allow for a new healing trajectory. Currently, many 

kinds of BES products are approved in the United States and are available for DFU treatment, 

such as Dermagraft, Apligraf and TheraSkin (Yazdanpanah et al., 2015). This method cannot 

be used in infected diabetic foot and requires surgical revascularization and decompression 

(Marston, Hanft, Norwood & Pollak, 2003). BES with stem cells has been applied to diabetic 

animals allowing earlier abundant neo-vessel formation and better tissue remodelling; 

however, the clinician must be aware that the majority of biological products present high 

protein levels that may be very susceptible to the inflammatory enzymatic activity in a wound. 

Therefore, controlling high levels of inflammation is as critical as debridement in promoting 

wound healing (Mulder et al., 2014). 

Low-level light therapy (LLLT) uses either low-level, low-power lasers or light-emitting diodes 

(LED) to alter cellular function and molecular pathways. The biologic mechanism of LLLT 

resides in the absorption of light by photo-acceptors or chromophores at the molecular, 

cellular, and tissue levels, resulting in cellular changes such as synthesis of collagen and 

extracellular matrix, recruitment of cytokines and growth factors, migration, proliferation and 

differentiation of cells (Tchanque-Fossuo et al., 2016). The evidence is limited but LLLT may 

be a promising treatment for DFU. 
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Since diabetes is associated with immunological deficiencies that help to explain the clinical 

failure of treatments, several investigators have sought adjunctive therapies for treating DFI. 

Two types of growth factors have been used in clinical practice of diabetic patients: the 

platelet-derived growth factors and the Granulocyte-Colony Stimulating Factor (G-CSF) 

(Frykberg & Banks, 2015). The recombinant human platelet derived growth factor (rhPDGF), 

becaplermin (brand name Regranex), produced by the yeast Saccharomyces cerevisiae, 

remains the only growth factor approved by the US Food and Drug Administration (FDA) for 

application in chronic diabetic wounds (Barrientos, Stojadinovic, Golinko, Brem & Tomic-

Canic, 2008). Available as a topical gel, the clinical use of rhPDGF remains limited because of 

its high cost and uncertain patient-specific clinical benefits. Some studies have even indicated 

that it would be biologically possible that topical administration of rhPDGF could promote 

cancer (Richmond et al., 2013; Mulder et al., 2014).  

G-CSF is an endogenous haematopoietic growth factor that improves the function of both 

normal and defective neutrophils in people with diabetes (Nelson et al., 2000). Its purified 

cloned recombinant form, usually injected, is commercially approved and has been used to 

treat various difficult infectious problems. The available evidence regarding adjunctive G-CSF 

treatment in people with a DFI is limited; it does not appear to influence infection resolution 

and healing but it seems to reduce the need for surgical interventions, especially amputations, 

and the duration of hospitalisation. Therefore, it should be considered as a complement to 

appropriate care for DFI (Cruciani, Lipsky, Mengoli & de Lalla, 2013). 

In summary, HBOT, NPWT and G-CSF can be included in the management of infected DFU, 

although the other advanced therapies available can only be applied in non-infected DFU. 

 

1.5.2. Bacteriophage therapy 

1.5.2.1. Bacteriophages: general features and life cycle 

Bacteriophages are viruses that specifically infect bacteria, consisting of a DNA or RNA 

genome contained within a protein coat. In 2011, Alexander Sulakvelidze defined 

bacteriophages as “the most ubiquitous organisms on Earth, playing a significant role in 

maintaining microbial balance on this planet” (Sulakvelidze, 2011). Indeed, bacteriophages, or 

phages, are present everywhere together with their bacterial host, and play key roles in 

regulating the microbial balance in every ecosystem. The discovery of phages was achieved 

by two microbiologists, independently: in 1915 by the British Felix Twort and in 1917 by the 

French-Canadian Felix d’Hérelle; both investigated the nature of bacteriophages and explored 

their ability to function as therapeutic agents (Wittebole, De Roock & Opal, 2013). 

The International Committee for Taxonomy of Viruses (ICTV), responsible for phage 

classification, actually considers 14 phage families, 11 of which are not grouped in a superior 

taxonomical category, while the other three are included in the order Caudovirales. This order 
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includes the most known bacteriophages, with DNA genomes, a regular symmetric capsid 

head and a symmetric helical DNA injection tail. The tail morphology allows the definition of 

the three Caudovirales families: Myoviridae (long contractile tail), Syphoviridae (long non-

contractile tail) and Podoviridae (short tail) (Ackermann, 2009). 

Phages are obligate parasites that can sustain two types of replication cycle, lytic and 

lysogenic, defined by their genetic interaction with the bacterial host. Upon infection, lytic 

phages immediately enter a productive cycle, in which the phage genome is replicated and 

phage capsid and tail proteins are synthesized using bacterial cell machineries; the phage 

genome is then packaged into progeny phage particles, which are liberated via bacterial lysis 

(Figure 10). By contrast, temperate phages can enter a lysogenic cycle, during which the 

phage genome is integrated into bacterial chromosome becoming a prophage, persisting in a 

dormant state until, at some point, phage genes are activated and phage virions are produced, 

eventually lysing the host cell and releasing progeny phages (Figure 10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. The phage replication cycles. Schematic of lytic, lysogenic 

and pseudolysogenic cycles. Adapted from Feiner et al. (2015). 
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On the other hand, virulent or lytic phages do not enter into a prophage state and immediately 

begin viral reproduction upon infection, resulting in rapid destruction of their host cell within 

minutes to hours (Burrowes, Harper, Anderson, McConville & Enright, 2011). Another less 

common phage replication cycle is pseudolysogeny, an unstable situation in which the phage 

genome fails to replicate as lytic or to become a prophage. This occurs most frequently under 

nutrient-deprived conditions, when bacterial cells cannot support DNA replication or protein 

synthesis, and persists until nutrition is restored (Feiner et al., 2015) (Figure 10). 

The lysogenic process can promote gene transfer, which disseminates toxin proteins or 

pathogen factors among bacterial species, including antibiotic resistance genes, representing 

a selective advantage for bacterial host; however, the same process could be exploited 

therapeutically by using phages to transfer genes aiming at rendering bacteria more 

susceptible to some antibiotics (Wittebole et al., 2013).  

 
 
1.5.2.2. Pros and cons of bacteriophage therapy 

Phages effectively constitute a powerful tool to fight resistant infections and they can be used 

in combination with antibiotics for improved performance (Pires, Vilas Boas, Sillankorva & 

Azeredo, 2015). 

Bacteriophage therapy (BT) is the use of lytic bacteriophages to reduce or eliminate 

pathogenic bacteria (Mendes et al., 2014). Bacteriophages are natural antibacterial organisms 

able to regulate bacterial populations by the induction of bacterial lysis; they are highly 

numerous, usually readily isolated and active against Gram-positive as well as Gram-negative 

bacteria, including MDR pathogens (Matsuzaki et al., 2003; Wang et al., 2006). Due to its 

specificity, phage therapy action is directed to one single species or even strain, narrowing the 

collateral damages of antibiotic therapy and allowing the preservation of the existing 

microbiome. Some phages, however, exhibit broad host ranges and are able to infect a large 

subset of a given species or even multiple species (Chen & Novick, 2009). Another advantage 

of BT is that phages replicate at the site of infection, ensuring their safety and absence of side 

effects, even after their wide distribution upon systemic administration (Haq, Chaudhry, Akhtar, 

Andleeb & Qadri, 2012). Unlike antibiotics, phages do not necessarily need to be delivered to 

the site of infection in high concentrations; in situ replication leads to far higher numbers of 

phages exactly where they are needed (Burrowes et al., 2011). One of the major benefits of 

phage therapy is that antibiotic resistance and phage resistance are largely unrelated 

phenomena, so bacterial strains that are resistant to antibiotics can nevertheless be 

susceptible to phage infection. Another pro of BT include the easy manipulation of phages by 

several techniques. Finally, the economic aspects of phage therapy look promising because 

phage production is simple and relatively inexpensive (Haq et al., 2012; Wittebole et al., 2013).  
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The most serious concern regarding BT is the fact that phages are not always lytic, being 

dependent on host growth and infection temperatures, which make phage therapy use limited 

to optimal conditions (Haq et al., 2012). There is no guarantee that lytic phages under 

laboratory conditions remain lytic in vivo, and if the conversion occurs, bacterium containing 

prophage can be immunized against the corresponding lytic phage and can encode or 

mobilize bacterial virulence factors (Ghannad & Mohammadi, 2012). For this reason, only 

exclusively virulent lytic phages are generally considered clinically useful and the presence of 

temperate bacteriophages must be strictly excluded. 

Another con to be considered is the large-scale lysis of bacteria, especially Gram-negative 

species, may lead to the release of toxic cellular components, namely endotoxins, producing 

an autoimmune response (Herxheimer effect). This phenomenon was observed regarding 

some bactericidal antibiotics when used to treat severe bacterial infections but has not yet 

been reported with bacteriophages. It seems that the sequential multiplication of 

bacteriophages produces a longer duration of bacteriolytic effect, reducing the effects of such 

release (Rac, Greer & Wendel, 2010). However, this is an area to monitor in phage therapy 

clinical trials and more detailed studies are necessary. 

Another problem to be considered in phage therapy in vivo is the promotion of strong antibody 

response, which could clear phages more quickly, impairing their use for extended periods of 

time (Clark & March, 2006). Since bacteriophages are viruses, they can be rapidly eliminated 

from the systemic circulation by both humoral and innate immunity, leading to the production 

of anti-phage antibodies and a decreased efficacy in the case of prolonged or repeated 

applications (Dabrowska, Switała-Jelen, Opolski, Weber-Dabrowska & Gorski, 2005).  

Bacteria have evolved adaptive mechanisms protecting them from phages and they can inhibit 

the phage cycle by several resistance mechanisms (Drulis-kawa, Majkowska-skrobek, 

Maciejewska, Delattre & Lavigne, 2012). The most common resistance mechanism to phage 

infection is the prevention of phage adsorption through the lack of a bacterial receptor, which 

blocks phage adsorption on the bacterial surface, resulting in a complete loss of ability to 

generate virus progeny; the phage adsorption can also be avoided by the production of 

extracellular matrix or of competitive inhibitors, rendering the receptors unavailable to phages 

(Labrie, Samson & Moineau, 2010). 

Another well-studied phage defence mechanisms include the Restriction-Modification (RM) 

defence system and the Clustered Regularly Interspaced Short Palindromic Repeats 

(CRISPR) that cause degradation of phage DNA (Makarova, Brouns, Horvath, Sas & Wolf, 

2012). If a phage enters the host cell and avoids restriction by the host RM and CRISPR 

systems, it proceeds to develop, replicate and release its progeny; the interruption of phage 

development in any of these stages is called abortive infection (Abi), promoting host 

mechanisms that lead to cell death and prevent the spread of infectious particles (Stern & 

Sorek, 2012). Finally, Superinfection exclusion (Sie) systems are proteins that block the entry 
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of phage DNA into host cells, thereby conferring immunity against specific phages (Labrie et 

al., 2010). 

Thus far, the frequency of in vivo resistance to phage therapy is reportedly low as opposed to 

the observed in in vitro resistance testing; furthermore, unlike antibiotics, the isolation of novel 

active phages from environmental sources or progressive adaptation of viral parasite to 

resistant host population are possible, so the resolution of the anti-phage resistance problem 

is relatively fast and easy to achieve (Wittebole et al., 2013).  

1.5.2.3. Bacteriophage therapy over time 

The use of bacteriophages as antibacterial agents for suppurated infections treatment began 

shortly after the discovery of bacteriophages. Bruynoghe and Maisin first applied BT to treat S. 

aureus skin infections in 1921 (Wittebole et al., 2013), but in fact phage therapy started back in 

1896, when Ernest Hankin demonstrated that the waters from the Indian rivers Ganga and 

Yamuna contained a biological principle that destroyed cultures of cholera-inducing bacteria 

(Haq et al., 2012). In the 1930s, after the introduction of antibiotics, the enthusiasm for phage 

therapy declined and BT was abandoned in western countries, but continued to develop within 

the Soviet Union and eastern Europe, where it is still practised today and where a large 

number of reports are available, mainly in Poland and Georgia (Lu & Collins, 2007). Phage 

therapy was “rediscovered” by 1980s, starting with the work of Smith and Huggins. However, 

the western phage therapy “renaissance” only gained strength in the 1990s. By the year 2000 

started a progression in genomics and broad ecology-based phage research that continues to 

this day (Smith, Huggins & Shaw, 1987; Abedon, Kuhl, Blasdel & Kutter, 2011). 

Despite bacteriophages being one of the best-studied microbes known to science, there is a 

lack of formal and large-scale clinical studies on their safety and efficacy as therapeutic 

agents. The FDA and the European Medicines Agency (EMA) are actively working towards 

this goal, using the Biological Medicinal Products guidelines for European trials, and the 

guidelines of the Division of Vaccines and Related Product Applications in the USA trials 

(Wittebole et al., 2013). Specific phage guidelines and standardised protocols to evaluate 

safety and efficacy of bacteriophage products are necessary because individual countries 

have their own regulations, which levels can be highly variable. Detailed molecular 

characterization of the bacteriophage genome is also mandatory to exclude the presence of 

any toxin or antibiotic-resistance genes.  

The problem is that phage therapeutics do not fit into a single category and they are actually 

classified as biological human medicinal products (Parracho et al., 2012). The current 

regulatory regime for human biological medicinal products implies the conduct of clinical trials 

and the submission of a full product dossier compliant with directive 2001/83/EG (Huys et al., 

2013). To address these issues, a European organization, the Phages for Human Applications 
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Group Europe (P.H.A.G.E.), was created for the promotion of research and clinical trials using 

BT. 

As mentioned, in the last few years the emergence of antibiotic resistant bacteria and lack of 

effective novel antibiotics have revived interest in bacteriophage therapeutics as an approach 

to controlling bacterial infections (Knezevic & Petrovic, 2008). The first bacteriophage-based 

product formally approved by the United States government regulatory agency was 

AgriPhageTM, in 2005, to treat crop diseases. A few years later was approved the first food 

safety-related bacteriophage product, ListShield™, a phage cocktail that targets Listeria 

monocytogenes contaminants on ready-to-eat foods containing meat and poultry products 

(Parracho et al., 2012). 

Although bacteriophages represent a serious threat to the dairy industry, causing losses in the 

production of cheese and fermented products, they are also seen as positive agents, replacing 

antibiotics in the control of pathogens with two main applications: preventing food 

contamination and/or treating bacterial infections in animals or plants. There has been an 

increase in the number of patents regarding the application of phages in this field, with a 

number of products becoming available (Maura & Debarbieux, 2011). Strategies targeting 

single pathogens, such as Listeria in cheese production and E. coli in the meat industry are 

currently being developed, and bacteriophages active against three major human pathogens 

E. coli O157:H7, Salmonella and Campylobacter, have been identified and are currently being 

used in experimental treatments (Goodridge & Bisha, 2011; Hungaro, Mendonça, Gouvêa, 

Vanetti & Pinto, 2013). 

Regarding the Polish and Georgian historical experiences related to the topical and systemic 

application of BT in wounds, the set of studies by Slopek et al., involving 550 patients, 

constitutes to date the most detailed documentation of phage application for the treatment of 

human infections. The authors used bacteriophage-soaked compresses applied in localized 

infections, in addition to oral BT, with a treatment success of about 92%. It is important to point 

out that BT is actually a primary tool integrated in the successful treatment of multi-resistant 

infections in major tertiary care centres of Georgia (Mendes, 2014). 

Despite the hundreds of phage therapy-related publications in the last decade, no phage 

preparation has been approved for market authorization. A very complete microbiological and 

molecular characterization of a phage for S. aureus control, Staphylococcus aureus ISP, has 

been published, contributing to the further development of phage therapeutic applications 

(Vandersteegen et al., 2011). A first phase I randomized controlled trial conducted in the 

United States was published in 2009, which evaluated the safety of a phage cocktail directed 

against E. coli, S. aureus and P. aeruginosa in 42 patients with chronic venous leg ulcers. The 

study demonstrated BT to be safe and effective in managing wounds but it has to be 

complemented by a phase 2 efficacy study because the posology used (allowed by the FDA) 

did not agree with existing data on bacteriophage pharmacokinetics (Rhoads et al., 2009). A 
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project funded by the European Commission under the 7th Framework Programme for 

Research and Development, the Phagoburn, was launched on June 1st 2013 and will last 45 

months. The project aims is to evaluate the ability of phage therapy for the treatment of burn 

wounds infected with Escherichia coli and Pseudomonas aeruginosa, and is currently running 

the implementation of a phase I-II clinical trial (http://www.phagoburn.eu/). 

1.5.2.4. Bacteriophage therapy and biofilm 

Although the application of phages against antibiotic resistant bacteria have been largely 

described in veterinary and medical applications, there are few studies on the interaction of 

phages with biofilm (Sillankorva, Oliveira, Vieira, Sutherland & Azeredo, 2004). Many studies 

describe phage infection of cells, but most of them only consider planktonic bacteria, and 

bacteria attached to surfaces present very different characteristics. Considering that phage 

infection and replication cycle are generally strongly dependent on the growth stage of the 

host bacterium, the treatment of slowly growing cells in biofilms is a challenge. Some studies 

have already studied the application of phages to eradicate biofilm-forming bacteria (Doolittle, 

Cooney & Caldwell, 1996; Hibma, Jassim & Griffiths, 1997; Hughes, Sutherland, Jones & 

Rutherford, 1998; Merril, Scholl & Adhya, 2003), but more understanding of phage action in 

biofilm is still required (Tait, Skillman & Sutherland, 2002; Curtin & Donlan, 2006; Cerca, 

Oliveira & Azeredo, 2007). 

Infected chronic wounds constitute one of the best models for the application of BT, and DFI 

represents a good target for BT due to some intrinsic adverse characteristics that include poor 

vascularization and the presence of biofilm-associated infections. BT application for DFI 

treatment has been used in both Europe and the United States (Mendes, 2014), but it is not an 

established treatment protocol in the western world, rendering studies proving its efficacy 

urgent to revert this trend. 
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1.6. Thesis objectives and scope 

 
The objectives proposed in this thesis aimed to complement the objectives established for the 

research project “Biofilms in diabetic foot: microbial virulence characterization and cross-talk of 

major isolates” (PTDC/SAL-MIC/122816/2010), focusing the study on virulence 

characterization of the main bacterial genera involved in diabetic foot infections. The isolates 

under study were obtained from diabetic patients with clinically infected foot ulcers.  

 

The main objectives of this research project were: 

 To evaluate the influence of polymicrobial communities in the ability of DFU isolates to 

produce biofilm after evaluating their individual biofilm-forming ability. The isolates 

belonged to several bacterial genera, including Staphylococcus, Corynebacterium, 

Enterococcus, Pseudomonas and Acinetobacter (Chapter II). 

 To characterize the staphylococci isolated from diabetic foot ulcers, regarding their 

genotype, virulence and antimicrobial resistance profiles (Chapter III).  

 To analyse the antimicrobial susceptibility patterns of biofilm-producing S. aureus 

strains isolated from diabetic foot infections, by determination of MIC, MBIC and 

MBEC, followed by identification of genetic determinants of biofilm production and 

antimicrobial resistance (Chapter IV). 

 To perform a characterization of enterococci isolated from diabetic foot ulcers by 

evaluation using macrorestriction analysis, and screening for virulence traits and 

antimicrobial resistance (Chapter V). 

 To evaluate the antimicrobial activity and wound-healing potential, of five previously 

characterized bacteriophages, against biofilms formed by S. aureus, P. aeruginosa and 

A. baumannii isolated from chronic DFU infections (Chapter VI).  

This thesis provides relevant information regarding DFU bacterial strains in Portugal, 

contributing to the important and innovative characterization of the microbiological isolates, but 

also to the investigation of a possible new strategy for the treatment of clinically relevant 

resistant diabetic foot infections. These data intend to be a strong contribution to the 

development of new clinical approaches for the treatment of DFU infections. 
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Polymicrobial biofilms by diabetic 
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Abstract 

Background: Diabetes mellitus is a major chronic disease that continues to increase 

significantly. One of the most important and costly complications of diabetes is foot ulceration 

that may be colonized by pathogenic and antimicrobial resistant bacteria, which may express 

several virulence factors that could impair treatment success. These bacterial communities 

can be organized in polymicrobial biofilms, which may be responsible for diabetic foot ulcer 

(DFU) chronicity. 

Methods: We evaluated the influence of polymicrobial communities in the ability of DFU 

isolates to produce biofilm, using a microtiter plate assay and a multiplex fluorescent in situ 

hybridization, at three time points (24, 48, 72h), after evaluating biofilm formation by 95 DFU 

isolates belonging to several bacterial genera (Staphylococcus, Corynebacterium, 

Enterococcus, Pseudomonas and Acinetobacter). 

Results: All isolates were biofilm positive at 24 h, and the amount of biofilm produced 

increased with incubation time. Pseudomonas presented the higher biofilm production, 

followed by Corynebacterium, Acinetobacter, Staphylococcus and Enterococcus. Significant 

differences were found in biofilm formation between the three time points. Polymicrobial 

communities produced higher biofilm values than individual species. 

Pseudomonas+Enterococcus, Acinetobacter+Staphylococcus and 

Corynebacterium+Staphylococcus produced higher biofilm than the ones formed by E. 

faecalis+Staphylococcus and E. faecalis+Corynebacterium.  

Conclusions: Synergy between bacteria present in dual or multispecies biofilms has been 

described, and this work represents the first report on time course of biofilm formation by 

polymicrobial communities from DFU including several species. The biological behavior of 

different bacterial species in polymicrobial biofilms has important clinical implications for the 

successful treatment of these infections. 

 

Keywords: Diabetic foot infection, Biofilm, Polymycrobial communities, Microtiter plate assay, 

Fluorescent in situ hybridization. 
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Background 

Diabetes mellitus, one of the most prevalent chronic diseases worldwide, continues to 

increase significantly. Recent estimates indicate that in 2030, there will be 347 million diabetic 

patients throughout the world and that diabetes will be the seventh leading cause of death 

(WHO Geneva, 2011). Foot ulceration is one of the major complications of diabetes, which 

occurs in approximately 25% of the diabetic patients. In fact, infected diabetic foot ulcers 

(DFU) are responsible for 60% of non-traumatic lower limb amputations (Bowling et al. 2009). 

There is no consensus about the causes of DFU, but most studies state that they are usually 

related with impairments in innate immunity and with the microbiocidal activity of 

polymorphonuclear cells, which are more evident in the presence of hyperglycemia (Richard, 

Lavigne & Sotto, 2012). DFU may be colonized by pathogenic and antimicrobial resistant 

bacteria, which could influence treatment outcome. In fact, Xu et al. (2007) have shown that a 

high bacterial load was associated with an inferior rate of wound healing. These bacteria may 

express several virulence factors, such as biofilm formation, characterized by organized 

polymicrobial bacterial populations which may be responsible for DFU chronicity (Dowd et al. 

2008; Donlan and Costerton 2002). In fact, biofilms are highly resistant to many traditional 

therapeutic protocols that generally target the individual causative agents without considering 

the synergies occurring in polymicrobial communities (Dowd et al. 2008; Brogden et al. 2005). 

More recently, James et al. (2008) reported that 60% of chronic wounds exhibited biofilms as 

opposed to 6% of acute wounds. 

Since DFUs are colonized by several bacterial species, the antimicrobial therapy protocols 

selected should cover a variety of synergistic microorganisms and not simply target specific 

pathogens that are frequently perceived to be the causative agents. A previous study 

conducted by our research team showed that 83.7% of patients with DFU presented 

polymicrobial infections, with a rate of isolation of 3.0±1.4 bacteria per patient (Mendes et al. 

2012). Most isolates from acute infections were aerobic Gram-positive cocci, while more 

complex bacterial communities were isolated from chronic wounds, including Gram-negative 

and anaerobic bacteria (Mendes et al. 2012). 

