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Abstract 
 

Virulence of Salmonella Typhimurium 1,4,[5],12:i:-, the new pandemic strain 
 

Salmonella serovar 1,4,[5],12:i:- is presently considered one of the major serovars 

responsible for human salmonellosis worldwide. A multidisciplinary approach, including the 

fields of epidemiology, spatial statistics, clinical and applied microbiology was used to 

perform an extensive characterization of Salmonella 1,4,[5],12:i:- isolates obtained by the 

National Health Institute Dr. Ricardo Jorge, which was lacking due to the recent emergence. 

It was observed that cases are reported in most districts, being more frequent in the 

Portuguese coastland. Spatial statistical analysis showed a significant geographic clustering, 

pointing out for the importance of evaluating these areas to identify risk factors, in order to 

establish adequate prevention programs. 

The most relevant antimicrobial profile in this serovar is the tetra-resistance pattern (R-type 

ASSuT), displaying resistance to ampicillin, streptomycin, sulphonamides and tetracyclines. 

A high occurrence of R-type ASSuT isolates was observed in the isolates under study, with 

the majority harboring the resistance genes frequently associated with the European clone, 

namely blaTEM, sul2, straA-straB, tetB. Additionally, resistance to quinolones and 3rd 

generation cephalosporin was also detected. 

In Portugal, the rapid spread of Salmonella 1,4,[5],12:i:- R-type ASSuT might be related with 

the diversity of pulsotypes and also the presence of a core of virulence factors, including 

biofilm production. Biofilm-forming ability varied between sample locations and collection 

year, and can be one of the virulence features related with the rise of this serovar. 

Furthermore, biofilm formation was evaluated in vitro using a simulated human intestinal 

environment. In such conditions was observed an impairment of biofilm production, revealing 

that conditions mimicking the human intestinal tract can influence the biofilm-forming ability 

of the isolates under study. 

This research highlight the critical importance of close surveillance of Salmonella 

1,4,[5],12:i:- in Portugal, including R-type ASSuT isolates. Information gathered may unravel 

Salmonella 1,4,[5],12:i:- features, prevent the dissemination to other regions and also benefit 

the medical community in order to rationalize salmonellosis antimicrobial therapeutics. 
 

Key-words: Biofilm, R-type ASSuT, Virulence factors, Portugal, Salmonella 1,4,[5],12:i:-  
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Resumo 

 

Virulência de Salmonella Typhimurium 1,4,[5],12:i:-, a nova estirpe pandémica1 

 

Salmonella é uma bactéria Gram-negativa pertencente à família Enterobacteriaceae, sendo 

uma das principais responsáveis pela morbilidade e mortalidade associadas a toxinfecções 

alimentares. Pode manifestar-se num espectro de sintomatologia variado, incluindo a 

gastroenterite, a bacteriémia e a infecção focal.  

Este género incluí mais de 2600 serovares descritos, distribuídos por apenas duas  

espécies: Salmonella enterica que inclui todos os serovares patogénicos para os humanos e  

Salmonella bongori.  

Actualmente, um dos principais serovares responsáveis pela salmonelose humana em todo 

o mundo é o 1,4,[5],12:i:-. Este serovar é uma variante monofásica de Salmonella 

Typhimurium, muito semelhante a nível molecular, sendo caracterizado pela ausência da 

expressão do gene fljB. Devido à sua recente emergência, estudos que avaliem este serovar 

são escassos, particularmente em Portugal, o que definiu o âmbito desta investigação, que 

teve como objectivo a caracterização epidemiológica e microbiológica, tanto do ponto de 

vista fenotípico e genotípico, de isolados de Salmonella 1,4,[5],12:i:- obtidos em Portugal a 

partir de diferentes origens, incluindo amostras humanas, animais e ambientais. 

Numa primeira fase foi realizada uma caracterização demográfica, epidemiológica e espacial 

de todos os casos de Salmonelose 1,4,[5],12:i:- humana notificados em Portugal pelo 

Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA), durante um período de 10 anos, 

desde 2001 a 2011. Foram recolhidos dados sobre a origem, ano e mês de amostragem, 

género, idade, distrito e município de residência dos pacientes. Foi realizada a análise 

estatística descritiva, bem como, a análise estatística espacial através do software 

SaTScan™, combinada com análise através de software de georeferenciação, o QGIS™, de 

forma a caracterizar a epidemiologia e identificar agrupamentos espaciais de risco superior 

de infecção por Salmonella 1,4,[5],12:i:- em Portugal.  

Globalmente, observou-se que em Portugal, a maioria dos distritos tem casos notificados de 

infecção por Salmonella 1,4,[5],12:i:-. Verificou-se também um aumento da incidência 

durante o intervalo de 2004 a 2011, com um maior número de casos na região litoral do 

país, incluindo distritos como Porto, Lisboa e Aveiro, o que pode ser explicado pela maior 

densidade populacional nestas áreas. A maioria das infecções ocorreu durante Maio e 

Outubro, e o menor número em Fevereiro, afectando principalmente indivíduos jovens. A 

análise geoespacial revelou 4 aglomerados de risco superior de infecção, três localizados no 

                                                             
1 *O autor escreve segundo o antigo Acordo Ortográfico. 
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norte de Portugal, incluindo dois no litoral, e um no interior. Foi ainda detectado um 

aglomerado de maiores dimensões que envolve o centro e sul de Portugal. 

Numa segunda fase, e tendo em conta a elevada ocorrência de resistência a 

antimicrobianos neste serovar, foi realizada a caracterização fenotípica e genotípica dos 

isolados de Salmonella 1,4,[5],12:i:-, em particular nos que apresentavam o perfil de 

tetraresistência ASSuT, que exibem simultaneamente resistência a ampicilina, 

estreptomicina, sulfonamidas e tetraciclinas (R-tipo ASSuT). Nesta fase foram 

caracterizados isolados recolhidos pelo INSA de diferentes fontes, incluindo casos clínicos 

humanos (n=170), animais (n=10), ambientais (n=6) e alimentares (n=1) obtidos em 15 

distritos portugueses, entre 2006 e 2011. A identificação dos isolados foi realizada por 

serotipificação utilizando o método de aglutinação em lâmina, tendo sido posteriormente 

confirmada por PCR multiplex (mPCR) para a variante monofásica. Os isolados cuja 

identificação foi confirmada por mPCR foram seleccionados para detecção do perfil ASSuT 

através do método de difusão em disco, com posterior determinação da concentração 

mínima inibitória (CIM) por Etest®. Foi também determinada a resistência a outros 

antimicrobianos por difusão em disco, nomeadamente amoxicilina/ácido clavulânico, 

cefotaxima, ceftazidima, ciprofloxacina, cloranfenicol, gentamicina e ácido nalidíxico. 

Os isolados de Salmonella 1,4,[5],12:i:- com o perfil ASSuT foram submetidos à pesquisa 

por PCR de genes de virulência (spvC, invA, invH, sopB, stn, phoP, phoQ, slyA,agfA, sefA, 

safC, pefA, sdiA, gipA, lpfD), assim como de genes de resistência a antimicrobianos 

associados ao perfil ASSuT (amoxicilina [blaTEM], estreptomicina [strA-strB], sulfametoxazol 

[sul2] e tetraciclina [tetB]). Estes isolados foram ainda submetidos a caracterização 

molecular por electroforese em gel de campo pulsado com restrição por Xbal de acordo com 

o protocolo da PulseNet, e os perfis de macrorestrição obtidos foram analisados através do 

software Bionumerics®.  

Relativamente aos 187 isolados serotipificados, a identificação de 133 foi confirmada como 

Salmonella 1,4,[5],12:i:- por mPCR, com uma ocorrência do perfil de tetraresistência ASSuT 

de 61,7%. Todos os isolados ASSuT apresentaram valores elevados de CIM para ampicilina 

(>256 µg/ml) e sulfametoxazol (>1024 µg/ml). A CIM50 para a estreptomicina foi de 512 µg/ml 

e a CIM90 de 1024 µg/ml. Os valores de MIC50 e MIC90 para a tetraciclina foram de 64 µg/ml 

e 96 µg/ml, respectivamente. Nos isolados R-type ASSuT foram também observados as 

seguintes co-resistências: amoxicilina (28%, n=23), cloranfenicol (15,9%, n=13), gentamicina 

(9,8%, n=8), ácido nalidíxico (8,5%, n=7), ceftazidima (4,9%, n=4), cefotaxima (4,9%, n=4) e 

ciprofloxacina (1,2%, n=1). A análise de clonalidade revelou uma grande diversidade de 

pulsotipos, indicando que a maioria dos casos de Salmonelose humana possa ser atribuída 

a eventos esporádicos. Todos os isolados possuíam 14 dos 18 genes de virulência 



 

viii 

avaliados e 87,8% apresentavam todos os genes de resistência a antimicrobianos 

frequentemente associados com o clone europeu: blaTEM, strA-strB, sul2 e tetB. 

Numa terceira e quarta fases, a formação de biofilme pelos isolados de Salmonella 

1,4,[5],12:i:- foi extensivamente estudada, devido às implicações deste factor de virulência 

na indústria alimentar e sector médico, além de que não existiam estudos disponíveis sobre 

a formação de biofilme por Salmonella 1,4,[5],12:i:-. Foi avaliada a formação de biofilme 

pelos 133 isolados serotificados e cuja identificação foi confirmada por mPCR. A detecção 

de biofilme foi realizada através de métodos fenotípicos e genotípicos, nomeadamente a 

caracterização do morfotipo em agar e formação de película em meio líquido durante 8 dias, 

a determinação da densidade óptica através de ensaios em microplacas após 24h, 48h e 

72h e observação directa do biofilme por hibridação in situ fluorescente após 24h, 48h e 

72h. Os genes associados à formação de biofilme (adrA, csgD e gcpA) foram pesquisados 

por PCR.  

Os ensaios de formação de biofilme mostraram que a capacidade de produção deste factor 

de virulência por Salmonella 1,4,[5],12:i:- é elevada, estando presente em todos os isolados 

estudados. A capacidade de formação de biofilme varia entre isolados obtidos em diferentes 

regiões, mostrando que os isolados provenientes de alguns distritos, como Lisboa ou Ponta 

Delgada, tem uma maior capacidade de persistir no ambiente. Esta capacidade também 

varia de acordo com o ano de colheita da amostra, apresentando um aumento significativo 

ao longo do tempo, o poderia ser uma das razões para a disseminação deste serovar no 

país. 

Adicionalmente, e uma vez que a maioria dos estudos para avaliar a formação de biofilme 

são realizados utilizando meios de cultura não relacionados com o ambiente intestinal 

humano, foi desenvolvida uma metodologia aplicando condições que simulam este 

ambiente. Assim, foi concebido um ensaio in vitro para avaliar a produção de biofilme pelos 

133 isolados de Salmonella 1,4,[5],12:i:- através da utilização de um meio que mimetiza as 

condições intestinais. Os isolados foram avaliados em três condições distintas, 

nomeadamente, meio intestinal com agitação, meio intestinal sem agitação e, por último, 

meio Mueller Hinton sem agitação, em três tempos diferentes (24h, 48h e 72h).  

A utilização da metodologia aplicada permitiu verificar que o meio e as condições dos 

ensaios originam diferenças significativas nos resultados obtidos. Neste sentido, condições 

que simulam o stress gastrointestinal in vivo a que Salmonella é submetida deveriam ser 

incluídas na avaliação da capacidade de produção de biofilme, permitindo uma melhor 

correlação entre a capacidade de formação de biofilme in vitro e no tracto gastrointestinal. 

Embora do ponto de vista epidemiológico os resultados apresentados sejam provenientes 

de um sistema de vigilância passiva, o que pode subestimar o número de casos, este estudo 

incluiu a primeira avaliação epidemiológica e análise de distribuição das áreas com maior 
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risco de infecção em Portugal. Adicionalmente, Salmonella 1,4,[5],12:i:- apresentou uma 

elevada ocorrência de multirresistência, nomeadamente do perfil ASSuT, frequentemente 

associado a outras resistências antimicrobianas. Estes isolados tetraresistentes estão 

amplamente distribuídos em Portugal, o que pode estar relacionado com uma vantagem 

evolutiva associada com o perfil ASSuT, a presença de múltiplos factores de virulência, 

incluindo a elevada e crescente capacidade de formar biofilmes, e a elevada diversidade de 

pulsotipos detectados. 

As características epidemiológicas e microbiológicas reveladas por este serovar, fazem com 

que seja recomendável a adaptação de medidas de vigilância apertadas no país, incluindo a 

avaliação dos perfis de resistência e, em particular, do perfil de tetraresistência ASSuT. A 

monitorização contínua de Salmonella 1,4,[5],12:i:- em Portugal irá contribuir para a 

prevenção de futuros surtos, assim como fornecer informação relevante aos profissionais de 

saúde, especialmente na óptica da utilização e prescrição racional de antimicrobianos para 

tratamento de Salmoneloses. 
 

Palavras-chave: Biofilme, R-type ASSuT, factores de virulência, Portugal, Salmonella 

1,4,[5],12:i:- 
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 Introduction 1.1.

Salmonella is widely recognized as a major pathogen causing gastroenteritis with different 

levels of severity, expressing symptoms like vomit and diarrhea. Although this bacterium 

usually promotes a self-limiting condition, it’s role on food poisoning outbreaks and in many 

cases of illness in humans raised serious concerns regarding public health safety (Switt, 

Soyer, Warnick & Wiedmann 2009). Mammals, birds and reptiles are also affected by 

Salmonella infections. 

In the European Union (EU), about 100.000 cases of human salmonelosis are annually 

reported. The European Food Safety Authority (EFSA) has estimated that the overall 

economic burden of this disease could be as high as 3 billion euros per year. Nowadays, this 

bacterium is the second most frequent foodborne pathogen after Campylobacter, being even 

the first in several EU countries, as for example, in Italy. However, unlike Campylobacter, 

Salmonella often causes very large multistate foodborne outbreaks which proves its greater 

dispersion in the environment (EFSA 2010b). 

In 2010, the EFSA Panel on Biological Hazards published a Scientific Opinion alerting for the 

increasing number of outbreaks in the EU member states caused by “Salmonella 

Typhimurium-like” strains. The Panel has recommended that these strains should be further 

typed and characterized. However, only a few studies to date have focused on their 

phenotypic or genotypic traits (Bugarel, Vignaud, Moury, Fach & Brisabois 2012, Mandilara, 

Lambiri, Polemis, Passiotou & Vatopoulos 2013). As a result, only limited evidence is 

available on their virulent features, with few data available regarding biofilm formation or 

even information regarding the epidemiology of Portuguese isolates. The scarce research 

available on Salmonella 1,4,[5],12:i:- and its high resemblance in virulence with Salmonella 

Typhimurium, influenced the focus of this review aiming at the comparison between both 

serovars. 

This first chapter of this thesis includes a general review on Salmonella, with particular focus 

on the characterization of the monophasic variant 1,4,[5],12:i:-, followed by a description of 

the infection pathogenesis by non-typhoid Salmonella. Subsequently, the different 

mechanisms of virulence are analysed according to the updated literature. A detailed 

description about the importance of Salmonella Pathogenicity Islands (SPI) during host 

infection, the most common antimicrobial resistance profiles and their genetic determinants 

and the mechanisms of biofilm formation are described. Finally, this chapter includes a 

description of the surveillance measures of human salmonellosis in Portugal, followed by the 

identification of the main objectives of this thesis. 
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 Salmonella through History: from its discover to the early outbreaks 1.2.

Salmonella was isolated for the first time from pig’s intestine in 1885 by Theobald Smith, a 

research laboratory assistant at the Veterinary Division of the United States Department of 

Agriculture. The research was performed under the guidance of Daniel Elmer Salmon, an 

American veterinary pathologist, responsible for the origin of the genus name. 

However, the history of Salmonella did not begin at the 19th century. In ancient times, some 

important historical celebrities are believed to have died due to infections caused by this 

bacterium. In 2001, a group of researchers at the University of Maryland in the United States 

of America (USA) suggested that an infection by Salmonella Typhi was the cause of death of 

Alexander the Great in 323 BC, based on a description of Alexander’s symptoms written by 

the Greek author Arrian of Nicomedia (Moulopoulos 1998).   

In more recent times, Prince Albert, the husband of Queen Victoria, died in 1861 of Typhoid 

fever. In fact, during the Victorian era, 50.000 cases of Typhoid fever per year were 

estimated to occur in England (Morser, Puskoor & Zubay 2005). 

Even at important wars, Salmonella caused more deaths than battle wounds. During the 

South African War (1899-1902), a Typhoid outbreak in British camps mainly attributed to 

unsanitary conditions (1899-1902) killed 13.000 soldiers, as compared to 8.000 battle deaths 

(Cirillo 2006). 

In the early 1900’s, Mary Mallon, also known as “Typhoid Mary”, was responsible for several 

Typhoid outbreaks, becoming the first famous carrier of Typhoid fever in USA (Soper 1907). 

Mary Mallon was hired as a cook at several private houses, working in the New York area for 

wealthy families. She caused several Typhoid outbreaks, by moving from house to house 

and always disappearing before an epidemic could be traced back to her. In the end, she 

had worked for eight families, with 22 cases of Typhoid and at least 3 deaths directly 

attributed to her cooking job (Soper 1907, Marineli, Tsoucalas, Karamanou & Androutsos 

2013). She was finally overtaken by the authorities in 1907 and committed to an isolation 

center on North Brother Island in New York. Mary Mallon was released in 1910, on the 

condition that she never again accepted employment involving food handling. She changed 

her name and was found working as a cook, after causing further typhoid outbreaks. She 

was admitted back to North Brother Island, where she lived until her death in 1938 (Marineli 

et al. 2013). 

These events showed that some individuals have a natural immunity to Salmonella and Mary 

Mallon was the first asymptomatic Typhoid carrier to be identified (Soper 1907). Only 

recently, medical science was able to clarify that Salmonella enterica serovar Typhi can 

cause a chronic and asymptomatic infection, persisting primarily in the gallbladder, mainly 

due to biofilm formation (Gonzalez-Escobedo & Gunn 2013). 
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 Characterization of Salmonella 1,4,[5],12:i:-, the new emergent strain 1.3.

Bacteria classification is of major importance, creating order in the complex world of 

microbiology. Below the subspecies level, Salmonella isolates are discriminated using the 

White-Kauffmann-Le Minor serotyping scheme, established in the middle of the last century 

and still recognized as the reference method to discriminate between Salmonella varieties. 

The Salmonella genus includes two species, S. enterica and S. bongori. S. enterica is 

divided into 6 subspecies, I (enterica), II (salamae), IIIa (arizonae), IIIb (diarizonae), IV 

(houtenae) and VI (indica). The White-Kauffmann-Le Minor scheme, published by the WHO 

Collaborating Centre for Reference and Research on Salmonella at the Pasteur Institute, 

France, uses serotyping to distinguish between Salmonella serovars, allowing the 

identification of more than 2.600 different serovars belonging (Grimont & Weill 2007). 

1.3.1. Microbiological characterization 

Salmonellae are facultative anaerobic, Gram-negative rod shaped bacteria belonging to the 

Enterobacteriaceae family. Although most members of this genus are motile by peritrichous 

flagella, a few non-flagellated variants, such as Salmonella Gallinarum and Salmonella 

Pullorum are non-motile. Salmonellae are chemoorganotrophic, with the ability to metabolize 

nutrients by both respiratory and fermentative pathways (Gyles, Prescott, Songer & Thoen 

2010). Salmonella is oxidase negative, catalase positive, indole and Voges Proskauer 

negative, methyl red and Simmons citrate positive, hydrogen sulfide producing and urea 

negative. Some of these characteristics are used for biochemical identification of Salmonella 

isolates (Grimont & Weill 2007).  

1.3.2. Antigenic characterization 

Most human and food-producing animal serovars (more than 1.500) belong to the first 

subspecies, Salmonella enterica subspecies enterica (EFSA 2010b, Ranieri, Shi, Moreno 

Switt, den Bakker & Wiedmann 2013). While S. enterica normally includes all major serovars 

that are pathogenic to humans and animals, S. bongori is considered a bacterium of cold-

blooded animals, most frequently associated with reptiles (Gyles et al. 2010). Salmonella 

enterica subsp. enterica serovars are usually designated by a name, frequently related to the 

geographical place where the serovar was first isolated (for example, Salmonella Havana) or 

to the animal from which it was isolated (for example, Salmonella Gallinarum) (Backer et al. 

2000, Shah et al. 2005). Serovars belonging to other S. enterica subspecies and to S. 

bongori are designated by their antigenic formula (EFSA 2010b).  

Serotyping is based on the antigenic characterization of surface structures, such as 

lipopolysaccharides (O-antigen), flagellar proteins (H-antigen), and capsular polysaccharides 
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(Vi-antigen), through agglutination with polyvalent and monovalent antisera (Grimont & Weill 

2007, Switt et al. 2009). 

The O-antigen is the external component of the lipopolysaccharide located on the cell wall, 

consisting of a long linear polysaccharide containing 50 to 100 repeating saccharide units, 

with four to seven sugars per unit (EFSA 2010b). Different sugars and different linkages 

between sugars give origin to different antigens (Reeves & Wang 2013). 

The H-antigen corresponds to flagellin, the major component of flagella (Switt et al. 2009). 

The Vi-antigen is a surface polysaccharide, which only occurs in three Salmonella serovars, 

namely Salmonella Typhi, Salmonella Paratyphi C and Salmonella Dublin (Johnson, 

Krauskopf & Baron 1965, Snellings NJ 1977).  

The full antigenic formula system determined by the White-Kauffmann-Le Minor scheme is 

represented as follows: first, O-antigens, followed by H-antigens of first phase and H-

antigens of second phase; the three antigen designations are separated by colons (EFSA 

2010b). According to this scheme, Salmonella Typhimurium would be described as I 

1,4,[5],12:i:1,2, indicating that this serotype belongs to subspecies I and carries the 

‘‘1,4,[5],12’’ O antigens, the ‘‘i’’ phase 1 H-antigen, and the ‘‘1,2’’ phase 2 H-antigens. The 

underlined O factor 1 means that this factor is determined by phage conversion, being 

present only if the culture is lysogenized by a particular converting phage. The factor 5 

between square brackets means that the presence of the antigen is not related to phage 

conversion.  

Salmonella 1,4,[5],12:i:– thus shares all O antigens and phase 1 H-antigens with Salmonella 

Typhimurium. Antigenic variants like the monophasic Salmonella Typhimurium 1,4,[5],12:i:- 

that lack the second phase H-antigen have been described in the literature as “Salmonella 

Typhimurium-like” strains (EFSA 2010b, Bugarel et al. 2012).  

1.3.3. Molecular characterization 

As mentioned, most Salmonella strains are motile due to the presence of peritrichous 

flagella, which are encoded by two different flagellin genes located on the bacterial 

chromosome, fliC and fljB. The biphasic character of the flagella antigen consists of its ability 

to modify its composition by switching the expression of two loci encoding the major flagellar 

protein, between FliC for phase 1 flagella and FljB for phase 2 (Ranieri et al. 2013). Before 

flagella composition was even known, the expression of these two separate antigens was 

identified and described as "phases", through a mechanism called “phase variation” (EFSA 

2010b, Bugarel et al. 2012). Flagellar phase variation is caused by the reversible inversion of 

a deoxyribonucleic acid (DNA) segment, designated the H segment, containing the fljB 

promoter (Kutsukake, Nakashima, Tominaga & Abo 2006). The H segment is flanked by 

inverted repeat sequences, hixL and hixR (Fig. 1), between which site-specific recombination 
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phenomenon occurs, leading to inversion of the H segment (Aldridge et al. 2006, Bugarel et 

al. 2012).  

A DNA invertase encoded by hin, which is located within the H segment, catalyzes this 

recombination event. The gene fljA, which encodes a negative regulator for fliC expression, 

is located downstream of fljB. When the H segment is in the “on” orientation, it results in the 

transcription of both fljB and fljA, expressing only the second flagellar phase, since fljA 

represses fliC expression (Yamamoto & Kutsukake 2006, Bugarel et al. 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the H segment is on the “off” orientation, neither fljB nor fljA are transcribed and the 

fliC gene is not inhibited, resulting in the expression of the first flagellar phase (Kutsukake et 

al. 2006, EFSA 2010b). This switch mechanism only allows the expression of one flagellin 

variety at a time (Bugarel et al. 2012).  

Most serovars are biphasic, meaning that they can express both phase 1 and phase 2 genes 

(Barco et al. 2011). However, some Salmonella strains are monophasic, producing only one 

type of flagellin, and may lack the expression of phase 1 or phase 2 genes. For example, 

Salmonella 1,4,[5],12:i:- isolates lack expression of phase 2 flagella (EFSA 2010b, Barco et 

al. 2011). 

 Laboratory methods for identification and characterization of Salmonella 1.4.

Several laboratory techniques are used for identification and typing Salmonella in 

epidemiological order to track changes in epidemiology and to trace sources of foodborne 

outbreaks (Wattiau, Boland & Bertrand 2011, Achtman et al. 2012).  
Isolation of Salmonella from faeces and food samples may be difficult due to several factors, 

including the occurrence of subclinical infections or intermittent shedding of small numbers of 

Salmonellae in faeces. Additionally, Salmonella populations in food samples may be 

stressed due to unfavourable storage and processing conditions, including high or low 

Figure 1 - Flagellar phase variation in Salmonella. Adapted from Aldridge et al., 2006 
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temperatures, pH, or salt content. In order to insure the isolation of Salmonella and avoiding 

false negative results, several steps must be performed, including the use of a large sample 

volume, inoculation in a non-selective pre-enrichment medium, such as buffered peptone 

water, followed by the use of a combination of two selective enrichments broths such as 

Müller-Kauffmann Tetrathionate broth and Rappaport Vassiliadis Soy and plating on two 

selective media, such as Xylose Lysine Desoxycholate agar and Brilliant Green agar, or 

another selective agar media like Hektoen or Salmonella-Shigella agar. Subsequently, 

colonies with a typical Salmonella morphology are confirmed by further culturing in Triple 

Sugar Iron agar and Urea agar and using biochemical tests, including L-lysine 

decarboxylase, β-galactosidase, Voges Proskauer and Indole tests. Then, Salmonella 

colonies are serotyped classified at the subspecies level and eventually serotyped (Fig. 2) 

(WHO Global Foodborne Infections Network 2010).  

 

 

Serotyping is a relatively easy technique to perform, however it requires skilled technicians to 

interpret the results, being an expensive and prolonged procedure since hundreds of antisera 

are required (Grimont & Weill 2007, Guibourdenche et al. 2010). In fact, the replacement of 

Figure 2 - Salmonella isolation protocol from food and animal samples. 
Adapted from WHO Global Foodborne Infections Network (2010). Available at: 

http://www.antimicrobialresistance.dk/232-169-215-protocols.htm 
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serotyping by molecular techniques is being tested. Through the years, several molecular 

techniques have been used to identify Salmonella serotypes based on microarrays (Fang et 

al. 2010), real-time polymerase chain reaction (PCR) (Maurischat, Baumann, Martin & 

Malorny 2015), repetitive sequence-based PCR (Wise et al. 2009, Ranieri et al. 2013) and 

multilocus sequence typing (Ranieri et al. 2013). Each of these methods has advantages and 

drawbacks in terms of costs, speed and sensitivity (Ranieri et al. 2013). Although considered 

improvements in several aspects, none has been considered as the ideal method to be 

conducted as routine in microbiology laboratories (Wattiau et al. 2011) and serotyping still 

remains an indispensable tool to discriminate Salmonella serovars. This technique provide 

valuable information regarding potential sources, as several serovars are correlated with 

specific hosts (subspecies IIIb serovars are common in reptiles) or geographical regions 

(Backer et al. 2000), type of disease and severity (EFSA 2010b) and potential multidrug 

resistance profile, since some serovars may be linked to certain antimicrobial resistance 

profiles (Clemente et al. 2014). Additionally, serotyping information is also essential to 

achieve its main purpose, which is to allow for an internationally accepted nomenclature 

(Grimont & Weill 2007).  

Bacteriophages, or more commonly phages, are viruses that can only replicate within 

specific bacteria. Phage typing can differ between strains of the same serovar. This 

technique is based on the principle that specific phages will only lyse particular strains of a 

specific serovar, currently allowing the identification of over 200 definitive types (DT) (EFSA 

2010b). The lysis pattern can be compared to a standard scheme to identify the strain phage 

type (De Lappe, Doran, O'Connor, O'Hare & Cormican 2009).  

Typing schemes were conceived for particular Salmonella serovars and showed to be 

valuable epidemiological tools to investigate outbreaks. Information regarding the typing 

schemes in combination with antimicrobial susceptibility testing has led to identification of 

many large international outbreaks (O'Mahony et al. 1990, Mahon et al. 1997, Backer et al. 

2000, Mossong et al. 2007).  

Nowadays, molecular methods are critical for outbreak detection, investigation and control. 

Pulsed Field Gel Electrophoresis (PFGE) is a molecular typing method, considered to be the 

“Gold Standard” for supporting the identification of epidemiological links between isolates 

(Wattiau et al. 2011), However, multilocus sequence typing (MLST) and whole genome 

sequencing are becoming more favoured options (Achtman et al. 2012). 

 Pathogenesis of non-typhoid Salmonella 1.5.

Among Salmonella serovars associated with gastroenteritis, the non-typhoid Salmonella 

(NTS), trigger an intestinal inflammatory response, whereas typhoid serovars cause enteric 

fever by their ability to persist and multiply inside mononuclear phagocytes promoting 

systemic infections (Ohl & Miller, 2001). Most NTS enter the host via ingestion of 
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contaminated water or food (Crum-Cianflone 2008), but person-to-person spread may also 

occur. NTS must survive the passage through the stomach, in order to invade the mucosa of 

the small and large intestine, usually the distal ileum and colon, and may produce toxins 

(Crum-Cianflone 2008). The infectious dose varies among Salmonella serovars but for non-

typhoid strains, the infectious dose is approximately 103 bacilli (Blaser & Newman 1982). 

After overcoming the gastric of the stomach acid environment and evading intestinal 

defences such as the action of the specific Immunoglobulin A, NTS infection is characterized 

by bacterial attachment to enterocytes by fimbriae or pili, which also selectively attach to 

specialized epithelial cells located in the ileal Peyer patches, the M cells (Carrie, Sheila, 

Fedorka-Cray & Isaacson 2003). Bacterial invasion occurs by inducing the “ruffling” of the 

enterocyte membrane and subsequent internalization by receptor-mediated endocytosis, 

followed by transportation within phagosomes to the lamina propria, where they are released. 

This process is an important pathway for allowing invasive Salmonella to reach deeper 

tissues (Drecktrah, Knodler, Ireland & Steele-Mortimer 2006).  

Invasion of the intestinal epithelial barrier by NTS allows bacteria to interact with 

macrophages and lymphocytes in Peyer’s patches, where Salmonella multiplication occurs, 

resulting in marked enlargement and necrosis of the lymphoid tissue (Hackett, Kotlarski, 

Mathan, Francki & Rowley 1986). NTS invasion usually precipitates a localized immune 

response by the stimulation and release of pro-inflammatory cytokines, including interleukin 

(IL)-1, IL-6, IL-8, Tumor Necrosis Factor-2, Interferon-U, Monocyte Chemoattractant Protein-

1 and Granulocyte Macrophage Colony-Stimulating Factor, which induce an inflammatory 

reaction, promoting a large influx of polymorphonuclear leukocytes (PMN) to the intestinal 

lumen (Dougan, John, Palmer & Mastroeni 2011). The acute inflammatory response causes 

diarrhoea and may lead to mucosa ulceration and necrosis after which, bacteria can 

disseminate from the intestines and cause systemic disease.  

In order to express the ability to invade animal tissues, NTS must possess and express a 

variety of virulence factors. Salmonella virulence attributes are complex and encoded both on 

the bacterial chromosome and/or on large plasmids (Suez et al. 2013). For example, 

attachment and invasion mechanisms are under distinct genetic control and involve multiple 

genes located in both the chromosome and plasmids. 

Illness severity in individuals with salmonellosis is not only determined by the presence of 

virulence factors but also by other features, in particular host susceptibility and defences, 

infective dose and also the interaction between the pathogen and the host (Hohmann 2001, 

Jones-Carson & Vazquez-Torres 2007, Borriello et al. 2012).  

1.5.1. Host susceptibility 

Host factors predisposing to severe NTS infection include reduced gastric acidity, pernicious 

anemia, antacids and H2 blockers administration (Hohmann 2001). Impaired cell mediated 
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and humoral immunity and decreased phagocytic function were also described as related 

with severe disease (Gondwe et al. 2010, Dougan et al. 2011). Salmonellae are unable to 

survive at a gastric pH inferior to 2.5 and patients with anatomical or functional achlorhydria 

are at increased risk of developing infection (Tennant et al. 2008). Other risk factors for 

salmonellosis include extremes of age, intestinal microbiota variation, diabetes, malignancy, 

rheumatic disorders, reticuloendothelial blockade as a result of malaria, Human 

Immunodeficiency Virus (HIV) infection, and therapeutic immunosuppression (Hohmann 

2001, Crum-Cianflone 2008). Also, co-infection with Schistosoma has been reported to 

cause prolonged and severe illness due to altered macrophage function and Salmonella 

replication and survival ability of Salmonella within the parasite (Abruzzi & Fried 2011). 

1.5.2. Host defences 

Once in the gastrointestinal tract, Salmonellae faces a series of nonspecific host defenses 

and innate immune mechanisms that impair its ability to colonize the intestinal surface, to 

translocate across the epithelial barrier and to disseminate systemically. Briefly, non-specific 

defences consist of gastric acidity, intestinal mucus, intestinal peristalsis, host microbiota and 

the presence of lactoferrin and lysozyme (Bearson, Bearson & Rasmussen 2006, Jones-

Carson & Vazquez-Torres 2007). Specific defences consist of mucosal intestine 

immunoglobulin A, systemic antibodies and genetic resistance to invasion (Jones-Carson & 

Vazquez-Torres 2007). 

1.5.3. Infectious Dose 

Salmonella infective dose 50 (ID50), which is the number of viable cells required to cause 

infection in 50% of the experimental subjects, was determined in human volunteers. Those 

experiments pointed to an ID50 of 103 to 106 cells, which can be considered a relatively large 

dose when compared to other foodborne pathogens like Campylobacter jejuni (500 

microorganisms) or Shigella spp. (10 microorganisms) (Hara-Kudo & Takatori 2011). 

However, other reports regarding salmonellosis outbreaks investigations suggest that the 

infective dose is often lower, being calculated to be inferior to 103 bacilli (Blaser & Newman 

1982).  

Higher doses are associated with higher rates of illness and shorter incubation periods 

(Hara-Kudo & Takatori 2011). Lower infective doses may promote and cause infection, if 

Salmonella is co-ingested with foods that rapidly pass the stomach, such as liquids, or that 

includes a high content of fat and protein, like ice cream, cheese and chocolate, which may 

play a role in protecting Salmonella from gastric acidity (Kothary & Babu 2001). Antacids 

administration or defective immune systems are conditions that may require lower ID to 

cause infection.  
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Even within the genus, the infective dose is variable among different serovars. For example, 

it was reported that Salmonella Pullorum infective dose is 109 to 1010 bacilli, while Salmonella 

Newport infective dose is estimated to be 105 to 106 microorganisms (Kothary & Babu 2001). 

 Emergence of monophasic Salmonella Typhimurium 1,4,[5],12:i:- 1.6.

In the 90s was reported in Europe the first isolation of S. enterica subsp. enterica serovar 

1,4,[5],12:i:-, presently considered one of the major serovars responsible for human 

salmonellosis worldwide (Machado & Bernardo 1990). This study documented the serovar 

isolation from a chicken carcass in Portugal in 1986/87 (Machado & Bernardo 1990). 

However, scarce reports of Salmonella 1,4,[5],12:i:- isolation may reflect the difficulties in 

serotyping this serovar, with many isolates probably incorrectly designated as Salmonella 

Typhimurium. Additionally, reporting Salmonella 1,4,[5],12:i:- isolates may also be 

underestimated due to inconsistent ways used by different countries to report this serovar 

since it was common to report some Salmonella serovars as “Group B” or “subspecies I” 

(Switt et al. 2009). 

A few years later, a high number of cases related with the 1,4,[5],12:i:- serovar have been 

documented in Spain, with the first isolation reported in 1997 (Echeita, Aladueña, Cruchaga 

& Usera 1999). In this country, monophasic Salmonella 1,4,[5],12:i:- rapidly became the most 

common serovar in swine and the second most frequent in pork products, which lead to the 

hypothesis that pigs may be an important reservoir for these strains (de la Torre et al. 2003). 

Isolation of serovar 1,4,[5],12:i:– has also been reported in other European countries, 

including Luxemburg (Mossong et al. 2007), Germany (Guerra, Junker, Miko, Helmuth & 

Mendoza 2004), Greece (Mandilara et al. 2013), Italy (Dionisi et al. 2009), Poland (Wasyl & 

Hoszowski 2012), as well as in Austria, France, Ireland, the Netherlands (EFSA 2010b), 

Denmark, Bulgaria and Slovakia (Switt et al. 2009, Majtan, Majtanova & Majtan 2011). 

Outside Europe, it was also detected in the American and Asian continents (EFSA 2010b). 

In several countries, different varieties of monophasic Salmonella Typhimurium have 

emerged, showing different phage types, genotypes and antimicrobial resistance profiles. 

The phenotypic and genotypic diversity of Salmonella 1,4,[5],12:i:- isolates is probably linked 

to multiple clones which might have emerged through independent deletion events (Switt et 

al. 2009). In Europe, the clonal evolution of this serovar promoted the emergence of two 

distinct lines over the last two decades. In the late 90s, one clonal line appeared in Spain, 

expressing plasmid-mediated resistance to a wide range of antimicrobials compounds. In 

2000, a second clone showing co-resistance to ampicillin (A), streptomycin (S), 

sulphonamides (Su) and tetracyclines (T) [Resistance-type (R-type) ASSuT] emerged in 

Italy, being now frequently detected in many European Countries, such as Spain, Germany, 

Denmark and the United Kingdom (Hopkins et al. 2010, Hopkins, de Pinna & Wain 2012, 

Mandilara et al. 2013). 
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The emergence of Salmonella 1,4,[5],12:i:- is strongly linked to Samonella Typhimurium. Few 

years later after the firsts reports, two hypothesis emerged regarding the origin of this 

serovar: the first considered it to be a single-phase variation of previously identified serovars, 

such as Salmonella Typhimurium (with an antigenic formula 4,[5],12;i;1,2) and Salmonella 

Lagos (with an antigenic formula 4,[5],12;i;1,5), and the second considered it to be a whole 

new serovar (Switt et al. 2009). However, several studies (Echeita et al. 1999, Echeita, 

Herrera & Usera 2001, de la Torre et al. 2003) showed the close link between Samonella 

Typhimurium and Salmonella 1,4,[5],12:i:-, and due to the relation serovar 1,4,[5],12:i:- is 

also known as monophasic variant of Salmonella Typhimurium. In one study (Echeita et al. 

2001), an Insertion Sequence IS200, serovar specific of Salmonella Typhimurium 

(Sanderson, Sciore, Liu & Hessel 1993), present in the intergenic fliB-fliA flagellin cluster 

region, was detected in all Salmonella serovar 1,4,[5],12:i:- isolates in the same position and 

with the same sequence as Salmonella Typhimurium, suggesting that this is a monophasic 

variant of this serovar. In another study (de la Torre et al. 2003), pulsed-field gel 

electrophoresis comparing both serovars showed similarities superior to 78%, and also a 

common plasmid profile and identical antimicrobial resistance patterns; in particular, a 

pattern of multidrug resistance frequently found in monophasic isolates, including resistance 

to ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline, gentamicin, and 

trimethoprim-sulfamethoxazole.  

Microarrays studies comparing the first Salmonella 1,4,[5],12:i:- isolates identified in Spain in 

the late 1990s and Salmonella Typhimurium isolates, detected only minor genetic deletions, 

homology in virulence plasmid genes and identical invasion, enterotoxin and cytolysin genes 

and also in genes associated with survival within macrophages (Garaizar et al. 2002) 

The escalating prevalence in Europe of human monophasic Salmonella cases also revealed 

that both serovars seem to have the same pathogenic behaviour, especially in terms of their 

ability to infect and cause disease in both animals and humans (EFSA 2010b). 

 Virulence factors of Salmonella Typhimurium 1,4,[5],12:i:- 1.7.

Interactions between pathogenic microbes and their hosts are complex and dynamic. 

Salmonella’s ability to infect the host and cause disease is attributed to the acquisition and 

expression of virulence genes that allow the microorganism to replicate and disseminate 

within a host, by subverting or eluding its defences and enhancing its potential to cause 

disease (Cross 2008). In the particular case of Salmonella 1,4,[5],12:i:- and considering its 

molecular mechanism of phase variation, the absence of the second flagellar phase may be 

considered an important virulence attribute (Switt et al. 2009). This mechanism may allow the 

evasion of the immune system by silencing the expression of flagellar antigens that are 

usually recognized by the host (Ikeda et al. 2001).  
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Virulence attributes in Salmonella are complex and vary between serovars and even in 

strains within a serovar (EFSA 2010b). Unfortunately, studies regarding virulence factors in 

monophasic Salmonella Typhimurium are lacking due to its recent emergence and the 

presence of multiple distinct clones, so consistent data on virulence mechanisms are scarce 

(Soyer et al. 2009, EFSA 2010b). 

Nevertheless, several reports demonstrated that the virulence gene repertoire of monophasic 

Salmonella Typhimurium and its variability are similar to the biphasic variant (Garaizar et al. 

2002, EFSA 2010b, Hauser et al. 2010). A previous report from 2010, demonstrated using 

microarray analysis that there were no differences between both serovars regarding 102 

representative pathogenicity genes, with the exception for minor variations in single strains 

(Hauser et al. 2010). An other report (Capuano, Mancusi, Capparelli, Esposito & Proroga 

2013) confirmed that both Salmonella serovars Typhimurium and 1,4,[5],12:i:- were closely 

related in terms of virulence and antibiotic resistance profiles. A recent study (Yang et al. 

2015), showed that Salmonella Typhimurium and Salmonella 1,4,[5],12:i:- isolates, both with 

the same Sequence Type (ST) 34, exhibited the same virulence gene profile.  

Pathogens deploy virulence effector proteins into host cells, where they interact physically 

with host proteins to modulate the defence mechanisms (Mukhtar MS et al. 2011). In order to 

promote disease, Salmonella Typhimurium employs a secretory cascade of virulence 

effectors that interact with host cells (Yoon, Ansong, Adkins & Heffron 2011a). Effector 

proteins manage multiple functional activities including membrane trafficking, subversion of 

the host cell cytoskeleton, induction of pro-inflammatory response and regulation of infected 

cells motility (Worley, Nieman, Geddes & Heffron 2006, McGhie, Brawn, Hume, Humphreys 

& Koronakis 2009), with other mechanisms still largely undefined (Haraga, Ohlson & Miller 

2008). Salmonella tightly controls the expression and secretion of virulence determinants to 

disrupt host cell activities at appropriate times and locations during infection (Yoon et al. 

2011a). Failure to properly regulate the expression of these effectors results in attenuation of 

Salmonella virulence (Mouslim, Delgado & Groisman 2004). 

1.7.1. Salmonella Pathogenicity Islands 

As already mentioned, Salmonella virulence depends upon multiple factors, being the result 

of the coordination of many virulence genes expression in time and space in order to cause 

disease (Groisman & Ochman 1997). It has been estimated that approximately 4% of the 

Salmonella Typhimurium genome is necessary for lethal infection in mice, which translates 

into the expression of over 200 virulence genes (Bowe et al. 1998). These genes are not 

randomly distributed in the Salmonella genome, but instead they are clustered in distinct 

chromosome regions termed Salmonella Pathogenicity Islands (SPI) (Marcus, Brumell, 

Pfeifer & Finlay 2000). However, besides SPI, virulence determinants are also present on a 
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wide variety of genetic elements, including in other regions of the bacterial chromosome, 

plasmids and prophages (Foley, Johnson, Ricke, Nayak & Danzeisen 2013).  

SPI consist of large regions of genomic DNA of approximately 10–200kb, organized in 12 

pathogenicity islands, present in pathogenic strains but missing in non-pathogenic bacteria 

(Saroj, Shashidhar, Karani & Bandekar 2008). Many pathogenicity islands encode 

specialized devices for the delivery of virulence proteins into host cells such as type III 

secretion system (T3SS) encoded by SPI-1 (Fig. 3) (Eswarappa et al. 2008).  

Although some SPI are conserved throughout the genus, others SPI are specific of certain 

serovars. For example, SPI-8 is restricted to Salmonella serovars Paratyphi A and Typhi, 

while SPI-10 is present in Salmonella serovars Dublin, Enteritidis, Gallinarum, Paratyphi and 

Typhi (Saroj et al. 2008). The acquisition of these gene clusters was probably achieved by 

horizontal gene transfer, since they present a guanine-cytosine content that significantly 

differs from the remaining chromosome (Marcus et al. 2000). As these islands contain a set 

of functionally related genes necessary for the expression of a specific virulence phenotype, 

the acquisition of SPI might have led to a sudden increase in Salmonella pathogenicity 

during evolution (Groisman & Ochman 1997, Eswarappa et al. 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Virulence genes responsible for distinct events of Salmonella pathogenesis may be 

distributed in different SPI (Marcus et al. 2000). The different SPIs have specific roles during 

the establishment of Salmonella Typhimurium infection in epithelial cells, including in the 

following main events of Salmonella pathogenesis: adhesion, invasion, Salmonella-

containing vacuole (SCV) maturation and replication (Fig. 4) (López, Pescaretti, Morero & 

Figure 3 - Salmonella Pathogenicity Island I associated type III 
secretion system. Adapted from Brennan et al. 2009. 

During Salmonella infection, T3SS genes encoded on a 
pathogenicity island (grey ring) are expressed. These include 
structural genes that make up the secretion complex, in addition to 
chaperones and effector proteins (grey diamond) that are injected 
across into a host cell. 
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Delgado 2012, LaRock, Chaudhary & Miller 2015). For example, virulence genes involved in 

the intestinal phase of infection are located in SPI-1 and SPI-2 (Marcus et al. 2000).  

 

 

 

1.7.1.1. Adhesion mechanism 

Salmonella adhesion to the intestinal epithelial surface is a critical step of infection 

pathogenesis which enables bacteria to invade the host (Burkholder & Bhunia 2009). 

Although Salmonella is able to colonize healthy hosts, studies in animal models have shown 

that the greatest risk for intestinal colonization and infection occur during periods of 

physiological stress (Hinton, Buhr & Ingram 2000, Humphrey 2004). Data regarding the 

colonization and infection of Salmonella during physiological stress in humans are scarce, 

but it is likely to follow a similar behaviour as in other animal models (Burkholder & Bhunia 

2009). 

As soon as Salmonella reaches the intestinal tract, many adhesion related structures 

including the capsule, flagella, fimbriae and lipopolysaccharide (LPS), are able to interact 

with host receptors (Wagner & Hensel 2011). 

From the twelve SPI present in Salmonella Typhimurium, 4 are directly involved with 

adhesion to the host cell, prior to the beginning of disease, including: SPI-3, SPI-4, SPI-6 and 

SPI-9. 

The SPI-3 is a 17kb locus that contains genes involved in intestinal colonization, due to the 

expression of an autotransporter protein enabling Salmonella Typhimurium to bind to 

fibronectin, and in intracellular survival, due to expression of a high-affinity magnesium 

transporter encoded by mgtABC (Eswarappa et al. 2008, Rychlik I et al. 2009) 

Figure 4 - Schematic representation of Salmonella infection. Adapted from Lopéz et al. 2012. 
 

Step 1 – Salmonella induce the 
expression of fimbriae and adhesins 
encoded in SPI.  
Step 2 – The uptake of Salmonella 
induces cytoskeleton 
rearrangements.  
Step 3 – Salmonella invasion leads 
to an early SVC. 
Step 4 – Maturation to a late SVC.  
Step 5 – Salmonella replication 
within SCV.  
Step 6 – Salmonella induce cell 
host apoptosis.  
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The SPI-4 is a 27kb locus required for the intestinal phase of disease, harboring the siiE 

gene, responsible for the production of a non-fimbrial adhesin, and the siiABCDEF operon, 

which encodes for the Type I secretion system (T1SS) and is suspected to be required for 

intramacrophage survival (Morgan et al. 2004). T1SS, as well as T3SS, are constituted by 

several membrane-bound proteins forming a structure designated “needle complex”, also 

referred as the injectisome, which is responsible for the deliver of virulence effectors into host 

cells (Brennan & Barford 2009, Misselwitz et al. 2011).  

SPI-4 genes, as well as SPI-1 genes are regulated by the two component system (TCS) 

BarA/SirA, coordinating their expression in response to specific host signals, including low 

oxygen, high osmolarity and a slightly alkaline pH value (Gerlach, Jäckel, Geymeier & 

Hensel 2007a). Additionaly, siiE expression is negatively regulated by TCS, which is involved 

in the regulation of the expression of many virulence factors such as flagella, biofilm and 

invasion effectors (Delgado, Mouslim & Groisman 2006). 

The SPI-6 is a 59kb locus present in both serovars Typhi and Typhimurium, which contains 

genes that encode for a type six secretion system (T6SS) and the safABCD fimbrial operon 

(Lambert & Smith 2008). 

The SPI-9 is a locus of approximately 16kb that carries four genes, three of which encode for 

a T1SS and one for a large protein, BapA, which is involved in biofilm formation and host 

colonization (Gerlach et al. 2007b, Wagner & Hensel 2011). 

1.7.1.2. Invasion mechanism 

After Salmonella adhesion, host cell invasion occur (Crum-Cianflone 2008). This process 

happens due to the expression and regulation of SPI-1 genes, which promote the 

rearrangement of the host cell cytoskeleton at the interaction site, inducing the enterocyte 

membrane “ruffling" and the internalization by receptor-mediated endocytosis (Drecktrah et 

al. 2006). In the interior of the epithelial cell, Salmonella Typhimurium is enclosed within an 

intracellular phagosomal compartment called Salmonella-containing vacuole (SCV) (Steele-

Mortimer 2008) 

The SPI-1, one of the most studied SPI, have an important role in host invasion (Marcus et 

al. 2000). It is a 43kb chromosomal locus acquired by horizontal gene transfer during 

Salmonella evolution. It harbours at least 31 genes involved in the invasion of host cells and 

induction of macrophage apoptosis (McGhie et al. 2009).  

Major genes present in SPI-1 are responsible for the synthesis of invasion effectors, like 

SipA, SipB, SipC, AvrA and SptP, a regulator protein HilA, the T3SS like InvA, Spa and Prg 

proteins and chaperones which are essential for the delivery of virulent effectors (Marcus et 

al. 2000, Eswarappa et al. 2008, McGhie et al. 2009).  

The invA gene codes for an inner membrane protein involved in the formation of a channel 

through by which polypeptides are exported. SipC and SipA proteins are involved in the 
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cytoskeletal rearrangement, being able to enhance the ability of Salmonella to cross the 

epithelial barrier and trigger the transduction signal that leads to the migration of PMN 

through the intestinal epithelia (Lee et al. 2000, Hayward & Koronakis 2002). SipB protein 

function has not been yet fully understood, but it seems to act both as an effector and as a 

translocator for other SPI-1 effector proteins, like SptP and AvrA (Hapfelmeier et al. 2004, 

McGhie et al. 2009, Andrews-Polymenis, Bäumler, McCormick & Fang 2010) 

The expression of SPI-1 genes is under the complex regulation of HilA. This regulator is 

induced by the BarA/SirA TCS (Jones 2005). HilA also activates the T3SS/SPI-1 and SPI-1 

effectors and bind to prg, inv/spa and sip operon promoters (Marcus et al. 2000, Jones 

2005). Consequently, the expression of T3SS/SPI-1 effectors triggers the activation of 

mitogen-activated protein kinase (MAPK) pathways, leading to the production of pro-

inflammatory cytokines, like IL-8, stimulating the recruitment of PMNs and inducing an acute 

intestinal inflammation (Figueira & Holden 2012). 