In spite of the increasing research efforts on DFU bacteria, only a few studies on biofilm 

formation by DFU isolates are available, which include a small number of different bacterial 

species.We aimed to evaluate if the presence of polymicrobial communities in the same DFU 

affected isolates’ ability to produce biofilm, after screening biofilm production by 95 DFU 

isolates belonging to several bacterial genera: Staphylococcus, Corynebacterium, 

Enterococcus, Pseudomonas and Acinetobacter. 
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Methods 

Bacterial isolates 

Bacterial isolates tested belong to a larger bacterial collection obtained from 55 DFU clinical 

samples (including aspirates, n=6; biopsies, n=14; swabs, n=35) using conventional 

microbiological procedures as previously described by Mendes et al. (2012). Isolates were 

identified through their biochemical profile (API System, BioMérieux) and kept frozen at -80 °C 

until further processing. 

From the 95 isolates tested, 57 were identified as Staphylococcus: S. aureus (n=31); S. 

intermedius (n=1); S. epidermidis (n=9); S. haemolyticus (n=3); S. capitis (n=2); S. 

lugdunensis (n=2); S. caprae (n=1); S. chromogenes (n=1); S. saprophyticus (n=1); S. 

schleiferi (n=1); S. simulans (n=1); S. hominis (n=1); S. sp. (n=3); 15 as Corynebacterium: C. 

striatum (n=8); C. striatum/amycolatum (n=4); C. accolens (n=1); C. auris (n=1); C. macginleyi 

(n=1); C. sp. (n=1); 12 as Enterococcus (E. faecalis n=10; E. faecium n=2); seven as 

Pseudomonas and four as Acinetobacter baumannii/calcoaceticus. 

Isolates biofilm-forming ability was evaluated in pure cultures and in cocultures formed by 

clinical isolates obtained from the same DFU sample. Therefore, polymicrobial communities 

tested (n=34) included the following combinations: Corynebacterium+Staphylococcus (n=14); 

Enterococcus faecalis+Staphylococcus (n=7); Pseudomonas aeruginosa+Enterococcus (n=5); 

Acinetobacter+Staphylococcus (n=4); Enterococcus faecalis+Corynebacterium (n=4) (Table 

1). 

 

Evaluation of biofilm formation by a microtiter biofilm assay 

Assays were performed using flat-bottom, polystyrene, microtiter plates (Orange Scientific, 

Belgium) containing 100 μL of bacterial suspensions in Mueller Hinton Broth (MHB) 

(Liofilchem, Italy), with a concentration of 5 x 105 CFU/mL for each bacteria. According to the 

protocol described by Pettit et al. (2005), plates were incubated in a humid chamber at 37°C 

for 24, 48, and 72h; after each time point, 5 μL of resazurin was added to each well (Alamar 

Blue, AB, ThermoScientific, Spain), and the plates were incubated for 1h at 37°C. Their 

absorbance (A) values at 570 and 600 nm were registered. Absorbance cutoff (Ac) was 

defined as three standard deviations above the mean A of the negative control, and isolates 

were classified as nonbiofilm producers if A≤Ac; as weak biofilm producers if Ac<A≤2 x Ac; as 

moderate biofilm producers if 2 x Ac<A≤4 x Ac; and as strong biofilm producers if A>4 x Ac 

(Stepanović, Cirković, Ranin & Svabić-Vlahović, 2004). Assays were performed in triplicate, 

repeated in different occasions, and results were averaged. 

 

 



52 
 

Table 1. Composition of polymicrobial communities tested by a microtiter biofilm assay and 

by MFISH. 

 

Polymicrobial communities composition 

 

Nº 

 

Corynebacterium + Staphylococcus 

 

14 

C. striatum + S. aureus 7 

C. spp. + S. aureus 2 

C. spp. + Staphylococcus spp. 1 

C. striatum/amycolatum + S. caprae 1 

C. striatum/amycolatum + S. aureus 1 

C. striatum/amycolatum + S. haemolyticus                                                                                   1 

C. auris + S. haemolyticus 1 

Enterococcus + Staphylococcus 7 

E. faecalis + S. aureus 3 

E. faecalis + S. epidermidis 1 

E. faecalis + S. hominis 1 

E. faecalis + S. capitis 1 

E. faecalis + Staphylococcus sp. 1 

Pseudomonas + Enterococcus 5 

P. aeruginosa + E. faecalis 3 

P. aeruginosa + E. faecium 2 

Acinetobacter + Staphylococcus 4 

A. baumannii/calcoaceticus + S. aureus 3 

A. baumannii/calcoaceticus + S. epidermidis 1 

Enterococcus + Corynebacterium 4 

E. faecalis + C. striatum 3 

E. faecalis + C. macginleyi 1 

Total 34 

 

Evaluation of biofilm formation by a microtiter biofilm assay 

Assays were performed using flat-bottom, polystyrene, microtiter plates (Orange Scientific, 

Belgium) containing 100 μL of bacterial suspensions in Mueller Hinton Broth (MHB) 

(Liofilchem, Italy), with a concentration of 5x105 CFU/mL for each bacteria. According to the 

protocol described by Pettit et al. (2005), plates were incubated in a humid chamber at 37°C 

for 24, 48 and 72 h; after each time point, 5 μl of resazurin was added to each well (Alamar 

Blue, AB, ThermoScientific, Spain) and the plates were incubated for 1h at 37°C. Their 
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Absorbance (A) values at 570 nm and 600 nm were registered. Absorbance cut-off (Ac) was 

defined as three standard deviations above the mean A of the negative control and isolates 

were classified as non-biofilm producers if A ≤ Ac; as weak biofilm producers if Ac < A ≤ 2 x 

Ac; as moderate biofilm producers if 2 x Ac < A ≤ 4 x Ac; and as strong biofilm producers if A > 

4 x Ac (Stepanović et al. 2004).  Assays were performed in triplicate, repeated in different 

occasions and results were averaged. 

 

Biofilm detection by Multiplex Fluorescent In Situ Hybridization (MFISH) 

Biofilm production by dual-species communities was confirmed using a Multiplex Fluorescent 

in situ Hybridization (MFISH) protocol adapted from Oliveira et al. (2007).  

Overnight bacterial suspensions from each isolate were obtained and polymicrobial 

suspensions (Table 1) with a 1:1 ratio were made and diluted at 1:40 in Tryptone Soya Broth 

(TSB, Liofilchem, Italy).  Then, 10 μl of each polymicrobial suspension were placed in 10-well 

teflon slides (Heinz Herenz, Germany), used as hybridization supports, and incubated for 24, 

48 and 72h, at 37°C, to allow biofilm formation. After incubation and air-drying, bacteria were 

fixed with a 4% paraformaldehyde (Sigma-Aldrich, USA) (w/v) solution in PBS (Sigma-Aldrich, 

USA) for 2h at room temperature. After fixation, bacteria were permeabilized with ethanol 

(Merck, Portugal) at 50, 80 and 96%, during 3 min at each concentration (Merck, Portugal); for 

the staphylococci isolates, permeabilization was achieved using lysostaphine 0.01 mg/mL 

(Sigma-Aldrich, USA) during 4 min at room temperature after ethanol serial incubations. 

Afterwards, 10 μl of hybridization buffer (0.9 mol/L NaCl, 20 mmol/L Tris–HCl, pH 7.2, 0.01% 

SDS), containing 5 ng/μl of a specific probe for each bacterium (Table 2), was added to each 

well.  

Slides were incubated in a humid chamber (Omnislide Thermal Cycling Block, USA) at 45°C 

for 3h and then washed using a buffer solution (0.9 mol/L NaCl, 20 mmol/L Tris-HCl, pH 7.2, 

0.1% SDS) at 45°C during 15 min. Afterwards, slides were mounted in Vectashield Mounting 

Medium (Vector Laboratories, United Kingdom) and immediately visualized by fluorescent 

microscopy in a Leica DMRA2 fluorescence microscope, equipped with a mercury lamp of 

100W, an I3 filter for excitation between 450 and 490 nm and a N2.1 filter for excitation 

between 515 and 560 nm (Leica Microsystems Lda., Portugal).  

All assays were performed in triplicate and repeated on different occasions. 

 

Statistical analysis 

Statistical analysis of the microtiter plate assay results was performed using the SPSS 19.0 

software for Windows. To evaluate the significance of the increase in biofilm production with 

time by individual isolates and by the bacterial communities, Friedman test was applied. Post 

hoc analysis with Wilcoxon signed-rank test was conducted with a Bonferroni correction. The 

corrected P-value ≤ 0.017 was considered statistically significant for this test. 
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Results from different species and results from the dual-species communities, at each time 

point, were compared using Kruskal-Wallis test followed by Bonferroni correction. A corrected 

P-value ≤ 0.0125 was considered significant for this test.  

Finally, to compare biofilm production by individual isolates and dual-species communities and 

to evaluate the significance of the increase in biofilm production with time by the dual-species 

communities, Friedman and Wilcoxon Signed Rank Test post-hoc with a Bonferroni correction 

were applied. The corrected P-value ≤ 0.025 was considered statistically significant for this 

test. 

 

Table 2. Probes used in the Multiplex Fluorescent In Situ Hybridization (MFISH) protocol. 

Probe Target Sequence Fluorescently label 

Sta Staphylococcus 

spp. 

  5’-TCCTCCATATCTCTGCGC-3’; E. coli 697 5’-rhodamine 

Sau S. aureus    5’-GAAGCAAGCTTCTCGTCCG-3’; E. coli 69 5’-rhodamine 

Eub 338 Eubacteria 5’-GCTGCCTCCCGTAGGAGT-3’; E. coli 338 5’-fluorescein 

EFAECI E. faecium  5’- AGCTCCCGGTGGAAAAAGAAG-3’; E. coli 

1204 

5’-rhodamine 

EFAEC E. faecalis  5’- TTATCCCCCTCTGATGGG-3’; E. coli 135 5’-rhodamine or 

5’-fluorescein* 

*The choice of the fluorescent label depends on the bacterial composition of the polymicrobial 

community tested 

 

Results 

Microtiter biofilm assay 

All DFU isolates tested produced biofilm at 24h. Pseudomonas isolates were the higher biofilm 

producers, followed in descending order by Corynebacterium, Acinetobacter, Staphylococcus 

and Enterococcus. Significant differences were found in biofilm formation between different 

bacterial species (Kruskal-Wallis test, P ≤ 0.0125) (Figure 1), namely between the 

Enterococcus in comparison with Staphylococcus and Pseudomonas at 24 and 48h. At 72h, 

significant differences were found between Enterococcus when compared with 

Staphylococcus and Acinetobacter.   

In staphylococci, biofilm production increased with incubation time, and differences between A 

values at three time points were statistically significant (Friedman test, P=0.000) (Figure 1). 

According to the classification of biofilm production introduced by Stepanović et al. (2004), at 
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24h all staphylococci isolates were weak biofilm producers and only at 72h a large percentage 

(84.2%) revealed a moderate ability to produce biofilm; no strong producers were observed at 

the three time points tested (Table 3). 

Regarding Corynebacterium, biofilm production significantly increased from 24 to 48h 

(Friedman test P=0.014), decreasing afterwards (Figure 1). Moderate (66.7%) and strong 

(26.7%) biofilm producers were observed already at 24h. The percentage of moderate biofilm 

producers increased after a 48h incubation (86.7%), while the percentage of strong biofilm 

producers decreased (6.7%) (Table 3). At 72h, the percentage of moderate producer isolates 

decreased to 73.3%, while 13.3% of the isolates were able to produce strong biofilms (Table 

3). 

Biofilm formation by enterococci also increased with time (Figure 1). A significant difference 

was found between biofilm production at 24 and 72h (Friedman test P=0.017) (Figure 1). All 

the enterococci isolates were weak biofilm producers at the three time points (Table 3). 

 

Figure 1. Time course of one-species biofilm formation (24, 48 and 72h). In staphylococci, 

differences between biofilm production at three time points were statistically significant 

(ANOVA repeated measures P<0.001); in Corynebacterium, biofilm production significantly 

increased from 24 to 48h (Friedman test P=0.014); in enterococci and Acinetobacter, a 

significant difference was found between biofilm production at 24 and 72h (Friedman test 

P=0.017 and P=0.034, respectively); in Pseudomonas no significant differences were found 

between the three time points (Friedman test P=0.565) 
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Table 3. Classification of biofilm production by the DFU clinical isolates, as determined by a 

microtiter biofilm assay. 

      Bacterial genera Biofilm 24h Biofilm 48h Biofilm 72h Total 

weak   moderate strong weak moderate strong weak moderate strong  

 Staphylococcus n= 

  

% 

57 

 

100% 

0 0 56 

 

98.2% 

1 

 

1.8% 

0 9 

 

15.8% 

48  

 

84.2% 

0 57 

Corynebacterium n= 

 

% 

1 

 

6.7% 

10 

 

66.6% 

4 

 

26.7% 

1 

 

6.7% 

13 

 

86.7% 

1 

 

6.6% 

2 

 

13.3% 

11 

 

73.3% 

2 

 

13.3% 

15 

Enterococcus n= 

 

% 

12 

 

100% 

0 0 12 

 

100% 

0 0 12 

 

100% 

0 0 12 

Pseudomonas n= 

 

% 

0 5 

 

71.4% 

2 

 

28.6% 

0 6 

 

85.7% 

1 

 

14.3% 

0 6 

 

85.7% 

1 

 

14.3% 

7 

Acinetobacter n= 

 

% 

4 

 

100% 

0 0 3 

 

75% 

1 

 

25% 

0 3 

 

75% 

1 

 

25% 

0 4 

  Total n= 

 

% 

74 

 

77.9% 

15 

 

15.8% 

6 

 

6.3% 

72 

 

75.8% 

21 

 

22.1% 

2 

 

2.1% 

26 

 

27.3% 

66 

 

69.5% 

3 

 

3.2% 

95 

 

 

Figure 2. Time course of polymicrobial communities’ biofilm formation (24, 48 and 72h). 
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Significant differences were found between biofilm production by the different communities 

from 24 to 48h (Friedman test P<0.05) but not from 48 to 72h (P>0.05) 

For Corynebacterium+staphylococci (n=14), the increase in biofilm production observed in the 

polymicrobial community when compared with the production by the individual species was not 

significant at 24 and 72h, but significant at 48h for staphylococci (Friedman test, P < 0.001). 

No significant differences were found between Acinetobacter+staphylococci (n=4) and 

between the isolates individually (Table 4). 

For E. faecalis+staphylococci (n=7), the increase in biofilm production observed in the dual-

species community was significant when compared with the enterococci results at all three 

time points tested (P=0.005), but for staphylococci was only significant at 24h (P=0,023). 

Similar results were observed for P. aeruginosa+Enterococcus (n=5), in which significant 

differences were found only for enterococci at three time points (P < 0,025) (Table 4). 

For E. faecalis+Corynebacterium (n=4), no significant differences were found between the 

increase in biofilm production observed in the polymicrobial community when compared with 

the production by the individual species (Table 4). 

Regarding the evaluation of time course biofilm production by dual-species communities, 

significant differences were only found in Corynebacterium+staphylococci communities at 

three time points (Friedman test, P < 0.017).  

 

Multiplex Fluorescent In Situ Hybridization (MFISH) 

Heterogeneous multi-species biofilms were successfully detected with the MFISH protocol. For 

Corynebacterium+staphylococci, biofilm was composed mainly by staphylococci at 24 and 48h 

(Figure 3), while at 72h species distribution was homogeneous. Similar results were observed 

for E. faecalis+staphylococci, in which enterococci are more prevalent in the mixed biofilms at 

72h, except when the dual-species community included S. aureus. In these cases, S. aureus 

was more prevalent at 72h. Regarding enterococci+Pseudomonas, Pseudomonas was 

predominant in biofilms produced with E. faecium, while in mixed biofilms with E. faecalis 

distribution was homogeneous. In Acinetobacter+staphylococci communities, Staphylococcus 

was predominant at 24 and 48h, but at 72h the dual-species biofilms presented a 

homogeneous composition (Figure 4). The same was observed for Corynebacterium+E. 

faecalis biofilms, where Corynebacterium predominated over E. faecalis at 24 and 48h. 
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Table 4. Comparison of biofilm production between the polymicrobial community and the 

individual species, using Friedman’s test and Wilcoxon post-hoc with Bonferroni correction. 

  Biofilm formation  

 24h 48h 72h 

Combination 1  (n=14)    

Corynebacterium NA P=0.032 NA 

Staphylococcus NA P=0.000* NA 

Corynebacterium + Staphylococcus P=0.199 P=0.000* P=0.058 

Combination 2 (n=7)    

Enterococcus faecalis P=0.023* P=0.010* P=0.023* 

Staphylococcus P=0.010* P=1.000 P=1.000 

E. faecalis + Staphylococcus P=0.005* P=0.005* P=0.005* 

Combination 3 (n=5)    

Pseudomonas aeruginosa P=1.000 P=1.000 P=0.342 

Enterococcus P=0.034 P=0.034 P=0.005* 

P. aeruginosa + Enterococcus P=0.022* P=0.022* P=0.007* 

Combination 4 (n=4)    

Acinetobacter  NA P=0.040 NA 

Staphylococcus NA P=0.231 NA 

Acinetobacter + Staphylococcus P=0.368 P=0.039 P=0.420 

Combination 5 (n=4)    

Enterococcus faecalis  P=0.102 NA NA 

Corynebacterium P=1.000 NA NA 

E. faecalis + Corynebacterium P=0.050 P=0.105 P=0.223 

* values with P-value <0.025 were considered statistical significant; NA=not applicable 

 

Discussion 

The biological behavior of different species in polymicrobial communities has important clinical 

implications for the control and eradication of infections promoted by biofilm producing 

bacteria, and different approaches must be applied for better understanding these complex 

communities (Yang et al. 2011). Studies regarding the diversity of DFU’s bacterial populations 

are scarce. However, clinicians and researchers are beginning to acknowledge the importance 

of multi-species biofilms as major contributors to the development of chronic infections such as 

these. To our knowledge, this work represents the first report on time course biofilm formation 

by polymicrobial communities from diabetic foot ulcers that include several species. Co-

cultures tested represent the most frequent communities obtained from the same DFU sample 

in a previous study by our research team (Mendes et al. 2012). 

Staphylococci are recognized as the most frequent cause of biofilm-associated infections; 

amongst these, S. aureus is described as the more persistent species, due to its virulence 

profile (Otto et al. 2008). A high percentage of biofilm producing DFU staphylococci was 
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detected at 24h, as already described by other authors (Malik et al. 2013; Swarna et al. 2012). 

In our study, biofilm formation by this bacterial species significantly increased with time, which 

points out for the importance of time course studies, as evaluation only after a 24h incubation 

may originate false-negative results. 

 

Figure 3. Polymicrobial biofilm formed by Corynebacterium (green) 

and Staphylococcus (red) after a 24h incubation (x1000; original). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corynebacterium was the second major biofilm producer, with an increase from 24 to 48h. 

This bacterial genus is commonly considered as a contaminant, so studies concerning 

Corynebacterium are scarce. However, they appear to be frequent players in DFU as 

demonstrated by Bessman et al. (1992) and Dowd et al. (2008). This last author showed that, 

in DFU, Corynebacterium probably interacts with anaerobes to create a pathogenic group with 

a virulent potential equivalent to commonly noted pathogens such as P. aeruginosa or S. 

aureus. 

Pseudomonas produced the higher biofilm values at 24h, which remained constant; in 

contrast, enterococci isolates produced the lower biofilm values, and were considered weak 

producers at all time points tested. Pseudomonas has been related with severe tissue damage 

in diabetic patients, being able to produce a variety of toxins and to resist to phagocytosis 

(Sivanmaliappan and Sevanan 2011). Enterococci were also weak biofilm producers. Biofilm 

formation by these isolates is dependent on multiple genetic factors and influenced by many 

environmental factors and signals (Mohamed and Huang 2007), and this multifactorial 

dependence may be responsible for the low values in biofilm production by Enterococcus 

observed in this study. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Sivanmaliappan%20TS%5BAuthor%5D&cauthor=true&cauthor_uid=22164164
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Figure 4. Polymicrobial biofilm formed by Acinetobacter (green) and 

Staphylococcus (red) after a 72h incubation (x1000; original). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acinetobacter showed high biofilm forming ability at 24h. Although biofilm production by these 

bacteria increased with time, with a maximum at 72h, this increase was not significant, as 

observed for Pseudomonas. The presence of A. baumannii biofilm-producing isolates in DFU 

is a major cause for concern, since this species is able to survive under a wide range of 

environmental conditions and to persist for extended periods, being also extremely resistant to 

antimicrobial therapy (Espinal et al. 2012; Ibrahim et al. 2012). It would be important to 

evaluate more Acinetobacter DFU isolates since the number of tested was low.  

Species synergy in polymicrobial biofilms has been previously reported but mainly focused on 

bacterial isolates from the oral cavity (Thornton et al. 2011). In this study all dual-species 

communities tested showed higher biofilm formation ability when compared with single 

species. The enhanced biofilm biomass formed by these communities may result from the 

earlier nutrient depletion that occurs in one-species biofilms (Burmølle et al. 2006). Differences 

between dual and single species biofilms were not significant, with the exception for 

Enterococcus and Staphylococcus, which may be due to the fact that these two bacterial 

genera showed the lowest biofilm production when analysed individually.  

Interestingly, our results show that biofilm production within communities may be influenced by 

the specie or genera that are able to produce higher biofilm values. The significance in biofilm 

production by polymicrobial communities can be merely attributed to differences in biofilm 

formation, and the increase in absorbance to a cumulative effect rather than synergistic.  
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However, other interactions between bacteria may occur in polymicrobial communities that 

may lead to inhibition of growth and biofilm production, such as nutrient competition and toxic 

substances secretion. In fact, P. aeruginosa was reported to kill Candida in multi-species 

biofilms, due to virulence factors production (Yang et al. 2011). These phenomena may be 

responsible for the fact that the increase in biofilm production by the different communities 

analyzed in this study was not significant. 

There were also differences between species belonging to the same genera when present in 

polymicrobial communities. For example, in enterococci the species with higher biofilm 

producing values was E. faecalis. These results were confirmed by direct observation using 

MFISH, and are in accordance with other studies, which already described that E. faecalis 

produces more biofilm than E. faecium (Mohamed et al. 2007). 

 

Conclusions 

Diabetic foot infections represent a significant burden for patients and the health care system. 

New research approaches are required to characterize these infections, which are mostly 

promoted by polymicrobial communities, frequently organized in biofilms, which may be 

responsible for resistance to therapeutics and for infection chronicity. The complexity of 

polymicrobial communities remains an inherent characteristic of these biofilms, and our results 

confirm that data regarding single-species biofilms cannot be extrapolated directly to multi-

species communities. 
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Abstract  

Background:  Diabetes mellitus is a major chronic disease that continues to increase 

significantly. One of the most important and costly complications of diabetes are foot infections 

that may be colonized by pathogenic and antimicrobial resistant bacteria, harboring several 

virulence factors, that could impair its successful treatment. Staphylococcus aureus is one of 

the most prevalent isolate in diabetic foot infections, together with aerobes and anaerobes. 

Methods: In this study, conducted in the Lisbon area, staphylococci isolated (n=53) from 

diabetic foot ulcers were identified, genotyped and screened for virulence and antimicrobial 

resistance traits. Genetic relationship amongst isolates was evaluated by pulsed-field-gel-

electrophoresis with further multilocus sequence typing of the identified pulsotypes. PCR was 

applied for detection of 12 virulence genes and e-test technique was performed to determine 

minimal inhibitory concentration of ten antibiotics.  

Results: among the 53 isolates included in this study, 41 Staphylococcus aureus were 

identified. Staphylococcal isolates were positive for intercellular adhesins icaA and icaD, 

negative for biofilm associated protein bap and pantone-valentine leucocidin pvl. S. aureus 

quorum sensing genes agrI and agrII were identified and only one isolate was positive for toxic 

shock syndrome toxin tst.  