Other genes important for bacterial invasion include sopB and sopE, which although 

encoding for effector proteins translocated by the T3SS/SPI-1 are not located in SPI-1, but in 

SPI-5 (Marcus et al. 2000). Briefly, SPI-5 is a small locus with 7.6kb in size and has been 

identified in many serovars, including Salmonella Typhimurium (Wood et al. 1998). SPI5 

appears to be involved in enteropathogenesis (Wood et al. 1998, Marcus et al. 2000). It 

includes the sopB gene that plays a variety of roles at different stages of infection 

(Giacomodonato et al. 2014). This gene encodes an inositol phosphate phosphatase, which 

is required for invasion by localizing the host membrane in the early stages of infection, also 

promoting the membrane elasticity and vacuole formation (Cain, Hayward & Koronakis 

2008). Later, it aids the formation and maintenance of SVC (Zhou, Chen, Hernandez, Shears 

& Galán 2001) by modifying the phosphoinositide lipids composition and preventing the 

phagolysosome formation (Giacomodonato et al. 2014). 

The gene sopE activates the Cdc42 receptor at the host cell, also promoting cytoskeletal 

rearrangements and the production of pro-inflammatory cytokines (McGhie et al. 2009). 

After Salmonella Typhimurium internalization, a process mediated by SptP allows the host 

cytoskeleton to return to a resting state, which down-regulates pro-inflammatory responses 

(Kaniga, Uralil, Bliska & Galán 1996). In the SCV, the low Mg2+ concentration inhibits hilA 

expression through the PhoP/PhoQ system, a global regulator of Salmonella virulence, 

turning off T3SS/SPI-1 activity (McGhie et al. 2009). Additionally, the transcription of invF 

and invG genes in SPI-1 is also repressed (Mouslim et al. 2004). The inhibition of these 

genes suggest that while SPI-1 genes are inhibited, SPI-2 genes expression is activated by 

PhoP, which is required for the following steps of infection (Jones 2005). 



 19 

1.7.1.3. Salmonella-containing vacuole (SCV) 

After the Salmonella invasion and internalization, the vacuoles containing the bacteria pass 

through a maturation process (Gorvel & Méresse 2001).  

SCV formation can be separated into 3 steps: early stage, until 30 min post infection (p.i.), 

intermediate stage, from 30 min to 5h p.i. and late stage, from 5h p.i. (Steele-Mortimer 2008). 

In the beginning of SCV biogenesis, SCV membrane is enriched with early endosome 

membrane proteins, as early endosome antigen 1 and transferrin receptor. Then, SCV 

matures to an intermediate stage characterized by the accumulation of lysosomal membrane 

glycoproteins (Gorvel & Méresse 2001), which are replaced with late endosomal/lysosomal 

markers including lysosome-associated membrane proteins (LAMPs) (Steele-Mortimer, 

Méresse, Gorvel, Toh & Finlay 1999, Smith, Cirulis, Casanova, Scidmore & Brumell 2005). 

This membrane modification is accompanied by a decrease in the SCV luminal pH to less 

than 4.5 and a reallocation to a justanuclear position (Drecktrah et al. 2006, Steele-Mortimer 

2008).  

Regarding the intervention of SPI in SCV formation, some SPI-1 genes, which are induced 

prior to Salmonella engulfing, are down-regulated intracellularly (Smith et al. 2005). 

T3SS/SPI-1 also contributes to the intracellular pathogenesis, in particular, at early time-

points of post invasion, due to the lag-time required for SPI2-associated protein synthesis 

(Knodler & Steele-Mortimer 2003). For example, SopB T3SS/SPI-1 is required for SCV 

formation and for delay SCV-lysosomal fusion, while SpiC T3SS/SPI-2 is required for fusion 

inhibition of the late endosomes/lysosomes with SCV, which shows the importance of both 

SPIs for an effective colonization of the host (Bakowski, Braun & Brumell 2008). 

SPI-2 is also crucial at this stage. It is a 40kb locus that contains more than 40 genes, which 

are able to encode components of the T3SS apparatus, including ssr encoding a regulator, 

ssa for T3SS-2 apparatus, ssc encoding the chaperones and sse encoding the effector 

proteins (Figueira & Holden 2012). SPI-2 T3SS-secreted virulence effectors are required for 

intracellular replication, persistence and also inhibition of the inflammatory response during 

systemic infections (Yoon, Ansong, Adkins & Heffron 2011b). 

At the end of the SCV maturation process, the vacuole location changes and reaches a 

perinuclear region near the Golgi complex. SCV localization allows the arrest of nutrients 

from endocytic and exocytic transport vesicles through a mechanism involving SifA, SseG 

and SseF SPI-2 effectors (Kuhle, Abrahams & Hensel 2006). 

SPI-3 effectors are also involved in this maturation process, as SPI-3 contains the mgtCB operon 

encoding for the intramacrophage survival protein MgtC and for the high affinity Mg2+ transporter 

protein MgtB, which is under the regulation of PhoP/PhoQ TCS (Marcus et al. 2000).  
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1.7.1.4. Bacterial replication 

Two important conditions must be achieved in order to initiate bacterial replication: the SCV 

must be located at a perinuclear region and the nutrients arrested must be sufficient to start 

this process (Gorvel & Méresse 2001). The main feature of this step is the presence of Sif 

(Salmonella-induced filaments), which are specific tubulovesicular extensions rich in LAMPs. 

(Birmingham, Jiang, Ohlson, Miller & Brumell 2005). In fact, it has been suggested that Sif 

structures are a result of a fusion process between a SCV with late endosomes/lysosomes. 

Sif structures project centrifugally from the SCV, extending throughout the cell (Knodler & 

Steele-Mortimer 2003).  

In this stage of infection, at least 4 virulence effectors are expressed by T3SS/SPI-2, namely 

sifA and sseJ, encoded outside SPI-2, and sseF and sseG encoded in SPI-2 (McGhie et al. 

2009). The sifA gene is responsible for inducing the Sif phenotype and for Sif formation 

(Birmingham et al. 2005). Absence of sifA also promotes SCV instability, due to the lack of 

cooperation with another SPI-2 effector, SseJ (LaRock, Brzovic, Levin, Blanc & Miller 2012). 

Salmonella Typhimurium lacking sifA loses the vacuolar membrane and escapes to the 

cytoplasm, while bacteria lacking both genes sifA and sseJ, remain inside the vacuolar 

membrane. This indicates that membrane disruption is SseJ-dependent (Ruiz-Albert et al. 

2002, LaRock et al. 2012), and bacteria lacking sseJ present attenuated intracellular 

replication (Ruiz-Albert et al. 2002). 

SPI-2 effectors, SseF and SseG, are also required for Sif formation, since their absence 

leads to the formation of altered Sif structures (Kuhle & Hensel 2002, Birmingham et al. 

2005). 

As far as we know, Sif function is still unknown; however, the expression of SifA and of other 

SPI2-effectors are important during infection (LaRock et al. 2012). It has been demonstrated 

that, in later stages of Salmonella infection, from 14h to 24h p.i. Sif formation is important for 

the eventual movement of SCV towards the cell periphery before dissemination (Szeto, 

Namolovan, Osborne, Coombes & Brumell 2009). This mechanism allows bacteria transfer 

between epithelial cells, a process also dependent on SPI-2 effectors (Szeto et al. 2009).  

1.7.2. Salmonella-host interactions: role of virulence factors in cell apoptosis 

Research on host-pathogen interactions is essential to understand bacterial pathogenesis, 

including the processes leading to tissue colonization and posterior systemic dissemination. 

In the past years, it has become clear that Salmonella is able to activate host cell death 

programs (Knodler, Finlay & Steele-Mortimer 2005). Induction of cell death is required for 

pathogenesis, but the pathways by which Salmonella is able to induce this process remains 

unclear, mainly due to the occurrence of different processes in a variety of cell types 

(Knodler et al. 2005).  
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Regardless of the mechanism, it was already demonstrated that Salmonella Typhimurium is 

able to cause cell death in macrophages, dendritic cells and epithelial cells, and to promote 

systemic dissemination after replication, by mechanisms that involve SPI-1 and SPI-2-related 

pathways (Hueffer & Galán 2004, Knodler et al. 2005, Fink & Cookson 2007). In 

macrophages, the SPI-1 effector SipB and also flagellin, both induce a direct activation of 

host caspase-1, resulting in cell death by a cytokines-dependent process, in a mechanism 

termed as pyroptosis (Miao et al. 2006, Fink & Cookson 2007). Caspase-1 activation in 

Salmonella infected macrophages results in production of IL-1b and IL-18 and in rapid cell 

lysis, with release of pro-inflammatory intracellular contents. This process is responsible for 

the rapid onset of macrophages death, within 1h of infection, and is mediated by a SPI-1-

related pathway (Knodler et al. 2005). However, late macrophages death, occurring from 12h 

to 24h p.i., is SPI-2-depentent, being also mediated by caspase-1 activation through SpvB 

(van der Velden, Velasquez & Starnbach 2003, Knodler et al. 2005). Additionally, studies 

regarding SPI-1 mutants genes, including invA, invG, invJ, prgH, sipB, sipC, sipD and spaO, 

do not display macrophagic cytotoxicity (Fink & Cookson 2007) 

On the contrary, in epithelial cells, Salmonella induces cell death via apoptosis, a well-

described mechanism with a notably non-inflammatory outcome (Fink & Cookson 2007). The 

activation of caspase-3 and caspase-8 is a classical feature in the apoptotic process, but not 

of caspase-1 (Paesold, Guiney, Eckmann & Kagnoff 2002). The induction of apoptosis by 

Salmonella epithelial cells only occurs after prolonged infection, within 24h to 28h p.i. and is 

mediated by a SPI-2-dependent pathway (Knodler et al. 2005). 

It is important to note that pyroptosis is not only limited to macrophages, as caspase-1-

dependent death of infected dendritic cells by Salmonella has also been observed (van der 

Velden et al. 2003).  

1.7.3. Systemic dissemination of non-typhoid Salmonella  

Salmonella host-pathogen interactions enable not only the infection of macrophages and 

subsequent induction of cell death, but also enable bacterial dissemination, allowing 

Salmonella to reach the liver and spleen, via bloodstream and lymphatic system (McGhie et 

al. 2009). Therefore, intestinal phagocytes can be used as a mechanism for microbial 

dissemination into deeper tissues. By engulfing bacteria and traversing the epithelial barrier, 

they accidentally shield Salmonella from other components of the immune system (Drecktrah 

et al. 2006, Worley et al. 2006). 

After invasion of M cells that overlie Peyer’s patches, Salmonella Typhimurium accesses 

deeper tissues by two distinct pathways. In the intestine, bacteria access systemic tissues 

within 24h after ingestion, via lymphatic system and the Peyer’s patches. In the second one, 

phagocytes may carry intestinal bacteria directly into the bloodstream, within 15 min after 

ingestion, and without passing through the Peyer’s patches (Fig. 5) (Vazquez-Torres et al. 
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1999, Worley et al. 2006). In this haematogenous route, Salmonella may be carried by 

CD18+ phagocytes, monocytes or dendritic cells (Vazquez-Torres et al. 1999). In prolonged 

infections, Salmonella can be transported between organs via the bloodstream. Liver 

infection also leads to bile excretion containing bacteria that reaches the gall bladder 

(Watson & Holden 2010). 

 

It is important to refer that the movement of bacteria-infected cells requires the stimulation of 

cell motility and the inhibition of inflammatory pathways that could prevent this movement 

(Stupack, Cho & Klemke 2000). SseI, a virulence effector secreted by SPI-2 across the 

vacuolar membrane after invasion, is responsible for accelerating the movement of infected 

CD18+ cells from the lumen of the intestine to the liver and spleen, which are the preferred 

locations for Salmonella replication (Worley et al. 2006). However, others reports 

demonstrated that SseI may have a different function by blocking migration of macrophages 

and dendritic cells. This discrepancy between these two roles is due to a single nucleotide 

polymorphism, which alters the pathway for cell migration (McLaughlin et al. 2009, 

Thornbrough & Worley 2012). 

Bacteria systemic dissemination also relies upon the recently discovered gut-vascular barrier 

(GVB), present in the human gut, which controls the type of antigens that are translocated 

across the endothelial cells of blood vessels. The GVB presents morphological and 

functional features similar to the blood-brain barrier, in particular the characteristic pial 

vessels in the subarachnoid space, which are prone to disruption during infection, and can 

be damaged by Salmonella (Spadoni et al. 2015). 

Figure 5 - Distinct pathways for systemic dissemination of Salmonella. 
Adapted from Vazquez-Torres et al. 1999. 

 

Salmonella Typhimurium may promote systemic dissemination by two distinct 
pathways: via lymphatic system (green arrows) or via phagocytes (red arrows).  
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1.7.4. Salmonella Virulence Plasmids 

Virulence factors responsible for pathogenicity in enteric bacteria may also be encoded in 

plasmids. 

A plasmid, by definition, is a small, circular, double-stranded DNA molecule distinct from the 

chromosomal DNA, carryng genes with the ability to provide several genetic advantages to 

the bacterial cells, including antimicrobial resistance (del Solar, Giraldo, Ruiz-Echevarría, 

Espinosa & Díaz-Orejas 1998, Sabbagh, Forest, Lepage, Leclerc & Daigle 2010). Although 

plasmids can replicate autonomously in a self-controlled way independently from the 

chromosomal DNA, when a bacterium divides all plasmids are copied in order for each cell 

daughter to receive a copy of each plasmid. Several Salmonella serovars have serovar-

specific virulence plasmids (Rychlik, Gregorova & Hradecka 2006, Foley et al. 2013). These 

plasmids are present at a low number (1 to 2 copies per cell) and range from 50 to 100kb, 

depending on the serovar (Foley et al. 2013). Salmonella Typhimurium, as many other non-

typhoidal serovars harbor virulence plasmids, which play a important role in systemic 

infections (Rotger & Casadesús 1999, Marcus et al. 2000, Rychlik et al. 2006) 

Most Salmonella Typhimurium strains contain a 90kb self-transmissible virulence plasmid 

harbouring virulence genes, namely the Salmonella plasmid virulence (spv) operon, which is 

involved in the multiplication of Salmonella in the reticuloendothelial system. Other virulence 

genes include the plasmid encoded fimbriae (pef) operon (Sabbagh et al. 2010, Foley et al. 

2013).  

The spv operon is a highly conserved 8kb locus of five genes, designated spvRABCD, which 

is positively regulated by the spvR product. This region may have been horizontally acquired, 

since it is located adjacent to an insertional element and has a guanine-cytosine content 

(46%) lower than the overall chromosome (Marcus et al. 2000) 

Genes spvR, spvB, and spvC are required for virulence (Guiney & Fierer 2011). SpvB negatively 

regulates the formation of SIF structures and is also required for the late macrophage death, 

observed 12 to 24h after infection (van der Velden et al. 2003, Knodler et al. 2005). The gene 

spvC modulates the host immune response through the inactivation of MAPK, by reducing 

inflammatory cytokines production during the early stages of infection (Haneda et al. 2012). 

Immunocompromised patients committed with systemic infections frequently carry the spv locus 

(Guiney & Fierer 2011).  

Regarding the pef locus, it contains five genes, pefBACDI, designated after the homology of 

their products with those of other fimbrial operons (Rotger & Casadesús 1999). PefA, the 

major fimbrial subunit of Pef, is expressed in Salmonella Typhimurium in static broth cultures 

at low pH conditions (Humphries et al. 2003). In this serovar, Pef mediates the adhesion to 

the small intestine in mice, and they are necessary but not sufficient to induce fluid secretion 

in the murine model. However, in several human cells lines, Pef does not mediate the 

adhesion cell process (Rotger & Casadesús 1999).  
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Adhesion by Pef is different from the one induced by the chromosome encoded long polar 

fimbriae (lpf) gene, which promotes the adhesion of Salmonella to Peyer’s patches (Bäumler, 

Tsolis & Heffron 1996). Moreover, it is important to refer that the ability to survive in the 

Peyer’s patches is also related to the gipA gene, a virulent determinant present at a lambdoid 

phage integrated in the genome of Salmonella Typhimurium (Stanley, Ellermeier & Slauch 

2000, Drahovská et al. 2007).  

In addition to spv or pef genes, other virulence related genes may be found, including 

resistance to complement killing (rck), SdiA-regulated gene (srgA), a putative disulphide 

bond oxidoreductase and a macrophage-inducible gene (mig-5), able to code for putative 

carbonic anhydrase (Rychlik et al. 2006). 

Salmonella Typhimurium can also carry multidrug resistance plasmids of high molecular 

weight (up to 200kb) and much smaller plasmids (around 20kb) with unknown functions 

(Rychlik et al. 2006, Foley et al. 2013). 

1.7.5. Salmonella toxins 

Salmonella Typhimurium pathogenicity has also been attributed to the production of 

endotoxins and exotoxins. Endotoxins like the lipid A of the outer membrane LPS have been 

found to promote a wide variety of biological responses (Foley et al. 2013). Regarding 

exotoxins, they can be classified as cytotoxins and enterotoxins, both with the ability to kill 

mammalian cells (van Asten & van Dijk 2005, Foley et al. 2013).  

Twenty years ago, a different type of exotoxin called salmolysin was reported due to the 

production of a cryptic hemolysin pattern when its gene, slyA, was expressed in Escherichia 

coli (Libby et al. 1994, Ludwig et al. 1995). However, upon further study, it was discovered 

that expression of the hemolysin is directly regulated by slyA and, therefore, is not a function 

of the gene itself. Later, slyA was identified as a virulence-associated transcriptional 

regulator contributing to the regulation of SPI-2 function and the expression of SPI-2-

associated genes (Linehan, Rytkönen, Yu, Liu & Holden 2005).  

One of the best described Salmonella enterotoxins is a heat-labile 29kDa enterotoxin, 

encoded by the stn gene, and also identified in Salmonella Typhimurium (van Asten & van 

Dijk 2005).  

 Antimicrobial Resistance in Salmonella Typhimurium 1,4,[5],12:i:- 1.8.

Resistance to antimicrobial compounds is a natural biological phenomenon. In fact, 

antimicrobial resistance occurs independently of misuse or abuse of antimicrobials, as a 

result of selective pressure upon the bacterial ecology due to its administration (Levy & 

Marshall 2004, Blair, Webber, Baylay, Ogbolu & Piddock 2015). Over the last decades, it has 

been recognized that the introduction of new antimicrobial agents into clinical practice is 
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followed by the detection of resistant isolates (Chambers & Deleo 2009). In the past, 

throughout the 1950s and 1960s, it was considered that the development of new classes of 

antimicrobials, followed by modifications of these molecules, would allowed clinicians to 

effectively control bacterial infections (Levy & Marshall 2004). Presently, there are more than 

15 classes of antibiotics, whose targets are involved in physiological and metabolic functions 

of the bacterial cell, and none has escaped resistance development (Levy & Marshall 2004, 

Blair et al. 2015).  

It is important to evaluate the antimicrobial susceptibility profile of significant bacterial 

isolates, to detect possible drug resistance in pathogens and to assure susceptibility to drugs 

of choice for particular infections. According to the Clinical and Laboratory Standards 

Institute (CLSI), an isolate is resistant if when submitted to an antimicrobial susceptibility test, 

it presents a result that falls in the resistant category. This result implies that isolates are not 

inhibited by the usually achievable concentrations of the antimicrobial agent administered at 

normal dosage schedules (Clinical and Laboratory Standards Institute 2012).  

Bacterial resistance may be an intrinsic feature associated with the bacterial species; for 

example, daptomycin is active against Gram-positive bacteria but is not effective against 

Gram-negative bacteria. The inefficacy towards Gram-negative bacteria is due to the lower 

amount of anionic phospholipids in the cytoplasmic membrane, which reduce the efficiency 

of the calcium mediated insertion of daptomycin into the cytoplasmic membrane, necessary 

for its antimicrobial activity (Blair et al. 2015). 

Bacterial resistance to antimicrobials may also emerge due to point mutations or gene 

transfer (Chambers & Deleo 2009). These mechanisms may confer resistance to other 

antimicrobials of the same class and occasionally, to multiple antimicrobial classes (Levy & 

Marshall 2004). An isolate ability to be resistant to several antimicrobial classes is named 

multidrug-resistant, and the majority of the literature defines a multidrug-resistant bacteria as 

being resistant to compounds belonging to three or more antimicrobial classes (Magiorakos 

et al. 2012).  

On the other hand, different resistance determinants can be responsible for the same 

resistance phenotype (EFSA 2010b, Blair et al. 2015). For example, resistance to 

streptomycin is commonly detected in Salmonella 1,4,[5],12:i:-, but the phenotype 

responsible for streptomycin resistance is encoded by different genes, depending if the 

isolate belongs to the Spanish or the European clone. In the Spanish clone, the aadA gene 

encodes streptomycin resistance, while in the European variant strA and strB genes are 

involved (Switt et al. 2009, EFSA 2010b, Lucarelli et al. 2010).  

However, the presence of a resistant gene in an isolate does not always imply resistance to 

a particular antimicrobial, but it demonstrates its potential to express resistance once a 

selective pressure is applied (Guerra et al. 2004). 
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Unfortunately, drug resistance may be mobile and genes conferring antimicrobial resistance 

may be transferred between bacteria leading to a public Health problem (Levy & Marshall 

2004). Horizontal gene transfer has been responsible for the dissemination of numerous 

antimicrobial resistance determinants throughout diverse bacterial species. The genetic 

determinants responsible for bacterial resistance may be present in highly efficient 

transferable elements, which can move between chromosomal and extra-chromosomal DNA 

elements. The most important vehicles for transfer of resistance genes in bacteria are mobile 

genetic elements, such as bacteriophages, plasmids, naked DNA or transposons (Levy & 

Marshall 2004). They may move between bacteria from the same or from different species, 

and also between bacteria of different taxonomic and ecological groups (Guerra et al. 2004, 

Blair et al. 2015).  

The uncontrolled gene transfer between bacteria is not the only component contributing to 

resistance dissemination. The widespread use and misuse of antimicrobial compounds also 

contributed to an increased prevalence of resistance to new antimicrobials (Levy & Marshall 

2004). However, due to different antimicrobial administration practices, the antimicrobial 

resistance patterns may vary between different regions and over time, requiring a continuous 

surveillance in human and animal populations (EFSA 2010b).  

Recently in 2013, the Center for Diseases Control and Prevention considered multidrug-

resistant non-typhoidal Salmonella as a serious hazard posing a serious economic burden 

and a public health issue in many countries (EFSA 2010b, CDC 2013). Among these 

antimicrobial resistant Salmonella isolates, the monophasic variants of Salmonella 

Typhimurium represent a major threat to public health (EFSA 2010b). The expansion of this 

serovar is particularly worrying, not only by its frequent association with invasive human 

gastroenteritis but also with multidrug-resistant profiles (Parsons, Crayford, Humphrey & 

Wigley 2013). In fact, the ASSuT tetra-resistant pattern is the most frequent multidrug-

resistant profile detected in Salmonella 1,4,[5],12:i:-, being isolated from 30% of the human 

infection cases and also from farm animals (Switt et al. 2009, Lucarelli et al. 2010). 

Monophasic Salmonella 1,4,[5],12:i:- may vary from pan-susceptible, commonly found in 

isolates from North and South America (Brazil) to multidrug-resistant isolates, mostly 

observed in Europe (EFSA 2010b, García, Guerra, Bances, Mendoza & Rodicio 2011). In 

this continent, the prevalence of Salmonella 1,4,[5],12:i:- R-type ASSuT has showed an 

escalating increase (Hopkins et al. 2010), whereas multidrug-resistant Salmonella 

Typhimurium has registered an decrease in its prevalence (Hopkins et al. 2012, Mandilara et 

al. 2013). 

The first report of multidrug-resistant Salmonella 1,4,[5],12:i:- occurred in Spain in 1997, and 

is related to the Spanish clone. All these isolates were multidrug-resistant, showing 

resistance to ampicillin, choramphenicol, gentamicin, streptomycin, sulfamethoxazole, 

tetracyclines and trimethoprim (Echeita et al. 1999, Switt et al. 2009). Most of the Spanish 
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isolates are classified as phage type U302, though DT208 and DT193 have also been 

reported, all mainly linked to pigs and pork products (García et al. 2011). Genes responsible 

for this multidrug-resistant phenotype are mainly encoded by blaTEM-1, encoding a broad 

spectrum β-lactamase that provides resistance to penicillin and amino-penicillins like 

ampicillin; aac(3)-IV and aadA2, encoding modified aminoglycoside enzymes that can 

inactivate gentamicin and streptomycin by modifying different residues in the active sites of 

these drugs; cmlA, encoding an efflux pump that promotes resistance to chloramphenicol; 

sul1, sul2 and sul3, encoding an dihydropteroate synthase that is resistant to sulfonamides, 

dfrA12, encoding an dihydrofolate reductase that is resistant to trimethoprim; and tetA, 

encoding an efflux pump that mediates resistance to tetracycline (Antunes, Machado & Peixe 

2007, Switt et al. 2009, García et al. 2011).  

The resistance genes of the Spanish clone are located on large non-conjugative plasmids 

approximately 140kb or 120kb, carrying or lacking the spv locus, respectively (Guerra, Soto, 

Argüelles & Mendoza 2001). Resistance plasmids frequently harbor up to three class 1 

integrons: one with a variable region of 1900bp, carrying dfrA12 and aadA2 genes, a second 

one with the estX-psp-aadA2-cmlA1-aadA1 gene cassettes, with estX and psp encoding a 

putative esterase and phosphoserine transferase, respectively, and the third lacking of 

resistance genes in its variable region (Guerra et al. 2004, EFSA 2010b, García et al. 2011). 

Regarding the source of the antimicrobial resistance gene clusters found in the Spanish 

clone, the one found in the Spanish clone of Salmonella 1,4,[5],12,i:– is closely related to the 

antimicrobial resistance gene repertoire of Salmonella Cholerasuis (Chiu et al. 2005). Both 

have several resistance genes located on a plasmid, including blaTEM-1, aadA2, cmlA, and 

sul1, but Salmonella Cholerasuis has other resistance genes that have not yet been reported 

in monophasic isolates. Therefore, it is unlikely that the specific resistance plasmid from 

Salmonella Cholerasuis was transferred to the ancestor Spanish 1,4,5,12,i:– isolates. 

Nevertheless, the antimicrobial resistance gene clusters of both serovars may be related and 

share a common ancestor (Switt et al. 2009).  

The typical R-type ASSuT pattern only appeared a few years later in Italy, by the year 2000, 

being associated with the European clone. This clone has already been identified in many 

European countries, including Denmark, the United Kingdom, the Netherlands, Luxembourg, 

Spain, France, Italy, Poland and the Czech Republic (EFSA 2010b, Lucarelli et al. 2010). 

Pigs have been identified as the main reservoir of this clone, but it has also been recovered 

from cattle and poultry (Antunes, Mourão, Pestana & Peixe 2011). These R-type ASSuT 

Salmonella 1,4,[5],12:i:− isolates are mainly assigned to DT 193 and 120, with the 

antimicrobial resistant determinants present in a chromosomal resistance island that includes 

the blaTEM, strA-strB, sul2 and tet(B) genes, which differs from the Spanish clone (EFSA 

2010b, Hopkins et al. 2010, Lucarelli et al. 2010). However, some isolates may harbor other 

resistances genes, for example dfrA, gene located at class 1 integron (EFSA 2010b). 
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Additionally, the European clone of Salmonella 1,4,[5],12:i:− may also present a different 

multidrug-resistant profile confering resistance to extended-spectrum β-lactamases (ESBL), 

carrying plasmids harbouring the blaCTX-M-1 gene (Rodríguez et al. 2012). 

 Biofilms in Salmonella Typhimurium 1,4,[5],12:i:- 1.9.

1.9.1. Biofilm formation: definition, components and mechanism 

The success of most bacterial infections relies on the formation of bacterial communities, 

recognized as the predominant mode of bacterial growth (Donlan 2002, Götz 2002, 

Steenackers, Hermans, Vanderleyden & De Keersmaecke 2012, Kwiecinski, Kahlmeter & Jin 

2015). These bacterial communities, known as biofilms, can be described as a community of 

microorganisms irreversibly adherent to biotic or abiotic surfaces and enclosed in a self-

produced matrix (Flemming & Wingender 2010). This matrix is mainly composed by 

extracellular polymeric substances (EPS), mostly exopolysaccharides (40-95%) and proteins 

(1-60%), but also includes nucleic acids (1-10%) and lipids (1-40%) (Flemming & Wingender 

2010).  

The process of biofilm formation is believed to begin when bacteria detect certain 

environmental parameters (extracellular signals) that trigger the transition from planktonic 

growth to a biofilm phenotype (Donlan 2002). Currently, four potential incentives for bacterial 

biofilm formation are described: protection from a harmful environment, sequestration to a 

nutrient rich area, attainment of cooperative benefits and acquisition of new genetic traits 

(Davey & O'toole 2000, Molin & Tolker-Nielsen 2003). 

The transition to a biofilm phenotype is a sequential process (Fig. 6) (Donlan & Costerton 

2002), beginning with the initial attachment of planktonic bacteria to the tissue or abiotic 

surface. The ability of bacterial cells to adhere differs according to the type of surface. In 

abiotic surfaces, it is mainly due to physicochemical interactions (Oliveira et al. 2006), 

whereas in biotic surfaces, it is mainly dependent of specific interactions between bacterial 

adhesins and the receptors or molecules present on the substrate surface (Vuong & Otto 

2002). Afterwards, occurs the production and accumulation of multilayer cell clusters due to 

intercellular adhesion, which relies on the production of extracellular matrix. Finally, a mature 

biofilm enclosed in a self-produced matrix is formed (O'Toole, Kaplan & Kolter 2000).  

Once the biofilm structure has developed, mature biofilms can undergo a detachment 

process due to hydrodynamic, mechanical and biochemical signaling, leading to the release 

and dispersal of planktonic bacteria in order to colonize new surfaces (O'Toole et al. 2000, 

Donlan & Costerton 2002, Klausen, Gjermansen, Kreft & Tolker-Nielsen 2006). 
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1.9.2. Structural components and genetic determinants of biofilm formation 

The regulatory network of Salmonella biofilm formation is complex and not fully understood, 

as laboratory results may vary according to the method and environmental conditions used to 

evaluate biofilm formation (Steenackers et al. 2012). There are several techniques to study 

biofilm components and its production, including growth characterization in agar and broth 

medium, optical density determination by microtiter assays and direct observation by 

fluorescent in situ hybridization (FISH) (Vestby, Moretro, Langsrud, Heir & Nesse 2009) (Fig. 

7/Left).  

The RDAR (red, dry and rough) morphotype detected on agar plates is the best-studied form 

of multicellular behaviour in Salmonella (Steenackers et al. 2012) (Fig. 7/Right). The 

extracellular matrix of this morphotype is composed by a proteinaceous and an 

exopolysaccharide fraction (Malcova, Hradecka, Karpiskova & Rychlik 2008, Steenackers et 

al. 2012). The proteinaceous fraction consists of curli fimbriae, alternatively referred as Tafi 

(thin aggregative fimbriae), which have been associated with several processes of biofilm 

formation and also host invasion, colonization, persistence, cell-to-cell interaction and 

increased motility (Steenackers et al. 2012). The curli fimbriae are formed as a result of the 

presence of the transcriptional regulator CsgD (curli subunit gene), which was previously 

referred as agfD in Salmonella Typhimurium. CsgD activates the csgBAC operon, leading to 

an increased production of curli fimbrial CsgA and CsgB subunits (Römling, Rohde, Olsén, 

Normark & Reinköster 2000, Zakikhany, Harrington, Nimtz, Hinton & Römling 2010). The 

expression of curli fimbriae may respond to environmental signals, being optimally expressed 

at temperatures below 30°C, in the presence of ethanol and variations in osmolarity and pH 

(Gerstel & Römling 2001).  

Steps of biofilm formation: 1 – Initial attachment, 2 – Irreversible attachment, 3 – Accumulation of 
multilayer bacterial clusters, 4 – Mature Biofilm, 5 – Bacterial cell dispersion.  

Figure 6 - Biofilm formation process. Adapted from www.emerypharmaservices.com/blog/eps-offers-
quantitative-biofilm-models-for-todays-research-needs, accessed in 12 January 2016. 
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Cellulose is a glucose polymer and the main component of the exopolysaccharides fraction. 

It functions as a support for long-range cell to cell interactions, being responsible for the 

sticky texture, which facilitates bacterial attachment to surfaces (Solano et al. 2002). 

Previous studies have demonstrated the important role of cellulose during Salmonella 

Typhimurium biofilm formation, including in epithelial cells and glass coverslips (Prouty & 

Gunn 2003, Ledeboer, Frye, McClelland & Jones 2006). However, reports have suggested 

that cellulose is not crucial for Salmonella biofilm formation on gallstones (Prouty & Gunn 

2003, Steenackers et al. 2012).  

Additionally, CsgD also indirectly increases cellulose production by activating adrA, which 

expression increases cyclic di-guanosine monophosphate levels, enhancing the expression 

of a cellulose synthetase and increasing cellulose production (Römling et al. 2000, Solano et 

al. 2002). However, the production of cellulose may not be necessary for virulence, as 

determined by in vivo studies (Pontes, Lee, Choi & Groisman 2015). In Salmonella 

Typhimurium, cellulose production outside a host may allow bacteria to survive in hostile 

environments (Römling 2002).  

Curli fimbriae and cellulose combined are the main matrix components of Salmonella mature 

biofilms (Gerstel & Römling 2003), in which curli fimbriae provide the thin rigid link between 

bacterial cells, whereas cellulose is involved in stable attachment through the formation of 

elastic polysaccharide bonds (Römling 2002). 

1.9.3. Quorum sensing in Salmonella biofilms 

Bacteria should not be considered as individual microorganisms. Bacterial cells are able to 

communicate with each other and respond collectively to environmental stresses by 

Left: Biofilm positive phenotype at 24h by FISH using teflon slides. Photo was taken at 1.000 
magnification under oil immersion. Right: RDAR morphotype on agar plate. 

Figure 7 - Biofilm phenotype detection using different methodologies (Original). 
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releasing and sensing small diffusible signal molecules, in a mechanism commonly known as 

quorum sensing (QS) (Miller & Bassler 2001, Swofford, Van Dessel & Forbes 2015). 

QS can be considered as a sort of “social behaviour” and plays a vital role in synchronizing 

gene expression within the bacterial community (Smith, Fratamico & Yan 2011). QS involves 

a density-dependent recognition of signaling molecules, termed autoinducers (AI), resulting 

in modulation of gene expression (Kendall & Sperandio 2014).  

In several bacterial genera, including Salmonella, it has been reported that biofilm formation 

is partially regulated by QS (Smith et al. 2011, Steenackers et al. 2012), also involved in the 

expression of several other features, including genetic competence, virulence, motility and 

the production of antimicrobial substances (Miller & Bassler 2001).  

Three main types of QS systems have been reported in Salmonella: acyl-homoserine 

lactones (AHL), autoinducer (AI)-2 and AI-3 signalling (Smith et al. 2011). In the first system, 

Salmonella encodes a LuxR homologue, named SdiA (Ahmer 2004), which responds to the 

AHL produced by other bacterial species. In Gram-negative bacteria, this QS system is the 

most well-studied and usually consists of two proteins: LuxI, responsible for the synthesis of 

the AHL, and LuxR, recognized and activated by this autoinducer (Kendall & Sperandio 

2014). However, Salmonella, does not express a signal-generating enzyme similar to LuxI, 

thus it cannot produce its own AHL (Ahmer 2004). Salmonella SdiA can detect AHL 

produced by a variety of bacterial species, leading to the hypothesis that SdiA can be used 

for interspecies communication within a mixed-species community (Michael, Smith, Swift, 

Heffron & Ahmer 2001, Smith & Ahmer 2003). SdiA regulates a few genes in Salmonella, 

including a gene involved in resistance to human complement, rck (Ahmer, van Reeuwijk, 

Timmers, Valentine & Heffron 1998).  

The second Salmonella quorum sensing system utilizes the LuxS enzyme for the synthesis 

of AI-2, whereas the third one detects the quorum signal AI-3, as well as the eukaryotic 

hormones epinephrine and norepinephrine (Kendall & Sperandio 2014).  

1.9.4. Factors affecting biofilm development 

The formation and structure of a biofilm are influenced by three main components: bacterial 

cells, attachment surface and surrounding environment (Van Houdt & Michiels 2010). 

Bacterial cells, in particular their surface, might influence bacterial adhesion due to its 

physicochemical properties, which may change according to several factors such as 

microbial growth phase or growth conditions (Giaouris, Chapot-Chartier & Briandet 2009). In 

general, the surfaces of most bacterial cells are adverse to attachment due to the net 

negative membrane charge, which creates an electrostatic repulsive force (Donlan 2002). In 

fact, a positively charged surface is more prone to bacterial adhesion, and a negatively 

charged surface is more resistant to bacterial adhesion (Song, Koo & Ren 2015). However, 

bacterial surfaces harbor many cell wall structures like fimbriae, flagella and LPS, which 
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contribute to the cell surface hydrophobicity. This hydrophobicity helps bacteria to overcome 

the repulsive forces occurring between the cell and the substratum, allowing the subsequent 

irreversible attach (Donlan 2002, Donlan & Costerton 2002).  

The attachment surface competences, including charge, hydrophobicity, roughness, 

topography and stiffness, may also affect Salmonella-surface interactions and, consequently, 

biofilm formation (Song et al. 2015). For example, an increased surface roughness promotes 

bacterial attachment due not only to an increase of the contact area between the surface and 

bacterial cells (Anselme et al. 2010), but also to the protection from shear forces (Teughels, 

Van Assche, Sliepen & Quirynen 2006). Thus, smoothening surfaces can reduce biofilm 

formation (Lonescu et al. 2012).  

Environmental factors such as pH, temperature, osmolarity, oxigen levels, nutrient 

composition and dynamic conditions, also play important roles in the process of biofilm 

formation (Stepanović, Cirkovic, Mijac & Svabic-Vlahovic 2003, Giaouris, Chorianopoulos & 

Nychas 2005). Even the presence of mixed bacterial communities also adds additional 

complexity to attachment and biofilm formation procedure (Rendueles & Ghigo 2015). The 

integration of these factors ultimately determines the behaviour pattern of a given bacterium 

with respect to biofilm development (Goller & Romeo 2008).  

1.9.5. Occurrence of Salmonella biofilms 

Numerous reports have demonstrated the ability of Salmonella isolates to form biofilms on 

abiotic surfaces, including plastic (Stepanović, Cirković, Ranin & Svabić-Vlahović 2004, 

Vestby et al. 2009), rubber (Arnold & Yates 2009), glass (Solano et al. 2002), cement 

(Joseph, Otta, Karunasagar & Karunasagar 2001), stainless steel (Moretro et al. 2009), 

granite, marble and silestones (Rodrigues, Teixeira, Oliveira & Azeredo 2011), materials 

commonly encountered in farms, slaughter houses, food processing industry, kitchens and 

toilets (Steenackers et al. 2012). Biofilm formation in these surfaces increases Salmonella 

resistance to several environmental stresses, which contributes to the survival in non-host 

settings and to the transmission to new hosts (Vestby et al. 2009).  

Regarding biotic surfaces, in particular vegetables, Salmonella is able to colonize various 

parts of a variety of species, including seeds (Mahon et al. 1997), sprouts (O'Mahony et al. 

1990), leaves (Oni, Sharma & Buchanan 2015), roots (Klerks, van Gent-Pelzer, Franz, 

Zijlstra & van Bruggen 2007) and even fruits (Guo, Chen, Brackett & Beuchat 2002), making 

vegetables important vectors for Salmonella transmission between hosts.  

Salmonella is also able to adhere and form biofilms on epithelial cells and gallstones (Prouty 

& Gunn 2003, Steenackers et al. 2012). In fact, biofilm formation on gallstones may be 

associated with the chronic infection state in Salmonella infected individuals, which become 

asymptomatic chronic gallbladder carriers, shedding Salmonella. Then, the shedding process 

can contaminate food or water supplies, being also a source of recurring infections. This 
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chronic carrier state is hard to treat with antimicrobial therapy and the surgical gallbladder 

removal is often the only effective approach to cure these chronic patients (Steenackers et 

al. 2012).  

1.9.6. Implications of biofilm formation 

1.9.6.1. In clinical settings 

Biofilm-forming bacteria usually cause chronic infections, despite the administration of an 

adequate antimicrobial therapy and the host’s innate and adaptive defense mechanisms. 

Chronic infections are characterized by persistent and progressing disease, mainly due to 

the inflammatory response surrounding the biofilm (Høiby, Bjarnsholt, Givskov, Molin & Ciofu 

2010). This persistent response is the only common feature between different biofilm 

infections, while other signs or symptoms are dependent on the organ or foreign body 

damage produced by the biofilm formation. The inflammatory cells prevailing in the persisting 

biofilm infection are polymorphonuclear neutrophil or mononuclear cells, depending on the 

type of immune response: T helper type 2 (antibodies production) or T helper type 1 (cell-

mediated) (Bjarnsholt et al. 2009, Høiby 2014).  

Implications of biofilm development are not only limited to chronic infections (Wilson 2001). 

The nature of biofilm matrix and the physiological attributes of biofilm microorganisms confer 

an inherent resistance to antimicrobial agents, whether these antimicrobial agents are 

antibiotics, disinfectants or germicides.  

Concerning to the protective mechanisms responsible for biofilm resistance, three factors 

have to be taken in consideration: poor penetration of reactive agents through the biofilm 

matrix; implementation of adaptive responses; presence of non-growing cells in the inner 

layers of the biofilm. The existence of subpopulations of resistant phenotypes in the biofilm 

have been designated as “persisters” cells (Donlan & Costerton 2002, Høiby et al. 2010). 

Thus, established biofilms can tolerate antimicrobial agents at concentrations of 10 to 1.000 

times higher than the ones required to kill genetically equivalent planktonic bacteria, and are 

also extremely resistant to phagocytosis, making very difficult to eradicate biofilms from living 

hosts (Mishra et al. 2015, Anjum & Krakat 2016). Additionally, the biofilm mode of growth 

also increases the ability to acquire or disseminate antimicrobial resistance determinants by 

horizontal gene transfer (Madsen, Burmølle, Hansen & Sørensen 2012). 

Only recently, a guideline about diagnosis and treatment of biofilm infections was published 

in order to help clinicians and clinical microbiologists (Høiby et al. 2015). 

1.9.6.2. Food and industrial environment 

In food and food processing environments, bacterial attachment is influenced by the 

adsorption of macromolecules on the substrate, also known as conditioning film, which 



 34 

changes the physicochemical properties of the surface and affects the bacterial adhesion 

and biofilm formation (Bernbom et al. 2009). Salmonella is also able to form biofilms on food 

and food-contact surfaces under adequate conditions, leading to serious hygienic problems 

and economic losses due to food spoilage (Roberts 1988, Kumar & Anand 1998, Van Houdt 

& Michiels 2010). In food processing environments, common sources involved in biofilm 

persistence are floors, waste water pipes, bends in pipes, rubber seals, conveyor belts, 

stainless steel surfaces and even teflon seals (Kumar & Anand 1998). In fact, adhesion of 

Salmonella to food surfaces was the first published report on a foodborne bacterial biofilm 

(Duguid, Anderson & Campbell 1966).  

The presence of Salmonella biofilms in the food industry may cause post-processing 

contamination, leading to a lower shelf life of the food product and also to a safety problem 

(Zottola & Sasahara 1994).  

Those multicellular structures may also promote several adverse technological effects. For 

example, biofilm formation in drinking water distribution systems may lead to a decrease in 

water velocity and carrying capacity, clogging of pipes and an increase in energy utilization, 

all factors promoting a decrease in efficiency of factory operations (Kumar & Anand 1998). 

This biofilm formation is mainly possible due to the presence of minimal amounts of nutrients 

in the water supply, and even in high levels of residual chlorine, their development may not 

be preventable (Kumar & Anand 1998, Chu, Lu, Lee & Tsai 2003).  

Salmonella biofilms are particularly relevant in the context of bacterial long-term persistence 

on surfaces, playing a role as a reservoir for recurrent bacterial contamination in food 

processing facilities, which may lead to multiple foodborne outbreaks (Corcoran et al. 2014). 

Additionally, biofilms may also play a role due to their increased resistance to mechanical 

actions. These communities are more difficult to mechanically remove from food-contact 

surfaces and are more resistant to disinfectants compared to planktonic forms (Carpentier & 

Cerf 1993).  

Persistence of Salmonella after disinfection may also be related to an inadequate cleaning 

and sanitation processes, or in well-controlled environments, due to acquired disinfectant 

resistance (Corcoran et al. 2014, Chen, Zhao & Doyle 2015).  

 Salmonella surveillance in Portugal 1.10.

Salmonellosis is a notifiable disease since 1953 in Portugal. The mandatory notification was 

published in the “Decreto-Lei 39/209”, an update from a former regulation from 1889, only 

applied to animals, and still in force. The National Health Institute Doutor Ricardo Jorge 

(INSA) performs the laboratory diagnosis of human salmonellosis, being the National 

Reference Laboratory from the Ministry of Health. Several public or private laboratories may 

also perform reference diagnosis if approved by INSA. The European Regulation 882/2004 

from April 29 manages the attribution of this competence, and regulates all the laboratories 
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within the EU, including the methodologies applied in Salmonella detection (European 

Comission 2004). 

In Portugal, human cases of salmonellosis must be reported to INSA, responsible for the 

laboratory-based surveillance. Portuguese medical doctors are obliged to report by post and 

within 48h any confirmed or suspected case of salmonellosis to the Regional Health 

Administration (ARS), where the case resides (Diário do Governo-Presidência da República 

1949). The ARS sends an anonymous paper copy of each individual notification form to the 

Directorate-General of Health (Gonçalves, Gouveia & Prasad 2014), which compiles all the 

data regarding human salmonellosis cases and sends the information, annually, to the 

European Centre for Disease Prevention and Control (ECDC) (Hugas & Beloeil 2014). 

Furthermore, INSA reports to the Portuguese National Authority for Animal Health (DGAV), 

which compiles all the data regarding the detection of Salmonella in human, animal or food 

and reports to EFSA. The National Institute for Agricultural and Veterinary Research (INIAV) 

is the national reference laboratory from the Ministry of Agriculture, performing the laboratory 

diagnosis of animal salmonellosis. The General Directorate of food and veterinary services 

(DGAV) is the Portuguese authority responsible to put in practice all the European 

Regulations regarding the surveillance and control of Salmonella in food production animals, 

as well as, in the food chain.  
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 Thesis objectives and scope 1.11.

The scarce reports and the lack of knowledge regarding this serovar, particularly in Portugal, 

guided the scope of this thesis that aimed to address the epidemiology and characterization 

of the new pandemic serovar Salmonella 1,4,[5],12:i:-, obtained in Portugal from 2006 to 

2011 from different sources, including human, animal and environmental samples. Therefore, 

the main objectives of this research project were:  

§ To perform a demographic characterization of monophasic salmonellosis cases and use 

geoprocessing techniques combined with spatial analysis to identify spatial clusters for 

Salmonella 1,4,[5],12:i:- in mainland Portugal (Chapter II).  

§ To perform a characterization of the Portuguese monophasic Salmonella isolates 

obtained from different sources, mostly humans, in terms of country distribution, 

molecular typing, antimicrobial resistance and virulence factors (Chapter III).  

§ To investigate the biofilm-forming potential of Salmonella 1,4,[5],12:i:- clinical, 

environmental, and animal isolates, to characterize the time course of biofilm production, 

and to evaluate the presence of genes involved in biofilm formation, using phenotypic 

and genotypic techniques (Chapter IV). 

§ To evaluate the influence of conditions mimicking the intestinal human tract environment 

on in vitro biofilm formation by Salmonella 1,4,[5],12:i:-, in order to provide a better insight 

into the influence of the gastrointestinal environment upon biofilm formation by this 

serovar (Chapter V). 

This thesis provides information regarding the dissemination and epidemiology of this 

serovar in Portugal, contributing to the application of regulatory measures regarding public 

health and also to the future establishment of preventive strategies. Close surveillance of 

Salmonella 1,4,[5],12:i:- and its virulence factors, especially regarding antimicrobial 

resistance profiles and biofilm-forming ability, may help to prevent outbreaks and 

dissemination to non-problematic regions, as well to establish the most appropriate 

antimicrobial therapeutic practice for Salmonella 1,4,[5],12:i:- infections.  
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CHAPTER 2 
Demographic characterization and spatial cluster analysis of human 

Salmonella 1,4,[5],12:i:- infections in Portugal: a 10 year study 
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2.2. Abstract 

Salmonella 1,4,[5],12:i:- is presently considered one of the major serovars responsible for 

human salmonellosis worldwide. Due to its recent emergence, studies assessing the 

demographic characterization and spatial epidemiology of salmonellosis 1,4,[5],12:i:- at local- 

or country-level are lacking. In a study conducted over a 10 year period from 2000 to the first 

quarter of 2011 at the Portuguese National Laboratory in Portugal mainland, a total of 215 

human Salmonella 1,4,[5],12:i:- isolates obtained from human infections by a passive 

surveillance system were serotyped. Data regarding source, year and month of sampling, 

gender, age, district and municipality of the patients were registered. Descriptive statistical 

analysis and a spatial scan statistic combined with a geographic information system were 

employed to characterize the epidemiology and identify spatial clusters. Results showed that 

most districts have reports of infection cases by Salmonella 1,4,[5],12:i:-. An increased 

incidence was observed in the period from 2004 to 2011 with a higher number of cases at 

the Portuguese coastland, including in districts like Porto (n=60, 27.9%), Lisboa (n=29, 

13.5%) and Aveiro (n=28, 13.0%). Most infections occurred during May and October, and 

fewest in February, being young individuals the most committed. Spatial analysis revealed 4 

clusters of higher than expected infection rates. Three were located in the north of Portugal, 

including two at the coastland (Cluster 1 [RR=3.58, P ≤ 0.001] and 4 [RR=10.42 P ≤ 0.230]), 

and one at the countryside (Cluster 3 [RR=17.76, P ≤ 0.001]). A larger cluster was detected 

involving the center and south of Portugal (Cluster 2 [RR=4.85, P ≤ 0.001]). Although passive 

surveillance may originate an underestimation of disease burden, this is the first report 

describing the incidence and the distribution of areas with higher risk of infection in Portugal. 

Salmonella 1,4,[5],12:i:- displayed a significant geographic clustering and these areas should 

be further evaluated to identify risk factors in order to establish prevention programs. 

 

Keywords:  

Cluster analysis; Geographical information system (GIS); Portugal, Public health, Salmonella 

1,4,[5],12:i:-,   
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2.3. Introduction 

The prevalence of Salmonella serovars are constantly changing in many European countries 

[1] and, in 2010, the European Food Safety Authority (EFSA) Panel on Biological Hazards 

published a scientific opinion alerting for the increasing number of outbreaks in the European 

Union member states promoted by “Salmonella Typhimurium-like” strains [2].  

Nowadays, Salmonella 1,4,[5],12:i:- is presently considered one of the major serovars 

responsible for human salmonellosis worldwide, already isolated from several animal species 

and food products [3].  

Surveillance of Salmonella, and in particular of Salmonella 1,4,[5],12:i:- strains, may help to 

monitor disease development, reduce morbidity and mortality and improve health, avoiding 

unnecessary regulatory measures [4]. Population-based studies are uncommon, especially 

regarding spatial analysis in order to identify regional clusters and even their association with 

other factors [5]. As far as we know, there is no spatial-analysis based study evaluating 

areas of higher risk for Salmonella 1,4,[5],12:i:- at a country-level. 

Geographic Information Systems (GIS) associated with spatial statistics are important tool for 

public health maintenance, as they may allow to identify risk areas requiring fast intervention, 

minimizing costs and rationalizing prevention’s procedures [5]. This study aimed to perform 

the demographic characterization of monophasic salmonellosis 1,4,[5],12:i:- cases and to 

use spatial analysis combined geoprocessing techniques in order to identify spatial clusters 

for Salmonella 1,4,[5],12:i:- infection, evaluating high-risk areas in Portugal. This study may 

also provide useful information to understand the spread and epidemiology of this serovar. 

 

2.4. Methods 

2.4.1. Data source: study population and area 

In Portugal, salmonellosis is a notifiable disease and is defined as the isolation of Salmonella 

spp. (excluding Salmonella Typhi or Paratyphi) from an appropriate clinical sample, namely 

stool, urine and blood, collected from patients with or without clinically compatible signs and 

symptoms. Medical doctors are obliged to report by post any confirmed or suspected case of 

salmonellosis, including non-typhoidal salmonellosis, to the local health authority of the 

municipality where the case lives [6]. 