36% of staphylococci tested were multiresistant and higher rates of resistance were obtained 

for ciprofloxacin and erythromycin. Clonality analysis revealed high genomic diversity and 

numerous S. aureus sequence types, both community- and hospital-acquired, belonging 

mostly to clonal complexes CC5 and C22, widely diffused in Portugal nowadays.    

Conclusions: this study shows that diabetic foot ulcer staphylococci are genomically diverse, 

present resistance to medically important antibiotics and harbour virulence determinants. 

These properties suggest staphylococci can contribute to persistence and severity of these 

infections, leading to treatment failure and to the possibility of transmitting these features to 

other microorganisms sharing the same niche. In this context, diabetic patients may become a 

transmission vehicle for microorganisms’ clones between community and clinical 

environments.   

 

Keywords: Diabetic foot staphylococci, PFGE, HA-MRSA, CA-MRSA, MLST, Virulence 

factors. 
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Background 

Foot ulcers are an increasing problem in patients with Diabetes mellitus and infection is a 

frequent complication that actually constitutes the most common cause of hospitalization in 

diabetic patients, often related to lower-extremity amputation (Spichler et al., 2015). Several 

studies have demonstrated that they represent an economic burden worldwide, comparable 

with the costs associated with cancer, depression, lung and musculoskeletal diseases (Rice et 

al., 2014; Van Acker, Léger, Hartemann, Chawla & Kashif Siddiqui, 2014). Diabetic foot 

infections (DFI) are often polymicrobial and can be caused by several pathogens, mainly Gram 

positive bacteria, being Staphylococcus the most predominant bacterial genus, as already 

described (Mendes et al., 2012; Zenelaj et al. 2014). 

Staphylococcus is a frequent commensal bacteria of human skin and mucosa, being one of 

the major cause of infections in humans, ranging from minor skin infections to severe 

infections such as septicaemia, endocarditis and osteomyelitis (Harastani, Araj & Tokajian, 

2014). These bacteria may produce several virulence factors,  one of the most important being 

biofilm formation, which consists in adherent bacterial populations growing inside their 

polymeric structures that confer the ability of evasion to immune system and to multiple 

antibiotic treatments (Sekhar et al., 2010). Several virulence genes are implicated in biofilm 

formation, like icaA and icaD, responsible for the biosynthesis of polysaccharide intercellular 

adhesion (PIA) molecules, containing N-acetylglucosamine, the main constituent of the biofilm 

matrix in the accumulation phase (Cos & Tote, 2010). A biofilm associated protein, coded by 

the gene bap, was also described as essential in biofilm production of some Staphylococcus 

spp. isolated from nosocomial infections (Potter et al., 2009). 

One of the bacterial properties that allow the development and growth of multicellular biofilm is 

cell communication and signalling, in which the bacterial signals reach a specific density or 

“quorum” activating regulatory genes that control some cellular processes (Sifri, 2008); the S. 

aureus accessory gene regulator (agr) was the first peptide signal discovered (Novick & 

Geisinger, 2008). 

Many virulence determinants including toxins, tissue degrading enzymes and immune evasion 

factors, are secreted by staphylococci, particularly by S. aureus (Gordon & Lowy, 2008). ClfA 

is a gene responsible for causing platelet activation through binding to fibrinogen and fibrin 

and for inhibiting phagocytosis in S. aureus (Chambers & Deleo, 2010). One of the major 

threats in severe tissue necrosis is the presence of the cytotoxin panton-valentine leukocidin 

(pvl), whose locus is carried on a bacteriophage, manifesting commonly in strains isolated 

from community-acquired skin and soft tissue infections and especially from pneumonia 

(Holmes et al. 2005). Some S. aureus isolates also secrete the toxic shock syndrome toxin 1 

(TSST-1), a superantigenic toxin responsible for staphylococcal scarlet fever and toxic shock 

syndrome, encoded by the tst gene (Durand, Bes & Meugnier, 2006). S. aureus and 

coagulase-negative staphylococci (CoNS) infections occur in the community or in healthcare 
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settings and an extremely high percentage of these isolates are resistant to methicillin. In 

Europe, methicillin-resistant S. aureus (MRSA) are predominantly acquired in healthcare 

settings representing a major challenge to the control of antibiotic resistance in hospitals 

(Grundmann et al., 2014). Portugal is one of the European countries presenting higher rates of 

MRSA in hospitals, reaching 53.8% according to last report data (European Centre for 

Disease Prevention and Control [ECDC], 2012) and hospital-associated MRSA (HA-MRSA) 

have been extensively characterized (Aires de Sousa, Conceicão, Simas & Lencastre, 2005; 

Amorim et al., 2009; Tavares, Faria, De Lencastre & Miragaia, 2014). However, less is known 

about the epidemiology of MRSA in the community (CA-MRSA), which remains poorly 

understood (Almeida et al., 2014). Epidemic MRSA (EMRSA)-15 clone (ST22-IV), is currently 

the most predominant clone in Portuguese hospitals, accounting for 72 % of all MRSA 

isolates, followed by the NY/Japan clone (NY/JP) (ST5-II). More recently a variant of this clone 

(ST105) appeared as the second most predominant clone in Portuguese hospitals (Faria, 

Miragaia & De Lencastre, 2013; Tavares et al., 2014). 

In the last years the complications of DFI have raised due to the increased rate of multidrug-

resistant (MDR) isolates, so a better knowledge of these bacteria is necessary  in order to 

institute an effective antibiotic therapy (Zenelaj et al., 2014; Spichler at al., 2015). This study 

aimed to investigate the molecular types, virulence traits and antimicrobial susceptibility 

pattern of Staphylococcus spp. isolated from diabetic foot ulcers in Portugal. 

 

Methods  

Bacterial isolates 

A total of 53 staphylococci clinical isolates from diabetic foot ulcers, belonging to 49 samples 

collected in a transversal observational study conducted at four clinical centers in Lisbon, from 

January 2010 to July 2010 (Mendes et al., 2012), were used in this study. Only eight patients 

were hospitalized during the collection of samples. All isolates were processed, isolated and 

identified by standard methods (Mendes et al., 2012). Each isolate corresponds to a different 

patient, with the exception of following pairs, which belonged to the same patient: S. aureus 

A2-1a and A2-1b, S. aureus B3-2 and B3-3, S. aureus Z1-1 and Z1-2, S. aureus Z3-1 and Z3-

2, S. aureus Z21-1 and Z-21-3, S. aureus Z27-2 and Z27-3 and S. aureus Z33-1 and Z33-2. 

Although being recovered from the same patient, such staphylococci were included in further 

analysis due to the distinct colony morphologies observed during isolation and purification 

procedures. 

 

Identification at species level 

After inoculation in Columbia Agar + 5% sheep blood (Biomerieux), plates were incubated at 

37°C for 24 hours. Rapid DNA extraction was performed by suspending four to five bacterial 

colonies in 100 µL of TE (10 mM Tris, 1 mM EDTA, pH 7.8) buffer and heating to 97°C for 
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seven min. After centrifugation at 15 000 g for five min, supernatant was collected and stored 

at -20°C for subsequent PCR screening. 

Staphylococcus aureus and Staphylococcus epidermidis identification was confirmed using a 

multiplex PCR protocol described elsewhere (Pereira et al., 2010). Amplified products were 

analysed by electrophoresis using 0.5X Tris-Borate-EDTA (TBE) buffer in a 2% agarose gel 

(Bioline) stained with GreenSafe (NZYTech) and visualized by transillumination under UV 

(Pharmacia Biotech, Thermal Imaging System FTI-500). NZYDNA ladder VI (NZYTech) was 

used as a molecular weight marker. S. aureus ATCC 29213 and S. epidermidis ATCC 35984 

were used as PCR amplification controls. 

For the remaining staphylococcal isolates, Biomerieux API Staph galleries were used for 

species identification. 

 

Screening for virulence factors 

The presence of virulence determinants was evaluated by PCR amplification using primers 

and protocols previously described. Genes tested included coagulase gene coa (Akineden et 

al., 2001), protein A gene spa (Akineden et al., 2001), adhesin genes icaA and icaD (Arciola, 

Baldassarri & Montanaro, 2001), biofilm associated protein gene bap, clumping factor a clfa 

(Akineden et al., 2001), accessory regulators genes agrI, agrII, agrIII and agrIV (Gilot, Lina, 

Cochard & Poutrel, 2002), toxic shock syndrome toxin 1 gene tst and panton-valentine 

leukocidin pvl (Jarraud et al., 2002). 

S. aureus ATCC 25923 was used as an amplification control for coa, spa and clfa genes. S. 

epidermidis ATCC 35984 was used as icaA and icaD positive control. S. aureus bap positive 

control was kindly provided by Dr. Penadés (Cardenal Herrera University, Valencia, Spain), 

agrI, agrII, agrII e agrIV control strains by Dr. Carmen Torres (Rioja University, Spain), and tst 

and pvl positive controls by Dr. Michèle Bes (Centre National de Reference des 

Staphylocoques, Lyon,Frande).   

 

Evaluation of antibiotic susceptibility and detection of mecA 

Minimal inhibitory concentrations (MIC) were determined for antibiotics: cefoxitin (Fox), 

ceftaroline (Cpt), ciprofloxacin (Cip), clindamycin (Cli), doxycycline (Dox), erythromycin (Ery), 

gentamicin (Gen), linezolid (Lzd), meropenem (Mem) and vancomycin (Van), by placing E-test 

strips (Biomérieux) on staphylococci inoculated on Mueller Hinton plates, incubated for 24 

hours at 37°C. Test performance was monitored using S. aureus ATCC 29213. 

Detection of mecA gene was performed as previously described (Pereira et al., 2010). 

Amplified products were analysed by electrophoresis with 0.5X Tris-Borate-EDTA (TBE) buffer 

in a 1.5% agarose gel (Bioline) stained with GreenSafe (NZYTech) and visualized by 

transillumination under UV (Pharmacia Biotech, Thermal Imaging System FTI-500). NZYDNA 
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ladder VI (NZYTech) was used as molecular weight marker. MRSA control strain was kindly 

provided by Dr. Birgit Strommenger (Robert Koch Institute, Germany). 

Staphylococci under analysis were defined as Methicillin Resistant Staphylococcus (MRS) if 

resistant by cefoxitin MIC or if mecA positive (Clinical and Laboratory Standards Institute 

[CLSI], 2013), and as Multi-drug Resistant (MDR) if resistant to three or more antimicrobials 

belonging to different antibiotic classes and bacterial targets (Magiorakos & Srinivasan, 2012). 

  

Macrorestriction analysis by Pulsed-Field Gel Electrophoresis (PFGE) 

Molecular fingerprinting of staphylococci was performed by PFGE using a CHEF-DRIII 

apparatus (Bio-Rad Laboratories, San Diego, USA). Bacterial cultures were grown overnight 

on Columbia agar supplemented with 5% sheep blood (BioMérieux) and a cellular suspension 

of 5x109 CFU/mL incorporated into 1.5% low melting point agarose (BioRad). Discs were 

immersed into a lysis solution with lysostaphin (Sigma-Aldrich) (50 μg/ml), lysozyme (Merck) 

(100 μg /ml) and RNase (Roche) (50 μg/ml) at 37 ºC for 3 h. After lysis, discs were incubated 

with proteinase K (NZYTech, Portugal) (1 mg/ml) for 17 h at 50ºC, followed by overnight 

digestion with SmaI (Takara) at 25ºC. Digested DNA was submitted to electrophoresis in 1% 

agarose gel (Seakem LE) for 23 h at 14ºC and 6 V/cm with pulse times of five to 35 s. Lambda 

Ladder PFG Marker (BioLabs) 50 μg/ml was used as molecular weight marker. Agarose gels 

were stained with ethidium bromide and visualized by transillumination under UV (Pharmacia 

Biotech, Thermal Imaging System FTI- 500). BioNumerics 7.5 software (Applied Maths, 

Kortrijk, Belgium) was used to register macrorestriction patterns and clustering analysis was 

performed using DICE similarity coefficient and the unweighted-pair group method with 

arithmetic mean (UPGMA).  

 

S. aureus multilocus sequence typing (MLST) 

Amplification of seven housekeeping genes, including carbamate kinase arcC, shikimate 

dehydrogenase aroE, glycerol kinase glpF, guanylate kinase gmk, phosphate 

acetyltransferase pta, triosephosphate isomerase tpi, and acetyl coenzyme A 

acetyltransferase yqiL, was done according to the already published protocols (Enright et al., 

2000). DNA sequencing was performed by Stabvida (Portugal). MLST sequences were 

analysed using Bionumerics 7.5 software (Applied Maths, Kortrijk, Belgium) and sequence 

types (ST) assigned according to the S. aureus MLST database (http://saureus.mlst.net). The 

eBURST algor 

ithm, available at (http://eburst.mlst.net), was used to classify different ST into clusters or 

clonal complexes (CC). A minimum spanning tree (MST) constructed with BioNumerics 7.5 

software (Applied Maths, Kortrijk, Belgium) using the concatenated seven gene fragments was 

also used to evaluate the phylogenetic relationships between isolates.  
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Results 

Identification at species level  

Among the 53 isolates included in the study, 41 were identified as S. aureus and six as S. 

epidermidis by multiplex PCR. The API galleries identified two isolates as S. haemolyticus, 

one as S. schleiferi, one as S. caprae, one as S. simulans and one as Staphylococcus sp.  

 

Screening for virulence factors 

All isolates were positive for icaA and icaD and negative for bap and pvl. The clfa gene was 

present in 70% of the isolates (S. aureus n=30, S. epidermidis n=3 and S. sp n=1). The S. 

aureus quorum sensing genes agrI and agrII were present in 60% and 40% of the S. aureus 

isolates respectively, and no agrII or agrIV were found. Two S. aureus isolates did not harbour 

agr. With the exception of two isolates (one of which also agr negative), all S. aureus were 

positive for spa. As expected, all S. aureus isolates were coa positive, whilst only one S. 

aureus was positive for tst and it was MSSA (Figure 1). 

 

Evaluation of antibiotic susceptibility and detection of mecA 

All isolates were considered susceptible to vancomycin (MIC ≤ 2µg/mL) and presented the 

same susceptibility to linezolid (MIC ≤ 4 µg/mL) and doxycycline (MIC ≤ 4 µg/mL) with the 

exception of one methicillin-resistant S. epidermidis (MRSE) isolate (MIC ≥ 8 µg/mL and MIC ≥ 

16 µg/mL for linezolid and doxycycline respectively), which was resistant to six of the 

antibiotics tested. Ceftaroline MIC values were ≤ 0.5 µg/mL and only two MRSA presented 

MIC ≥ 4 µg/mL (ceftaroline-resistant). About 90% of isolates obtained MIC values for 

clindamycin of ≤ 0.25μg/ml and for gentamicin 4 ≤ μg/ml. About 57% of isolates were 

considered susceptible to ciprofloxacin (≤ 4μg/ml) and eythromycin (≤ 8 μg/ml), presenting a 

resistance rate of 43%. The percentage of MDR isolates was 36% (Figure 1). 

Among the 41 S. aureus isolates tested, 20 were classified as MRSA (mecA positive) (Figure 

1), resulting in a prevalence of 48.7% among S. aureus carriers; of these, 14 were cefoxitin 

resistant. Among the six S. epidermidis isolates, five were MRSE (mecA positive) and 3 were 

cefoxitin resistant. The other Staphylococcus isolates didn’t carry the mecA gene and were 

cefoxitin susceptible. The total prevalence of methicillin-resistant isolates was 47%.  
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Figure 1. Dendrogram based on SmaI-PFGE patterns of the S. aureus diabetic foot isolates. 

The image also displays information regarding sample collection method, presence of 

virulence genes, ST/CC allocation and antimicrobial resistance profile. Fox - cefoxitin; Cip – 

ciprofloxacin; Mem – meropenem; Ery – erythromycin; Cpt – ceftaroline; Cli – clindamycin; 

Gen – gentamicin. 

 

 

Macrorestriction analysis by Pulsed-Field Gel Electrophoresis -PFGE- 

Analysis of the dendrogram displayed in Figure 1 led to the selection of a 70% similarity level 

for the assignment of PFGE genomic types (pulsotypes). Hence, SmaI-macrorestrition 

analysis revealed 18 distinct genomic patterns among the 41 S. aureus isolates examined. 

Cluster analysis allowed grouping the isolates into five main clusters at approximately 70% 

similarity with one single member cluster (Figure 1). All isolates included in cluster I were 

MRSA, clfa and agrI positives and belonged to ST22 (CC22). They were all resistant to 

ciprofloxacin and most of them also to erythromycin. Cluster II included only one isolate, 
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sensitive to all antibiotics tested, clfa and agrI positive and belonging to ST944 (CC182). The 

agrII positive isolates were located only in cluster III that was the more diverse group because 

included different genoypes, most of them clfa positive belonging to CC5, both MRSA and 

MSSA. These MRSA isolates showed resistance to ciprofloxacin and erythromycin.  The only 

one MSSA agrII isolate that was tst positive, belonged to this group. Cluster IV included two 

different genotypes, one of which stood out (B13-1), being resistant to six of the antibiotics 

tested. Cluster V included two MSSA isolates, one clfa-agrI positive and the other clfa-agr 

negative. Regarding the six S. epidermidis isolates, although the number was inferior, four 

pulsotypes were observed and, noteworthy, two different pulsotypes corresponded to two 

isolates obtained from the same patient (data not shown).  

  

S. aureus multilocus sequence typing (MLST) 

High genetic diversity was revealed by MLST, as indicated by the detection of 15 ST among 

the 23 isolates tested (Figure 1).  Briefly, ST105 (n=4), ST5 (n=2), ST22 (n=2), ST188 (n=2 in 

the same patient with two different pulsotypes), ST582 (n=2 in the same patient with two 

different pulsotypes), ST6 (n=1), ST7 (n=1), ST8 (n=1), ST34 (n=1), ST45 (n=1), ST 72 (n=1), 

ST944 (n=1), ST1507 (n=1), ST2246 (n=1), ST2599 (n=1, in a patient with a ST105 also) 

(Figure 1 and Figure 2). Based on sequence typing, isolates were assigned to seven MLST 

CC: CC5 (n=17, including the two different pulsotypes found in two patients), CC22 (n=2), 

CC7 (n=1), CC8 (n=1), CC30 (n=1), CC45 (n=1), CC182 (n=1) (Figure 1). MRSA lineages 

included ST105 (CC5), ST5 (CC5), ST22 (CC22) and ST2599 (CC5). The only MSSA tst 

positive isolate belonged to ST5. The minimum spanning tree (MST) shows the phylogenetic 

relationships among diabetic foot staphylococci (Figure 2). 

 

Discussion 

Although previous studies reported Pseudomonas aeruginosa as the most common isolate in 

DFU (Shankar et al., 2005; Ramakant et al., 2011), many others authors from the late 1990s 

have shown that Gram positive cocci are the most predominant agents responsible for DFI, 

with S. aureus being the most commonly isolated pathogen with considerably high rates of 

MRSA (Tentolouris et al., 2006; Sekhar et al., 2014). According to our results, most isolates 

were identified as S. aureus (77.3%) and 48.7% of them considered MRSA. A study 

conducted by Sotto et al. (2008) reported a similar MRSA percentage but several studies 

showed lower rates (Shankar et al., 2005; Gadepalli et al., 2006; Zenelaj et al., 2014). The 

highest MRSA percentages in DFI, reaching 70% , were found in India (Swarna et al., 2012).  
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Figure 2. Minimum spanning tree of 23 S. aureus representing the 23 different pulsotypes 

detected amongst the diabetic foot isolates. Nodes indicate sequence type (ST) and their size 

shows the relative number of isolates for each ST. Every colour represents a distinct clonal 

complex.     

 

 

 

Regarding antimicrobial susceptibility patterns, 34% of all staphylococcal isolates were 

cefoxitin resistant. However, mecA detection is considered the gold standard for methicillin-

resistance by the CLSI (2013) and 47% of the studied isolates were mecA positive. 

Only 10% of all staphylococci showed resistance to meropenem but MRS isolates should be 

considered resistant to other β-lactam agents, therefore including also meropenem, because 

most cases of documented MRS infections have responded poorly to β-lactam therapy (CLSI, 

2013). Cephalosporins with anti-MRSA activity include ceftaroline, the active metabolite of 

ceftaroline fosamil (Teflaro®, Forest Laboratories), a cephalosporin with an in vitro broad 

spectrum against MRSA and most enteric organisms (Sader, Pritsche, Kaniga, Ge & Jones, 

2005). Ceftaroline, approved by U.S. Food and Drug Administration (FDA) for treatment of 

acute bacterial skin infections, displayed a very good efficacy in the studied isolates with MIC 

value ≤ 0.5 µg/mL, with the exception of two resistant MRSA isolates. It is important to refer 

that one MRSA isolate that was resistant to six antibiotics studied showed sensitivity to 

ceftaroline. These results are in agreement with some recent studies that have already shown 
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the excellent activity of ceftaroline, both in vitro (Goldstein, Citron, Merriam & Tyrrell, 2013) 

and in vivo (Lipsky, 2015).  

Resistance to linezolid and doxycycline was detected only in one MRSE that showed 

resistance to six antibiotics. Linezolid-resistance in S. epidermidis has been already reported 

(Zhu et al., 2006), possibly linked to a mutation in the V region of the 23S rRNA gene. MIC 

values for clindamycin and gentamicin showed susceptibility for 90% of the isolates. These 

results suggest a good efficacy of linezolid, doxycycline, clindamycin and gentamicin for DFI 

treatment (Citron et al., 2007; Malik et al., 2013). As expected, all Staphylococcus tested were 

susceptible to vancomycin; until today only one case of vancomycin-resistant S. aureus was 

described in Europe, Portugal (Melo-Cristino, Resina, Manuel, Lito & Ramirez, 2013) and few 

cases worldwide, mostly in the USA (Saravolatz, Pawlak & Johnson, 2012).  

About 43% of the isolates were resistant to ciprofloxacin and erythromycin, two antibiotics 

largely used in clinical practice for these type of infections. Similar rates in ciprofloxacin and 

erythromycin resistance were found in a study conducted by Gadepalli et al. 2006 (Swarna et 

al., 2012). With the increasing use of quinolones in clinical practice, the development of 

resistance mutants has increased (Campion, McNamara & Evans, 2004), pointing out for the 

importance to their careful administration in clinical settings. Several genes are implicated in 

macrolide resistance, especially in staphylococci and streptococci (Martineau et al., 2000), 

explaining the low susceptibility rates of erythromycin in this bacterial genus. 

It’s important to remember that DFI are generally polymicrobial and the choice of antibiotic 

therapy often doesn’t target specific pathogens. In fact, the present investigation revealed a 

high rate (36%) of MDR isolates in DFI, which is in accordance with other reports (Gadepalli et 

al., 2006; Zubair et al., 2011; Sekhar et al., 2014) and should represent a serious warning for 

the control of this type of infections.   

Virulence factors, like surface proteins and extracellular toxins, are widely distributed among 

staphylococci, potentially causing harmful pathogenic effects to the host (Holmes et al., 2005). 

In this study two S. aureus isolates were spa negative. Some studies have already reported 

the absence of spa protein with percentages of 3-5% (Shakeri et al., 2010), that seems to be 

linked to point mutations. In a recent study we demonstrated that the staphylococcal isolates 

are able to form biofilm (Mottola et al., 2015) which may explain why all isolates tested were 

positive for icaA and icaD. Otherwise, none of the isolates carried the bap gene, already 

described in some Staphylococcus spp. isolated from nosocomial infections (Potter et al., 

2009).  

The clfA gene was present in 70% of our isolates including some S. epidermidis. The 

presence of clfa in S. epidermidis can be justified by the fact that in this species the fibrinogen-

binding proteins SdrG or Fbe, associated to adherence to fibrinogen, are highly similar to S. 

aureus clumping factors A and B (Hartford et al., 2001). 
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The only tst-positive isolate was a MSSA, agrII-positive belonging to ST5. Jarraud et al. in 

2002 reported that most tst-positive S. aureus strains were associated with both community 

and hospital-acquired diseases and were all methicillin-sensitive S. aureus (MSSA). 

None of our isolates was pvl-positive. The pvl locus is strongly associated to CA-MRSA and 

often to agr group III background (Vandenesch et al., 2003). In Portugal, it was related with 

one case of CA-MRSA in 2012, belonging to the USA300 epidemic clone (ST8-IVa, t008, pvl 

positive), the predominant CA-MRSA clone in USA at present. The USA300 is a rare clone in 

Europe and its low prevalence in Portugal was expected (Nazareth et al., 2012).  

The contribution of the agr system to S. aureus virulence by gene regulation has already been 

described, as well as the association of a particular agr type in clinical isolates harbouring 

important virulence factors (Francois et al., 2006). The agr group I was identified in the 

majority of the analysed staphylococci, followed by agrII, as previously reported in numerous 

other studies (Jarraud et al., 2002; Machuca, Sosa & González, 2013). Neither agrIII nor agrIV 

were observed. Two S. aureus isolates were agr-negative, but it is known that these variants 

can occur both in vivo and in vitro (Traber et al., 2008).  

The virulence profile of the studied DFI isolates was more similar to CA-MRS than HA-MRS 

strains. This is an unusual finding, considering that diabetic patients attend frequently health 

care facilities and may suggest an increasing lack of barrier between both settings: hospital 

and community.  

Sotto et al. in 2008 demonstrated that the virulence gene profiles of DFI S. aureus isolates 

enables to distinguish the grade of ulcers and to predict its outcome; more knowledge about 

the virulence features of DFI isolates would be very helpful in establishing a more accurate 

diagnosis and consequently an adequate therapy. 

PFGE genomic typing demonstrated a high diversity of clones, detecting 18 S. aureus and four 

S. epidermidis pulsotypes, respectively. According to Tenover et al. 1995 (Tenover et al., 

1995), it is highly probable that S. aureus isolates grouping in the same pulsotype with 100% 

similarity belong to the same ST, as determined by MLST. The correlation between PFGE and 

MLST showed that PFGE cluster I was the most homogeneous cluster, including only MRSA 

ST22 (CC22) isolates, the most common ST observed in this study. Portugal is the European 

country with the highest rate of MRSA (54.6%) (ECDC, 2012) and CC22 is a common and 

widespread clonal group from which different MRSA have emerged, like the pandemic ST22-

MRSA-IV (UK-EMRSA 15), present in hospitals as well as in outpatients (Monecke et al., 

2011). CC22 represents a major clone in Portugal hospitals since 2001, having replace the 

Brazilian clone (Aires-de-Sousa et al., 2008), and its prevalence has increased to more than 

70% of MRSA, likewise to what is observed in the United Kingdom, where this clone is 

believed to have originated (Faria et al., 2013). All ST22 isolates were positive for clfa, another 

virulent factor that confers pathogenicity, and presented the quorum sensing agr I gene, 
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already described as being common in ST22 staphylococci (Monecke & Ehricht, 2005; Aires-

de-Sousa et al., 2008). 

The most common CC isolated in our study was CC5, present in PFGE clusters III, IV and V, 

and ST5 represented the second most frequent ST, after ST22. CC5 is another common and 

widespread clonal complex that includes a large number of different MRSA, some of which 

pandemic (Monecke et al., 2011). Shortly after the emergence of EMRSA-15, the New York-

Japan (NY/JP) ST5-II and, more recently, a variant of this clone, ST105-II, appeared as the 

second most predominant clone in Portuguese hospitals (Tavares et al., 2014). Recently, a 

high percentage of MRSA (21.6 %) was also found in a community in Portugal, where 

EMRSA-15 or related clones were the predominant ones (77.2 %), followed by NY/JP or 

related clones (14.9 %) (Tavares, Miragaia, Rolo, Coelho & De Lencastre, 2013). In this study, 

isolates belonging to CC5 presented mainly agr type II, particularly ST5, and included both 

MRSA and MSSA (Aires de Sousa et al., 2008).  

Besides ST5 and ST105, several ST belonging to CC5 were identified, namely MSSA agrI 

ST6, MSSA agrI ST72, MSSA agrI ST188, MSSA agrI ST582, MSSA agrI ST1507, MRSA agrI 

ST2246 and MRSA agrII ST2599. These less frequent ST have already been described in 

Portugal (Espadinha et al., 2013; Tavares et al., 2013; Tavares et al., 2014), with the 

exception of the ST1507 and ST2599, but little information is available regarding these ST. In 

fact, the only description found in the S. aureus MLST database (http://saureus.mlst.net), 

refers to a MRSA ST1507 isolated in 2006 in South Korea from a foodborne source and a 

MRSA ST2599 isolated from urine in 2013 in the USA. In our study the patient from which 

ST2599 (CC5) was recovered, also presented another S. aureus belonging to ST105 (CC5), 

being the only case where it was possible to identify two different ST in the same patient. In 

the other six cases in which the same patient showed two similar, but not identical pulsotypes, 

MLST revealed that they belonged to the same ST. Interestingly, some clones belonging to 

different CC presented a higher PFGE similarity than clones included in the same CC, as 

already observed (Aires de Sousa, 2005). 

Cluster II included only one isolate, MSSA agrI ST944 (CC182). MSSA ST944 was described 

in Switzerland being isolated from nasal swabs of healthy risk-free adult carriers (Sakwinska et 

al., 2009) and in China, where it was present with high frequency in nasal carriage of healthy 

children in a kindergarten (Fan et al., 2009). In the S. aureus MLST database, a MSSA ST944 

has also been described in Norway, related with nasal swab carriage (http://saureus.mlst.net).      

Cluster III was the most heterogeneous cluster, including mainly MSSA agrI isolates, 

belonging to the following ST: ST7 (CC7), ST8 (CC8), ST34 (CC30) and ST45 (CC45). In fact, 

a previous study concerning the population structure of MSSA in Portugal showed that these 

CC were, among others, the most predominant clonal types found between 1992 and 2011, 

both in the community and hospitals settings (Tavares et al., 2014). 
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Patients with DFI constantly attend clinical centres for wounds healthcare, which may explain 

the high diversity of pulsotypes and ST found, including the main hospital-acquired clones 

present in Portugal (CC5 and CC22). It is important to refer that several less frequent clones, 

seldom described in literature and MLST database, were also found in this study. Therefore, 

diabetic patients can be important vehicles for clonal dissemination from the hospitals into the 

community and contrariwise, including less common clones.   

 

Conclusions 

To our knowledge this is one of the few reports of staphylococci isolated from DFI that include 

information about the isolates origin, virulence factors and antimicrobial resistance profiles. 

Studies in DFI microbiology are scarce, as described recently by Zenelaj et al. (2014), and 

further investigation of diabetic foot infections is urgent, allowing to adapt the therapeutic 

approach of these patients to the microbiological characteristics of the microorganisms 

involved.   
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Abstract 

Background: Foot infections are a major cause of morbidity in people with diabetes and the 

most common cause of diabetes-related hospitalization and lower extremity amputation. 

Staphylococcus aureus is by far the most frequent species isolated from these infections. In 

particular, methicillin-resistant S. aureus (MRSA) has emerged as a major clinical and 

epidemiological problem in hospitals. MRSA strains have the ability to be resistant to, most β-

lactam antibiotics, but also to a wide range of other antimicrobials, making infections difficult to 

manage and very costly to treat. To date, there are two fifth-generation cephalosporins 

generally efficacious against MRSA, ceftaroline and ceftobripole, sharing a similar spectrum. 

Biofilm formation is one of the most important virulence traits of S. aureus. Biofilm growth 

plays an important role during infection by providing defence against several antagonistic 

mechanisms. In this study, we analysed the antimicrobial susceptibility patterns of a group of 

biofilm-producing S. aureus strains isolated from diabetic foot infections. 

Methods: The antibiotic minimum inhibitory concentration (MIC) was determined for ten 

antimicrobial compounds, along with the minimum biofilm inhibitory concentration (MBIC) and 

minimum biofilm eradication concentration (MBEC), followed by PCR identification of the 

genetic determinants of biofilm production and antimicrobial resistance. 

Results: results demonstrate that very high concentrations of the most used antibiotics in 

treating diabetic foot infections (DFI) are required to inhibit S. aureus biofilms in vitro, which 

may explain why monotherapy with these agents frequently fails to eradicate biofilm infections. 

In fact, biofilms were resistant to antibiotics at concentrations 10-1000 times greater than the 

ones required to kill free-living or planktonic cells. The only antibiotics able to inhibit biofilm 

eradication on 50% of isolates were ceftaroline and gentamicin. 

Conclusions: The results suggest that the antibiotic susceptibility patterns cannot be applied to 

biofilm established infections. Selection of antimicrobial therapy is a critical step in DFI and 

should aim at overcoming biofilm disease in order to optimize the outcomes of this complex 

pathology.   

Keywords: Staphylococcus aureus, Diabetic foot infections, MBIC, MBEC, Resistance genes. 
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Background 

Foot infections are a major cause of morbidity in diabetes patients and the most common 

cause of diabetes-related hospitalization and lower limb amputation (Spichler et al., 2015). The 

physiopathology of diabetic foot infections (DFI) is complex, but its severity and prevalence are 

a consequence of host-related disorders and pathogens-factors, as virulence and antibiotic 

resistance traits (Spichler et al., 2015). DFI are mostly polymicrobial and Staphylococcus 

aureus is by far the more frequent species involved, either alone or as a component of mixed 

infections (Mendes et al., 2012; Lipsky et al., 2013). 

S. aureus is an important nosocomial pathogen that can cause several infections such as: 

bacteraemia, osteomyelitis, skin infections, pneumonia, meningitis and endocarditis. In 

particular, MRSA has emerged as a major clinical and epidemiological problem in hospitals 

since the 1980s (Petrelli et al., 2008). MRSA strains have the ability to resist to all β-lactam 

antibiotics and also to a wide range of other antimicrobials, making MRSA infections costly 

and difficult to manage (Rice, 2006). Ceftaroline and ceftobiprole are, to date, the only anti-

MRSA cephalosporins that inhibit PBP2a at therapeutically concentrations. Ceftobiprole, 

already evaluated in clinical trials, access the active site of PBP2a by its R2 group, whereas 

ceftaroline causes an allosteric change in PBP2a (Chan et al., 2015). Ceftaroline is FDA 

approved for treatment of skin and skin structure infections, including those caused by MRSA 

(Chan et al., 2015). 

Several structural and secreted virulence factors play a role in S. aureus infections, which are 

multifactorial and depend on bacterial adherence and biofilm formation. In the beginning of an 

infection, S. aureus produces numerous surface proteins, called “microbial surface 

components recognizing adhesive matrix molecules” (MSCRAMM) that mediate adherence to 

host tissues. Once S. aureus adheres to host tissues, it can form biofilms, which enable its 

persistence by allowing bacteria to evade host defences, impeding access to certain types of 

immune cells, such as macrophages, which display incomplete penetration into the biofilm 

matrix and “frustrated phagocytosis” (Scherr, Heim, Morrison & Kielian, 2014) . Additionally, 

biofilm cells display increased tolerance to antibiotics (Gordon & Lowy, 2008). 

In contrast to heritable antibiotic resistance mechanisms, biofilm-associated tolerance is a 

transient state in which normally susceptible bacteria display an altered physiology that 

decreases sensitivity. When these cells disperse and re-enter a planktonic state, they present 

their normal susceptibility profile (Lister & Horswill, 2014). Bacteria embedded within a biofilm 

are difficult to eradicate due to a wide variation of nutrient gradients that slow or arrest 

bacterial growth, protein synthesis, and other physiologic activities; bacteria sequestered in 

biofilms are less susceptible to antibiotics by virtue of their reduced growth rates (Kaplan, 

2011). Other factors that contribute to biofilm-mediated antimicrobial resistance include 

inefficient diffusion or sequestering of the agent within the biofilm matrix, the presence of 

“persister” cells, and other unknown phenotypic differences (Kaplan, 2011). 
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Various genes have been implicated in the onset and maintenance of biofilms by 

staphylococci. Among these, the most extensively studied are icaA and icaD (intercellular 

adhesion A and D), products of a gene locus composed by the genes icaR (intercellular 

adhesion regulator) and ica A, B, C, and D (intercellular adhesion ABCD), responsible for the 

synthesis of the polysaccharide intercellular adhesin (PIA), which contains N-

acetylglucosamine, a major component of the exopolysaccharide matrix that surrounds 

bacterial cells in the biofilm (Rohde, 2007).  Also, the products of pls (plasmin sensitive) which 

encodes a surface protein, and atl (autolysin), which encodes an autolysin, have been 

implicated in the formation and structuring of biofilms. The atl is the most predominant 

peptidoglycan hydrolase in staphylococci, and was also identified as an adhesin involved in 

primary attachment of cells to polystyrene surfaces (Biswas et al., 2006). The pls is a 

homologue of the serine-aspartate repeat (Sdr) surface protein family, of which ClfA is the 

best-characterized member, that reduces adhesion to host proteins and cellular invasiveness 

(Hussain et al., 2009). 

In this study, a collection of S. aureus strains isolated from DFI was characterized in terms of 

their planktonic and biofilm susceptibility patterns, and presence of biofilm and antibiotic 

resistance genes. The antibiotic minimum inhibitory concentration (MIC) was determined, 

along with the minimum biofilm inhibitory concentration (MBIC) and minimum biofilm 

eradication concentration (MBEC), followed by PCR identification of the genetic determinants 

of biofilm production and antimicrobial resistance. 

 

Methods 

Strains 

A total of 53 staphylococci clinical isolates from diabetic foot ulcers (DFU), obtained from 49 

samples, were collected in a previous epidemiological survey, as described by Mendes et al. 

in 2012. From this collection, twenty-three (n=23) representative biofilm-producing S. aureus 

isolates were selected, based on Pulse Field Gel Electrophoresis (PFGE) and Multilocus 

Sequence Type (MLST) analysis, previously performed by our research team (Mottola et al., 

2016). A reference strain, S. aureus ATCC 29213, a known biofilm producer, was also 

included in this study. 

 

Antimicrobial agents 

The antibiotics cefoxitin (FOX), ciprofloxacin (CIP), clindamycin (CLI), doxycycline (DOX), 

erythromycin (ERY), gentamicin (GEN), linezolid (LZD), meropenem (MEM) and vancomycin 

(VAN) were obtained from Sigma-Aldrich (Portugal). AstraZeneca (Portugal) generously 

provided ceftaroline (CPT). All antibiotics were prepared according to CLSI guidelines (2013). 
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Minimum inhibitory concentrations 

MIC were determined for all antibiotics to all strains; E-test was performed according to the 

manufacturer's recommendations (Biomérieux). Test performance was monitored using S. 

aureus ATCC 29213. 

 

Biofilm susceptibility tests 

A modified version of the Calgary Biofilm Pin Lid Device (CBPD) (Ceri, Olson & Stremick, 

1999) was used to determine the antimicrobial susceptibility of bacteria embedded in a 24 

hours biofilm, in order to determine the MBIC and MBEC (Ceri et al., 1999; LaPlante & 

Mermel, 2009). Briefly, a starting inoculum of 5 x 105 CFU/mL in Mueller Hinton Broth (MHB, 

Liofilchem Italy) was distributed in 96-well flat-bottom microtiter plates (Nunc, Roskilde, 

Denmark), covered with a 96-peg lid (Imuno TSP; Nunc, Roskilde, Denmark) and statically 

incubated for 24 hours at 35°C, to allow biofilm formation on the pegs (Pettit et al., 2005; 

Cafiso, Bertuccio, Spina, Purrello & Stefani, 2010). The peg lid was then rinsed three times in 

1 X sterile PBS to remove planktonic bacteria, placed on a new plate filled with 200 µL of fresh 

broth containing serial dilutions of antibiotics, from 1024 µg/ml to 0.5 µg/ml, and incubated for 

24 hours at 37°C (LaPlante & Mermel, 2009; Pettit et al., 2005; Cafiso et al., 2010; Coraça-

Huber, Fille, Hausdorfer, Pfaller & Nogler, 2012). After incubation, the peg lid was 

removed and the MBIC value was recorded and defined as the last well in which there was no 

visible growth after incubation (LaPlante & Mermel, 2009; Pettit et al., 2009). Next, to 

determine the MBEC value, the peg lid was rinsed three times in 1 X sterile PBS, placed in a 

new plate filled with 200 µL of fresh MHB and sonicated at 45-60 Hz during 10 minutes 

(LaPlante & Mermel, 2009; Harrison et al., 2010), in order to disperse the bacteria from the 

peg surface. After sonication, the peg lid was discarded and the plate was covered with a 

normal lid and incubated for 24 hours at 37°C. After incubation, the quantification of biofilm 

formation was conducted according with a previously described colorimetric microtiter plate, 

using Alamar Blue (Mottola et al., 2015). Briefly, 5 µl of resazurin (Alamar Blue, AB, 

ThermoScientific, Spain) was added to the wells and the plates were incubated for one hour at 

37°C. After incubation, absorbance (A) values at 570 nm and 600 nm were recorded in a 

microplate reader (BMG LABTECH GmbH, Germany). Controls included media plus Alamar 

Blue (control one) and bacterial cells plus media plus AB without antibiotic (control two). The 

MBEC was defined as the lowest drug concentration resulting in ≤ 1/2 the absorbance values 

when compared to control two. Assays were performed at least twice and the average 

absorbance values used to determine the MBEC values.  

 

PCR screening of biofilm associated and antibiotic resistance genes 

All strains were investigated to detect the presence of genes associated with biofilm formation, 

namely: icaA, icaD, atl and pls. Genes associated with antibiotic resistance were also 
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screened, namely: blaZ (penicillin resistance); mecA and mecC (oxacillin resistance); tetK, 

tetL, tetM and tetO (tetracycline resistance); msrA, ermA, ermB and ermC (erythromycin 

resistance); aac(6’)-aph(2’’) (gentamicin resistance) and norA (ciprofloxacin resistance). 

Detection of mecA gene and its homologous mecC were performed by multiplex PCR [24]. 

Oligonucleotide primer sequences are described in Table 1. All amplification reactions were 

prepared with a mixture containing: 12.5 µl of Supreme NZYTaq 2x Green Master Mix 

(Nzytech®), 1 µl of each primer (forward and reverse) (STABVIDA®) and 5.5 µl of sterile water 

(water for molecular biology, Nzytech®). To this mixture, 1 µl of the previous extracted DNA 

was added, resulting in a total reaction volume of 25 µl. PCR amplification was performed in a 

thermal cycler (MyCycler Thermal Cycler, BioRad®) using conditions described in the 

references reported in Table 1. Positive controls for the tested genes were gently provided by: 

Dr. Mark Holmes, University of Cambridge, Dr. Penadés (Cardenal Herrera University, 

Valencia, Spain) and Dr. Birgit Strommenger, Robert Koch Institute. 

 

Minimum inhibitory concentration 

All isolates were considered susceptible to vancomycin, linezolid and doxycycline, with MIC 

values ≤ 1 µg/ml, ≤ 4 µg/ml and ≤ 0.5 µg/ml, respectively. Ceftaroline MIC values were ≤ 0.5 

µg/ml, and only two isolates presented MIC ≥ 4 µg/ml (ceftaroline-resistant). All isolates, 

except for one, originated MIC values for clindamycin of ≤ 0.5 μg/ml. Gentamicin MIC values 

were ≤ 1 μg/ml, except for three resistant isolates. About 57% of isolates were considered 

susceptible to ciprofloxacin with MIC ≤ 2 μg/ml, and 65% were erythromycin susceptible with 

MIC ≤ 0.5 µg/ml. Eight isolates (35%) were cefoxitin-resistant, with MIC values ≥ 8 µg/ml 

(Table 2 and Table 3). 

 

Results 

Biofilm susceptibility tests 

MBIC and MBEC concentration values are summarized in Table 2. For MRSA isolates, 

cefoxitin MBIC concentrations ranged from two to five dilutions higher than MIC values, 

reaching values of 256 to 1024 μg/ml, while MBEC values were even higher (from 2 to ≥ 1024 

μg/ml). Instead, for methicillin-susceptible S. aureus (MSSA) isolates MBIC and MBEC values 

for cefoxitin were the same as MIC values, with the exception of four isolates, for which  MBIC 

and MBEC values were two times higher when compared to MIC. In 65% of the isolates 

(n=15), MBIC and MBEC values for linezolid were the same, and one thousand times higher 

when compared with MIC values (Figure 1). 

Other antibiotics originated different results. All MBIC and MBEC values were much higher 

than the respective MIC values, and MBEC values were at least twice higher than the MBIC 

ones. Ceftaroline MBIC values, were four to sixteen times higher than MIC values, ranging 

from 0.5 to 8 µg/ml, except for one MRSA isolate that reached 1024 μg/ml, and the MBEC 
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concentrations reached 1024 μg/ml, including four of the eight MRSA isolates. Regarding 

ciprofloxacin, MBIC values achieved an average of eight times higher compared with MIC, 

ranging from 0.5 to 512 μg/ml, except one isolate that reached 1024 μg/ml; and for all isolates, 

except for two, MBEC values increased to 256 to 512 μg/ml. Similar results were obtained for 

clindamycin, but the gap between the MIC and MBIC values was higher, with MIC of 0.03 to 

MBIC of 0.5-128 μg/ml, except for one isolate that reached a MBIC value of 1024 μg/ml. MBIC 

values for doxycycline were even higher, as half of the isolates reached a MBIC concentration 

of 0.5 to 2 μg/ml, three hundreds to one thousand times higher than MIC. The other half 

showed MBIC values of 32 to 512 μg/ml, one thousand times higher than the respective MIC. 

Doxycycline MBEC values ranged from 64 to 128 μg/ml (Figure 1). 

The biofilm inhibition concentrations for erythromycin increased about four times in 

comparison with the values for MIC, from 0.12 - > 256 μg/ml to 0.5 - 256 μg/ml. For MRSA, 

MIC and MBIC values were the same and equal to > 256 μg/ml. These isolates reached 

MBEC concentrations of 64 - >1024 μg/ml, representing an increase of five hundred to one 

thousand times compared with MIC and MBIC values (except for the resistant isolates). In the 

case of gentamicin, it was observed an increase from MIC to MBIC of two to five hundred 

times higher, reaching values of 0.5 - > 128 μg/ml (except for one MRSA isolate, that showed 

MBIC value of 1024 μg/ml); MBEC reached 256 μg/ml (including six of the eight MRSA 

isolates). Meropenem and vancomycin produced the major increase regarding MBEC values, 

being one thousand times higher than the value of MIC, and five hundred times higher than 

the MBIC values (0.5 to > 1024 μg/ml and 8 to > 1024 μg/ml for meropenem and vancomycin, 

respectively). The MBIC values ranged from 0.5 to 32 μg/ml for meropenem and from 1 to 16 

μg/ml for vancomycin, except for one isolate that reached 1024 μg/ml (Figure 1). 

 

PCR screening of biofilm associated and antibiotic resistance genes 

All isolates were positive for the biofilm associated genes icaA, icaD and atl, and negative for 

pls. Eight isolates (35%) were MRSA harbouring the mecA gene and were resistant to 

cefoxitin. None of the isolates presented the mecC gene. Three isolates presented the blaZ 

gene, one of which was MRSA and resistant to six of the antibiotics tested (Table 3). 

Regarding the tet genes, none of the isolates were positive for tetL and tetO, one MRSA 

isolate was positive for tetM (and also blaZ positive), and tetK was found in three MSSA 

isolates. With the exception for two isolates, the erythromycin-resistant isolates were positive 

for erm genes, namely six for ermA (five MRSA and one MSSA) and three for ermC (two 

MRSA and one MSSA); contrariwise, none of these isolates was positive for ermB and msrA 

genes. The aac(6’)-aph(2’’) gene was found in three isolates, one MRSA and two MSSA. 