In this study, 215 Salmonella 1,4,[5],12:i:- isolates were obtained from cases reported from 

2001 to to the first quarter of 2011 in mainland Portugal were included. Salmonella were 

isolated at the National Health Institute Doutor Ricardo Jorge from different sources, 

including feces, blood, peritonial fluid and urine, and serotyped as Salmonella 1,4,[5],12:i:- 

according to the Kauffmann–White scheme [7]. Data including source, year and month of 

sample, gender, age, district and municipality of the patients were registered. 

Isolates were obtained from patients at Portugal mainland, representing an area of 

89.015km², corresponding 96.6% of the Portuguese national territory, with 10.047.083 
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inhabitants [8]. For administrative purpose, this territory is divided into 18 Districts, as follows: 

Aveiro, Beja, Braga, Bragança, Castelo Branco, Coimbra, Évora, Faro, Guarda, Leiria, 

Lisboa, Portalegre, Porto, Santarém, Setúbal, Viana do Castelo, Vila Real and Viseu. The 

Eurostat-based Nomenclature of Territorial Units for Statistics (NUTS) system subdivides 

Portugal mainland in 308 municipalities [8]. 

 

2.4.2. Statistical Analysis 

2.4.2.1. Descriptive statistics 

Descriptive statistical analyses were performed using SPSS 21.0 software (IBM Corporation, 

New York, USA). For statistical purposes, age was grouped in three different classes 

according to National Statistics Institute [8], namely: young (less than 15 years), adult (16-64 

years) and elderly (higher than 65). Age mean, median, mode, range and standard deviation 

were also determined.  

 

2.4.2.1. Spatial analysis 

Salmonella 1,4,[5],12:i:- reports were geocoded at the municipality level. The centroids of 

each municipality were determined using the open-source Quantum Geographic Information 

System (QGIS) software. Spatial clustering of Salmonella 1,4,[5],12:i:- cases was analyzed 

using spatial scan statistics [9]. Statistical procedures were carried out in SaTScan software 

using a purely spatial Poisson model. The following data were considered for analysis: the 

number of positive cases in each municipality, the resident population within each 

municipality according to the 2011 Portuguese census, and the Cartesian coordinates of the 

centroids of each municipality included in the survey. The model was first run using the 

default maximum spatial cluster size of 50% of the total study population to ensure statistical 

power. The maximum-size parameter was then set at 10% to check for the presence of 

extreme small risk areas, possibly masked by the 50% scanning window. The number of 

Monte Carlo replications to estimate the statistical significance of the most likely cluster was 

set at 9999 iterations. A P value <0.05 was considered statistically significant. 

 

2.4.3. Results 

The majority of Salmonella 1,4,[5],12:i:- isolates were obtained from feces (n=185, 86%), 

followed by unknown sources (n=16, 7.6%), blood (n=8, 3.7%), blood and feces (n=3, 1.4%), 

peritoneal fluid (n=1, 0.5%), blood and urine (n=1, 0.5%) and urine (n=1, 0.5%).  

Most cases were reported in Porto (n=60, 27.9%), followed by Lisboa (n=29, 13.5%), Aveiro 

(n=28, 13.0%), Braga (n=27, 12.6%) and Setúbal (n=24, 11.2%). On the opposite, single 

cases were reported in Faro at 2010 and Viseu at 2007, as well as, two-single cases in 

Bragança at 2008 and 2009 and in Leiria at 2002 and 2009 (Table 1).  
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Table 1 - Distribution of Salmonella 1,4,[5],12:i:- clinical cases per district and gender in Portugal from 

2000 and to the first quarter of 2011. 
 

District Gender 

 Not registered Female Male Total 

Aveiro Count 0 21 7 28 

% of Total 0.0% 9.8% 3.3% 13.0% 

Beja Count 0 3 4 7 

% of Total 0.0% 1.4% 1.9% 3.3% 

Braga Count 0 15 12 27 

% of Total 0.0% 7.0% 5.6% 12.6% 

Bragança Count 0 2 0 2 

% of Total 0.0% 0.9% 0.0% 0.9% 

Castelo Branco Count 0 2 6 8 

% of Total 0.0% 0.9% 2.8% 3.7% 

Évora Count 0 2 12 14 

% of Total 0.0% 0.9% 5.6% 6.5% 

Faro Count 0 0 1 1 

% of Total 0.0% 0.0% 0.5% 0.5% 

Leiria Count 1 1 0 2 

% of Total 0.5% 0.5% 0.0% 0.9% 

Lisboa Count 0 16 13 29 

% of Total 0.0% 7.4% 6.0% 13.5% 

Porto Count 2 24 34 60 

% of Total 0.9% 11.2% 15.8% 27.9% 

Santarém Count 0 2 3 5 

% of Total 0.0% 0.9% 1.4% 2.3% 

Setúbal Count 0 8 16 24 

% of Total 0.0% 3.7% 7.4% 11.2% 

Vila Real Count 0 3 4 7 

% of Total 0.0% 1.4% 1.9% 3.3% 

Viseu Count 0 0 1 1 

% of Total 0.0% 0.0% 0.5% 0.5% 

Total Count 3 99 113 215 

% of Total 1.4% 46.0% 52.6% 100.0% 

  
Regarding the distribution of Salmonella 1,4,[5],12:i:- infections, 2010 was the year with the higher 

number of reports (n=53, 24.6%), with an increasing trend in the number of cases from 2004 to 2010 

(Figure 1). 
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Figure 1 - Trend in Portugal of the number of cases per year of Salmonella 1,4,[5],12:i:- from 2001 to 
the first quarter of 2011. 

 

Regarding gender and age, 113 isolates were obtained from men and 99 from women and 

the male/female ratio was 1.34. In three patients, 1 from Leiria and 2 from Porto, gender was 

not registered.  

Age from 199 individuals was registered. Mean age was 17 years with a median and mode of 

3 and 1 year, respectively. Standard Deviation was 25.9 years with a minimum age of 0 

years, a newborn, and maximum age of 90 years. Young individuals were the most affected 

with 69.3% (n=149) of Salmonella 1,4,[5],12:i:- cases, followed by adults with 14.0% (n=30) 

and elderly with 9.3% (n=20).  

Seasonal variation is shown in Figure 2. Most of the infections occurred during May and 

October, with the lowest number of cases being diagnosed in February.  
 

Figure 2 - Number of clinical cases per month of Salmonella 1,4,[5],12:i:- from 2001 to the first quarter 
of 2011. 

 

 

 

 

 

 

 

 

 

 

Spatial analysis revealed 4 clusters of higher than expected infection rates, including two 

located in the north coastland area involving the districts of Porto and Aveiro (Cluster 1 and 

4, respectively), one at the countryside involving the districts Bragança Viana Real, Viseu 

and Guarda (Cluster 3), and a larger cluster located in the center and south of Portugal 

which included the districts Castelo Branco, Leiria, Santarém, Lisboa, Portalegre, Évora, 
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Setúbal and Beja (Cluster 2) (Figure 3). Only clusters one, two and three were statistically 

significant, attributing a risk of infection of 4, 5 and 18 times higher, respectively, for a 

individual located in the delimited perimeter compared to other individual outside these 

areas. The number of cases, observed/expected ratio, relative risk and p value for each 

cluster can be found in Table 2.  

 
Figure 3 - Prevalence and spatial clusters of Salmonella 1,4,[5],12:i:- cases in Portugal, 2000 to the 

first quarter of 2011. 

Prevalence of Salmonella 1,4,[5],12:i:- per 100.000 inhabitants, by municipalities according to the 
Eurostat-based Nomenclature of Territorial Units for Statistics system. Spatial clusters results based 
on a purely spatial Poisson model using the SatScanTM software. 
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Table 2 - Spatial cluster of high Salmonella 1,4,[5],12:i:- infection rates in mainland Portugal from 

2000 to the first quarter of 2011. 
 

 

2.5. Discussion 

The first worldwide report on the isolation of Salmonella 1,4,[5],12:i:- was from Portugal in 

1986 in poultry [10]. Since this first report, a rapid increase in Salmonella 1,4,[5],12:i:- 

isolation was observed on an international scale, becoming the third most common serovar 

related with humans infections in 2013 in the EU [3]. 

Data presented in this study represents a passive monitoring based on clinical samples 

submitted to the national reference laboratory. Passive monitoring often underestimates the 

number of cases, since not every individual with salmonellosis goes to a physician due to its 

self-limiting course [11, 12]. In addition, young individuals usually present more severe 

infections and therefore are more tested than adults [11, 12]. Thus, a limitation to this 

approach is the probable selection bias [12] 

In the present study, as many other reports [13, 14], Salmonella was commonly isolated from 

stool samples. Others sources are scarcely documented and to our knowledge, this report 

include the first isolation of Salmonella 1,4,[5],12:i:- from peritoneal fluid, highlighting an 

unusual source of isolation, particularly important in clinical settings [15]. 

The age distribution of individuals with Salmonella 1,4,[5],12:i:- infections in the present study 

is in agreement with others reports [12, 13, 16], where most infections caused by this serovar 

are observed in young individuals. While this study detected Salmonella 1,4,[5],12:i:- 

infections more frequently in men, others reports also identified both men or women 

frequently affected [13, 16]. 

Although in the period of this study an increasing annual incidence was observed, the 

number of reported isolates is low, which may be attributed to a decreasing in the amount of 

salmonellosis cases reported in the EU during this period, including Portugal [2].  

In this country, most districts have reports of Salmonella 1,4,[5],12:i:-, which suggests a wide 

distribution from the north to south of the country. A higher prevalence in the Portuguese 

coastland was observed, which the higher human population density in these areas may 

Cluster Number 

of cases 

Number of 

municipalities  

Annual 

cases/ 

100000 

Habitants 

Expected 

cases 

Overlap Observed 

/Expected 

Relative 

risk 

(RR) 

Log 

likelihood 

ratio 

P 

value 

1 109 22 4.8 48.02 4 2.27 3.58 41.19 ≤0.001 

2 84 109 4.9 46.70 No 1.80 4.85 27.49 ≤0.001 

3 10 18 49.8 0.99 No 10.14 17.76 16.44 ≤0.001 

4 4 5 37.5 0.55 1 7.28 10.42 5.07 0.230 
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explain and because patients are more likely to go to a doctor if gastrointestinal symptoms 

are presented. It is worth noting that some districts are classified without reports, which do 

not necessarily represent the absence of the disease, especially when there is evidence of 

underreporting due to its self-limiting course. 

Rates of human Salmonella 1,4,[5],12:i:- infection appear to be higher in summer and early 

autumn, with most cases occurring between May and October, being this last month the one 

with the higher number of cases. In several studies, Salmonella infections among humans 

generally peak in summer months [17, 18]. The reasons of these seasonal differences are 

not entirely known. They may reflect a combination of factors, including seasonal human 

behaviours [17], the parallel Salmonella shedding trends by animal reservoirs [19] and 

environmental variations influencing the pathogen virulence or persistence [17]. 

Cluster analysis of Salmonella 1,4,[5],12:i:- infections showed the existence of areas with a 

high number of cases, especially in districts located at the northwest, northeast, center and 

southeast of Portugal. This observation suggests an occurrence of non-random cases, 

confirmed by the representation of three high rate clusters, which may reveal an increased 

exposure to human Salmonella 1,4,[5],12:i:- infection in these areas.  

Interestingly, cluster 1 located at northwest of Portugal presents the highest number of 

human Salmonella 1,4,[5],12:i:- infections. This cluster contains two districts, Porto and 

Aveiro, with only 22 municipalities involved. Individuals in these areas present a risk about 4 

times higher to acquire this infection that inhabitants of other municipalities. Although it may 

exist several reasons to explain this spatial cluster, one possible explanation is because pig 

farms are prevalent in these locations, especially in Aveiro [20]. Since pigs can be reservoirs 

for this serovar, this may justify the spatial cluster and the high frequency of cases [21, 22]. 

This reason may also be valid for cluster 2, as some of the districts included like Beja, Leiria 

and Santarém, are also the important locations for pig production in Portugal [20]. 

 

2.6. Conclusions 

As far as we know, this is the first report describing the incidence and the presence of areas 

with a higher risk for human Salmonella 1,4,[5],12:i:- infections in Portugal. Although passive 

surveillance may represent an underestimation of disease burden, they provide valuable 

information on incidence and trends that could aid public health authorities in developing 

prevention and control programs. There is a need to better understand the demographic, 

geographic, and seasonal factors associated with the increase of Salmonella 1,4,[5],12:i:- 

infections and to provide evidence-based information for policy makers to prioritize future 

efforts in addressing the increasing number of infections.  
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CHAPTER 3 
Phenotypic and molecular characterisation of Salmonella 1,4,[5],12:i:- R-type 

ASSuT isolates from humans, animals and environment in Portugal, 2006-2011 



 52 

  



 53 

3.1. Phenotypic and molecular characterisation of Salmonella 1,4,[5],12:i:- R-type 

ASSuT isolates from humans, animals and environment in Portugal, 2006-2011 

Rui Seixas*, Tânia Santos, Jorge Machado, Luís Tavares, Fernando Bernardo, Teresa 

Semedo-Lemsaddek, Manuela Oliveira 
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3.2. Abstract 

The increase in prevalence of Salmonella 1,4,[5],12:i:- related infections over the last few 

years has been considered a public health issue in many European countries, especially as 

this serovar may be associated with tetraresistance to ampicillin, streptomycin, sulfonamides, 

and tetracyclines (R-type ASSuT). Salmonella 1,4,[5],12:i:- isolates (n = 187) obtained by the 

Portuguese National Laboratory from different sources, including human clinical cases 

(n=170), veterinary (n=10), environmental (n=6), and food samples (n=1), were collected 

from 15 districts between 2006 and 2011. All isolates were serotyped using the slide 

agglutination method and results were confirmed by multiplex PCR for the monophasic 

variant. From the confirmed Salmonella 1,4,[5],12:i:-, R-type ASSuT isolates were selected 

by disc diffusion and minimal inhibitory concentration (MIC) determination for further 

characterization by pulsed-field gel electrophoresis restriction with XbaI, virulence genes 

determination by PCR, additional antimicrobial resistance profiling by disc diffusion, and 

epidemiological distribution evaluation. Out of the 187 serotyped isolates, 133 were 

confirmed as Salmonella 1,4,[5],12:i:- with a R-type ASSuT occurrence of 61.7%. Distribution 

among Portuguese districts showed a higher percentage of reported cases in coastal areas, 

in particular, in Porto (24.8%), Setúbal (13.5%), and Aveiro (12.8%), probably due to the 

higher population density. Clonality analysis revealed a high diversity of pulsotypes with the 

majority of human salmonellosis cases being attributed to sporadic events. All isolates 

harbored 14 out of the 18 virulence genes evaluated and 87.8% of the isolates showed all 

the resistance genes frequently associated with the European clone, blaTEM+sul2+straA-

straB+tetB+. This study shows that Salmonella 1,4,[5],12:i:- resistant isolates are widely 

distributed in Portugal. This may be related to a selective advantage offered by R-type 

ASSuT profile, the presence of multiple virulent features, including the ability to form biofilms, 

which along with a high diversity of pulsotypes may be responsible for the dissemination 

through the country.  

 
Keywords: Portugal, R-type ASSuT, Salmonella 1,4,[5],12:i:-, virulence factors  
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3.3. Introduction  

Salmonella 1,4,[5],12:i:- is the monophasic variant of Salmonella Typhimurium, being 

presently considered one of the major serovars responsible for human salmonellosis 

worldwide (Switt et al., 2009). A marked increase in prevalence of Salmonella 1,4,[5],12:i:- 

showing resistance to ampicillin, streptomycin, sulfonamides, and tetracyclines (R-type 

ASSuT) has been identified in several European Union member states over the last decade 

(Switt et al., 2009). This resistance profile is the most frequently detected, related to 30% of 

the human cases and livestock (Lucarelli et al., 2010).  

Genes responsible for this resistance phenotype are present in a chromosomal resistance 

island that frequently includes the blaTEM, strA-strB, sul2, and tetB genes, with some 

isolates having additional resistances (Lucarelli et al., 2010). Also, the presence of multiple 

virulent determinants, along with biofilm formation, enables Salmonella to infect several host 

species and persist in the environment (Steenackers et al., 2012).  

The aim of the present study was to characterize, in terms of distribution, molecular typing, 

antimicrobial resistance, and virulence factors, Salmonella 1,4,[5],12:i:- R-type ASSuT 

isolates obtained in Portugal from different sources, mainly of human origin and also from 

animal and environment. This study provides useful information for understanding the 

dissemination and epidemiology of this serovar in Portugal and within Europe, contributing to 

the future establishment of preventive and therapeutic strategies, as well as suitable 

regulatory measures regarding public health safety.  

 

3.4. Materials and Methods  

3.4.1. Bacterial isolates  

A total of 187 Salmonella 1,4,[5],12:i:- isolates were included in the study. The samples were 

collected in Portugal between 2006 and the first quarter of 2011 from different sources, 

including human clinical cases (n = 170), veterinary (n = 10), environmental (n = 6), and food 

samples (n = 1). Human salmonellosis is a mandatory notifiable disease in Portugal, 

respecting a passive surveillance system, and the isolates represent all reported cases of 

Salmonella 1,4,[5],12:i:- in Portugal during this period of time. All Salmonella were isolated at 

the Portuguese National Laboratory, the National Health Institute Doutor Ricardo Jorge, and 

serotyped using the slide agglutination method according to the Kauffmann–White scheme 

(Grimont and Weill, 2007). Identification of serotyped isolates was confirmed by multiplex 

PCR (mPCR), and confirmed Salmonella 1,4,[5],12:i:- isolates were selected for detection of 

R-type ASSuT. Salmonella 1,4,[5],12:i:- presenting the tetraresistance pattern were further 

submitted to phenotypic and molecular characterization. Regarding the human samples, 

data, including year of sample collection, gender, age, and district location, were recorded.  
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3.4.2. DNA extraction and mPCR identification of Salmonella 1,4,[5],12:i:-  

Salmonella isolates were plated onto Columbia agar with 5% sheep blood (BioMérieux) and 

incubated at 37°C for 24h. DNA was extracted from a single colony grown overnight using 

the guanidine thiocyanate method (Pitcher et al., 1989). Identification of Salmonella 

1,4,[5],12:i:- isolates was confirmed using mPCR (Tennant et al., 2010) as recommended by 

the European Food Safety Authority (EFSA, 2010). A total volume of 25 µL containing 2.5 U 

of Supreme NZYTaq 2x Green Master Mix (NZYTech, Portugal), 0.4 µM of primers sense-59 

and antisense-83, which amplify the phase 2 (fljB) flagellar gene, 0.8 µM of FFLIB and 

RFLIA, amplifying the fliB-fliA intergenic region (Stabvida, Portugal), and 3µL of DNA 

template were submitted to the following conditions: initial denaturation at 95°C for 2min, 25 

cycles of denaturation at 95°C for 30 s, annealing at 64°C for 30 s, extension at 72°C for 1.5 

min, and a final delay at 72°C for 5 min. Amplified products were resolved in a 1.5% agarose 

gel (Bioline, UK) stained with GelRed (Biotium) and visualized by transillumination under UV 

(Pharmacia Biotech, Thermal Imaging System FTI-500). NZYDNA ladder VI (NZYTech, 

Portugal) was used as molecular weight marker. Salmonella enterica subsp. enterica CECT 

7162 and CECT 722 were used as monophasic and biphasic Salmonella controls, 

respectively, for PCR amplification.  

 

3.4.3. Detection of R-type ASSuT pattern  

3.4.3.1. Antimicrobial susceptibility testing 

Salmonella 1,4,[5], 12:i:- isolates, the identification of which was confirmed by mPCR, were 

evaluated to detect the R-type ASSuT pattern. Antimicrobial susceptibility testing (AST) was 

performed by disc diffusion method according to the Clinical and Laboratory Standards 

Institute (CLSI, 2012) guidelines using ampicillin (AMP, 30 µg), streptomycin (S, 25 µg), 

sulfamethoxazole (SXT, 10 µg), and tetracycline (TE, 30 µg) and confirmed by determination 

of minimal inhibitory concentration (MIC) using E-test (BioMérieux) as recommended by the 

WHO Global Salm-Surv (2003). Test performance was monitored using Escherichia coli 

ATCC 25922 and executed in duplicate.  

 

3.4.4. Characterisation of Salmonella 1,4,[5],12:i:- R-type ASSuT isolates  

3.4.4.1. Evaluation of additional resistances 

AST was performed by disc diffusion method according to CLSI guidelines (CLSI 2012) using 

amoxicillin/clavulanic acid (AMC, 30 µg), cefotaxime (CTX, 30 µg), ceftazidime (CAZ, 30 µg), 

ciprofloxacin (CIP, 5 µg), chloramphenicol (C, 30 µg), gentamicin (CN, 10 µg), nalidixic acid 

(NA, 30 µg), Test performance was monitored using E. coli ATCC 25922 and executed in 

duplicate. 
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3.4.4.2. Detection of antimicrobial resistance determinants 

Genes coding for resistance to amoxicillin (blaTEM), streptomycin (strA-strB), 

sulfamethoxazole (sul2) and tetracycline (tetB) were evaluated by PCR using primers and 

conditions previously described (Lucarelli et al. 2012). Salmonella Typhimurium monophasic 

variant 105/07/03 gently provided by Dr. Lucarelli‘s laboratory was used as a positive control 

for all PCR amplifications. 

 

3.4.4.3. Genotyping of Salmonella  

Genomic fingerprinting of Salmonella was achieved by PFGE using a CHEF-DRIII apparatus 

(Bio-Rad Laboratories, San Diego, USA) following DNA digestion with XbaI (Invitrogen, USA) 

according to the PulseNet protocol (Ribot et al. 2006). BioNumerics software, version 7.5 

(Applied Maths, Kortrijk, Belgium) was used to register macrorestriction patterns, clustering 

analysis was performed using DICE similarity coefficient and the unweighted-pair group 

method with arithmetic mean (UPGMA) with optimisation and position tolerance set at 0.8% 

and 0.8%, respectively. Salmonella Braenderup strain H9812 was used as molecular weight 

marker. 

 

3.4.4.4. Detection of virulence associated genes  

Genes coding for virulence factors such as virulence plasmid (spvC), invasion (invA, invH, 

sopB), enterotoxin (stn), genes associated with survival within macrophages (phoP, phoQ, 

slyA) and with the formation of fimbriae (agfA, sefA, safC, pefA) were evaluated by PCR 

using primers previously described (Huehn et al. 2009). The Quorum-sensing gene (sdiA) 

was also evaluated by PCR using the primers described (Halatsi et al. 2006 ). The presence 

of genes associated with adhesion to Peyer’s patches (gipA, lpfD) was also assessed 

(Borriello et al. 2012). Genes associated with biofilm formation (adrA, csgD, gcpA) were 

included in the study as previous published (Seixas et al. 2014). Reproducibility was 

evaluated by selecting 10% replicates using Research Randomizer (Urbaniak and Plous 

2013). Salmonella enterica subsp. enterica CECT 443 and CECT 722 were used as positive 

controls for PCR amplifications.  

 

3.4.5. Data Analysis 

Descriptive statistics (reported as proportions) were described. Incidence rates by district and 

by year were estimated dividing the number of reported cases by the district population or by 

the population country respectively, according Census of 2011, conducted by the National 

Statistical Institute (Instituto Nacional de Estatística 2011) and multiplied by 100.000. 
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3.5. Results 

Out of the 187 serotyped isolates, 133 (71.1%) were confirmed by mPCR as monophasic. 

Confirmed Salmonella 1,4,[5],12:i:- isolates (n=133) were obtained from human clinical cases 

(n=125), environmental (n=5) and veterinary (n=3) samples (Table 1). The male/female ratio 

of the human clinical samples was 1.33 (69 male and 52 female). It wasn’t possible to 

register the patient’s gender for four samples and for nine it was not possible to register their 

age. Distribution included 14 of the 15 districts reported. Three samples were from unknown 

locations. 

Table 1 – Isolation source and year of collection of Salmonella 1,4,[5],12:i:- isolates from Portugal, 
2006 to the first quarter of 2011 

 
Data include isolates the total number of samples identified by serotyping (S) and confirmed isolates 
by mPCR (P). Fluids include blood, urine and peritoneal fluid. 
 
Salmonella 1,4,[5],12:i:- isolates (n=133) distribution through Portugal, evaluated by district, 

showed that Porto had the higher number of cases (24.8%), followed by Setúbal (13.5%) and 

Aveiro (12.8%) (Figure 1). The incidence rates per 100.000 inhabitants were 0.09 in 2006, 

0.14 in 2007, 0.27 in 2008, 0.38 in 2009, 0.66 in 2010 and 0.23 in the first quarter of 2011.  

Salmonella 1,4,[5],12:i:- isolates (n=133) revealed an ASSuT profile occurrence of 61.6% 

(n=82). The percentage of districts presenting R-type ASSuT isolates was 78.6%.  

Forty out of the 82 isolates confirmed as R-type ASSuT presented additional resistances to 

at least one antimicrobial agent (48.8%) but none were resistant to all seven antimicrobials 

tested. The highest frequencies of additional resistances were observed for amoxicillin (28%, 

n=23), followed by chloramphenicol (15.9%, n=13), gentamicin (9.8%, n=8), nalidixic acid 

(8.5%, n=7), ceftazidime (4.9%, n=4), cefotaxime (4.9%, n=4) and ciprofloxacin (1.2%, n=1)   

Regarding the resistance profiles of the 82 Salmonella 1,4,[5],12:i:- isolates, 18 multiresistant 

profiles were observed. ASSuT (n=42), AAMCSSuT (n=16) and ACSSuT profiles (n=4) were 

the three most prevalent profiles. All of the 82 ASSuT isolates, showed the highest MIC for 

ampicillin (>256 µg/mL) and sulfamethoxazole (>1024 µg/mL). The MIC50 value for 

streptomycin was 512 µg/mL and the MIC90 value was 1024 µg/mL. Tetracycline MIC50 and 

MIC90 values were 64 µg/mL and 96 µg/mL, respectively.  