Nineteen isolates (82%) presented the norA gene, six of which were MRSA and thirteen 

MSSA (Table 3).  
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        Table 1. PCR target genes and primers used in this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

The diversity of bacterial populations in chronic wounds, such as diabetic foot ulcers, and the 

biofilm mode of growth of the infecting organisms, may be important contributors to the 

chronicity of wounds (Neut et al., 2011). All isolates carried genes icaA, icaD and atl, as 

expected, due to their virulence profile and ability to form biofilm. None of the isolates were 

positive for pls gene, and this may suggest the adhesion and cellular invasiveness properties 

of the studied isolates, considering that the MRSA surface protein pls reduces these virulence 

features (Savolainen et al., 2001; Hussain et al., 2009). 

Gene 
Primer 

Sequence (5’3’) 
Reference 

icaA 
TCTCTTGCAGGAGCAATCAA 

AGGCACTAACATCCAGCA 
Arciola et al. (2001) [46] 

icaD 
ATGGTCAAGCCCAGACAGAG 

CGTGTTTTCAACATTTAATGCAA 
Arciola et al. (2001) [46] 

atl 
CTTCAGCACAACCAAGATC 

GGTTACCGACTGCACCGTCAC 
Petrelli et al. (2008) [4] 

pls 
GTAATACAACAGGAGCAGATGG 

GTAGCTTTCCATGTTTTTCCTG 
Petrelli et al. (2008) [4] 

blaZ 
ACTTCAACACCTGCTGCTTTC 
TGACCACTTTTATCAGCAACC 

Martineau et al. (2000) [38] 

mecA 
TCCAGATTACAACTTCACCAGG 

CCACTTCATATCTTGTAACG 
Stegger et al. (2012) [24] 

mecC 
GAAAAAAAGGCTTAGAACGCCTC 

GAAGATCTTTTCCGTTTTCAGC 
Stegger et al. (2012) [24] 

tetK 
TCGATAGGAACAGCAGTA 
CAGCAGATCCTACTCCTT 

Ng et al. (2001) [47] 

tetL 
TCGTTAGCGTGCTGTCATTC 
GTATCCCACCAATGTAGCCG 

Ng et al. (2001) [47] 

tetM 
GTGGACAAAGGTACAACGAG 
CGGTAAAGTTCGTCACACAC 

Ng et al. (2001) [47] 

tetO 
AACTTAGGCATTCTGGCTCAC 
TCCCACTGTTCCATATCGTCA 

Ng et al. (2001) [47] 

msrA 
TCCAATCATTGCACAAAATC 
AATTCCCTCTATTTGGTGGT 

Martineau et al. (2000) [38] 

ermA 
TATCTTATCGTTGAGAAGGGATT 
CTACACTTGGCTTAGGATGAAA 

Martineau et al. (2000) [38] 

ermB 
CTATCTGATTGTTGAAGAAGGATT 
GTTTACTCTTGGTTTAGGATGAAA 

Martineau et al. (2000) [38] 

ermC 
CTTGTTGATCACGATAATTTCC 
ATCTTTTAGCAAACCCGTATTC Martineau et al. (2000) [38] 

aac(6’)–aph(2’’) 
TTGGGAAGATGAAGTTTTTAGA 
CCTTTACTCCAATAATTTGGCT 

Martineau et al. (2000) [38] 

norA 
TTCACCAAGCCATCAAAAAG 
CTTGCCTTTCTCCAGCAATA 

Pourmand et al. (2014) [48] 
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Biofilm formation, as widely described in literature, represents a big obstacle for the clinical 

efficacy of antibiotics, and the results of antimicrobial susceptibility testing cannot be directly 

applied to bacterial biofilm infections, due to the higher probability of failure (Patel, 2005). 

Biofilm can resist even to antibiotic concentrations 10-10000 times higher than the ones 

needed to kill planktonic cells (Kaplan, 2011). In this study, antibiotic concentrations required 

to inhibit or eradicate biofilm were much higher than the respective MIC values and should not 

be clinically applied. Furthermore, MBEC values were often several times higher than MBIC 

values.    

 

Table 2. In vitro MIC, MBIC and MBEC values for the antibiotics tested against S. aureus DFU 

isolates (*CLSI range susceptibility). 

 

 

FOX, cefoxitin (≤ 4 µg/ml*); CPT, ceftaroline (≤ 0.5 µg/ml *); CIP, ciprofloxacin (≤ 4 µg/ml *); CLI, clindamycin (≤ 0.25 µg/ml*); 

DOX, doxycycline (≤ 4 µg/ml*); ERY, erythromycin (≤ 8 µg/ml*); GEN, gentamicin ( ≤ 4 µg/ml*); LZD, linezolid (≤ 4 µg/ml*); 

MEM, meropenem (≤ 4 µg/ml*); VAN, vancomycin (≤ 2 µg/ml*). 

 

Although all MRSA isolates should be considered as resistant to β-lactams in vivo (CLSI, 

2013), almost all isolates were susceptible to meropenem. MBIC values for this antibiotic were 

thirty to one thousand times higher than MIC, being still in the range of susceptibility, however 

meropenem was unable to eradicate biofilm. The results suggested that cefoxitin is able to 

inhibit and eradicate S. aureus biofilms formed by MSSA isolates. 

PCR amplification of mecA is considered the “gold standard” technique for detection of 

methicillin resistance among S. aureus (Siripornmongcolchai, Chomvarin, Chaicumpar, 

Limpaiboon & Wongkhum, 2002). However, the discovery of a new mecA homologous gene, 

mecC, determined the need to establish new detection protocols (Stegger et al., 2012), 

although normally the screening of the homologous gene is only performed in oxacillin-

resistant mecA negative isolates (García-Álvarez, 2011). In this study, a multiplex assay was 

applied for the screening of mecA and mecC in all isolates, being possible to detect the mecA 

gene in 35% of the S. aureus DFU isolates (n=8). By the contrary, mecC was not detected in 

any isolates, which is not surprising because MRSA isolates harbouring mecC  are currently 

            Antimicrobial agents 

 FOX CPT CIP CLI DOX ERY GEN LZD MEM VAN 

MIC 
range 
 

1.5-256 0.064-38 0.06->32 0.015-0.06 0.064-0.125 0.12->256 0.06-64 1-2 0.015-16 0.25-1 

MBIC 
range 
 

2-256 0.5-8 0.5-512 0.5-128 0.5-512 0.5->256 0.5->128 1->1024 0.5-32 1-16 

MBEC 
range 

2-1024 0.5-1024 256-512 64->1024 64-128 64->1024 1->256 4->1024 0.5->1024 8->1024 
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rare, and have only been reported in 13 European countries to date, not including Portugal 

(Paterson, Harrison & Holmes, 2014). The presence of mecA positive strains among the study 

isolates can be associated with the increasing prevalence of antibiotic-resistant bacteria, 

particularly MRSA, in DFU isolates, as described by Bowling et al. (2009). Also, Djahmi et al. 

(2013) suggested that MRSA prevalence may be related with the increase in antimicrobial 

treatment required, considering the high frequency of recurrent ulcers. Nowadays, penicillin 

resistance is present in about 90% of human S. aureus isolates. Two mechanisms are 

involved: the production of β-lactamases encoded by the blaZ gene and an altered penicillin-

binding protein, PBP2a, encoded by mecA (El Feghaly, Stamm, Fritz & Burnham, 2014; 

Pereira, Harnett, Hodge, Cattell & Speers, 2014). In our study, only three isolates were 

positive for blaZ. This may be due to the primers used, because multiple polymorphisms within 

the blaZ gene have already been identified and the results can vary when different regions of 

the gene are targeted (El Feghaly et al., 2014), or may also be due to the fact that the isolates 

express penicillin resistance encoded by mecA.  

 

       Table 3. Antibiotic resistance phenotypes and genotypes of the S. aureus DFU isolates. 

 

 

R, resistant; S, susceptible; I, intermediate; +, positive in specific PCR; -, negative in specific PCR. FOX, cefoxitin; 
CIP, ciprofloxacin; CPT, ceftaroline; DOX, doxycycline; ERY, erythromycin; GEN, gentamicin; LZD, linezolid; 
MEM, meropenem; VAN, vancomycin. blaZ, penicillin resistance; mecA and mecC, oxacillin resistance; ermA, 
ermB, ermC, msrA, erythromycin resistance; norA, ciprofloxacin resistance; tetK, tetL, tetM, tetO, tetracycline 
resistance; aac(6’)-aph(2)’’, gentamicin resistance.     
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Antibiotic susceptibility tests showed that gentamicin and ceftaroline were the most potent 

agents against S. aureus biofilms, reaching clinical concentrations that can be applied to 

inhibit and eradicate biofilms. This was observed even for the MRSA isolates, since ceftaroline 

and gentamicin were effective in inhibiting biofilm production by seven of the eight MRSA 

isolates, while ceftaroline was effective in eradicating biofilm production by half of the MRSA 

isolates and gentamicin was effective in eradicating biofilm production by two isolates MRSA 

isolates. Today ceftaroline represents a good alternative to treat infections by S. aureus with 

reduced susceptibility to current agents, as recent studies have proven its efficacy against 

biofilm, applied alone or in combination (Barber, Werth, McRoberts & Rybak, 2014; Barber et 

al., 2015). 

In 1999, Ceri et al. (1999) already described the efficacy of gentamicin against S. aureus 

biofilms, as well as other studies that followed (Kotulová & Slobodníková, 2010; Coraça-Huber 

et al., 2012). The aac(6’)-aph(2’) is the gene coding for the most frequently encountered 

aminoglycoside modifying enzyme (AME) in Gram-positive bacteria, which inactivates a broad 

range of clinically useful aminoglycosides, especially gentamicin and tobramycin; this enzyme 

is bifunctional because it catalyses both acetyltransferase and phosphotransferase reactions 

(Martineau et al., 2000). The aac(6’)-aph(2’) gene was found in three isolates, one MRSA and 

two MSSA, with no discrepant results with the resistance phenotypes obtained by e-test. 

These findings are in agreement with other studies, which reported that all aminoglycoside-

resistant strains carried the aac(6’)-aph(2’) gene (Martineau et al., 2000).  

Linezolid lacked activity against staphylococci biofilms because it didn’t inhibit or eradicate 

biofilms, as already reported in other studies (Pettit et al., 2005; Smith, Perez, Ramage, 

Gemmell & Lang, 2009; Coraça-Huber et al., 2012). Clindamycin, doxycycline and vancomycin 

were effective against planktonic cultures and inhibited biofilm produced by most isolates; 

however, these antibiotics showed no ability to eradicate biofilms. This may suggest that these 

agents, although effective against bacteria in suspensions, may not be the most suitable 

antibiotics for treating biofilm related infections. Previous studies have shown that these 

antibiotics lack activity against staphylococci grown in biofilms (Pettit et al., 2005; Cafiso et al., 

2010; LaPlante & Mermel, 2009; Rose & Poppens, 2009; Smith et al., 2009;). 

Although isolates presented a high rate of resistance to ciprofloxacin and erythromycin, their 

MBIC concentrations were about eight times higher than MIC values but were still clinically 

adequate. They were not able to eradicate biofilm, as previously described for ciprofloxacin in 

other studies (Pettit et al., 2005; Ceri et al., 2009). Several genes are implicated in 

erythromycin resistance, especially in staphylococci and streptococci. The gene ermA is 

located on the transposon Tn554 and has a single specific site for insertion into the S. aureus 

chromosome; the ermB gene is located on the transposon Tn551 of a penicillinase plasmid; 

the ermC gene is generally located on small plasmids and is responsible for constitutive or 

inducible resistance to erythromycin (Martineau et al., 2000). Staphylococcal strains resistant 
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to macrolides and type-B streptogramins also frequently harbor msrA, which encodes an ATP-

dependent efflux pump (Martineau et al., 2000). In this study, ermA was found in five resistant 

and one sensible erythromycin staphylococci. Regarding ermC, this gene was less frequently 

found than ermA, namely in two resistant and one sensible erythromycin staphylococci. These 

results are according to previous reports, in which ermA was the most prevalent erm-gene 

followed by ermC (Martineau et al., 2000; Werner, Cuny & Schmitz, 2001; Strommenger, 

Kettlitz & Werner, 2003). The discrepance between the erythromycin susceptible isolates and 

their erm positivity, was already described (Martineau et al., 2000). Numerous factors could 

explain the sensitive phenotype in these strains, including regulation of erm genes and 

absence of host factors associated with the expression of erythromycin resistance. These 

factors can also explain the cefoxitin-susceptible S. aureus isolates carrying the mecA gene.    

The increasing prevalence of MRSA has led to a new interest in the usage of macrolide-

lincosamide-streptogramin B (MLSB) antibiotics to treat S. aureus infections, with clindamycin 

being the preferred agent due to its excellent pharmacokinetics. However, this increased 

application promoted a raise in resistance to MLSB antibiotics. Clindamycin resistance is 

commonly caused by a one target site modification mediated by erm genes, difficult to detect 

in vitro, as they appear erythromycin resistant and clindamycin sensitive (Jv, Janakiram & 

Vijaya, 2015).   

Tetracycline resistance determinants are widespread among bacterial species, consisting in 

active efflux pumps that result from acquisition of plasmid-located genes, tetK and tetL, and in 

ribosomal protection mediated by transposon or chromosomal located genes tetM or tetO 

(Werner et al., 2001; Paterson et al., 2014). MRSA isolates typically show tetM or tetKM 

genotype; tetK is the most frequent genotype found in S. aureus, followed by tetM (Smith et 

al., 2009; Andersen et al., 2015; Jv et al., 2015). The same was observed in this study, in 

which three MSSA isolates were tetK positive and one MRSA was tetM positive; tetL and tetO 

were not found. Tet -positive isolates were sensible to doxycycline. In tetK positive isolates, 

this gene confers high resistance to tetracycline, oxytatracycline, chlortetracycline but low 

resistance to monocycline, 6-demethyl-6-deoxytetracycline and doxycycline (Andersen et al., 

2015). Surprisingly, the only tetM positive isolate was doxycycline sensible. Since this gene is 

believed to confer resistance to all drugs of tetracycline group (Trzcinski, Cooper, Hryniewicz 

& Dowson, 2000), it may be suggested that prevalence of resistance to tetracyclines in S. 

aureus is underestimated, or, as demonstrated by Trzcinski et al. (2000), recognition of 

tetracycline resistance in S. aureus strains often depends on the different interpretation 

guidelines used. 
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Figure 1. Minimum inhibitory concentration (MIC), minimum biofilm inhibitory concentration 

(MBIC) and minimum biofilm eradication concentration (MBEC) of S. aureus DFU isolates as 

determined by a modified version of the Calgary Biofilm Pin Lid Device. FOX, cefoxitin; CIP, 

ciprofloxacin; CPT, ceftaroline; DOX, doxycycline; ERY, erythromycin; GEN, gentamicin; LZD, 

linezolid; MEM, meropenem; VAN, vancomycin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In recent years, an increase in fluoroquinolone resistance in S. aureus, including MIC strains, 

has been spreading worldwide. Resistance mechanisms to these antibiotics involve mutations 

within the gyrA and gyrB genes, which encode for subunits of DNA gyrase, an established 

target of fluoroquinolones; analogous mutations in grlA and grlB, which encode for subunits of 

DNA topoisomerase IV; and the increased expression of the norA gene, which encodes for a 

drug efflux protein, norA, and mutations in the norA coding region (Trzcinski et al., 2000; 

Arciola et al., 2001). NorA is a membrane protein, which actively transports norfloxacin and 

other hydrophilic fluoroquinolones out of the bacterial cell, thus effectively decreasing the 

intracellular concentration of the drugs (Trzcinski et al., 2000). Nineteen isolates were positive 

for norA gene but eleven of them were susceptible to ciprofloxacin. 
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From a clinical perspective, the discrepancy between genotype and phenotypic resistance 

expression suggest that a susceptible strain harbouring, but not expressing, an antibiotic 

resistance gene should be regarded as potentially resistant to that antibiotic. Overall, we did 

not detect a significant presence of antibiotic resistance genes, compared to the great biofilm 

resistance of the isolates, even when using high antimicrobial concentrations. 

 

Conclusions 

To our knowledge, this is the first study on antibiotic susceptibility tests targeting biofilm-

producing S. aureus isolates from diabetic foot infections. It was found that only very high 

concentrations of the most used antibiotics in DFU were capable to inhibit S. aureus biofilms in 

vitro, which may explain why monotherapeutics frequently fail to eradicate biofilm infections. 

Biofilms were resistant to antibiotics concentrations 10 to 1000 times higher than the 

concentrations needed to kill free-living or planktonic cells. This high level of resistance in 

biofilms makes chronic infections, like DFI, extremely difficult to eradicate using conventional 

antimicrobial therapy.  

MIC values were not always predictive of the MBIC and MBEC values. Only gentamicin and 

ceftaroline proved to be effective in eradicating biofilms, formed by half of the isolates at 

clinical drug concentrations, while the other tested drugs were only able to inhibit adherent 

cells. In particular, ceftaroline showed a very good potential for inhibiting and eradicating 

biofilms produced by MRSA isolates. It is clear that antibiotic susceptibility values for 

planktonic populations are not necessarily applicable to effective treatment of infections by the 

same organism, once a biofilm has been established. These differences may be an important 

factor in the selection of antimicrobial therapy for most of DFI, for S. aureus is the main virulent 

organism involved, rendering important the investigation of antibiotic susceptibility of biofilm 

infections. 
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CHAPTER V

 
               Characterization of multidrug 

resistant diabetic foot ulcer enterococci 
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Abstract 

Background: Diabetes mellitus is a highly prevalent chronic progressive disease with 

complications that include diabetic-foot ulcers. 

Methods: Enterococci isolated from diabetic foot infections were identified, evaluated by 

macrorestriction analysis, and screened for virulence traits and antimicrobial resistance. 

Results: All isolates were considered multidrug-resistant, cytolysin and gelatinase producers, 

and the majority also demonstrated the ability to produce biofilms. 

Conclusions: These results indicate the importance of enterococci in diabetic foot infection 

development and persistence, especially regarding their biofilm-forming ability and resistance 

to clinically relevant antibiotics. 

 

Keywords: Diabetic foot infections, Enterococcus, Multi-drug-resistant (MDR), Virulence 

factors, Biofilms. 
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Background 

Diabetes mellitus is a serious health problem in rapid expansion worldwide (Zhang et al., 

2015). One the most frequent diabetes complications being the development of diabetic foot 

infections - DFI, which represent a major cause of morbidity and mortality among patients. 

Antibiotherapy continues to be the most important approach to solve or control such infections, 

however, increasing bacterial resistance to a growing number of antimicrobial agents, 

frequently results in treatment failure. Previous reports (Mendes et al., 2012) point towards 

gram-positive cocci as the most common pathogens in DFI samples, contributing to the 

persistence/severity of the disease and leading to higher morbidity and mortality rates. 

Members of the Enterococcus genus are known to be among such bacteria. In this context, 

the present study aimed to evaluate the diversity, antimicrobial drug resistance, biofilm forming 

ability and virulence patterns of enterococci isolated from diabetic foot infections. 

 

Methods 

Bacterial isolates 

The study was conducted in 4 clinical centers (2 outpatient clinics, 1 general surgery ward and 

1 vascular surgery ward) in Lisbon from January 2010 to June 2010. Specimens (aspirates, 

biopsies and swabs) were obtained from patients with diabetes mellitus and clinically infected 

foot ulcers, as advised by current clinical guidelines (NICE, 2011). After collection, forty-nine 

clinical samples were screened for the presence of Enterococcus spp. using conventional 

microbiological procedures (Mendes et al., 2012). 

 

Molecular characterization 

Following DNA isolation by boiling lysis, genus and species allocation were performed 

according to methodologies described elsewhere (Jackson, Fedorka-Cray & Barrett, 2004).  

Macrorestriction analysis by Pulsed-Field Gel Electrophoresis - PFGE - was applied as 

previously reported (Turabelizde, Kotetishvili, Kreger, Morris & Sulakvelidze, 2000) and data 

generated were analyzed using the BioNumerics 6.6 software (Applied Maths, Kortrijk, 

Belgium). 

 

Virulence factors 

Application of previously described protocols (Semedo-Lemsaddek et al., 2012) included 

screening for genes coding for aggregation substance – agg, the E. faecalis antigen A – 

efaAfs, the enterococcal surface protein – esp, gelatinase – gelE, the cytolysin activator – cylA 

and plate assays for the evaluation of hemolytic and gelatinolytic phenotypes. 

 

Evaluation of biofilm forming ability was by Fluorescent in Situ Hybridization – FISH 

Biofilm production was evaluated in vitro as described elsewhere (Oliveira et al., 2007). 
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Antibiotic susceptibility tests 

Susceptibility to sixteen antimicrobial agents, representing distinct classes, was evaluated by 

the disk diffusion method, using previously established breakpoints of resistance (CLSI, 2013). 

MICs for vancomycin were further determined using E-test. 

 

 

  Table 1. Data regarding enterococcal isolates and DFI patients. 

 

    

Patient information 

Isolate Enterococcal species Sample Hospital* 
Age Gender Years of 

 diabetes 

Previous 

ulcers 
Amputation 

A5-3 Enterococcus faecalis aspirate APDP 53 M 47 4 1 

B4-2 Enterococcus galinarum 
biopsy HSAC 70 M 20 0 0 

B4-3 Enterococcus galinarum 

B8-2 Enterococcus faecalis biopsy HSAC 66 F 20 0 0 

B10-2 Enterococcus faecalis biopsy HSAC 76 F 20 3 0 

Z5-4 Enterococcus faecalis swab HCC 69 M 15 1 0 

Z8-2 Enterococcus faecalis swab HCC 67 M 20 1 1 

Z11-2 Enterococcus faecalis 
swab HCC 47 M 30 1 1 

Z11-3 Enterococcus faecalis 

Z15-1 Enterococcus faecalis swab HCC 61 M 50 0 0 

Z22-2 Enterococcus faecalis swab APDP 26 M 26 3 0 

Z24-3 Enterococcus faecalis swab HCC 77 M 13 4 1 

Note: The present study was approved by the Faculty of Medicine of the University of Lisbon Research Ethics 

Committee and the Portuguese Data Protection Authority, and written informed consent was obtained for every 

patient. 

* APDP - Associação Protectora dos Diabéticos de Portugal; HCC - Hospital Curry Cabral (Centro Hospitalar Lisboa 

Central EPE) and HSAC - Hospital Santo Antonio dos Capuchos (Centro Hospitalar Lisboa Central EPE). 

 

Results and Discussion 

The pathogenesis of foot ulceration is complex, the mortality is high and healed ulcers often 

recur, resulting in severe chronic foot infections. Additionally, the indiscriminate misuse and 

abuse of antibiotics for DFI treatment has triggered an increase in the development of 

multidrug-resistances, leading to serious public health issues due to treatment failure. Most 

DFI have a polymicrobial etiology, enterococcal strains being part of the complex diabetic foot 

microbiota (Zhang et al., 2010; Mendes et al., 2012). The present study screened forty-nine 

samples from DFI for the presence of Enterococcus spp. Twelve enterococci were recovered 

(see Table 1 for further details) and identified as E. faecalis (Magiorakos et al., 2011) and E. 

gallinarum (Mendes et al., 2012). The higher prevalence of E. faecalis among the diabetic foot 

ulcer enterococci corresponds to the expected, as this species is considered the most 
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pathogenic of this genus, being commonly associated with clinical samples (Higuita & Hui, 

2014). 

Macrorestriction analysis was the methodology chosen to assess the genomic diversity of the 

enterococci under study. The dendrogram built based on macrorestriction patterns 

(pulsotypes) allocated the enterococcal isolates into nine genomic groups (Figure 1). Results 

demonstrated that no single enterococci was present in all the samples under analysis, 

although high similarity levels could be observed between distinct isolates, revealing their 

clonal relationships. Briefly, the two E. gallinarum share the same pulsotype; since they were 

isolated from the same patient it can be established that they are identical, or highly related. 

Similar conclusions can be drawn for E. faecalis Z11-2 and Z11-3 (swab samples from the 

same patient), as well as for Z22-2 and Z243, obtained from DFI of patients attending distinct 

healthcare units, which apparently harbor the same enterococcal isolate. However, to further 

prove the persistence of specific enterococci in DFI, additional sample collection should be 

performed over the years in the same patients. 

Concerning the screening for virulence features (see Figure 1), all DFI enterococci present 

hemolytic and gelatinolytic abilities and the E. faecalis DFI isolates harbor distinct virulence 

determinants. Since the screened virulence traits are considered among the most relevant for 

enterococcal pathogenicity mechanisms, often detected in clinical isolates and correlated with 

the persistence and severity of infection (Higuita & Huy, 2014) these results constitute 

important indicators for the putative pathogenicity of the DFI enterococci under study. 

Furthermore, analysis of phenotypic biofilm expression revealed 83% (10/12) of biofilm 

producers at 48h, with negative results being associated only with the non-E. faecalis DFI 

enterococci. Due to the known importance of biofilms in the persistence of human infections, 

such as DFI, the biofilm forming ability demonstrated by the enterococci further demonstrates 

their putative contribution for the chronicity of infection. 

Regarding antibiotic resistance, all isolates were simultaneously resistant to several 

antibiotics, representing distinct drug classes and directed towards various bacterial targets 

(Figure 1). Considering as multidrug-resistant -MDR- the enterococci non-susceptible to more 

than 3 antibiotics representing distinct classes and bacterial targets,10 the majority of the 

isolates under analysis fall into the MDR category. Although vancomycin MIC determination 

showed that none of the isolates are resistant to this drug (MIC ≤ 4 µg/ml), the MDR status 

attributed to the majority of the enterococci continues to be highly relevant, especially in 

chronic severe infections such as DFI, since antimicrobial resistance often results in treatment 

failure. 
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Figure 1. Dendrogram based on SmaI-PFGE patterns. The BioNumerics 6.6 software (Applied 

Maths, Kortrijk, Belgium) was used to register macrorestriction patterns and clustering analysis 

was performed using Dice similarity coefficient and the unweighted-pair group method with 

arithmetic mean (UPGMA). 

 

Species Virulence genotype Resistance phenotype

E. faecalis esp
+
  efaA fs

+
 gelE

+ QD – RD

E. faecalis esp
+
 efaA fs

+
 gelE

+ QD – RD

E. faecalis cylA 
+
 esp

+
 efaA fs

+
 gelE

+ E – QD – TE – VA – TEC – AMP

E. faecalis agg
+
 cylA 

+
 esp

+
 gelE

+ QD – VA – RD

E. faecalis agg
+
 cylA 

+
 esp

+
 efaA fs

+
  gelE

+ CN – QD – TE – CIP – NOR – LEV

E. faecalis agg
+
 cylA 

+
 esp

+
 efaA fs

+
 gelE

+ CN – QD – TE – VA – CIP – NOR – LEV

E. faecalis agg
+
 efaA fs

+
 gelE

+ CN – S – E – C – QD – TE – VA – AMP – CIP – NOR – LEV

E. faecalis cylA 
+
 esp

+
 efaA fs

+
 gelE

+ CN – S – E – C – QD – TE – VA – TEC – CIP – NOR – LEV – RD

E. faecalis agg
+
  cylA 

+
 esp

+
 efaA fs

+
 gelE

+ CN – S – E – TE – CIP – NOR – LEV

E. faecalis agg
+
  cylA 

+
 esp

+
 efaA fs

+
 gelE

+ CN – S – E – TE  – CIP – NOR – LEV

E. gallinarum QD – TE – VA – AMP

E. gallinarum QD – TE – VA – AMP  

 

Samples: A – aspirate, B – biopsy, Z – swab. Virulence determinants: agg – aggregation substance, cylA – 

cytolysin activator, efaAfs – cell wall adhesin, esp – cell wall-associated protein, gelE – gelatinase. Antibiotics: AMP 

– ampicillin, C – chloramphenicol, CIP – ciprofloxacin, QD – quinupristin-dalfopristin, E – erythromycin, CN – 

gentamicin-120, LEV – levofloxacin, LZD – linezolid, F – nitrofurantoin, NOR – norfloxacin, RD – rifampicin, S – 

streptomycin-300, TEC – teicoplanin, TE – tetracycline, VA – vancomycin. 

 

 

Overall, the present study demonstrated that DFI enterococci harbor virulence determinants, 

which are associated with biofilm-forming ability and resistance to medically important 

antibiotics, suggesting their contribution to the persistence and severity of diabetic foot 

infections. The presence of multidrug-resistant diabetic foot ulcer enterococci is of major 

importance also due to the possibility of transmitting those multi-drug resistances to other 

microorganisms sharing the same ecological niche, highly impairing the implementation of 

successful antibiotic treatment. Since DFI are one of the most frequent diabetes complications, 

which represent a major cause of morbidity and mortality among patients, further studies 

directed towards the evaluation of the role of enterococci, during the establishment and 

persistence of infection, are fundamental. 
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CHAPTER VI

 
In vitro design of a novel lytic 

bacteriophage cocktail with therapeutic 

potential against organisms causing 

diabetic foot infections 
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Abstract 

Background: In patients with diabetes mellitus, foot infections pose a significant risk. These 

are complex infections commonly caused by Staphylococcus aureus, Pseudomonas 

aeruginosa and Acinetobacter baumannii, all of which are potentially susceptible to 

bacteriophages. 

Methods: Here, we characterized five bacteriophages that we had determined previously to 

have antimicrobial and wound-healing potential in chronic S. aureus, P. aeruginosa and A. 

baumannii infections. 

Results: Morphological and genetic features indicated that the bacteriophages were lytic 

members of the family Myoviridae or Podoviridae and did not harbour any known bacterial 

virulence genes. Combinations of the bacteriophages had broad host ranges for the different 

target bacterial species. The activity of the bacteriophages against planktonic cells revealed 

effective, early killing at 4 h, followed by bacterial regrowth to pre-treatment levels by 24 h. 

Using metabolic activity as a measure of cell viability within established biofilms, we found 

significant cell impairment following bacteriophage exposure. Repeated treatment every 4 h 

caused a further decrease in cell activity. The greatest effects on both planktonic and biofilm 

cells occurred at a bacteriophage : bacterium input multiplicity of 10.  

Conclusions: These studies on both planktonic cells and established biofilms allowed us to 

better evaluate the effects of a high input multiplicity and a multiple-dose treatment protocol, 

and the findings support further clinical development of bacteriophage therapy. 

Keywords: Diabetic foot infections, Bacteriophage therapy, Staphylococcus aureus, 

Pseudomonas aeruginosa, Acinetobacter baumannii. 
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Background 

Diabetes mellitus affects an estimated 171 million patients worldwide (Wild et al., 2004) and 

has become a major world epidemic. Even with the best preventative care, 9% of patients will 

develop a diabetic foot infection (DFI), which brings the consequent risk of amputation (Lavery 

et al., 2006). Qualitative and quantitative aspects of wound microbiology are critical 

determinants of the wound outcome. Gram-positive microorganisms are the first to colonize 

and acutely infect breaks in the skin, whereas chronic wounds develop a more complex 

polymicrobial microbiology, including aerobic Gram-negative rods (Lipsky et al.,2004).  

These microorganisms aggregate in communities encased within extracellular polymeric 

substances on the wound surface. Such an entity is defined as a biofilm, and shows increased 

resistance to immunological and antimicrobial attack (Percival et al., 2012). In current clinical 

practice, DFI treatment includes debridement and systemic antibiotics (Lipsky et al., 2004). 

The increased incidence of antibiotic- resistant bacterial strains, such as methicillin-resistant 

Staphylococcus aureus and pan-drug-resistant, non-fermenting, Gram-negative bacilli, 

threatens the efficacy of antimicrobial therapy (Mendes et al., 2012). Thus, it is necessary to 

identify new therapeutic strategies for DFI. 

Bacteriophages are viruses that consist of a genome contained within a protein coat and that 

specifically infect bacteria. In contrast to filamentous bacteriophages, the multiplication of 

tailed bacteriophages and release of the newly formed virus particles always involves lysis of 

the host bacterial cell. However, among tailed bacteriophages, some may not immediately 

follow this lytic pathway. The genome of these so-called temperate bacteriophages may 

instead reside in the host cell (integrated in the bacterial chromosome or in a plasmid-like form 

in the cytoplasm) and be propagated for several bacterial generations without lysis. In 

contrast, strictly lytic phages do not have this option and usually undergo the lytic pathway 

once inside the bacterial host (Ansaldi, 2012). Bacteriophage therapy (BT) is the use of lytic 

bacteriophages to reduce or eliminate pathogenic bacteria. BT has become a broadly relevant 

technology for veterinary, agricultural and food microbiological applications; however, the 

treatment of human infections with BT attracts the greatest interest (Kutter et al., 2010). 

The use of bacteriophages as antibacterial agents for suppurative infections began shortly 

after the discovery of bacteriophages. Bruynoghe and Maisin first demonstrated BT, using 

bacteriophages to treat S. aureus skin infections (Bruynoghe & Maisin, 1921). However, 

following the discovery and general application of antibiotics, interest in the therapeutic uses of 

bacteriophages waned. Recently, the increase in antibiotic-resistant bacterial strains has 

reinvigorated enthusiasm about these bacteria-specific viruses (Chopra, Hodgson, Metcalf & 

Poste, 1997). This interest is particularly true in cases in which bacteriophages can be applied 

externally (topical application), as is the case for DFI. 

The development of an effective BT is a multistep process consisting of: (i) bacteriophage 

isolation and assessment for antibacterial activity against specific bacterial strains; (ii) 
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bacteriophage characterization and screening for un- desirable traits; (iii) in vitro posology and 

dosage regimen design; (iv) pre-clinical animal efficacy and toxicology studies; and (v) 

regulated human clinical trials. Although the use of bacteriophages to treat DFIs is promising, 

difficulties in any of these steps can hinder widespread clinical application (Abedon, 2010). 

Recently, we demonstrated the antimicrobial activity and wound-healing capability of a 

topically delivered bacteriophage suspension against wounds chronically infected with chronic 

S. aureus, Pseudomonas aeruginosa and Acinetobacter baumannii in two animal models of 

diabetes mellitus (Mendes et al., 2013). In the current study, we present a characterization of 

the bacteriophages used in this previous study. We examined their spectrum of activity, 

genetic and morphological structures, and activity against planktonic cells and established 

biofilms. Collectively, the findings justify the posology and dosage regimen used in the animal 

studies. 

 

Methods 

Bacterial strains 

The S. aureus 743/06, P. aeruginosa 433/07 and A. baumannii 1305/05 host strains were 

isolated from human clinical samples that were collected and identified in hospitals in the 

Lisbon area. The three strains were characterized previously as biofilm producers (Mottola et 

al., 2013). Bacterial clinical isolates used for bacteriophage host-range investigation included 

S. aureus (n5132), P. aeruginosa (n593) and A. baumannii (n5103) from wound specimens. Of 

these isolates, 44 were from DFI. The epidemiology, clinical details and specific microbiology 

of our collection of DFI isolates have been described previously (Mendes et al., 2012). All 

isolates were stored in tryptone soy broth (TSB; Biokar Diagnostics) with 15% glycerol (w/v) at 

- 70°C until needed. For the experiments, single bacterial colonies were grown in TSB at 37°C. 

After a 24h incubation, the bacterial cells were suspended in saline and adjusted to 

McFarland’s scale 0.5 (bioMérieux), producing a final working suspension of approximately 5.0 

x 108 c.f.u. ml-1. 

 

Bacteriophage isolation, amplification and purification 

S. aureus F44/10 and F125/10, P. aeruginosa F770/05 and F510/08, and A. baumannii 

F1245/05 bacteriophages were isolated from environmental water samples from the Lisbon 

area. Standard methods for bacteriophage isolation (Adams, 1959) were employed for all five 

bacteriophages using the host strains described above. The obtained bacteriophage plaques 

were purified by repeated single plaque isolation to ensure that each contained only one type 

of bacteriophage. 

To produce bacteriophage stocks in sufficient quantities for the experiments, a previously 

described protocol of amplification, concentration by high-speed centrifugation and purification 

on a CsCl gradient (Miller, 1987) was used for all five bacteriophages. Briefly, a final lysate of 
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each bacteriophage was centrifuged at 10.000 g for 20 min at 4°C. The pellet was discarded, 

and the supernatant fraction was concentrated overnight at 8000 r.p.m. (JA-14 rotor; Beckman 

Coulter). The bacteriophage pellet was resuspended in SM buffer (5.8 g NaCl l-1, 2 g MgSO4.7 

H2O l-1, 50 ml 1 M Tris/HCl, pH 7.5). This concentrated bacteriophage suspension was loaded 

onto a discontinuous CsCl gradient and centrifuged at 30.000 r.p.m. for 5h at 4°C in a 

Beckman L-90 ultracentrifuge with an SW41Ti rotor (Beckman Coulter). The banded 

bacteriophage particles were collected and thoroughly dialysed against SM buffer. Final 

bacteriophage titres were determined using double agar overlay plaque assays (Kropinski, 

Mazzocco, Waddell, Lingohr & Johnson, 2009). Purified bacteriophages were stored at 4°C 

and further diluted in SM buffer to achieve a working suspension of approximately 2 x 1010 

p.f.u. ml-1 prior to the assays. 

 

Morphology of bacteriophages 

The morphology of each of the five bacteriophages was analysed by transmission electron 

microscopy at the Félix d’Hérelle Reference Center for Bacterial Viruses, Laval University, 

Québec, Canada. Briefly, a 200-mesh Formvar carbon-coated copper grid (Pelco 

International) was deposited face down on 10 ml staining suspension (2% uranyl acetate, pH 

7.0, for all bacteriophages except for F770/05, which was stained with 2% phosphotungstic 

acid, pH 7.0). After 30 s, 10 ml bacteriophage suspension was mixed with the stain. After 2-3 

min, the grid was deposited face up on blotting paper. The grid was dried for 5 min and then 

observed at 80 kV using a JEOL 1230 transmission electron microscope. These data were 

integrated with the genomic analysis, and the bacteriophages were classified according to the 

Ackermann (2009) classification. 

 

Genomic analysis of bacteriophages 

The DNA of all five bacteriophages was isolated using a standard phenol/chloroform extraction 

and DNA precipitation protocol (Sambrook, Fritsch & Maniatis, 1989). The purified nucleic acid 

was sent to Macrogen for commercial sequencing. In brief, pyrosequencing of the sample 

DNA was performed using a GS FLX Titanium General Library Preparation kit (Roche 454 

Company) according to the manufacturer’s instructions. The assembly of quality-filtered reads 

was performed using Genome Sequencer De novo Assembler software (Newbler) version 

2.5.3. An extensive bioinformatics evaluation was conducted to analyse the sequences and 

identify regions of similarity with entries in databases, which yield clues about structure and 

function. Each genome sequence was scanned using the National Center for Biotechnology 

Information (NCBI) BLASTN and BLASTX bioinformatics tools 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

Prediction of ORFs was performed by integrating the results obtained by the programs 

GeneMark.hmm (http://exon.gatech.edu/genemark/eukhmm.cgi) and MetaGeneAnnotator 
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(http://metagene.cb.k.u-tokyo.ac.jp). Protein homology searches were performed with the 

BLASTP program (http://blast. ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) using the NCBI 

non- redundant protein sequence database. The genome sequences were deposited in the 

patent division of GenBank (specific patent nos: WO2010090542 and WO2012036580). 

 

Bacteriophage host range 

The five bacteriophages were tested against a panel of clinical isolates using the 

bacteriophage spot-test procedure (Armon & Kott, 1993). Briefly, 3 ml top-0.7% tryptone soy 

agar (TSA; Biokar Diagnostics) was added to 200 ml overnight culture of each clinical isolate 

and poured over TSA. The agar was allowed to solidify, after which 5 ml each bacteriophage 

suspension (approx. 108 p.f.u.) was spotted on the bacterial lawn of each different isolate. The 

drop was allowed to dry, and the plates were incubated overnight at 37°C. Specific 

bacteriophage-sensitive isolates showed clear areas where the bacteriophage suspensions 

had been spotted. 

 

Bacteriophage activity against planktonic cells 

To determine the activity of the bacteriophages against planktonic cells in vitro, a kinetic time-

kill assay (National Committee for Clinical Laboratory Standards [NCCLS], 1999) was 

performed using a modified protocol. Briefly, 1 ml host bacterial suspension (5 x 108 c.f.u.) was 

diluted in 9 ml TSB, yielding a final concentration of 5 x 107 c.f.u. ml-1. For single-

bacteriophage studies, 100 ml (5 x 109 p.f.u.) specific bacteriophage was added, yielding a 

final concentration of 5 x 108 p.f.u. ml-1 [input multiplicity (IM) of bacteriophage : bacterium of 

10]. For combination studies, 100 ml (5 x 109 p.f.u.) each bacteriophage suspension was 

added, resulting in a final concentration of 5 x 108 p.f.u. ml-1 (IM of 10) for each of the 

bacteriophages. An additional kinetics assay was performed for P. aeruginosa 433/07, in 

which 10 ml (5 x 108 p.f.u.) bacteriophage F770/05 suspension was added (yielding an IM of 

1), alone or in combination with the bacteriophage F510/08 at an IM of 10. Control 

experiments were performed in parallel using bacteriophage buffer instead of a bacteriophage 

suspension. All mixtures were incubated at 37°C with agitation, and 100 ml aliquots were 

collected at 0, 1, 3, 5 and 24 h post-infection (p.i.). Bacterial quantification was performed 

using a 10-fold serial dilution method (Murray, Baron, Jorgensen, Pfaller & Yolken, 2003). All 

experiments were conducted in triplicate. The results are presented as the mean±SD and are 

expressed as log- transformed values [log (c.f.u. ml-1)] over time. 

 

Combined bacteriophage activity against established biofilms 

The activity of the bacteriophages against established biofilms was examined using a 

modification of previously described protocols (Cerca et al., 2005; Pettit et al., 2005). Briefly, 1 

ml of each of the host bacterial suspensions (5 x 108 c.f.u.) was diluted in 9 ml TSB, and 100 
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ml of this dilution (5 x 106 c.f.u.) was added to a 96-well flat-bottomed polystyrene microtitre 

plate (Orange Scientific) and incubated at 37°C for 24h to allow biofilm formation. After 

incubation, the planktonic bacteria were removed carefully with a sterile pipette. The number 

of biofilm cells at 24h has been demonstrated previously to be approximately 107 c.f.u. per well 

for all bacterial species (Mottola et al., 2013). Next, 150 ml bacteriophage suspension (IMs of 

10 and 100) diluted in TSB was added to the wells. The following bacteriophage suspensions 

were used for each bacterium: for S. aureus, a 1 : 1 combination of F44/10 and F125/10; for P. 

aeruginosa, a combination of F770/05 and F510/08 at a 1 : 10 ratio; and for A. baumannii, 

F1245/05 alone. Biofilms treated with TSB alone served as positive controls in measurements 

of cell metabolic activity (see below). 

The microplates were incubated at 37°C for 4 or 24h. At each time point, the wells were 

processed according to a previously described protocol (Pettit et al., 2005) using alamarBlue 

(AB; Thermo Scientific), and their absorbance at 570 and 600 nm was measured using a 

SpectraMax 340PC microplate reader (Molecular Devices). A second assay was performed in 

which, after biofilm formation, planktonic bacteria were removed from the wells and replaced 

with a bacteriophage suspension every 4h over a 24h incubation period. In the positive-control 

group, planktonic bacteria were removed from the wells and replaced with TSB every 4h. 

These plates were then processed as described previously (Pettit et al., 2005). 

Biofilm susceptibility experiments were performed a minimum of three times. All results are 

presented as the percentage variation of AB±SD. This value was calculated using the 

manufacturer’s formula, with one exception: the medium-only negative control in the formula 

was replaced by a more robust negative control that consisted of medium plus bacteriophage 

at each IM (i.e. IMs of 10 and 100). Strong antimicrobial suppression was defined as a ≥ 50% 

reduction in AB compared with the positive control. 

 

Statistical analysis 

For all datasets, comparisons between groups were performed using two-tailed Student’s t-

tests, and values of P<0.05 were considered significant. All data were entered into a 

spreadsheet program (Excel; Microsoft) for statistical analysis. Analytical statistics were 

performed using Analyse-it, version 2.21 Excel 12+ (Analyse-it Software), a statistical add-in 

program for Excel. 

 

Results 

Bacteriophage features 

After purification, the selected bacteriophages were initially characterized according to plaque 

morphology. The S. aureus F44/10 and F125/10, P. aeruginosa F770/05 and F510/08, and A. 

baumannii F1245/05 bacteriophages produced clear lytic plaques ranging from 1.5 to 5 mm in 

diameter. Plaques produced by the bacteriophages F770/05, F510/08 and F1245/05 were 
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surrounded by growing opaque halo zones. The morphological and genomic characteristics of 

the five bacteriophages are presented in Figure 1. 

 

Figure 1. Morphological and genomic characteristics of the bacteriophages used for 

bacteriophage therapy. Five bacteriophages previously shown to successfully treat infections 

in vivo were characterized using transmission electron microscopy. Representative images are 

shown. The genomes were sequenced by pyrosequencing and analyzed extensively using 

BlastN, BlastX, GeneMark.hmm, MetaGeneAnnotator, and BlastP. ICTV = International 

Committee on Taxonomy of Viruses. 

 

 

 

 

Morphology 

To classify the purified bacteriophages based on their virion morphology, we used 

transmission electron microscopy. The staphylococcal bacteriophages F44/10 and F125/10 

appeared to be composed of a contractile tail and an isometric head, with a baseplate 

structure also discernible at the tip of the F44/10 tail. These features, along with their genomic 

properties (see below), allowed us to classify F44/ 10 and F125/10 as members of the family 

Myoviridae. The Pseudomonas bacteriophages F770/05 and F510/08 and the Acinetobacter 

bacteriophage F1245/05 had short tails and were classified as members of the family 

Podoviridae. The family Podoviridae consists of different subgroups. Although there are 

certain morphological similarities between the bacteriophages F510/08 and F1245/05 and the 
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wKMV-like group (Chang et al., 2011; Lammens et al., 2009), definite morphological 

assignment of F1245/05 could not be performed due to the uncharacteristic morphology of 

these virion particles. 

 

Genomic analysis 

The bacteriophages were characterized at the genomic level by determining and analysing 

their genome sequences. The bacteriophages F44/10 and F125/10 had the largest genomes 

and hence a greater number of putative genes and ORFs, which is in agreement with the 

characteristic features of viruses belonging to the family Myoviridae (Lavigne et al., 2009). The 

genomes of the bacteriophages F44/10 and F125/10 displayed high similarity (up to 98% 

nucleotide sequence identity, 80–90% genome coverage) to those of a group of highly related 

staphylococcal myoviruses, which includes bacteriophages K (O’Flaherty et al., 2004), A5W 

(GenBank accession no. EU418428) and GH15 (Gu et al., 2012). The bacteriophages 

F510/08 and F770/05 shared high sequence identity (up to 98% nucleotide sequence identity, 

83-98% genome coverage) with Pseudomonas wKMV-like and N4-like viruses, respectively 

(Ceyssens et al., 2010). Examples of wKMV-like viruses are the bacteriophages wKMV and 

LUZ19 (Ceyssens et al., 2006; Lavigne et al., 2003) and of N4-like viruses are LIT1 and LUZ7 

(Ceyssens et al., 2010). The bacteriophage F1245/05 presented no significant similarity at the 

DNA level with any known bacteriophage in the databases, except for a few short segments 

with up to 4% nucleotide sequence identity and 81% genome coverage. 