Almost all the isolates presented antimicrobial resistance genes, including blaTEM (93.9%), 

sul2 (95.1%), straA-straB (95.1%) and tetB (93.9%). The most common antimicrobial 

Isolation 2006 2007 2008 2009 2010 2011 
 S P S P S P S P S P S P 

Environmental (water) 
and food 

1 0 - - - - 1 1 5 4 - - 

Veterinary (Pig, 
Lymph node) 

- - - - - - - - 10 3 - - 

 
Human 
clinical 

Feces 8 4 14 8 28 19 36 28 40 33 23 15 
Fluids 1 0 1 1 - - 1 0 7 6 1 1 

Unknown - - -  - - 2 2 8 8 - - 
Total 10 4 15 9 28 19 40 31 70 54 24 16 
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resistance gene profile was the presence of four determinants, blaTEM+sul2+straA-

straB+tetB+ in 72 isolates (87.8%). Other resistance genes profiles detected were 

blaTEM+sul2+straA-straB+ in three isolates and tetB+ in a further 3 isolates (3.7%), followed 

by single isolates with one of the following profiles blaTEM+sul2+tetB+, blaTEM+straA-

straB+, sul2+straA-straB+tetB+ and sul2+straA-straB+ (1.2%). 

 

Figure 1 - Schematic illustration of Portugal representing the distribution of Salmonella 1,4,[5],12:i:-  
R-type ASSuT by district from 2006 to the first quarter of 2011 

Each district include the following information: Number of Salmonella 1,4,[5],12:i:- confirmed isolates 
per 100.000 inhabitants of the corresponding district/Total number of reported isolates/Percentage of 
R-type ASSuT isolates detected within each district. For example, Lisboa presents 0.6 confirmed 
isolates per 100.000 inhabitants – a total of 14 reported isolates – 85.7% of R-type ASSuT isolates 
detected 

PFGE typing identified 48 different PFGE profiles among the 82 isolates examined (Figure 

2). Three predominant clones (STYM18; n=7, STYM23; n=7, STYM33; n=6) were identified 

and correspond to 24.4% of Salmonella 1,4,[5],12:i:- R-type ASSuT isolates. Cluster analysis 

allowed grouping of the isolates into 7 clusters at approximately 80% similarity, with 4 

clusters including only one isolate.  

Virulence gene detection revealed that phoP, phoQ invA, invH, sopB, stn, slyA agfA, safC, 

sdiA, gipA, ipfD, adrA, csgD genes were present in 100% (82/82) of the isolates. The 

remaining virulence genes had different frequencies. However, independent of the sample’s 

year, district and source of isolation, gcpA and spvC genes were present in 95.1% (78/82) 

and 67.1% (55/82), respectively. sefA and pefA genes were not present in any isolate (0/82). 

Overall, four different virulence profiles were identified (gcpA+spvC-, gcpA-spvC+, 
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gcpA+spvC+, gcpA-spvC-), with all isolates showing at least 14 virulence-associated genes 

out of the 18 genes tested (Table 2). 

 
Figure 2 - Dendrogram based on XbaI-PFGE patterns of the Portuguese Salmonella 1,4,[5],12:i:-  

R-type ASSuT isolates.  

AMC - amoxicillin/clavulanic acid; AMP – ampicillin; C – chloramphenicol; CAZ – ceftazidime; CIP – 
ciprofloxacin; CN - gentamicin; CTX – cefotaxime; NA - nalidixic acid; S – streptomycin; SXT – 
sulfamethoxazole; TE – tetracyclin. NR – Not Registered, NA – Not Applicable.  
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Table 2 – Biofilm formation, antimicrobial resistance and virulence determinants present in Salmonella 
1,4,[5],12:i:- R-type ASSuT isolates from Portugal, 2006 to the first quarter of 2011 

N.º Year Source Additional 

Resistances 

spvC gcpD blaTEM sul2 strA tetB 

272 2008 Clinical  + + + + + + 

197 2011 Clinical C + + + + + + 

349 2009 Clinical AMC + + + + + + 

127 2010 Clinical  + + + + + - 

230 2011 Clinical AMC + + - - - + 

299 2009 Clinical  + + + + + + 

480 2010 Clinical  - + + + + + 

199 2011 Clinical  - - + - + - 

546 2009 Clinical AMC + + + + + + 

416 2009 Clinical  + + + + + + 

231 2010 Clinical  - + + + + + 

241 2009 Clinical  + + + + + + 

502 2009 Clinical  + + + + + + 

301 2010 Clinical  - + + + + + 

302 2010 Clinical  - + + + + + 

128 2009 Clinical  + + + + + + 

698 2008 Clinical  + + + + + + 

371 2010 Clinical  + + + + + + 

225 2011 Clinical AMC - + + + + + 

368 2010 Clinical CAZ + + + + + + 

338 2011 Clinical  - + + + + + 

404 2009 Clinical AMC + + + + + + 

243 2010 Clinical AMC - + + + + + 

22 2010 Clinical  + - + + + + 

200 2009 Enviro.  - + + + + + 

340 2010 Animal CTX + + + + + + 

217 2010 Clinical  + + + + + + 

309 2010 Clinical  + + - + + + 

331 2010 Clinical  + + + + + + 

553 2008 Clinical AMC + + + + + + 

111 2010 Enviro.  - + + + + + 

84 2007 Clinical  + + + + + + 

145 2008 Clinical  + + + + + + 

521 2008 Clinical  + + + + + + 

215 2010 Clinical CAZ - + + + + + 

254 2010 Clinical AMC - + + + + + 

215 2011 Clinical AMC; CN - + + + + + 

332 2011 Clinical AMC + + + + + + 
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Table 2 – Biofilm formation, antimicrobial resistance and virulence determinants present in Salmonella 
1,4,[5],12:i:- R-type ASSuT isolates from Portugal, 2006 to the first quarter of 2011 (Continued) 

N.º Year Source Additional 

Resistances 

spvC gcpD blaTEM sul2 strA tetB 

271 2010 Clinical AMC - + + + + + 

282 2010 Animal  - + + + + + 

300 2006 Clinical AMC; CN; NA + + + + + + 

251 2009 Clinical  + + + + + + 

351 2010 Clinical  - + + + + + 

665 2008 Clinical AMC + + + + + + 

217 2009 Clinical  + + + + + + 

335 2009 Clinical AMC + + + + + + 

384 2009 Clinical  + + + + + + 

173 2010 Clinical  + + + + + + 

413 2010 Clinical  + + + + + + 

192 2011 Clinical AMC - + + + + + 

341 2010 Clinical C + + + + + + 

431 2010 Clinical  + + + + + + 

325 2009 Clinical AMC; CIP + + + + + + 

319 2010 Clinical  - + + + + + 

186 2010 Clinical  - + + + + + 

547 2009 Clinical  + + + + + + 

68 2010 Clinical  + + + + + + 

115 2007 Clinical  + + + + + + 

103 2011 Clinical CAZ - + + + + + 

146 2007 Clinical  + + + + + + 

326 2009 Clinical AMC + + + + + + 

587 2009 Clinical  + + + + + + 

644 2009 Clinical  + + + + + + 

347 2010 Clinical  + + + + + + 

159 2011 Clinical AMC; CTX; NA + + + + + + 

328 2011 Clinical AMC + + + + + + 

94 2010 Clinical  - + + + + + 

379 2010 Clinical CTX - + + + + - 

503 2009 Clinical AMC + + + + + + 

601 2009 Clinical C; AMC + + + + + + 

81 2010 Clinical NA + + + + + + 

156 2011 Clinical CN - + + + + + 

233 2010 Clinical AMC; C; CN; NA + + + + + + 

358 2010 Clinical C; CN; NA - + + + + + 

292 2006 Clinical C + + + + + - 

122 2011 Clinical C; CN + - - - - + 

119 2010 Enviro. C; CN; NA + - + + - + 

472 2008 Clinical C; CTX + + + + + + 
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Table 2 – Biofilm formation, antimicrobial resistance and virulence determinants present in Salmonella 
1,4,[5],12:i:- R-type ASSuT isolates from Portugal, 2006 to the first quarter of 2011 (Continued) 

Enviro. – Environmental; AMC - amoxicillin/clavulanic acid; AMP – ampicillin; C – chloramphenicol; 
CAZ – ceftazidime; CIP – ciprofloxacin; CN - gentamicin; CTX – cefotaxime; NA - nalidixic acid;  
S – streptomycin; SXT – sulfamethoxazole; TE – tetracyclin. 
 

3.6. Discussion 

A rapid increase in Salmonella 1,4,[5],12:i:- was observed on an international scale, 

becoming the third most common serovar in humans in 2013 in the EU (EFSA and ECDC 

2015). Accurate identification of serovar 1,4,[5],12:i:- is important, since misclassification 

could result in unnecessary regulatory actions. In fact, serotyping alone can lead to 

misidentifications and should be combined with mPCR, as recommend by EFSA for 

identification of Salmonella Typhimurium and 1,4,[5],12:i:-, two serovars included in 

European regulations aiming the reduction of Salmonella prevalence in poultry (EFSA 2010).  

According to our results, 71.1% of isolates serotyped as 1,4,[5],12:i:- were confirmed as 

monophasic variants by PCR assays. Several studies reported similar or higher percentages: 

71.4% (Tavechio et al. 2004), 82% (Mandilara et al. 2013), 90.3% (Barco et al. 2011), 91.7% 

(Wasyl and Hoszowski 2012), 94.2% (Lailler et al. 2013) and 95.1% (Hopkins et al. 2010). 

Almost all Salmonella 1,4,[5],12:i:- isolates (28.3%) that weren’t confirmed as monophasic by 

mPCR, represent isolates which the second flagellar phase was not detected by serotyping 

but was detected by PCR. This can be explained by deletions in fljB gene that don’t 

compromise the primer binding sites but impair the phase inversion, leading to 

misidentifications in serotyping (Barco et al. 2011). One remaining isolate (0.6%), didn’t 

produce the 1 kb amplicon, which could be attributed to the complete loss of the IS200 

fragment (Barco et al. 2011). 

The rapid dissemination of this serovar is allied with an escalating incidence of antimicrobial 

resistant in 1,4,[5],12:i:- strains (Antunes et al. 2011). The ASSuT tetraresistance pattern, 

already identified in many European countries (Lucarelli et al. 2010) was detected in 61.6% 

of the isolates included in this study, which was identical to another study where the 

occurence of ASSuT isolates was 60% (Hopkins et al. 2012). In this study, similar to others 

reports (Mulvey et al. 2013; Wasyl and Hoszowski 2012), ASSuT was the most frequent R-

type detected and resistance to amoxicillin and chloramphenicol were also additional 

resistances frequently identified. For many years, ampicillin or trimethoprim-

sulfamethoxazole were recommended as antimicrobial agents for the treatment of severe 

N.º Year Source Additional 

Resistances 

spvC gcpD blaTEM sul2 strA tetB 

263 2008 Clinical C + + + + + + 

122 2010 Clinical C; AMC; NA + - - - - + 

321 2010 Clinical C; CAZ - + - - - + 

307 2010 Clinical C; CN + + + + + + 
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Salmonella human infections, which has contributed for the increased resistance levels and 

reduced efficacy of these agents (Winokur et al. 2000). In this study, resistance to ampicillin 

and trimethoprim-sulfamethoxazole was also observed, and tetracycline was the most active 

of the four antimicrobial compounds tested.  

Distribution for Portuguese districts showed a higher percentage of Salmonella 1,4,[5],12:i:- 

isolates in coastal areas, namely Porto, Setúbal and Aveiro. Most districts have reports of 

Salmonella 1,4,[5],12:i:-, including the Portuguese islands Azores, which suggests a wide 

distribution from the north to south of the country with a higher prevalence in the west, which 

may be explained by the higher human population density in these areas. Although in the 

period of this study an increasing annual incidence was observed, the number of reported 

isolates is low, which may be attributed to a decreasing in the amount of salmonellosis cases 

reported in the EU in this period, including Portugal (EFSA 2010). However, it is of concern 

that more than half of the reported cases in most districts are promoted by isolates 

presenting the ASSuT pattern. This is critical issue for public health safety since ASSuT 

isolates are most frequently collected from young people (72.1%), which are more 

susceptible, and may lead to severe infections (EFSA 2010; Ke et al. 2014).  

In our study, quinolone and 3rd generation cephalosporin resistance were low. Nevertheless, 

resistance to ciprofloxacin, cefotaxime and ceftazidime were mostly detected in isolates from 

young people, as already observed for the R-type ASSuT. Although most of Salmonella 

gastrointestinal infections are self-limiting and may not require antimicrobial therapy, 

treatment of complicated infections may be difficult due to high levels of resistance to 

frequently used antimicrobial compounds. Therefore, resistance to fluoroquinolones and 3rd 

generation cephalosporins can pose a major challenge to clinicians for the effective control of 

these infections, particularly relevant in young people (Ke et al. 2014). 

Taking together with previous published results regarding biofilm formation (Seixas et al. 

2014), it is particularly important to point out that almost all isolates resistant to 

fluoroquinolones and 3rd generation cephalosporins were also moderate biofilm producers, 

harboring the gene gcpA gene responsible to form biofilm under low nutrient conditions. 

The molecular analysis of antibiotic resistance in R-type ASSuT isolates demonstrated that 

almost all these isolates, regardless of their origin, harbored the same resistance genes, 

blaTEM, strA-strB, sul2, and tetB, commonly found in several studies (Antunes et al. 2011; 

Hopkins et al. 2010; Lucarelli et al. 2010). These genes are present in a chromosomal 

resistance island and are typically associated to the European clone (Lucarelli et al. 2010), 

suggesting that the Portuguese clones may be related to those present in other European 

countries (Hopkins et al. 2010). Recently, a study demonstrated the high prevalence of metal 

tolerance, especially to silver and cooper, associated with antimicrobial resistant 

determinants in Salmonella 1,4,[5],12:i:- from Portugal, which may facilitate the dissemination 

of these isolates (Mourão et al. 2015). 
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The dissemination in Portugal may be also due to a relatively high diversity of clones during 

the study period, also detected in others reports, even among isolates from a single country 

(Mandilara et al. 2013; Soyer et al. 2009). PFGE identified 48 profiles with no relation to the 

epidemiological data, which indicates that human cases were most likely sporadic and that 

the associated strains were not responsible for outbreaks. The unrelated epidemiological 

background of all cases supports this hypothesis. Interestingly, cluster analysis of PFGE 

profiles showed that all isolates belonging to cluster V were resistant to chloramphenicol, 

also including isolates with the highest rates of antimicrobial resistance with most isolates 

displaying additional resistances to at least two or three antimicrobials. Bionumerics cluster 

analysis showed that ASSuT and ACSSuT-resistant isolates were mainly included in two 

different clusters with similarity level of 70% each, which may suggest that the ASSuT-

resistant isolates belong to a same clonal lineage different from that of the ACSSuT isolates. 

The high genetic diversity does not relate to the low variability of the virulence gene 

repertoire of the Salmonella 1,4,[5],12:i:- isolates, since only four different virulotypes were 

observed, also demonstrated in other report (Capuano et al. 2013). This can be explained by 

the fact that most isolates were collected from humans and therefore, in order to promote 

invasive salmonellosis, it is required a common core of virulence genes (Suez et al. 2013). 

Additionally the gene spvC, frequently identified in isolates that cause systemic infections in 

immunocompromised patients (Guiney and Fierer 2011) was detected in some isolates 

expressing resistance to fluoroquinolones and 3rd generation cephalosporins, which is 

particularly relevant in the clinical context.  

 

3.7. Conclusions 

Salmonella 1,4,[5],12:i:- is an emerging pathogen worldwide. In Portugal, although the 

number of reports were low, there was an increasing incidence of Salmonella 1,4,[5],12:i:- 

cases during this 5-year study. It was observed a wide distribution through the country, with 

reports of the R-type ASSuT in the majority of districts. 

This rapid spread of Salmonella 1,4,[5],12:i:- R-type ASSuT in Portugal might be related with 

the diversity of pulsotypes, the advantage offered by R-type ASSuT and the presence of a 

core of virulence genes, also along with biofilm formation.  

Close surveillance of Salmonella 1,4,[5],12:i:- and its resistance patterns, especially 

important for young people, as revealed in this report, may help to prevent outbreaks and 

dissemination to non-problematic districts, to track potential transmission pathways and to 

rationalize salmonellosis antimicrobial therapeutics. 
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4.2. Abstract 

Biofilm-forming ability is well established as an important virulence factor. However, there are 

no studies available regarding biofilm formation of Salmonella Typhimurium 1,4,[5],12:i:-, the 

new pandemic serovar in Europe. To address this problem, biofilm expression by Salmonella 

1,4,[5],12:i:- was evaluated using 133 isolates from clinical, environmental and animal 

origins, collected in Portugal from 2006 to 2011. Biofilm detection was performed by 

phenotypic and genotypic methods, such growth characterization in agar and broth medium, 

optical density determination by microtiter assays and direct observation by fluorescent in 

situ hybridization. Biofilm-related genes adrA, csgD and gcpA were detected by PCR. A 

socio-geographic characterization of strains as biofilm producers was also performed. 

Results showed that biofilm formation in monophasic Salmonella is widely distributed in 

Portuguese isolates and could be one of the reasons for its dissemination in this country. 

Biofilm expression varies between locations, showing that isolates from some regions like 

Lisboa or Ponta Delgada have an increased ability to persist in the environment due to an 

enhanced biofilm production. Biofilm formation also varies between risk groups, with a higher 

prevalence in isolates from salmonellosis infections in women. Therefore, the analysis of the 

socio-geographic distribution of biofilm-forming bacteria should be considered for the 

establishment of more adequate regulatory measures or therapeutics regimens, especially 

important due to the continuous increase of infections caused by antimicrobial resistant 

microorganisms.  

 

Keywords: Biofilm, Salmonella 1,4,[5],12:i:-, Portugal, FISH, microtiter assay 
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4.3. Introduction 

In the mid-1990s, the emergence of a pandemic monophasic variant of Salmonella 

Typhimurium, S. enterica subsp. enterica serovar 1,4,[5],12:i:-, was reported in Europe. This 

serotype is now considered one of the main serovars responsible for human salmonellosis 

worldwide [29].  

Biofilm is well established as a major virulence factor in many bacterial species, including 

Salmonella spp., being one of the major reasons for the establishment of chronic infections 

and for environmental persistence [26]. The most important extracellular components 

contributing to form biofilm in Salmonella include curli fimbriae and cellulose, and their 

differential expression is responsible for the development of different morphotypes in agar 

plates supplemented with Congo red and Coomassie brilliant blue. Isolates can be classified 

into five morphotypes: red, dry and rough (RDAR), able to coexpress curli fimbriae and 

cellulose; brown, dry and rough (BDAR), able to express fimbriae, but not cellulose; and pink, 

dry and rough (PDAR), which produce cellulose, but not fimbriae. Isolates that do not 

express any of these two components are designated as smooth and white (SAW) [3]. 

Smooth, brown and mucoid (SBAM) isolates are also not able to produce cellulose or curli 

fimbriae, but in this morphotype biofilm formation is completely dependent on the 

overproduction of capsular polysaccharide [10, 14].  

Salmonella Typhimurium isolates are able to form biofilm on several abiotic and biotic 

surfaces [13, 15], including in the liquid–air interface [24]. Biofilm formation in Salmonella can 

proceed through different pathways and time ranges and detection may differ according to 

evaluation time. The synthesis of components involved in biofilm formation by this bacterium 

is regulated by a highly complex regulatory network, which includes various genes. The csgD 

gene is part of the csgDEFG operon, the main control unit in biofilm formation by Salmonella, 

which positively regulates csgBA and adrA expression [3, 11, 26]. While csgBA encodes for 

the curli subunits csgA and csgB, the adrA gene of Salmonella Typhimurium controls the 

levels of cyclic di-GMP, which regulates cellulose production and consequently biofilm 

formation. In 2011, Bhowmick et al. [3] described the role of another gene, gcpA, in biofilm 

formation by Salmonella Weltevreden under low nutrient conditions.  

There are many studies available about biofilm formation by Salmonella serovars. However, 

to the best of our knowledge, there are no reports regarding biofilm production by the 

pandemic monophasic variant of Salmonella Typhimurium. Therefore, the present study 

aimed to investigate the ability of Salmonella 1,4,[5],12:i:- clinical, environmental, and 

veterinary isolates to express biofilm, to characterize the time course of biofilm production, 

and to evaluate the presence of genes involved in biofilm formation, using phenotypic and 

genotypic techniques. This study may provide useful information for the establishment of 

more adequate therapeutic regimens or disinfection procedures.  
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4.4. Materials and Methods  

4.4.1. Bacterial Isolates Identification and Socio-geographic Characterization  

In this study, 133 Salmonella 1,4,[5],12:i:- isolates, belonging to a collection from the National 

Reference Laboratory of Gastrointestinal Infections, National Health Institute Doutor Ricardo 

Jorge, Lisbon, Portugal, were analyzed. Isolates were obtained throughout the country from 

2006 to 2011, from clinical (n = 125), environmental (n = 5), and veterinary (n = 3) samples. 

Four samples were collected in 2006, 9 in 2007, 19 in 2008, 31 in 2009, 54 in 2010, and 16 

in 2011. Clinical samples were obtained from 2006 to 2011; one environmental sample was 

collected in 2009 and the remaining four in 2010; all animal samples were from 2010. From 

these samples, 52 belong to women and 69 belong to men. For four samples was not 

possible to register the patient’s gender. Sample distribution included 14 districts (Table 1). 

Three samples are from unknown locations.  

 
Table 1 – Geographic distribution of biofilm production in Portugal evaluated by microtiter biofilm 

assay 
District Location Mean Number of isolates Std. Deviation 

Aveiro 0.868 17 0.079 

Beja 0.882 4 0.106 

Braga 0.878 12 0.063 

Bragança 0.810 2 0.038 

Castelo Branco 0.770 7 0.115 

Évora 0.830 11 0.103 

Faro 0.759 1 NA 

Lisboa 0.882 14 0.089 

Ponta Delgada 0.969 6 0.113 

Porto 0.830 33 0.082 

Santarém 0.817 2 0.032 

Setúbal 0.859 18 0.089 

Vila Real 0.904 2 0.153 

Viseu 0.798 1 NA 

Unknowm 1.001 3 0.079 

NA – Not applicable 

 

All Salmonella isolates were serotyped and their identification was confirmed by multiplex 

PCR using the protocol recommended by EFSA [9].  

A biofilm producer isolate, Salmonella Enteritidis 3934 [24], was used as a positive control in 

all phenotypic assays. Salmonella enterica subsp. enterica CECT 443 was used as positive 

control for PCR amplification of biofilm-related genes.  
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4.4.2. Biofilm Formation Assays  

4.4.2.1. Curli Fimbriae and Cellulose Phenotypic Expression on Agar Plates  

Biofilm phenotypic expression of curli fimbriae and cellulose was evaluated on Luria–Bertani 

(LB) (Scharlau, Portugal) agar without NaCl supplemented with Congo red (40 mg/mL) 

(Sigma-Aldrich, USA) and Coomassie brilliant blue (20 mg/mL) (Sigma-Aldrich, USA). 

Cellulose production was also determined on LB supplemented with calcofluor (20 mg/mL) 

(Sigma-Aldrich, USA). All plates were incubated for 96h at 28°C. After incubation, colony 

morphology was registered. For cellulose detection, colony fluorescence was evaluated 

visually under UV light at 366 nm [12].  

All assays were performed in duplicate and repeated twice on different occasions.  

 

4.4.2.2. Biofilm Formation in the Air–Liquid Interface  

Biofilm formation in the air–liquid interface was assessed by inoculation of an overnight 

culture in LB (Scharlau, Portugal) without NaCl (1:10), incubated at 28°C for 8 days. Each 

isolate was visually examined every day for pellicle formation [30].  

All assays were performed in duplicate and repeated twice on different occasions.  

 

4.4.2.3. Evaluation of Biofilm Formation by a Microtiter Biofilm Assay  

Assays were performed using flat-bottom, polystyrene, microtiter plates (Orange Scientific, 

Belgium) containing 5x105 CFU/mL in Mueller–Hinton Broth (MHB) (Liofilchem, Italy). Plates 

were incubated in a humid chamber at 37°C for 24, 48, and 72h. After each time point, 

microplates were processed according to the protocol described by Pettit et al. [18] using 

resazurin (Alamar Blue, AB, ThermoScientific, Spain), and their optical density (OD) values 

were registered. The OD cut-off (ODc) was defined as three standard deviations above the 

mean OD of the negative control, and isolates were classified as follows: if O.D. ≤ O.D.c, as 

non biofilm producers; if O.D.c < O.D. ≤  2 x O.D.c, as weak biofilm producers; if 2 x O.D.c < 

O.D. ≤ 4 x O.D.c, as moderate biofilm producers; and if O.D. > 4 x O.D.c, as strong biofilm 

producers [28]. 

Assays were performed in triplicate, repeated in three different occasions and results were 

averaged. 

 

4.4.2.4. Biofilm Detection by Fluorescent In Situ Hybridization  

Biofilm production by bacterial suspensions was evaluated using a fluorescent in situ 

hybridization (FISH) protocol already described with few modifications [17]. As hybridization 

supports, ten-well teflon slides (Heinz Herenz, Germany) were used. The slides were 

previously rinsed in ethanol (Merck, Portugal) and incubated in a 2%  

3-trimethoxysilylpropilamine solution (Merck, Portugal) in acetone (Panreac, Spain) for 1 min, 

followed by two washing steps in acetone for 1 min and one in distilled water. Ten microlitres 
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of overnight bacterial cultures in Tryptic Soy Broth (TSB) (Liofilchem, Italy), previously diluted 

at 1:40 in TSB, were placed in each well and incubated in a humid chamber for 24, 48, and 

72h at 37°C, to allow biofilm formation. After the incubation period and air-drying, bacterial 

cultures were fixed with a 4% paraformaldehyde (w/v) (Sigma-Aldrich, USA) solution in PBS 

for 3h at room temperature. After fixation, bacteria were dehydrated with ethanol at 50, 80, 

and 96%, during 3 min at each concentration. Afterward, 10 µl of hybridization buffer (0.9 M 

NaCl, 20 mM Tris–HCl, pH 7.2, 0.01% SDS) was added, containing 5 ng/µl of a 23S rRNA 

oligonucleotide probe, Sal3, specific for Salmonella spp. and labeled with fluorescein in the 

50’-end (Stabvida, Portugal) [16]. Slides were incubated in a humid chamber (Omnislide 

Thermal Cycling Block, Thermoelectron Corporation, USA) at 45°C for 3h. Slides were then 

washed in a buffer solution (0.9 M NaCl, 20 mM Tris–HCl, pH 7.2, 0.1% SDS) at 45°C during 

15 min, mounted in Vectashield Mounting Medium (Vector Laboratories, United Kingdom) 

and immediately visualized by fluorescent microscopy at 1,000x (objective HCX PLAN APD) 

in a Leica DMR microscope (Leica Microsystems Lda., Portugal), equipped with a mercury 

lamp of 100 W.  

All assays were performed in duplicate and repeated twice on different occasions.  

 

4.4.3. DNA Extraction and PCR Detection of adrA, csgD, and gcpD  

Isolates were plated onto Columbia agar supplemented with 5% sheep blood (BioMérieux, 

France) and incubated at 37°C for 24h. DNA was extracted from a single colony from an 

overnight culture using the guanidine thiocyanate method [19]. Primer sequences and PCR 

amplification protocol were performed as described by Bhowmick et al. [3] with minor 

modifications. In brief, 25 µl of PCR mix containing 2.5 U of Supreme NZYTaq 2x Green 

Master Mix (NZYTech, Portugal), 0.4 µM of primers (Stabvida, Portugal), and 0.4 µM of DNA 

template were submitted to the following PCR conditions: initial denaturation at 94°C for 5 

min, 30 cycles of denaturation at 94°C for 1 min, annealing at 50°C for csgD and adrA genes 

and at 57°C for gcpA gene for 1 min, extension at 72°C for 1 min, and a final delay at 72°C 

for 5 min. Amplified products were analyzed in a 2% agarose gel (Bioline, UK) stained with 

GelRed (Biotium, Portugal) and visualized by transillumination under UV light (Pharmacia 

Biotech, Thermal Imaging System FTI-500). NZYDNA ladder VI (NZYTech, Portugal) was 

used as molecular weight marker.  

 

4.4.4. Statistical Analysis  

Statistical analyses were performed using the SPSS 20.0 software (IBM Corporation, New 

York, USA). Time course of biofilm production by FISH and pellicle formation in the air–liquid 

interface was evaluated by Cochran’s Q test. Association between rough (RDAR/BDAR) or 

smooth (SAW) morphotypes and pellicle formation was assessed by Pearson Chi-square, 

and the strength of this association was determined by the Phi Coefficient. Time course by 
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the microtiter biofilm assay was evaluated by repeated measures (ANOVA), and differences 

between OD values and morphotypes were determined by the Kruskal–Wallis test.  

Comparison between results obtained at the time points by the microtiter biofilm plate assay 

and FISH was performed using the Cochran’s Q test. Association between a biofilm-positive 

phenotype by the microtiter assay or by FISH and the presence of biofilm related genes was 

determined by the Binomial test. Differences between biofilm production results determined 

by the microtiter assay and the groups considered in the socio-geographic evaluation, which 

included year of sample collection, district location and patient´s gender, were studied by the 

Kruskal-Wallis test. 

Results are presented by mean value ± Standard Deviation. A p-value≤0.05 was considered 

statistically significant.  

 

4.5. Results 

4.5.1. Curli fimbriae and cellulose phenotypic expression on agar plates 

Three morphotypes were detected on LB agar without NaCl supplemented with Congo red 

and Coomassie brilliant blue. RDAR was the most frequent morphotype, found in 104 

isolates (78.2%). SAW was observed in 24 isolates (18.0%), while BDAR was detected in 

only 5 isolates (3.8%). Cellulose production on LB supplemented with calcofluor was 

detected in 104 isolates (78.2%). No other morphotypes, such as PDAR and SBAM, were 

detected. 

 

4.5.2. Biofilm formation in the air-liquid interface 

Pellicle formation was observed in 104 isolates (78.2%) within 8 days of incubation. The 

percentage of isolates expressing pellicle increased with incubation time: 0.7% (n=1) at day 

1; 6.0% (n=8) at day 2; 30.8% (n=41) at day 3, 59.4% (n=79) at day 4, 70.7% (n=94) at day 

5, 74.4% (n=99) at day 6, 77.4% (n=103) at day 7, and 78.2% (n=104) at day 8. Most of the 

isolates expressing the SAW morphotype (83.3%) did not form pellicle in the air-liquid 

interface (Table 2). 
 

Table 2 - Distribution of pellicle forming isolates among the morphotypes 

 

Morphotype Day Total 

Absence of 

formation 

1 2 3 4 5 6 7 8 

BDAR 4 0 0 0 0 0 0 1 0 5 

RDAR 6 1 7 33 35 15 4 2 1 104 

SAW 19 0 0 0 3 0 1 1 0 24 

Total 29 1 7 33 38 15 5 4 1 133 
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4.5.3. Biofilm detection by FISH 

The percentage of biofilm-positive isolates evaluated by FISH increased with incubation time: 

38.3% (n=51), 82.0% (n=109) and 98.5% (n=131) of the isolates expressed biofilm at 24, 48 

and 72h, respectively. FISH detected biofilm-positive isolates from all three morphotypes. All 

isolates able to produce curli fimbriae and cellulose (RDAR and BDAR) presented a biofilm-

positive phenotype by FISH at 72h. Almost all biofilm-positive isolates expressing SAW were 

also detected by FISH at the same time point (Table 3). 

 
Table 3 - Number of biofilm-positive isolates determined by FISH at 24h, 48h and 72h 

  

 

 

 

 

 

 

 

4.5.4. Microtiter biofilm plate assay 

O.D. values obtained in this assay ranged from 0.542 to 1.339. Results revealed that all 

isolates tested produced biofilm in MHB at 24h. O.D. mean values obtained increased with 

incubation time (0.857±0.145 at 24h, 0.978±0.105 at 48h and 1.044±0.112 at 72h). 

Classification by O.D. mean values, as described by Stepanović et al. [28], also showed an 

increase in Salmonella biofilm-forming ability over time (Table 4). Isolates presenting the 

RDAR morphotype had O.D. mean values higher at 24h (0.866±0.097) than the BDAR 

(0.837±0.093) and SAW (0.823±0.079) isolates. 
 

Table 4 - Biofilm production by 133 monophasic Salmonella isolates determined by microtiter plate 
assay at three time points 

 

 

 

Number of FISH biofilm-positive isolates [n (%)] 

Morphotypes 24 hours 48 hours 72 hours 

RDAR 42 (40.4%) 88 (84.6%) 104 (100%) 

BDAR 2 (40.0%) 4 (80%) 5 (100%) 

SAW 6 (25.0%) 17 (70.8%) 22 (91.7%) 

Total 50 (37.6%) 109 (82.0%) 131 (98.5%) 

Biofilm producing isolates [n (%)] 

 24 hours 48 hours 72 hours 

Strong Biofilm 

producer 

0 0 18 (13.5%) 

Moderate Biofilm 

producer 

72 (54.1%) 88 (66.2%) 92 (69.2%) 

Weak Biofilm 

producer 

61 (45.9%) 45 (33.8%) 23 (17.3%) 
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4.5.5. PCR detection of adrA, csgD and gcpD 

Out of the 133 isolates analyzed, all (100%) presented the adrA and csgD genes, and 129 

isolates (97.0%) were positive for gcpA.  

 

4.5.6. Statistical analysis 

Pellicle formation at the air-liquid interface was evaluated over 8 days and an increase of 

pellicle-positive isolates between each time point observed was statistically significant 

(Cochran’s Q test, P<0.001). The presence of curli fimbriae and cellulose production was 

associated with the presence of pellicle formation (Pearson Qui-Square, P<0.001). 

Association between this two variables was strong (Phi Coeficient = 0.682, P<0.001).  

The increase of biofilm-positive isolates revealed by the FISH protocol was statistically 

significant between each time point (Cochran’s Q test, P<0.001). 

Regarding the microtiter biofilm assay, differences between results from the three time points 

were statistically significant (repeated measures ANOVA, P<0.001). However, differences 

between the O.D. mean values from the three morphotypes detected by plate assays were 

not statistically significant (Kruskal-Wallis test, P = 0.087). 

Comparing the results obtained by FISH and by the microtiter biofilm assay with the 

presence of biofilm related genes, it was observed an association of a FISH biofilm-positive 

phenotype at 72h with all the genes tested, namely with adrA (Binomial test, P = 0.500), 

csgD (Binomial test, P = 1.000) and gcpD (Binomial test, P = 0.687). Association of a biofilm-

positive phenotype by microtiter biofilm assay and the presence of biofilm related genes were 

also found for all genes tested. 

 

4.5.7. Socio-geographic characterization of biofilm production 

Regarding patients’ socio-geographic characterization, biofilm-forming ability at 24h 

evaluated by the microtiter assay increased along the years of sample collection, with an 

exception for the year of 2010 (Figure 1). Regarding district distribution of biofilm-positive 

isolates, it was observed that Ponta Delgada (n=6) and Vila Real (n=2) had higher O.D. 

mean values for biofilm formation at 24h, 0.969±0.113 and 0.904±0.153, respectively. 

Differences between sample collection years (Kruskal-Wallis test, P<0.001) and locations 

were statistically significant (Kruskal-Wallis test, P = 0.033). 

Higher O.D. mean values for biofilm production were found in women (W) isolates in 

comparison with isolates obtained from men (M) at 24h (W: 0.873±0.084; M: 0.839±0.095), 

at 48h (W: 0.993±0.095; M: 0.975±0.110) and at 72h (W: 1.039±0.117; M: 1.038±0.118). 

These differences were statistically significant only at 24h (t-test, P = 0.048). 
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Figure 1 – O.D. medians values of biofilm production according to the year of sample collection. 

Error Bars represents standard deviation. Circles and stars represent outliers and extreme outliers 

(outliers that are farther than tree interquartile ranges from the near edge of the box), respectively. 

 

4.6. Discussion 

Biofilm is a major bacterial virulence factor which presence may influence the outcome of an 

infection [22]. Clinical or environmental isolates expressing biofilm present an increased 

ability to survive and persist within the host or the environment, decreasing the efficacy of 

antimicrobial therapy or biocides [5]. Most studies examining biofilm formation in Salmonella 

clinical isolates have predominantly focused upon serovars such as Salmonella Typhimurium 

and Salmonella Enteritidis [24,5]. However, to our knowledge, biofilm-forming ability of the 

pandemic monophasic variant of Salmonella Typhimurium has not yet been described. This 

report aims to evaluate biofilm production by a large collection of Portuguese Salmonella 

1,4,[5],12:i:- isolates, using several methods applied at different time points. 

The most important extracellular components of biofilm matrix in Salmonella include curli 

fimbriae and cellulose. Salmonella isolates expressing RDAR morphotype can persist longer 

in the environment in comparison with other morphotypes such as BDAR or SAW [30]. The 

RDAR morphotype was the most predominant in the isolates tested, followed by SAW and 

BDAR. This is in accordance with other studies, which showed a higher prevalence of this 

morphotype in isolates associated with human salmonellosis [12,20]. Steenackers et al. 

showed that most isolates expressing SAW morphotype are more invasive, indicating that 

loss of curli and cellulose production could enhance bacteria’s ability to evade host defenses 

and cause systemic infections [26]. The author described a prevalence of approximately 10% 

of SAW isolates in a collection of 800 strains of Salmonella Typhimurium and Salmonella 
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Enteritidis [26]. In this study, the percentage found was higher (18.0%). Although our 

collection is smaller (n=133), it is important to mention that is only composed by monophasic 

Salmonella Typhimurium isolates. More than half of RDAR isolates (65.4%) were able to 

express pellicle formation at day 3 (n=33) and day 4 (n=35); by the contrary, almost all 

isolates with SAW and BDAR morphotypes were not able to produce this trait or were able to 

express pellicle only in the last days of the assay (Table 2). This suggests that RDAR 

isolates have an increased ability to produce pellicle, which may contribute to their 

persistence in the environment. Similar results were observed in a study regarding 

Escherichia coli isolates from the gastrointestinal tract, which showed that bacteria 

expressing the RDAR morphotype presented higher biofilm-forming ability, while isolates 

expressing the SAW morphotype displayed lower biofilm-forming ability [4]. 

Expression of rough or smooth morphotypes was respectively associated with the presence 

and absence of pellicle formation in the air-liquid interface, which may indicate that the 

pellicle formed in LB broth is mainly constituted by curli and cellulose, which is in accordance 

with other reports [2,21]. 

Pellicle formation ability is highly disseminated, especially in RDAR isolates. In fact, the 

percentage of pellicle positive isolates obtained in this study is higher in comparison with 

results reported by other authors [24,30]. Colonization of air-liquid interfaces by Salmonella 

can be selectively advantageous for aerobic bacteria and may cause serious problems, 

especially in industrial water systems [23]. 

Microtiter assay revealed that these isolates possess a high ability to form biofilm on plastic 

surfaces, with 100% of biofilm-positive isolates detected by the microtiter assay at 24h. 

These results are in accordance with previous studies regarding biofilm production by 

Salmonella Typhimurium, which showed that these isolates are able to form biofilm on plastic 

surfaces [12,28,27]. Biofilm formation classification showed that more than half of the 

isolates exhibit moderate biofilm producing ability at 24h, being only able to express strong 

biofilms at 72h. Most of biofilm microtiter studies regarding Salmonella serovars, including 

Salmonella Typhimurium, are only performed for 24 or 48h, with isolates revealing strong 

biofilms after these incubation times [28,27,1,7]. Since biofilm formation in Salmonella can be 

serovar-dependent [15], performing this assay until 72h could demonstrate that monophasic 

Salmonella Typhimurium isolates may express stronger biofilms later than Salmonella 

Typhimurium. 

Isolates presenting the RDAR morphotype had O.D. mean values higher at 24h than the 

BDAR and SAW isolates; however, differences between O.D. mean values from different 

morphotypes were not statistically significant. Other study also reported no significant 

differences between these three morphotypes [25].  

Besides their capacity to produce biofilm on plastic surfaces, isolates also showed the ability 

to form biofilm on glass slides, with 38.2% of biofilm positive isolates detected by FISH at 
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24h (Figure 2). It was observed that it was necessary a 72h incubation for the large majority 

of the isolates (98.5%) to adhere and form biofilm on glass slides. Differences in biofilm 

detection results were observed for FISH and the microtiter technique at 24h (38.2% and 

100%, respectively) and at 48h (82.0% and 100%, respectively). At 72h both techniques 

presented similar results (98.5% biofilm positive isolates determined by FISH and 100% by 

the microtiter plate technique). Although media composition can influence biofilm formation 

[27], this finding may be explained by the fact that Salmonella isolates adhere in higher 

numbers to hydrophobic materials, such as plastic, in comparison with hydrophilic materials, 

such as glass [8]. 

 
Figure 2 – Multicellular phenotype using different methodologies. 

Left - Pellicle formation at day 4. Middle – RDAR morphotype. Right - Biofilm-positive phenotype by 
FISH protocol. Photo was taken at 1000X magnification under oil immersion. 
 

The FISH protocol was performed for the first time as a high-throughput screening method to 

study biofilm formation in a large collection of Salmonella monophasic isolates, showing that 

almost all SAW isolates expressed biofilm at 72h (Table 3). At 24 and 48h the percentage of 

biofilm-positive isolates was lower in SAW when compared with the other two morphotypes. 

FISH does not produce the same results as the microtiter assay standard technique. 

However, FISH should be considered an important low cost and high-throughput screening 

method, especially when evaluating isolates obtained in environments where glass surfaces 

are relevant for biofilm formation. Microtiter assays are able to detect biofilm production by all 

SAW isolates at 24h, and it could also be used as a good indicator for the presence of biofilm 

related genes. 

SAW is presented when csgD is not expressed, but this doesn´t mean that isolates 

expressing this morphotype do not form an extracellular matrix that can be detected by other 

biofilm protocols, such as the microtiter assay. In fact, Salmonella can produce other matrix 

components at 25ºC and 37ºC that have an important role in biofilm formation, such as 

capsular polysaccharide, and even the production of curli fimbriae can occur upon iron 

depletion at 37°C [6]. Genes responsible for biofilm formation (adrA, csgD and gcpA) are 

present in almost all isolates. However, their expression in plate assays was not always 

observed, which can be explained by the fact that biofilm formation in Salmonella is 
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influenced by environmental conditions, including temperature [23]. The high frequency of 

gcpA may indicate a high ability to form biofilm in low nutrient conditions [3]. 

Microbial biogeography studies, especially regarding human foodborne pathogens such as 

Salmonella, may contribute to understand the effect of environmental selection upon 

microbial communities, which is extremely relevant in terms of public health safety. As 

determined by microtiter assays, biofilm production ability has increased from 2006 

(0.743±0,035) to 2011 (0.981±0.085). Since its first report in Europe in the mid-1990s, the 

presence of this monophasic Salmonella has been increasing, being one of the major 

serovars responsible for human salmonellosis worldwide. The improvement of biofilm-

forming ability through the years may be responsible for an increased aptitude to persist in 

the environment, showing that biofilm could be one of the reasons accountable for the rise of 

this serovar, not only in Portugal but also worldwide, and also for its higher fitness to persist 

in the ecosystem. 

Considering district distribution, statistically significant differences were found between 

isolates from different districts, despite the lower number of samples available from some 

locations (Table 1). Differences in the isolates ability to form biofilm throughout the country 

may be responsible for differences in the capability to persist in the environment; therefore, 

regulatory measures should take this fact into consideration and should be adapted to the 

different locations. Differences regarding biofilm formation at 24h by the two genders were 

also statistically significant, demonstrating that isolates collected from women have an 

increased ability to produce biofilm in comparison with isolates obtained from men. Microbial 

biogeography analysis, especially concerning virulence factors such as biofilm, may allow for 

the adaptation of antimicrobial therapeutic protocols to different population risk groups. 

As far as we know, this is the first study describing biofilm formation by Salmonella 

1,4,[5],12:i:- isolates, revealing that this virulence trait is widely disseminated in Portugal and 

can represent an important concern regarding the public health safety. 
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Effect of simulated gastrointestinal conditions on biofilm formation by 

Salmonella 1,4,[5],12:i:- 

  



 88 



 89 

5.1. Effect of simulated gastrointestinal conditions on biofilm formation by 

Salmonella 1,4,[5],12:i:-  

Rui Seixas • Marta Gabriel • Jorge Machado • Luís Tavares • Fernando Bernardo • Manuela 

Oliveira 

 

Paper published in ScientificWorldJournal 2014;2014:153956 

* The author contributed to the conception and design of the study, conducted the 

experiments, performed the data analysis process and drafted the manuscript.  

 
5.2. Abstract 

Salmonella Typhimurium 1,4,[5],12:i:- is a major serovar responsible for human 

salmonellosis whose biofilm forming ability, influenced by environmental conditions like those 

found in the gastrointestinal tract is one of the main contributing factors to its ability to persist 

in the host and thus one of the main causes of chronic relapsing infections.   

Most studies to evaluate biofilm formation are performed in microtiter assays using standard 

media. However, no reports are available on the ability of this serovar to produce biofilm 

under in vitro simulated gastrointestinal conditions which better correlate to the environment 

found in the gastrointestinal tract. 

To address this, a modified biofilm assay simulating intestinal fluid was conceived to assess 

the biofilm formation of 133 Salmonella Typhimurium 1,4,[5],12:i:- isolates with and without 

agitation and at three different time points (24h, 48h and 72h). The results were then 

compared to the existing microtiter method using conventional biofilm growth medium 

(Mueller Hinton Broth). 

Statistical analysis revealed significant differences in the results obtained between the three 

protocols used. The simulated human intestinal environment impaired biofilm production 

demonstrating that conditions like pH, agitation or the presence of enzymes can influence 

biofilm production. Therefore, results from in vitro simulation of in vivo conditions may 

contribute to unravel factors relating to biofilm formation and persistence in the context of the 

human host 

 

Keywords: Biofilm, Gastrointestinal conditions, Microtiter biofilm assay, Salmonella 

Typhimurium 1,4,[5],12:i:-. 
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5.3. Introduction 

The emergence of a pandemic monophasic variant of Salmonella Typhimurium, S. enterica 

subsp. enterica serovar 1,4,[5],12:i:-, was first reported in Europe in the mid-1990s, and is 

presently considered to be one of the major serovars responsible for human salmonellosis 

worldwide [1]. 

Many studies have demonstrated that Salmonella bacteria are capable of forming biofilms on 

a wide variety of abiotic and biotic surfaces [2, 3]. These highly organized multicellular 

bacterial structures, responsible for chronic or persistent infections, decrease antimicrobial 

therapy efficacy and improve resistance to environmental stresses such as desiccation, high 

temperatures and antiseptics [4, 5]. 

Since its conception by Christensen and collaborators in 1985, the 96-well microtiter plate 

test has been the most frequently used assay for high throughput quantitative evaluation of 

biofilm-forming ability by bacteria [6, 7]. Over the years, modifications have been made to 

improve its accuracy [8, 9]. It is generally performed under static conditions using different 

media, such as Mueller Hinton Broth (MHB) or Tryptic Soy Broth (TSB), and enables 

quantitative biofilm determination through the application of different dyes such as crystal 

violet, resazurin or dimethyl methylene blue [7, 8]. 

However these in vitro conditions differ greatly from the human intestinal environment, in 

terms of organic composition (enzymes), pH or dynamics (peristalsis), which is the 

preferential location for Salmonella infection,  

Several factors including pH, temperature and media composition [10, 11], affect biofilm 

formation. We aimed to evaluate the influence of conditions mimicking the intestinal human 

tract environment on biofilm formation by Salmonella Typhimurium 1,4,[5],12:i:- in vitro. With 

these modifications, which better simulate real conditions, we aim to provide a better insight 

into the influence the gastrointestinal environment has upon the biofilm forming ability of this 

serovar and ultimately provide more reliable laboratory and clinically relevant results. 

 

5.4. Materials and Methods 

5.4.1. Bacterial isolates and identification 

In this study, 133 Salmonella Typhimurium 1,4,[5],12:i:- isolates, collected in Portugal from 

2006 to 2011 from different origins were used. Isolates were obtained from clinical (n=125), 

environmental (n=5) and animal (n=3) samples. All Salmonella isolates were serotyped and 

identification was confirmed by multiplex PCR as recommended by EFSA (EFSA Panel on 

Biological Hazards 2010).  

 

5.4.2. Evaluation of biofilm formation by a standard microtiter biofilm assay 

Alamar blue (AB) (Thermo Fisher Scientific, Oxford, United Kingdom) biofilm assay was 

performed according to the protocol described by Pettit et al., (2005) [12], with minor 
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modifications. Overnight cultures were used to prepare bacterial suspensions with 5x105 

CFU/mL in MHB (Liofilchem, Roseto Degli Abruzzi, Italy. Suspensions were placed in flat-

bottom, polystyrene, tissue-culture-treated 96-well microtiter plates (Orange Scientific, 

Braine-l'Alleud, Belgium). Three microtiter-wells were used per isolate. Plates were incubated 

in a humidity chamber at 37°C without agitation for 24h, 48h and 72h. After each time point, 

plates were removed from the incubator and 5 µl of AB were added to the wells, gently 

shaken and incubated for 1h at 37°C, in order to stain the adherent and viable bacteria. 

Absorbances at 570 nm were determined using a Spectra MAX 340PC microplate reader 

(Molecular Devices, Sintra, Portugal). All microtiter assays were carried out in triplicate, 

repeated on three different occasions and the results were averaged. 

 
5.4.3. Biofilm formation under in vitro simulated intestinal conditions by a microtiter 

biofilm assay 

5.4.3.1. In vitro passage of Salmonella Typhimurium 1,4,[5],12:i:- under simulated 

gastric conditions  

Microtiter biofilm assay was also performed using simulated gastrointestinal conditions as 

described by De Angelis et al., (2006) [13]. Briefly, stationary-phase bacteria grown in 5 mL 

of TSB were harvested at 6000 g (Hermle Labortechnik, Wehingen, Germany) for 10 min and 

suspended in 5 mL of simulated gastric fluid which contained NaCl (125 mM/L), KCl (7 

mM/L), NaHCO (45 mM/L), and pepsin (3 g/L) (Sigma-Aldrich, St. Louis, USA), pH 3. 

Bacterial suspensions were submitted to agitation conditions for 180 min with a mini shaker 

apparatus (VWR, Lisboa, Portugal) at 175 rpm, in order to simulate the passage through the 

stomach. Aliquots were taken in order to determine the number of colony forming units per 

mL by measuring Optical Density (O.D.) values, based on standard curves previously 

determined (data not shown).  

 

5.4.3.2. In vitro biofilm formation under simulated intestinal conditions  

After gastric digestion, bacteria cells were harvested using the same conditions, washed with 

0.9% sterile sodium chloride solution and suspended in simulated intestinal fluid (SIF), 

containing 0.1% (w/v) pancreatin (AppliChem, Darmstadt, Germany) and 0.15% (w/v) bile 

bovine (Sigma-Aldrich, St. Louis, USA), pH 8.0 [13].  

Then, 100 µl of bacterial suspensions in SIF were incubated in flat-bottom, polystyrene, 

tissue-culture-treated 96-well microtiter plates (Orange Scientific, Braine-l'Alleud, Belgium). 

For each isolate, three microtiter wells were used. Plates were incubated in a humidity 

chamber at 37°C under stationary and agitation conditions with a mini shaker apparatus 

(VWR, Lisboa, Portugal) at 100 rpm for 24, 48 and 72h and after each time point, plates were 

removed from the incubator and 5 µl of AB was added to the wells. The plates were then 

incubated for a further 1h at 37°C. Absorbances at 570 nm were determined using a Spectra 
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MAX 340PC microplate reader (Molecular Devices, Sintra, Portugal). All microtiter assays 

were carried out in triplicate, repeated on three different occasions and the results were 

averaged.  

 

5.4.4. Classification of biofilm-forming ability by microtiter plates 

Based on the O.D. and O.D. cut-off (O.D.c) values, isolates were classified into different 

categories according to their biofilm-forming ability, as previously described by Stepanović et 

al. 2000 [9]. The O.D. cut-off was defined as three standard deviations above the mean O.D. 

of the negative control and isolates were classified as follows: if O.D. ≤ O.D.c, isolates were 

considered to be non biofilm producers; if O.D. ≤ 2 x O.D.c, weak biofilm producers; if 2 x 

O.D.c < O.D. ≤ 4 x O.D.c, moderate biofilm producers; and if 4 x O.D.c < O.D., strong biofilm 

producers [14]. AB assays were performed in triplicate, repeated on different occasions and 

results were averaged. Results are presented as mean value ± Standard Deviation (SD). 