The deduced products of the predicted genes of all bacteriophages were compared with 

sequences in the NCBI non-redundant protein sequence database using BLASTP. No 

significant similarity with known virulence or toxin proteins or with elements typically 

associated with lysogeny (integrases, repressors and antirepressors) could be found. Finally, 

the protein similarity searches did not reveal potential exopolysaccharide depolymerase 

genes. 

 

Bacteriophage host range 

To gain insight into the host range of selected bacteriophages, the susceptibility of three 

panels of clinical isolates of S. aureus (n=132), P. aeruginosa (n=93) and A. baumannii 

(n=103) was tested for each species-specific bacteriophage. There was a degree of variability 

in the host range of each bacteriophage (Table 1). All tested staphylococcal strains were 

susceptible to both S. aureus bacteriophages (F44/10 and F125/10). In contrast, when 

examined individually, the P. aeruginosa bacteriophages F770/05 and F510/08 lysed only 63.4 

and 68.8% of the tested isolates, respectively. However, when these results were considered 

together, we observed that 80.6% of the P. aeruginosa isolates were infected by at least one 

of the bacteriophages, whereas 51.6% were susceptible to both bacteriophages. Finally, of the 

tested A. baumannii strains, 74.8% were susceptible to the bacteriophage F1245/05. 
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Bacteriophage activity against planktonic cells 

To evaluate the activity of the selected bacteriophages against planktonic cells, liquid cultures 

of the different bacterial hosts were exposed to the corresponding bacteriophages, both 

individually and in combination, and cell growth/viability was monitored over time with constant 

agitation. The time-kill curves are presented in Figure 2. S. aureus 743/06, when challenged 

with either F44/10 or F125/ 10 at an IM of 10, showed impaired growth, with reductions in cell 

counts of 2.3±0.3 and 2.2±0.2 log (c.f.u. ml-1), respectively, at 3h p.i. However, after 24h, the 

cultures recovered to near-control levels. The reduction in the number of viable cells observed 

at 3h was significantly enhanced when the two bacteriophages were used in combination 

[3.4±0.2 log (c.f.u. ml-1); P<0.01]. Nevertheless, there was no difference in the recovery of 

growth at 24h. 

At an IM of 10, the P. aeruginosa bacteriophage F510/08 caused a 3.9±0.4 log (c.f.u. ml-1) 

reduction in the viability of P. aeruginosa 433/07 at 3 h p.i. This reduction was more modest 

[0.7±0.4 log (c.f.u. ml-1)] for F770/05 at the same IM and time point. When the two 

bacteriophages were combined, the kill curve was not different from that of F770/05 for the 

first 5h; however, the combination provided a statistically significant reduction relative to the 

control at 24h [1.3±0.3 log (c.f.u. ml-1); P<0.01]. When the IM of F770/05 was reduced to 1, 

combined with F510/08 at an IM of 10, the initial 3 h reduction was more pronounced [2.5±0.4 

log (c.f.u. ml-1); P<0.01]. Similarly, this combination caused a statistically significant reduction 

[1.7±0.3 log (c.f.u. ml-1); P<0.01] relative to the control at 24h. A. baumannii 1305/05 suffered 

an initial 2.7±0.2 log (c.f.u. ml-1) reduction at 3h after single-bacteriophage (F1245/05) 

challenge. Although this bacterial strain recov- ered by 24h, it did not reach the control levels 

of viability. 

 

 

 Table 1. Susceptibility of wound bacterial isolates to candidate bacteriophages for BT 

 

*Percentage of P. aeruginosa isolates that were susceptible to at least one of the bacteriophages 

(only 51.6% of the isolates were susceptible to both) 
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Figure 2. Time-kill curves of the target bacteria during planktonic growth when challenged with 

their specific bacteriophages (alone or in combination). Bacterial strains were grown in TSB 

with constant agitation and with or without bacteriophages. Growth was monitored and 

quantified by calculating cfu/ml at 0, 1, 3, 5, and 24 hours. In the left panel (input multiplicity, 

IM 10/10), assays were performed on S. aureus 743/06, P. aeruginosa 433/07, and A. 

baumannii 1305/05 in which the specific bacteriophage suspensions were added to provide an 

IM of 10. In the right panel (IM 10/1), an additional assay was performed on P. aeruginosa 

433/07 in which the bacteriophage F770/05 suspension was added to provide an IM of 1, 

alone or in combination with the bacteriophage F510/08 at an IM of 10. 
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Activity of bacteriophage combinations against established biofilms 

We also studied the ability of the bacteriophages to eliminate cells in established biofilms by 

treating biofilms with species-specific bacteriophage combinations. AB, which quantitatively 

measures cell metabolic activity using an oxidation-reduction indicator that changes colour in 

the presence of metabolically active cells, was used to measure cell viability in biofilms with 

and without treatment. The viability of cells within a biofilm is one of the most important 

aspects when evaluating the effectiveness of antimicrobial agents; therefore, we used a 

quantification method based on metabolically active cells, as determined by AB. This assay is 

a reliable and reproducible method for evaluating biofilm suscept- ibility and is considered to 

be preferable over the viable plate-count method, as it is very difficult to recover all surviving 

adherent bacteria as single cells using the latter method (Pettit et al., 2005). The AB-based 

assay has been used to identify antimicrobials with enhanced efficacy against certain clinically 

important bacterial biofilms (Pettit et al., 2005 and 2009). 

Figure 3 shows the percentage of AB reduction in control and treated biofilms at 4 and 24h 

using different IMs and frequencies of application. At 4h, the tested bacteriophage 

preparations strongly reduced the cell viability of all bacterial hosts, independently of the IM. 

There was only a statistically significant difference between IMs for A. baumannii; the higher 

IM resulted in a greater reduction in metabolic activity (71.9±5.8 vs 88.7±3.1%; P<0.01). 

At 24h, after a one-time bacteriophage preparation application, the cell viability of all bacterial 

strains was less suppressed than at 4h but still significantly different from that of the control. At 

24h, there were no statistically significant differences between IMs except for S. aureus, for 

which the higher IM resulted in a greater reduction in cell viability (34.8±8.5 vs 52.6±7.7%; 

P<0.01). In experiments using multiple bacteriophage treatments, a greater reduction in cell 

viability was observed compared with the reduction following one-time bacteriophage 

treatment. This trend was found for S. aureus and P. aeruginosa but not for A. baumannii. 

 

Discussion 

Effective bacteriophage preparations for therapeutic purposes require careful design through a 

multistep research process of bacteriophage characterization, cocktailing and dosing. This 

process includes in vitro studies, such as those presented here, and in vivo studies, which 

have been published previously (Mendes et al., 2013). Ideally, the characterization of 

bacteriophages for BT should be as thorough and complete as possible. However, in certain 

cases, it may be more practical to minimize this process and to focus the characterization on 

particular traits that are the most desirable for a specific application. Combining different 

bacteriophages in the same preparation (mixtures of two or more bacteriophages within a 

given formulation) frequently results in a broader spectrum of antibacterial activity and/or lytic 

efficacy and may allow targeting of bacteria under different conditions or in different environ- 
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ments (Chan & Abedon, 2012). Finally, in vitro experiments such as those described in this 

work are useful for evaluating the direct interaction between a drug and bacteria, which 

enables the selection of candidate bacteriophages. These studies also provide valuable 

information for the determination of optimal posology (Abedon & Thomas- Abedon, 2010). 

Integration of the information emerging from the morphological and genomic analyses 

revealed that the bacteriophages used here were all tailed bacteriophages (order 

Caudovirales), with two belonging to the family Myoviridae and three to the family Podoviridae. 

Genome sequence analysis did not identify any known genes related to lysogeny or traits that 

might enhance the virulence of the target bacteria, which is an important observation regarding 

the safe use of bacteriophages. Another important selection criterion for bacteriophages for BT 

is their host range, which should be as broad as possible, particularly including clinically 

prevalent bacterial species (Gill & Hyman, 2010). In this study, members of family Myoviridae 

exhibited the broadest spectrum of lytic activity, whereas viruses of the family Podoviridae 

exhibited a narrower spectrum, particularly the pseudomonal bacteriophages. The spectrum of 

activity of the staphylococcal bacteriophages was relatively broad as expected, given their 

high relatedness to bacteriophages K and A5W, both of which have been described previously 

as polyvalent bacteriophages (O’Flaherty et al., 2005; GenBank accession no. EU418428). 

Nevertheless, the host ranges of the Pseudomonas and Acinetobacter bacteriophages were 

remarkable compared with those of other species-specific bacteriophages (Merabishvili et al., 

2009; Popova, Zhilenkov, Myakinina, Krasilnikova & Volozhantsev, 2012). The overall 

morphology, genomic characterization and host-range results suggested that these 

bacteriophages are very good candidates for BT. However, care must be taken when 

generalizing these results, because the bacterial clinical isolates used for the bacteriophage 

host-range investigation reflect only the microbiological profile of diabetic foot ulcers in a 

particular geographical area, and these vary worldwide. Also the sensitivity of the spot test 

must be taken into account. Whilst the use of high bacteriophage titres (108 p.f.u. per spot) for 

host-range analysis is routine when considering bacteriophages for BT (Kutter, 2009), it should 

be noted that the use of lower titres may reduce host-range. In our host-range investigation, 

the use of bacteriophage stock dilutions up to 103 p.f.u. per spot yielded differences from the 

presented results by up to 23% (unpublished data). 

Time-kill curves provide detailed information about antimicrobial efficacy against planktonic 

bacteria as a function of time. These curves are often used to study the antibacterial effect of 

single and combination drug compounds and dosing regimens before in vivo efficacy studies 

(NCCLS, 1999). In the current study, following bacteriophage exposure, all bacteria had an 

initial bacterial reduction to a nadir between 1 and 3h p.i., followed by regrowth that was 

noticeable after 5h and even more pronounced after 24h. The Pseudomonas bacteriophage 

combination resulted in a significantly greater reduction in bacteria compared with the 

reduction stimulated by most active single bacteriophage 24h after bacteriophage exposure. 
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However, the decrease was insufficient to be considered as a synergistic effect, defined as ≥2 

log (c.f.u. ml-1)-fold decrease by a combination compared with the most active single agent 

(NCCLS, 1999). In the Pseudomonas combination study, when an IM of 1 was used for the 

Pseudomonas F770/05 bacteriophage instead of an IM of 10, we observed a greater initial 

bacterial reduction after 3h, but similar results were obtained at 24h. This interaction was not 

specifically analysed in our study, and there is no obvious explanation for this, but clearly 

further studies would be of interest. 

The study presented here has certain limitations. First, only a single bacterial inoculum was 

used. This value was carefully selected based on several lines of evidence. A higher inoculum 

(107 c.f.u. ml-1) was used than the normal 105 c.f.u. ml-1 inoculum used in previous time-kill 

studies testing antibiotics (NCCLS, 1999) because we wanted to mimic a worst-case scenario, 

similar to that found in wounds (Loc-Carrillo, Wu & Beck., 2012). In a previous epide- 

miological study (Mendes et al., 2012), microbiological products (aspirates, biopsies and 

swabs collected using the Levine method) of clinically infected foot ulcers in patients with 

diabetes were found to have a maximum bioburden of 107 c.f.u. (g tissue)-1 (or cm-2 of ulcer 

area). Additionally, the most recent study using a previously optimized rodent model (Mendes 

et al., 2013) tested this bacteriophage cocktail on infected wounds with a known mean wound 

bioburden of 7.54±0.19 log (c.f.u.) per ulcer. 

Secondly, the IM in nearly all experiments was 10 (fixed IM). The final IM chosen was selected 

based on the ‘multiplicity of 10 rule’, which states that if the goal is a significant reduction in 

bacterial density, then one should strive for in the order of 10 bacteriophages adsorbed to the 

average bacterium (Abedon, 2009; Kasman et al., 2002). Previous studies on infected animal 

and human burn tissue have concluded that low-titre bacteriophage administration (IMs lower 

than 10) is unlikely to be successful (Goode et al., 2003; Kumari, Harjai & Chhibber, 2010). 

Furthermore, increasing the IM increases the success of BT by reducing bacterial numbers. 

Thirdly, we observed regrowth in planktonic cells exposed to bacteriophages within 24h. This 

observation may be indicative of the development of resistance, as in vitro resistance is 

frequent in both BT and antibiotic therapy. For example, a study (O’Flynn, Ross, Fitzgerald & 

Coffey, 2004) previously found in vitro resistance frequencies of 102-1024 for single-phage 

treatments and 1026 for double-phage or triple-phage cocktails against Escherichia coli O157 : 

H7. Similarly, resistance to fusidic acid can readily be selected from an initial high inoculum, 

with a mean frequency of 1026-1028. This resistance has not limited the antibiotic’s topical 

use and does not appear to be a clinical problem (Sahm, Deane, Pillar & Fernandes, 2013; 

Turnidge & Collignon, 1999). However, these observations do not imply in vivo resistance. 

According to certain studies, the rate of development of resistance to bacteriophages is 

approximately 10-fold lower than the rate of the development of antibiotic resistance (Carlton, 

1999). Nonetheless, as observed here, in vitro studies show that bacteriophage resistance can 

evolve within hours, independently of the use of bacteriophage combinations. However, the 
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evolution of bacteriophage resistance in vitro does not seem relevant to in vivo scenarios, in 

which bacteria replicate more slowly and are challenged by more difficult environmental 

conditions. A previous study (Capparelli, Parlato, Borriello, Salvatore & Iannelli, 2007) found a 

mean resistance frequency of 1.2 x 108 for S. aureus treated with bacteriophages in vitro. 

However, the researchers were unable to isolate any bacteriophage-resistant S. aureus strains 

in vivo. Indeed, even though the resistance of bacteria to the bacteriophage cocktails used 

here was not specifically studied, we previously found that the presence of residual bacteria 

did not globally hinder planimetric or histological improvement (Mendes et al., 2013). In the 

current study, the greatest reduction in bacterial counts occurred at 3h, and regrowth was 

observed at 5 h, which enabled us to conclude that the best time to give a ‘boost’ application 

of bacteriophage would be between these two time points. 

In a previous study (unpublished data), we found that the plaques of the bacteriophages 

F770/05, F510/08 and F1245/ 05 were surrounded by growing opaque halo zones, which 

could be related to the presence of a virion-associated exopolysaccharide depolymerase 

(Cornelissen et al., 2011). This and related enzymes have been found to enhance the biofilm-

eradicating activity of bacteriophages compared with non-depolymerase-producing 

bacteriophages (Hughes et al., 1998). Based on genomic analysis, none of our 

bacteriophages seemed to produce any obvious extracellular polysaccharide or 

exopolysaccharide depolymerase. However, because bacteriophages that do not produce 

depolymerases have also been used in biofilm elimination (Chibeu et al., 2012), we sought to 

investigate the effect of bacteriophage combinations on the viability of target bacterial cells in 

pre- formed biofilms at 4 and 24h. Here, assays using an IM of 10 produced nearly identical 

results as assays using an IM of 100, with two exceptions. First, we observed different results 

between an IM of 10 and an IM of 100 after 4 h for A. baumannii; however, this discrepancy 

may have arisen because only one bacteriophage was used. When previous experiments 

used a combination of two bacteriophages, the IM doubled, producing synergistic results 

(Abedon & Thomas-Abedon, 2010). Secondly, differences between IM were observed after 

24h for S. aureus. This result may have occurred because the receptor for the bacteriophage 

F44/10, which we speculate to be N-acetylglucosamine in the cell-wall teichoic acid, is very 

frequent (relative to other receptors) in both live cells and bacterial debris. This property 

means that active bacteriophages may adsorb to fragments of lysed cells (debris) instead of 

live cells, at a higher rate. This phenomenon may ultimately lead to injection of the genetic 

material in a suicidal manner, eliminating the bacteriophage from the system (Rabinovitch, 

Aviram & Zaritsky, 2003). Increasing the IM amplifies the probability of bacteriophage-

bacterium interaction, resulting in a true cell infection. Moreover, in vivo, a bacteriophage dose 

sufficiently in excess of the target bacterium population (IM≥100) should be given to account 

for bacteriophage loss, dilution (associated with absorption and distribution), decay and/or 
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inefficiencies of bacteriophage adsorption to bacteria (e.g. inefficiencies in penetration into 

biofilms in vivo). 

 

Figure 3. Analysis of the activity of the bacteriophages against bacterial biofilms. Bacteria 

were grown for 24h to establish biofilms and the bacteriophages were then added. The 

following bacteriophage suspensions were used for each bacterium: for S. aureus, a 1:1 

combination of F44/10 and F125/10; for P. aeruginosa, a combination of F770/05 and F510/08 

at a 1:10 ratio; and for A. baumannii, F1245/05 alone. Cell metabolism was quantified with AB 

and is reported as the percentage reduction relative to growth in untreated controls. C, 

negative control; T, treated with bacteriophage; 1x, one-time bacteriophage suspension 

application, 6x, bacteriophage suspension application every 4h for 24h. *P<0.01 (square 

brackets indicate the comparisons between different groups). 

 

 

 

It is well known that bacterial regrowth occurs after biofilms have been exposed to antibiotics 

(Kussell, Kishony, Balaban & Leibler, 2005). One possible way to limit this regrowth is through 

multiple dose applications. Our results using multiple dose applications, as opposed to single-

application dosing, are similar to the results observed in Georgia, where BT is the current 

standard of clinical care, and in Poland, where BT is used as an experimental treatment under 

a compassionate-use regulatory provision (Abedon et al., 2011; Kutter et al., 2010; 
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Miȩdzybrodzki et al., 2012). These results were also corroborated experimentally in previously 

published animal studies (Capparelli et al., 2007). This implies that a significant proportion of 

the bacteria in biofilm do not have genotypic resistance but rather some form of phenotypic 

resistance, which is reversible by the modification of the causal environmental factors. Various 

equally valid and non-mutually excluding theories have been presented that could explain the 

possible coexistence dynamics of bacteriophages and susceptible bacteria: numerical refuge, 

physiological refuge and shielding by bacterial debris. The numerical refuge theory (Chao, 

Levin & Stewart, 1977) predicts that simple mass-action interactions between bacteriophages 

and sensitive and resistant bacteria determine the stability of the population. Thus, in our 

study, when new bacteriophages were added (creating a higher bacteriophage density), a 

decline in the number of sensitive cells resulted. The physiological refuge hypothesis (Lenski & 

Levin, 1985) postulates that during certain stages of bacterial life cycles sensitive bacteria may 

become transitorily resistant to bacteriophage infection. In the present study, fresh medium 

was then added. This altered the life cycle of the present sensitive bacteria (e.g. from 

stationary to logarithmic), thereby potentially converting them from a temporarily resistant state 

into a susceptible state. Finally, the shielding by bacterial debris theory (Rabinovitch et al., 

2003) predicts that active bacteriophages adsorb onto fragments of lysed cells (debris) and 

inject their genetic material in a suicidal manner, thus discounting from the system as a 

bacteriophage. In the present study, as new bacteriophages were added, dead cells were 

removed, thus reducing non-productive binding as described. None of these observations was 

noted for A. baumannii, perhaps because this was the only case in which we used a single 

bacteriophage, limiting the importance of non-heritable mechanisms in the reduction in 

resistance induced by mutation. 

 

Conclusions 

In conclusion, we prepared, purified and characterized bacteriophage cocktails with a broad 

spectrum of activity against S. aureus, P. aeruginosa and A. baumannii strains that commonly 

cause DFI. The complementary studies on both planktonic cells and established biofilms 

allowed us to better evaluate the effects of a high IM (≥10) and a multiple-dose treatment 

protocol (every 4h for 24h). We believe that this work takes an important step towards the 

future future clinical application of BT. 
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7.1. General Discussion 

 

Diabetic foot ulcers are one of the most common complications of diabetes mellitus, affecting 

up to 10% of diabetic patients and representing the most common reason for non-traumatic 

limb amputations in developed countries (Katz et al., 2016). This chronic health problem 

represents a significant economic burden worldwide and causes a relevant impairment of life 

quality in affected patients (Sun, 2010). Foot sensorimotor neuropathy is responsible for the 

loss of protective sensation, rendering DFU prone to chronicity and infection (Richard, Lavigne 

& Sotto, 2012). In fact, the critical breach of the epithelial surface, coupled with neurological 

impairment, cardiovascular alterations and immune dysfunction, facilitates polymicrobial 

colonization and subsequent infection of the diabetic foot (Peters, Jabra-Rizk, O’May, 

Costerton & Shirtliff, 2012). 

An early and precise diagnosis is important for the effective infection management, reducing 

the need of subsequent amputation, but often clinical and microbiological diagnostic may be 

difficult. In most cases, the antimicrobial management of DFI is empiric due to the lack of 

appropriate sample collection, which implies that superficial skin cultures only include the 

“causative pathogen” in less than 30% of the cases. Also, many patients are subjected to long-

term antibiotherapy, which further decreases the culture yield (Lipsky et al., 2012b). Previous 

studies have claimed that sampling by deep tissue biopsy is the gold standard for culturing 

techniques, as swabs often contain high numbers of colonizers lacking the true pathogen; 

however, swabs can be collected from all wound types and by all healthcare personnel, being 

valuable in identifying pathogens in infected diabetic wounds of superficial and moderate 

depth with a high level of confidence (Slater et al., 2004). Therefore, swab sampling can be 

performed as long as standardized procedures strictly consistent with current clinical 

guidelines are used (Mendes et al., 2012). 

 

Diabetic foot infections are mostly promoted by polymicrobial communities, frequently 

organized in biofilms that may be responsible for resistance to therapeutics and for 

infection chronicity. 

 

The isolates used in this study belong to a collection of bacteria obtained in Lisbon hospitals, 

from patients whose DFU have been previously characterized both clinically and 

microbiologically (Mendes et al., 2012). An average of 3.0 ± 1.4 organisms per sample was 

obtained, mainly consisting of Gram-positive bacteria, especially belonging to the 

Staphylococcus genus, with the species S. aureus being present in 51% of the samples. 

Corynebacterium spp. and other uncommon Gram-positive bacteria were also identified but 

not in clinically significant concentrations; nonetheless, these genera deserve attention 

because they appear to be common players in chronic diabetic foot ulcer infections (Dowd et 
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al., 2008b). Gram-negative aerobes comprised 19.0% of the isolated organisms, with P. 

aeruginosa, the single most predominant species, being isolated from 12.2% of the samples. 

Anaerobic bacteria were found in about 30% of patients, especially in deep tissue samples 

(Mendes et al., 2012). 

Others studies also have shown that DFI are polymicrobial in nature (Citron et al., 2007; 

Tascini et al., 2011), with Staphylococcus being the most frequent genus isolated, whereas 

Gram-negative aerobes isolation is frequently reported to be around 20% (Jones et al., 1985; 

Goldstein, Citron & Nesbit, 1996; Dang et al., 2003; Citron et al., 2007; Ramakant et al., 2011). 

Regarding anaerobic pathogens, they have been described as being present in deep tissues 

and related to diabetic foot osteomyelitis (van Asten et al., 2015). Although wounds are 

generally exposed to air, anaerobes may be able to survive if they co-aggregate with 

facultative anaerobes or aerobes, which would protect them from the harmful effects of oxygen 

and allow them to thrive (Smith et al., 2016). 

One of the lifestyles adopted by bacteria, including by polymicrobial communities, is the 

formation of biofilm. The protection provided by these surface-associated communities is high, 

allowing bacteria to survive the action of several stressors, from antibiotics to host immune 

cells response, and facilitating the acquisition of nutrients and promoting exchange of genetic 

elements (Shrout, Tolker-Nielsen, Givskov & Parsek, 2012). It has been established that most 

biofilm growing bacteria can cause chronic infections (Costerton & Veeh, 2003), explaining 

their importance and persistence in DFU. Due to their importance, biofilm-related research has 

significantly increased in the past 10 years. However, studies on the microbiological diversity 

and biofilm formation by DFU isolates are scarce and, to our knowledge, this work first 

reported the time course biofilm formation by several species of diabetic foot bacteria (Mottola 

et al., 2015). As observed by previous studies (Swarna et al., 2012; Mirani et al., 2013), 

staphylococci presented a high ability to form biofilms after 24 hours, with the percentage of 

biofilm producer strains increasing significantly with incubation time. The same was observed 

for isolates belonging to the Corynebacterium genus, the second major biofilm producer, 

although the increase of biofilm production ability of these isolates with time was not 

statistically significant. Pseudomonas and A. baumannii showed the higher biofilm forming 

ability at 24 hours, which may explain high pathogenic effects caused by these bacteria. On 

the other hand, the lower biofilm production ability demonstrated by enterococci isolates can 

be explained by their dependence on environmental and genetic factors (Mohamed & Huang, 

2007). 

Variations of biofilm-forming ability by the different bacterial genera under study point out for 

the importance of time course evaluations to avoid false negatives results. Is also shows the 

importance of evaluating the ability of opportunistic human pathogens to form biofilms, since 

Corynebacterium isolates, usually considered skin commensals (Gontcharova et al., 2010), 

are able to produce biofilms, potentially contributing to wound chronicity. In fact, it is unclear if 
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the infection of diabetic foot wounds arises from specific combinations of pathogens or if a 

simple increase in the microbial load of opportunistic microbes can sustain infection (Gardner 

& Frantz, 2008). A better understanding of the DFU microbiome will help guide new strategies 

to effectively control the growth of polymicrobial biofilms and improve healing, directly 

benefiting patients suffering from these debilitating wounds. 

Considering the high diversity in microbial composition and the true polymicrobial nature of 

diabetic foot wound diseases (Citron et al., 2007; James et al., 2007), the ability of dual-

species communities to form biofilms was also tested. The bacterial combinations were 

chosen based on their major prevalence and were as follows:  Corynebacterium + 

Staphylococcus; Enterococcus faecalis + Staphylococcus; P. aeruginosa + Enterococcus; 

Acinetobacter + Staphylococcus and E. faecalis + Corynebacterium. All these communities 

showed a higher biofilm forming ability when compared with respective individual cultures, but 

these differences were not statistically significant, with the exception for the combination that 

involved Enterococcus and Staphylococcus. In fact, results demonstrated that biofilm 

production within communities may be influenced by the bacterial species or genus that is able 

to produce the higher biofilm values, resulting in a cumulative and not synergic effect. The 

cumulative biofilm formation in poly-colonized wounds may be responsible for their chronicity 

and further complications, representing an important barrier to effective treatment, as 

previously mentioned. The fact that the Enterococcus + Staphylococcus combination produced 

a statistically significant higher biofilm formation when compared to individual isolates may be 

because although these two bacterial genera showed the lowest biofilm production when 

analysed individually or alternatively, their combination results in a synergistic effect.  The 

fundamental question that remains to be answered is why some biofilms are ‘healthy’ and 

others are able to induce infection. Two hypotheses are currently under discussion (Richard et 

al., 2012): the ‘specific bacterial hypothesis’ suggests that only a few bacterial species within 

heterogeneous polymicrobial biofilms may be involved in the infectious process; conversely, 

the ‘nonspecific bacterial hypothesis’ (or ‘community hypothesis’) considers the whole bacterial 

composition of the biofilm as ‘a functional unit’ and does not take account of individual 

pathogenic bacteria. In 2008, Dowd et al. developed the concept of Functional Equivalent 

Groups (FEP), in which individual bacterial species considered as non-pathogenic can act 

synergistically to cause chronic infections when co-aggregated (Dowd et al., 2008b). 

Moreover, the possibility of transmission of multi-drug resistant determinants to other 

microorganisms sharing the same ecological niche must be considered in bacterial biofilms. 

DFI is a complex disease involving multispecies biofilms, frequently formed by bacteria 

traditionally considered low virulent. More knowledge regarding the microorganisms involved 

in DFU can direct specific therapeutic protocols to known causative organisms, improving 

significantly the treatment outcome and reducing infection-related morbidities. 
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Diabetic foot ulcer staphylococci are genomically diverse, present resistance to 

medically important antibiotics and harbour virulence determinants 

 

Besides biofilm production, Staphyloccoccus pathogenicity is also related to the expression of 

several virulence factors that allow bacteria to adhere to surfaces, invade or avoid the host 

immune system, causing harmful effects (Holmes et al., 2005). Staphylococci virulence is 

multifactorial and caused by the combination of several virulence determinants (Bien et al., 

2011). In study, virulence distribution results are in agreement with previous reports (Gillet et 

al., 2002; von Eiff, Friedrich, Peters & Becker, 2004; Holmes et al., 2005), since 70% of the 

isolates presented the clfA gene but only one S. aureus isolate was positive for the tst gene 

and none for the pvl gene. The tst-positive strains appear to be highly virulent and to cause a 

variety of illness, and their spread is of major concern (Durand, Bes & Meugnier, 2006). 

The last two genes are associated to an increased pathogenic potential and to life-threatening 

invasive diseases (Holmes et al., 2005; Donate-Correa, Alcoba-Flórez & Méndez-Álvarez, 

2011). 

Genes related to one of the best-studied virulence regulation system of S. aureus, the 

accessory gene regulator - agr, were also detected in the analyzed isolates. As expected, agrI 

was the most frequently detected gene, followed by agrII, while no agrIII and IV were detected. 

The agrI class is considered common and linked to many types of disease, while agrIII and IV 

isolates are rare and linked to toxic shock and exfoliative toxin related syndromes, respectively 

(Thoendel, Kavanaugh, Flack & Horswill, 2011). 

Since all staphylococci isolates in our study were able to form biofilm, the presence of the 

icaA, icaD and atl genes was expected. However, none of the isolates was positive for the pls 

gene, and considering that pls expression reduces these virulence features (Juuti, Sinha, 

Werbick, Peters & Kuusela, 2004), our results eventually suggest a higher potential of 

adhesion and cellular invasiveness of the isolates. In fact, Savolainen et al. demonstrated in 

2011 that pls prevented adhesion of the clinical strain 1061 to immobilized fibronectin and 

immunoglobulin G (Savolainen et al., 2001), suggesting its inhibiting role at some stages 

during infection. Other studies successively demonstrated the reduced adherence and 

invasiveness of pls-positive S. aureus strains independently of MRSA/SCCmec background 

(Juuti et al., 2004; Hussain et al., 2009). 

Clinical microbiology can provide useful information for clinical and research purposes in DFI, 

and cultural examination should be performed in any case of suspected DFI to avoid both the 

application of an ineffective systemic therapy and the emergence of resistant strains. The 

knowledge and integration of microbiological features from DFU bacteria, like virulence factors 

and antimicrobial patterns, should also lead to more accurate diagnosis and targeted antibiotic 

therapeutics, which can also be improved by clonal analysis of the bacteria involved in such 
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infections. Furthermore, the knowledge of the local predominant pathogens can help the 

selection of more adequate empirical antibiotic treatment for DFI. 

Numerous Staphylococcus clones have emerged and disseminated worldwide (Deurenberg et 

al., 2007a) and techniques like PFGE and MLST are successfully used for epidemiological 

analysis of various bacterial species, namely Staphylococcus. MLST analysis performed in this 

study demonstrated a high diversity of clones in the DFU staphylococci isolates, detecting 18 

S. aureus clones divided in five clusters by PFGE. S. aureus cluster I included only MRSA 

ST22 (Clonal Complex CC22) isolates, a major clone in Portugal since 2001, as it replaced the 

Brazilian clone in hospitals and communities (Aires-de-Sousa, Correia & De Lencastre, 2008). 

The most common CC detected in our study was CC5, including isolates from PFGE clusters 

III, IV and V. ST5 belonging to this clonal complex represented the second most frequent 

Sequence Type (ST), after ST22. A variant of this clone, ST105-II, had already been described 

as the second most predominant clone in Portuguese hospitals (Tavares et al., 2014). Besides 

ST5 and ST105, several ST belonging to CC5 and previously described in Portugal, were 

identified in this study, with the exception of ST1507 and ST2599, now identified for the first 

time in this country. 

Patients with DFI are continuously attending health-care units for daily care and contrary to 

expectations, the virulence profile of the studied isolates was more similar to CA-MRSA than 

to HA-MRSA. These findings may suggest an increasing lack of barrier between health-care 

and community settings, and also that diabetic patients can be important vehicles for bacterial 

dissemination. The high prevalence of MRSA in patients with foot ulcers may reflect the 

increased prevalence of such strains in the community and must be taken into account when 

treatment with antibiotics is prescribed.  

According to previous reports (Ge et al., 2002; Tentolouris et al., 2006; Cervantes-Garcia, 

Garcia-Gonzalez, Reyes-Torres, Resendiz-Albor & Salazar-Schettino, 2015), approximately 

half of the S. aureus isolates present in DFI are MRSA. Infection with these resistant strains is 

an increasing problem in both hospital and community. Due to frequent infections, diabetic 

patients are more exposed to antibacterial agents, which can lead to increased antibiotic 

resistance rates and justify the high prevalence of MRSA isolated from DFI (Boyanova & 

Mitov, 2013). Furthermore, the probability of a successful outcome in the treatment of chronic 

wounds like DFI, may be compromised by the presence of ischemic and necrotic tissue, which 

may impair antimicrobial distribution and therapeutic efficacy (Bowler et al., 2001). Since 

culture results are often not available when the decision to start systemic antibiotics is made, 

the choice is frequently empiric and it is important to consider local patterns of susceptibility 

and resistance (Hernandez, 2006). Our results suggest a good efficacy of linezolid, 

doxycycline, clindamycin and gentamicin in DFI treatment, and a very good efficacy of 

ceftaroline, an antimicrobial compound that was previously associated with high clinical 
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success in DFI, including patients with obesity, comorbidities, MRSA, mixed infections or 

requiring surgical intervention (Lipsky, 2015). 

However, the high resistance rate of staphylococci (43%) to ciprofloxacin and erythromycin 

draws attention to the increasing use of these antibiotics in clinical practice (Gorbach, Bartlett 

& Blacklow, 2004; Reis et al., 2016). In addition, 36% of the isolates were considered to be 

MDR, which is in accordance with other reports (Malik et al., 2013; Sekhar et al., 2014), and 

represents a serious alarm regarding the control of this type of infection. These observations 

are of major importance, especially for patient management and the development of antibiotic 

treatment guidelines. Moreover, increasing prevalence of MDR organisms raises serious 

concerns since it limits the choice of antibiotic therapy protocols leading to poor prognosis. 

Therefore, proper MDR screening is also suggested, being essential for the selection of 

adequate antimicrobial treatment strategies for DFU management, contributing to the 

decrease of MDR strains incidence in DFU patients. 

 

The antibiotic susceptibility patterns cannot be applied to biofilm-established 

infections. 

 

Increased resistance towards antimicrobial agents is also observed in bacterial biofilms, as 

these communities can resist antibiotic concentrations 10 to 10.000 times higher than the ones 

required to kill planktonic cells (Kaplan, 2011). In this study, antibiotic concentrations required 

to inhibit or eradicate S. aureus biofilms were 10 to 1000 times higher than the respective MIC 

values, reaching toxic concentrations in human medicine, in other words, that render biofilms 

resistant to therapeutics. Furthermore, minimum biofilm eradication concentration (MBEC) 

values were often several times higher than minimum biofilm inhibitory concentration (MBIC) 

values. 

Gentamicin and ceftaroline were the most potent agents against S. aureus biofilms, at 

concentrations that can be applied in vivo to inhibit and eradicate biofilm related infections, 

even the ones promoted by MRSA isolates. The efficacy of gentamicin against staphylococcal 

biofilm was already reported (Coraça-Huber et al., 2012) and more recently the ceftaroline 

efficacy was also demonstrated (Barber et al., 2015). It was observed that meropenem and 

linezolid were unable to eradicate S. aureus biofilms and cefoxitin was only able to inhibit and 

eradicate biofilms formed by MSSA isolates. Finally, clindamycin, doxycycline, linezolid, 

vancomycin, ciprofloxacin and erythromycin (Rose & Poppens, 2009), showed ability to inhibit 

biofilms but not to eliminate them. These results are in accordance with some previous reports 

(Pettit et al., 2005; LaPlante & Mermel, 2009; Smith et al., 2009; Cafiso et al., 2010) and may 

suggest that these antibiotics, although effective against planktonic bacteria, may not be the 

most appropriate for treating biofilm related infections, with the exception of gentamicin and 
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ceftaroline. These results once again alert us to the need for proper management of antibiotics 

to optimise patient care and improve clinical outcome in DFI. 

Considering the high S. aureus biofilm phenotype resistance, an equally high presence of 

antibiotic resistance genes was not detected. In fact, only three isolates were positive for blaZ, 

which can be explained by the occurrence of multiple polymorphisms of this gene or by the 

expression of mecA in these isolates. Several genes are implicated in erythromycin resistance 

and ermA was the most prevalent erm-gene, followed by ermC, as previously described 

(Martineau et al., 2000; Strommenger et al., 2003). Similar to others reports (Smith et al., 

2009; Andersen et al., 2015), tetK was the most frequent gene found among the tetracycline 

resistant S. aureus isolates (n=3), followed by tetM. It was not possible to detect tetL and tetO 

resistance determinants. The tet-positive isolates were susceptible to doxycycline, but this 

gene confers high resistance to tetracycline, oxytetracycline, chlortetracycline and low 

resistance to monocycline, 6-demethyl-6-deoxytetracycline and doxycycline (Andersen et al., 

2015).  

In the last years, fluoroquinolone resistance in S. aureus increased exponentially worldwide, 

involving mutations in genes that encode for subunits of DNA gyrase, DNA topoisomerase IV, 

and also in norA coding region (Takei, Fukuda, Kishii & Hosaka, 2001; Pourmand, Yousefi, 

Salami & Amini, 2014). Many isolates susceptible to ciprofloxacin were positive for norA gene. 

From a clinical point of view, this discrepancy between genotype and phenotypic resistance 

expression can suggest that susceptible strains may be present but not express antibiotic 

resistance genes and should be regarded as potentially resistant to that antibiotic. 

 

Besides staphylococci isolates, Enterococcus may play an important role in the 

establishment and persistence of DFI. 

 

Traditionally, studies on wound microbiota have focused on the role of well-known pathogens 

such as S. aureus and P. aeruginosa, organisms that are easily cultured using traditional 

microbiological techniques. Nowadays, the medical and research communities are beginning 

to realize that the diversity of bacterial populations in wounds may be an important contributor 

to their chronicity, as observed in DFU (Dowd et al., 2008b). 

Enterococci have emerged as increasingly important nosocomial and community-acquired 

pathogens, and although being generally considered as opportunistic pathogens, it is well 

recognized that these organisms can cause serious invasive infections, being also part of the 

complex diabetic foot microbiota (Zhang et al., 2010; Mendes et al., 2012). The high 

prevalence of E. faecalis among the DFU enterococci was expected, as this species is 

considered the most prevalent from this genus, being commonly isolated from clinical 

samples. Furthermore, Enterococcus was frequently isolated from DFI in previous studies, 

being present in 10% (Citron et al., 2007) to 35% of patients (Tascini et al., 2011). Two 
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enterococci isolates were identified as E. gallinarum, a species that has been implicated in a 

wide variety of human infections, especially in immunocompromised individuals (Reid, 

Cockerill & Patel, 2001).  

Macrorestriction analysis of the enterococci isolates showed a high genomic diversity, allowing 

their distribution into nine genomic groups, sharing an elevated similarity that reveals their 

clonal relationships. All E. faecalis isolates were able to form biofilms and expressed 

haemolytic and gelatinolytic properties, and were also carriers of several virulence 

determinants considered relevant for enterococci pathogenicity, namely genes that encode for 

surface protein Esp (esp), cytolysin toxin (cylA) and aggregation substances (agg). Results 

from this study demonstrated the putative contribution of Enterococcus to the chronicity and 

pathogenicity of DFI due to their ability to form biofilm and express virulence traits. Moreover, 

although no enterococci isolates were resistant to vancomycin, but they were all resistant to 

different classes of antibiotics. In fact, the majority of the isolates were considered as MDR, a 

relevant feature for isolates present in chronic infections like DFI, often resulting in treatment 

failure.  

 

Bacteriophage therapy represents a potential effective therapeutic approach for 

treatment of diabetic foot wounds infected with different pathogens. 

 

In view of the increased resistance to antimicrobial treatments of infections promoted by 

bacterial biofilms, new strategies should be implemented aiming at their control. In spite of the 

increasing development of new promising approaches for biofilms prevention, like quorum 

sensing inhibitors and biofilm-dispersal agents (Rabin et al., 2015), the current therapeutic 

approaches for prevention of biofilms are essentially based on the application of antimicrobial 

agents (M. Chen, Yu & Sun, 2013). The use of bacteriophages to treat bacterial infections, 

known as phage therapy (BT), has a history substantially longer than that of antibiotics; this 

therapy has been used in Eastern Europe for over 60 years owing to its efficacy, low toxicity 

and low production costs (Burrowes et al., 2011). Recent animal and human clinical trials have 

confirmed phages to be safe and well tolerated, suggesting that phage therapy could be a 

major complement to antibiotic therapy (Rhoads et al., 2009; Vandersteegen et al., 2011; 

Mendes et al., 2013). 

The development of effective bacteriophage suspensions for therapeutic use requires 

bacteriophage characterization, cocktailing and dosing, pre-clinical animal efficacy and 

toxicology studies, and finally regulated human clinical trials. Technophage, S.A., a 

Portuguese R&D biopharmaceutical company, previously isolated two S. aureus phages, two 

P. aeruginosa phages and one A. baumannii bacteriophage from environmental samples that 

were morphologically and genetically characterized. The objective was to develop a phage 

cocktail with a spectrum of activity directed to the most relevant DFI bacterial pathogens. To 
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assess their infectivity on target bacteria, these phages were tested against 44 DFI isolates 

(Mendes et al., 2014), including: S. aureus, the most common cause of DFI in our study 

population; P. aeruginosa, associated with multi-drug resistance and antibiotic failure; and A. 

baumannii/calcoaceticus, also related to high antibiotic resistance, being clinically relevant 

especially regarding diabetic patients (Boyanova & Mitov, 2013).  

The ability of these bacteriophages to eliminate planktonic bacterial cells and established 

biofilms was evaluated using time-kill curves and a cell oxidation-reduction indicator, 

respectively. Time-kill curves provided detailed information about antimicrobial efficacy against 

planktonic bacteria as a function of time. After bacteriophage exposure with a input multiplicity 

of 10, all bacteria had an initial reduction to a nadir between 1 and 3 hours post-infection, but 

followed by regrowth that was noticeable after 5 hours post-contact and even more 

pronounced after 24 hours. 

Regarding the use of BT in bacterial biofilms, the highest effect on biofilm cells occurred at a 

bacteriophage:bacterium input multiplicity of 10. The tested bacteriophage preparations 

strongly reduced the cell viability of all bacterial hosts at 4 hours after inoculation. This 

reduction was inferior at 24 hours after bacteriophage exposure, but still significantly different 

from the results obtained for planktonic cells.  

The best inhibitory results on biofilms were obtained with multiple bacteriophage treatments, 

every 4 hours over a 24 hours incubation period, suggesting that a multiple dose treatment 

protocol would be more adequate, with the exception for A. baumannii. Phage cocktails are 

usually assembled in order to maximise the host range and to reduce the potential and 

emergence of resistance to phages (Fischer, Kittler, Klein & Glünder, 2013), and probably this 

did not happen regarding A. baumannii since it was the only case in which a single 

bacteriophage was used. 

The tested bacteriophages represent a potentially effective therapeutic approach for the 

treatment of diabetic wounds infected with different pathogens, although further human clinical 

trials are mandatory in confirming the potential of bacteriophage therapy for the treatment of 

DFI and other chronic skin and soft tissue infections.  
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7.2 Conclusions and Future perspectives 

 

Diabetic foot infections represent a significant burden for patients and the healthcare system. 

This study contributed to confirm that bacterial communities responsible for DFI are very 

complex and frequently organized in polymicrobial biofilms. For this reason, data regarding 

single-species cannot be extrapolated to multispecies biofilms. 

To our knowledge, this is the first study on time-course of biofilm formation by diabetic foot 

isolates and one of the few reports on staphylococci isolated from DFI that include information 

about isolates origin, virulence factors and antimicrobial resistance profiles of planktonic and 

biofilm bacteria. The diabetic foot staphylococci studied presented high genomic diversity and 

antimicrobial resistance ability, and several virulence traits, of which biofilm may constitute one 

of the major obstacles to therapeutic success. S. aureus biofilms were resistant to antibiotic 

concentrations up to 10 to 1000 times higher than their planktonic counterparts and only 

gentamicin and ceftaroline were effective in eradicating biofilms. It is clear that antibiotic 

susceptibility values determined for planktonic populations are not necessarily applicable for 

an effective treatment of biofilm infections produced by the same organism. In fact, DFI 

therapeutics are empirically established in the beginning, considering infection severity, route 

of antimicrobial administration, co-morbidities and spectrum of microorganisms present. It is 

important to note that inappropriate empiric broad-spectrum antimicrobial therapeutic protocols 

can result in unfavourable outcomes for patients and contribute to the development and 

dissemination of antimicrobial resistant bacteria. More research is crucial concerning the effect 

of antibiotics on biofilms and could lead to the revision of antimicrobial guidelines in the clinical 

setting. 

Other bacterial species involved in DFI and usually considered as minor pathogens may play 

an important role in these type of infections, including Enterococcus and Corynebacterium. 

Future attempts must be targeted at understanding the role of pathogen diversity in DFU. This 

will provide new insights to redirect therapy against all relevant species involved, improving 

clinical outcome. 

The high level of resistance of biofilm-organized bacteria makes chronic infections, like DFI, 

extremely difficult to eradicate, rendering important the development of alternative therapeutic 

protocols such as bacteriophage therapy. The effect of previously developed bacteriophage 

cocktails, against biofilms formed by S. aureus, P. aeruginosa and A. baumannii strains 

isolated from DFI was evaluated, and the effects of a high input of multiplicity and a potential 

multiple-dose treatment protocol were established. This BT protocol represents a potentially 

effective therapeutic approach for treatment of diabetic wounds infected with different 

pathogens. 
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DFI studies are still scarce and studies about these complex bacterial communities are 

required. The next steps could include: 

 Collection of more DFU isolates, especially targeting Gram-negative species that are 

less common in DFI but can be pathogenic and difficult to eradicate, like P. aeruginosa 

and A. baumannii. Virulence traits, with focus on biofilm formation and antimicrobial 

profile of the different species should be determined for such isolates; 

 Analysis of polymicrobial biofilms with mass measurement using electronic microscopy 

for characterizing biofilm production by different bacterial species. This analysis would 

clarify the role and contribution of each species in the establishment, maintenance and 

dissemination of biofilms; 

 Assessment of antimicrobial resistance patterns of the co-cultured microorganisms and 

comparison with the MIBC and MBEC of individual biofilms. The study of antimicrobial 

resistance of biofilm-enclosed mixed populations could elucidate on the probability of 

resistance traits dissemination among the most common bacterial species involved in 

DFI; 

 Construction of a national database to link all available information obtained throughout 

this project and by other research groups on diabetic foot infections, including bacterial 

molecular typing and epidemiology, antimicrobial resistance and virulence traits and 

biofilm-forming ability, in order to identify clonal dispersion routes of virulent strains. 

The integration of all phenotypic and molecular data would contribute to unveil 

relationships among sets of isolates, clarifying epidemiological relationships and 

revealing the underlying population structure and spatial distribution.  

The present study allowed to assess several microbiological properties of DFI isolates that 

include identification, virulence traits and antimicrobial resistance properties, encompassing 

many bacterial genera involved in diabetic foot infections. Furthermore, it also explored BT’s 

potential in the treatment of DFI biofilms infections and other chronic skin and soft tissue 

infection diseases. Studies on DFI microbiology are scarce and represent a critical step to 

better understand and manage these infections. 
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