Statistical analyses were performed using the SPSS 20.0 software (IBM Corporation, New 

York, USA). Differences between time points and techniques were evaluated by repeated 

measures ANOVA and one-way ANOVA, respectively. Tukey post hoc tests were used to 

compare biofilms O.D. mean values. Correlation between CFU/mL after gastric passage and 

biofilm production at 24h was determined by Pearson coefficient. P values ≤ 0.05 were 

considered statistically significant. 

 

5.5. Results and Discussion 

Standard microtiter biofilm assay staining with resazurin (Alamar Blue), a metabolic activity 

indicator frequently used for quantitative biofilm determination revealed that Salmonella 

Typhimurium 1,4,[5],12:i:- isolates possess a high ability for biofilm formation on plastic 

surfaces, which is in accordance with previous studies [7, 10, 15]. O.D. mean values in MHB 

increased over time, it was observed that biofilms with the highest O.D. mean values are 

produced at 72h (Figure 1). This increase was statistical significant (repeated measures 

ANOVA, P ≤ 0.001). 
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Figure 1: Time course of biofilm production by 133 Salmonella Typhimurium 1,4,[5],12:i:- isolates 
using an Alamar Blue microtiter assay applied in different incubation conditions.  

Mean and standard deviation for MHB were at 24h 0,856 ± 0,095, at 48h 0,977 ± 0,105, and at 72h 
1,044 ± 0,118. SIF under static conditions were at 24h 0,531 ± 0,217, at 48h 0,443 ± 0,222, and at 72h 
0,409 ± 0,146. SIF under agitation conditions were at 24h 0,377 ± 0,136, at 48h 0,355 ± 0,142, and at 
72h 0,297. 
 

Following the simulated gastric passage using the modified microtiter biofilm assay, CFU/mL 

values have a significant positive correlation, although weak, with biofilm production at 24h in 

SIF under static conditions (Pearson r=0,183, P = 0.018) and in SIF under dynamic 

conditions (Pearson r=0,158, P = 0.035). Higher numbers of CFU/mL can lead to a higher 

biofilm formation, even though the effects of gastric stress conditions on biofilm formation 

may be strain-specific, as demonstrated by others authors [16]. 

The largest number of isolates forming weak biofilms was found in SIF under dynamic 

conditions (83.5% at 24h; 51.1% at 48h and 57.9% at 72h), while the largest number of 

isolates able to form moderate and strong biofilms was found in MHB at 48h and at 72h 

(66.2% and 99.2%, respectively) (Table 1). However, 21% of the isolates showed strong 

biofilm-forming ability at 24h in SIF under static conditions, and this percentage decreased 

with time (9% at 48h and 3% at 72h). In MHB, more than one third (37.6%) of the Salmonella 

Typhimurium 1,4,[5],12:i:- isolates tested were only able to produce strong biofilms at 72h.  

Human gastrointestinal conditions may decrease bacteria’s ability to adhere to a substratum, 

the first step required for biofilm formation and impaired the ability to form strong biofilm [17]. 

Time
72 H48 H24 H

O
D

 M
ea

ns

1,200

1,000

,800

,600

,400

,200

SIF under dynamic conditions
SIF under static conditions
MHB

Media and conditions



 94 

Table 1 - Characterization of biofilm-forming ability of 133 Salmonella Typhimurium 1,4,[5],12:i:- 
isolates using a Alamar Blue microtiter assay applied in different incubation conditions 
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O.D. mean values of biofilm production in SIF under dynamic conditions decreased 

significantly with incubation time (repeated measures ANOVA P ≤ 0.001), and are 

significantly lower in comparison with static conditions (ANOVA, P ≤ 0.001), at all the time 

points studied. This can be explained by the fact that the dynamic conditions applied may 

have impaired bacterial adhesion and is in accordance with other reports that used dynamic 

methodologies [11, 17].  

Biofilm O.D. mean values obtained in SIF with static conditions, although lower than the ones 

from MHB, are higher than in SIF with dynamic conditions, these differences are statistically 

significant (ANOVA, P ≤ 0.001) showing that conditions, like agitation, have a significant 

influence on biofilm formation. Dynamics of intestinal peristalsis may strongly influence 

bacteria’s ability to adhere to a surface, and should be included as a parameter during biofilm 

evaluation, as already stated in previous studies [17]. 

The decrease in biofilm OD mean values between 48h and 72h at SIF with dynamic 

condition was significantly higher than in SIF under static conditions (Tukey, P ≤ 0.001), 

which can be due to a decrease in the number of viable bacteria. The higher number of dead 

bacteria cells may be due to a decrease in nutrients together with an accumulation of toxic 

compounds originating from bacterial metabolism that were disseminated by the agitation 

conditions during this assay [18]. 

There were significant differences between results obtained by the three protocols at the 

three time point evaluated (ANOVA, P ≤ 0.001), which indicates that intestinal conditions can 

influence biofilm production by Salmonella. White et al. 2008 [19], previously showed that 

expression of biofilm related genes like curli genes are turned off during in vivo infection, but 

turned on again once the bacteria is shedded into the environment. This may explain why 

biofilm production is lower in SIF than in MHB, especially if considering the dynamic 

conditions present in the intestinal tract due to peristalsis. 

 

5.6. Conclusions 

The simulated gastrointestinal environment impaired biofilm production by Salmonella, 

demonstrating that conditions simulating those encountered in vivo like pH, agitation or the 

presence of enzymes can influence in vitro biofilm formation results, emphasizing the 

importance of experimental conditions on the results obtained. In conclusion, the provision of 

dynamic and environmental conditions that better simulate the in vivo gastrointestinal stress 

that Salmonella is subjected to, should be included as one of the parameters in the 

evaluation of biofilm producing strains, enabling a more accurate correlation between in vitro 

biofilm formation and what happens in the gastrointestinal tract. By approximating 

experimental conditions to those that bacteria encounter in the human host it may be 

possible to obtain more insight into the real ability and importance of biofilm production when 

compared with MHB used in standard biofilm assays. 
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6.1. Discussion 

Salmonellosis is one of the most frequent foodborne diseases. An estimated 93.8 million 

cases of gastroenteritis caused by Salmonella species occur globally each year and among 

these, nearly 80.3 million cases are foodborne (Majowicz et al. 2010). Recently, a multidrug 

resistant serovar has emerged, Salmonella 1,4,[5],12:i:-, a monophasic variant of Salmonella 

Typhimurium, which is now the third most frequent serovar isolated from humans in many 

countries (EFSA and ECDC 2015).  

In Portugal, Salmonella 1,4,[5],12:i:- was isolated for the first time in poultry in 1986 

(Machado & Bernardo 1990). It’s incidence increased sharply thereafter, and in 2012 was 

even more frequently detected than Salmonella Typhimurium (Silveira, Marques & Machado 

2013). 

Despite the escalating expansion of this serovar, research on its incidence, characterization 

and pathogenesis is still scarce. In fact, Pubmed websearch on Salmonella 1,4,[5],12:i:- 

produces under 1.800 results, while Salmonella Typhimurium originates 19 times more 

results. Nowadays, there is still much to discover regarding this monophasic variant, 

including its epidemiology and distribution, phenotypic and genotypic features, biofilm-

forming ability and its relevance in host and environment persistence. These topics were the 

focus of this thesis, which aims to contribute for unravelling the importance of such isolates in 

Portugal. 

 

 
Portugal have locations with a higher risk for human Salmonella 1,4,[5],12:i:- 

infections 
 

 

Using data provided by INSA, the application of both statistic and geoprocessing methods 

combined with spatial cluster analysis allowed the definition of high-risk areas in Portugal for 

human Salmonella 1,4,[5],12:i:- infections. In fact, the determination of areas of higher risk of 

infection for this serovar, or other foodborne pathogens, may be critical for assessing 

population at risk or for establishing prevention programs.  

One of the main findings was the detection of three statistically significant clusters of higher 

than expected infection rates, two located in the north of Portugal, including one at the 

coastland (Cluster 1 [RR=3.58, P ≤ 0.001]) and one at the countryside (Cluster 3 [RR=17.76, 

P ≤ 0.001]) and a larger cluster involving the center and south of Portugal (Cluster 2 

[RR=4.85, P ≤ 0.001]). 

Custer analysis suggests the occurrence of non-random cases in these regions, which may 

reveal an increased exposure to human Salmonella 1,4,[5],12:i:- infection in these areas. The 



 102 

risk of infection was determined, being observed that it could be 18 times higher for an 

individual located inside the clusters compared to individuals outside these areas. 

Several reasons may explain the occurrence of these spatial clusters. Although not 

evaluated in this study, one hypothesis is the association with pig farms, which are prevalent 

near these locations (Almeida 2008). In fact, there is increasing evidence suggesting pigs act 

as reservoirs for this serovar (Antunes et al. 2011). Moreover, foodborne outbreaks caused 

by Salmonella 1,4,[5],12:i:- have been reported in Luxembourg in 2006, due to contaminated 

pork products, and France in 2010 (Mandilara et al. 2013). 

Despite the increasing evidence of pigs as a reservoir host, other animals may be also 

implicated in serovar 1,4,[5],12:i:- dissemination, including cows and wild animals, as pointed 

out by other reports (Zamperini et al. 2007, Ido et al. 2015). Furthermore, several foodborne 

outbreaks involved different vehicles have been documented, including a multistate outbreak 

in the USA in 2011, which was associated to the consumption of contaminated alfalfa sprouts 

and an outbreak in Denmark in 2012, which was linked to beef (Mandilara et al. 2013). The 

contamination of irrigation water channels was also suggested to be related in an outbreak in 

Italy that occurred between 2013 and 2014 (Cito et al. 2016). 

Regarding the distribution of this serovar throughout Portugal, most districts have reports of 

Salmonella 1,4,[5],12:i:-; however, data analysed in this study was gathered by a passive 

monitoring system, which often leads to the underestimation of the number of cases. 

Comparing with other serovars commonly documented, such as Salmonella Enteritidis and 

Typhimurium, Salmonella 1,4,[5],12:i:- isolation reported in Portugal is low, despite the 

increasing annual incidence observed during the 10-year period considered in this study.  

Additionally, a decrease in the total number of Salmonella isolates obtained by the 

Portuguese national laboratory was observed, a trend also observed in many EU countries 

(EFSA 2010b, Mandilara et al. 2013). This reduction resulted from the decrease of 

Salmonella Enteritidis isolates reported, as the total number of Salmonella Typhimurium 

isolates was relatively consistent over time and Salmonella 1,4,[5],12:i:- numbers increased, 

as already stated. The fact that the reduction of the total number of isolates is mainly 

attributed to the decrease of Salmonella Enteritidis isolation can be related to the successful 

establishment of Salmonella control programs (Mandilara et al. 2013). 

In order to increase the efficacy of such programs regarding Salmonella 1,4,[5],12:i:-, it is 

necessary to understand the features of this serovar, in particular the ones promoting 

infections in humans’ populations.  
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Salmonella 1,4,[5],12:i:- R-type ASSuT isolates are commonly associated with 

multiple virulent features and a high diversity of pulsotypes 
 
 

The incidence of infections caused by different Salmonella serovars appears to change 

considerably over time and regarding Salmonella 1,4,[5],12:i:-, this issue is even more 

complex. It is difficult to have a clear characterization of the spread of this emergent serovar 

because it appears to be underreported due to the lack of a consistent identification method 

allowing its differentiation from Salmonella Typhimurium. At the molecular level, 1,4,[5],12:i:- 

serovar is very similar to Salmonella Typhimurium, being characterised by the lack of fljB 

gene expression, which encodes the second phase flagellar antigen (Switt et al. 2009). The 

correct identification of Salmonella 1,4,[5],12:i:- solely according to traditional serotyping 

must reveal the detection of somatic antigens of serogroup B and phase-1 flagellar antigen 

“i”, and the repeated phase inversion assays performed must not provide evidence for 

phase-2 flagellar antigen production.  

There are several concerns regarding serotyping. In fact, the number of times that phase 

inversion assays should be repeated to ensure that the strain is truly monophasic is not 

standardized; the failure to detect phase-2 antigen due to a low of expression is also a 

possibility; finally the entire procedure requires several days before allowing to confirm the 

identification of monophasic variant strains, hampering the timely application of public health 

measures (EFSA 2010b, Barco et al. 2011). 

Identification of Salmonella 1,4,[5],12:i:- isolates by molecular methods such as PCR, as 

recommended by EFSA, is of major importance for guarantying surveillance accuracy, since 

serotyping alone can lead to misidentifications. Such methods are especially relevant since 

Salmonella Typhimurium and its monophasic variant identification are mandatory by the 

European regulations aiming at the reduction of the prevalence of Salmonella serovars in 

poultry (Official Journal of the European Union 2003). Our research, as other reports, 

showed that standard serotyping needs to be combined with multiplex PCR in order to 

correctly identify and report isolates as Salmonella 1,4,[5],12:i:- (Barco et al. 2011) 

According to our results, 71.1% of isolates serotyped as 1,4,[5],12:i:- were confirmed as 

monophasic variants by PCR assays. Several studies from other countries reported similar or 

higher isolation percentages: 71.4% in Brazil (Tavechio, Ghilardi & Fernandes 2004), 82% in 

Greece (Mandilara et al. 2013), 90.3% in Italy (Barco et al. 2011), 91.7% in Poland (which 

also included isolates from the Ukraine and Belarus) (Wasyl & Hoszowski 2012), and 94.2% 

in France (Lailler et al. 2013). 

Regarding virulent features, the most frequent R-type isolated from 30% of the human 

infection cases and farming animals is the ASSuT tetraresistance pattern, also known as R-

Type ASSuT, which shows co-resistance to ampicillin, streptomycin, sulphonamides and 
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tetracyclines (Lucarelli et al. 2010). Due to the high prevalence of this antimicrobial 

resistance profile and its scarce reports until 2010, it was relevant to characterize the 

Salmonella 1,4,[5],12:i:- R-type ASSuT Portuguese isolates using phenotypic and genotypic 

approaches. This characterization was only performed using confirmed monophasic 

Salmonella 1,4,[5],12:i:- isolates by multiplex PCR. 

The ASSuT tetraresistance pattern was detected and confirmed by minimal inhibitory 

concentration (MIC) determination in 61.6% of the Portuguese isolates under study, in a 

similar percentage observed in another European study (60%) (Hopkins et al. 2012) and in a 

study performed in Asia (54%) (Yang et al. 2015). This pattern has also been identified in 

many other countries, including Czech Republic, Denmark, France, Italy, Poland, Spain, 

United Kingdom and USA (Hopkins et al. 2010, Lucarelli et al. 2010, Hopkins et al. 2012, 

Mandilara et al. 2013, Madajczak et al. 2014). A report from 2013, including isolates from 

Canada, described one of the highest occurrence percentage of R-type ASSuT (76.5%) 

(Mulvey et al. 2013).  

In Portugal, the ASSuT pattern is widely disseminated, being present in isolates from 10 of 

the 14 districts under study. These results point out for the importance isolates regarding 

public health safety.  

The antimicrobial genetic determinants responsible for this resistance phenotype are present 

in a chromosomal resistance island that frequently includes blaTEM, strA-strB, sul2 and tetB 

genes (EFSA 2010b, Ke et al. 2014). Almost 90% of the Portuguese R-type ASSuT isolates 

tested presented all these genetic determinants, as also documented in several reports 

(Hopkins et al. 2010, Lucarelli et al. 2010, Antunes et al. 2011), The remaining 10% of the 

isolates exhibited deletions of one, two or three of these determinants. These genes are 

typical associated with the European clone, which differs from the Spanish clone by the 

presence of different antimicrobial resistance determinants and even by their position on the 

bacterial DNA. Therefore, the Portuguese clones may be related to the European clone, 

already disseminated in many countries, and to the one which appeared in Italy sixteen years 

ago (Hopkins et al. 2010).  

Recently, it was demonstrated that the horizontal acquisition of this resistance region may be 

responsible for the monophasic phenotype of Salmonella 1,4,[5],12:i:- (García et al. 2016). 

This study revealed that this region includes genes that replaced the ones responsible for the 

expression of the second phase flagellar antigen and may represent an example of 

stabilization of plasmid material, now present in the bacterial chromosome (García et al. 

2016). 

In addition to the typical R-type ASSut pattern found in Salmonella 1,4,[5],12:i:- isolates, 

additional resistances to quinolones, aminoglycosides or cephalosporins are reported in the 

European clone (EFSA 2010b). However, the resistance rates of quinolones and 

fluoroquinolones, in particular nalidixic acid and ciprofloxacin, and also of 3rd generation 
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cephalosporins, including cefotaxime and ceftazidime, are usually low (Frasson, Bettanello, 

De Canale, Richter & Palù 2016).  

In this study, as well in several others (Mulvey et al. 2013, Frasson et al. 2016), the 

resistance rates of serovar 1,4,[5],12:i:- human isolates for these antimicrobials does not 

exceed 10%. Moreover, resistance rates for nalidixic acid are usually higher comparing to 

ciprofloxacin and 3rd generation cephalosporins (EFSA and ECDC 2014, Ke et al. 2014, 

Frasson et al. 2016). Similar percentages are also observed in isolates of different origins, 

including food (Yang et al. 2015) and animal isolates (Tu et al. 2015).  

It is important to note that resistance to nalidixic acid, although detected in only seven 

isolates from these study, is critical, as it may represent a reduced susceptibility to 

ciprofloxacin (Ryan, Dillon & Adley 2011), which together with 3rd generation cephalosporins, 

are the most used antimicrobials in the treatment of human salmonelosis. This result 

highlights the need for continuous monitoring of both nalidixic acid and ciprofloxacin 

resistance levels in Salmonella 1,4,[5],12:i:-, as also recommended by EFSA (EFSA 2010a, 

Ryan et al. 2011).  

Additionally, these tetraresistant isolates should be submitted to genetic discrimination 

methods in order to determine strain relatedness, unravel epidemic patterns and confirm 

possible outbreaks. The PFGE technique is acknowledged to be highly discriminative and of 

epidemiological relevance making it one of the most reliable typing procedures (Wattiau et al. 

2011).  

Regarding the molecular epidemiology of the Portuguese R-type ASSuT isolates, their 

population structure is highly diverse. The genetic diversity revealed in this study maybe 

associated with extensive sampling period of 5 years, also related with the absence of 

relation with any Salmonella 1,4,[5],12:i:- outbreaks (Tavechio et al. 2009). This high diversity 

of clones was also detected in other European reports, even among isolates from a single 

country (Soyer et al. 2009, Mandilara et al. 2013). However, three predominant clones 

(STYM18; n=7, STYM23; n=7, STYM33; n=6) were identified and correspond approximately 

to 25% of the Salmonella 1,4,[5],12:i:- R-type ASSuT isolates. 

The high genetic diversity does not relate to the low variability of the virulence gene 

repertoire of the Salmonella 1,4,[5],12:i:- isolates evaluated, since only four different 

virulotypes were observed (gcpA+spvC-, gcpA-spvC+, gcpA+spvC+, gcpA-spvC-). The low 

variability of virulence genes between isolates can be explained by the fact that most isolates 

were collected from humans and therefore, pointing out for the need of a common core of 

virulence genes to promote invasive salmonellosis (Suez et al. 2013). 

The invA and sopB genes, detected in all isolates, are genetic markers for the presence of 

the Salmonella Pathogenicity Islands (SPI) 1 and 5, respectively (Marcus et al. 2000). 

However, their detection does not necessarily imply the presence of the entire SPI. SPI are 

genes clusters present in the chromosome, usually associated with enhanced invasion and 
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intracellular survival. In particular, SPI-5 has been largely associated with the ability to 

promote enteritis (Marcus et al. 2000)  

The spvC gene was detected in two-thirds of the isolates (67.1%). It is located at a highly 

conserved 8kb operon formed by five genes, designated spvRABCD, coding for Salmonella 

virulence plasmid (Marcus et al. 2000). A previous report (Guiney & Fierer 2011) showed that 

isolates collected from systemic infections of immunocompromised patients, frequently carry 

the spv locus. This gene is associated with an increased growth rate in host cells and with 

the downregulation of cytokine release from infected cells (Mazurkiewicz et al. 2008). The 

presence of this gene in the Portuguese Salmonella 1,4,[5],12:i:- isolates may be responsible 

for increased virulence, particularly relevant for immunocompromised patients.  

The high frequency of gcpA (95.1%) may indicate a high ability of 1,4,[5],12:i:- serovar to 

form biofilm under low nutrient conditions, as already demonstrated for Salmonella 

Weltevreden (Bhowmick et al. 2011).  

 

 
Biofilm formation in Salmonella 1,4,[5],12:i:- may be one of the reasons 

responsible for the expansion of this serovar in Portugal 
 
 

It is well established that biofilm formation can play an important role during Salmonella 

infection and persistence, which may change completely the infection prognosis 

(Steenackers et al. 2012). 

Until now, most studies regarding biofilm formation in Salmonella have mainly focused upon 

serovars such as Salmonella Typhimurium and Salmonella Enteritidis (Castelijn, van der 

Veen, Zwietering, Moezelaar & Abee 2012, Corcoran et al. 2013, De Oliveira et al. 2014). 

Biofilm-forming ability evaluation of Salmonella 1,4,[5],12:i:- using phenotypic and genotypic 

approaches has not yet been fully addressed, maybe due to the recent expansion of this 

serovar or difficulties in its identification.  

Many bacteria species are able to form bacterial communities and produce a biofilm matrix, a 

group of extracellular components consisting of proteins, extracellular DNA and 

polysaccharides. In Salmonella, the most important components of this matrix are curli 

fimbriae and cellulose, which can be detected by the phenotypic expression of different 

morphotypes in agar plates (Malcova et al. 2008). Regarding Salmonella 1,4,[5],12:i:- 

Portuguese isolates, the RDAR (red, dry and rough) morphotype, which is able to coexpress 

curli fimbriae and cellulose is the most predominant one, following by the SAW (smooth and 

white) morphotype, which is not able to express any of these two components, and by the 

BDAR (brown, dry and rough) morphotype, able to express fimbriae but not cellulose. 

Although the RDAR morphotype in Salmonella 1,4,[5],12:i:- was described for the first time in 

this study, results are in accordance with other studies, which showed a higher occurence of 
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this morphotype in human clinical isolates of Salmonella, including Salmonella Typhimurium 

(Römling et al. 2003, Karaca, Akcelik & Akcelik 2013). 

RDAR expression in Salmonella, and even in other Gram-negative bacteria, including E.coli, 

is associated to an increased environmental persistence capacity (Bokranz, Wang, Tschäpe 

& Römling 2005). In fact, pellicle formation, which is the formation of biofilm at air–liquid 

interfaces, characterized by a floating structure that requires a high organization due to the 

lack of a solid surface for initial attachment, is rapid and highly frequent in RDAR Salmonella 

1,4,[5],12:i:- isolates, with the majority of the RDAR isolates being able to express pellicle at 

day 3 and 4 in a 8-day assay.  

The ability for pellicle formation may vary between Salmonella serovars. One study revealed 

high frequencies of pellicle formation for serovars Agona (100%), Montevideo (100%) and 

Senftenberg (88%) and low frequency for serovar Typhimurium (55%). Although Salmonella 

Typhimurium demonstrated a lower ability to form pellicle, in our study the monophasic 

variant of this servoar revealed a higher ability to produce pellicle, with almost 80% of the 

isolates being able to express it. It is important to note that both studies were performed with 

the same conditions, allowing this comparison (Vestby et al. 2009). Additionally, serovar 

Agona and Montevideo are rapid pellicle producers being able to form pellicle between day 2 

and 3, similar to Salmonella 1,4,[5],12:i:- isolates, while serovars Senftenberg and 

Typhimurium are slow pellicle producers (Vestby et al. 2009). Implications of biofilm 

formation at these interfaces is mainly important to the food processing industry, where 

pellicle may impair several industrial operations, in particular in water systems, decreasing 

the water velocity, carrying capacity and clogging of pipes (Scher, Romling & Yaron 2005). 

Other authors (Römling et al. 2003, Solomon, Niemira, Sapers & Annous 2005, Steenackers 

et al. 2012) demonstrated that most isolates expressing SAW morphotype are more invasive, 

as the loss of abitlity to produce curli and cellulose may enhance bacteria’s ability to evade 

host defenses and cause systemic infections. In this report, one third of isolates resistant to 

fluoroquinolones, including ciprofloxacin and 3rd generation cephalosporins as ceftazidime or 

cefotaxime, also expressed the SAW morphotype, which could be important in clinical 

settings, since they are associated with an enhanced invasiveness (Steenackers et al. 2012, 

Seixas, Machado, Bernardo, Vilela & Oliveira 2014b).  

Biofilm-forming ability is frequently evaluated using a high-throughput experimental setup 

based on 96-well polystyrene microtiter plates wells (Stepanović et al. 2004, Vestby et al. 

2009, Mishra et al. 2015). Biofilm formation by Salmonella 1,4,[5],12:i:- isolates evaluated by 

this method revealed a high ability to form biofilm on plastic surfaces, with all isolates being 

biofilm-positive at 24h. This was not surprising since other serovars, including Salmonella 

Typhimurium, are also able to form biofilm on plastic surfaces (Karaca et al. 2013, Keelara, 

Thakur & Patel 2016).  
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The Stepanović classification regarding biofilm formation using microtiter assays allowed to 

observe that more than half of the isolates exhibited moderate biofilm-producing ability at 

24h. However, our assays were performed after 24h, 48h and 72h incubation period, which 

allowed Salmonella 1,4,[5],12:i:- to exhibit strong biofilms at the last time point (13.5% of all 

isolates). Although most studies aiming at evaluating biofilm formation by Salmonella 

serovars using microtiter plates only perform 24h incubations (Stepanović et al. 2004, Karaca 

et al. 2013, Mishra et al. 2015), once biofilm formation in Salmonella can proceed through 

different pathways and time ranges, its detection may differ according to the time-point of 

observation, being important to test biofilm formation using other incubation periods. The 

time required for biofilm formation varies between serovars and the 72h incubation period 

performed in this study demonstrated the ability of Salmonella 1,4,[5],12:i:- to express 

stronger biofilms at later time-points. In clinical or food settings, these differences must be 

taken into consideration for the establishment of adequate antibiotherapy or disinfection 

procedures (Garrett, Bhakoob & Zhanga 2008). 

Moreover, Salmonella 1,4,[5],12:i:- also revealed the ability to form biofilm on glass slides, as 

evaluated by the direct observation of bacterial suspensions using FISH. The FISH protocol 

was performed after 24h, 48h and 72h incubation periods to allow biofilm formation. While at 

24h approximately 40% of the isolates were biofilm-positive, it was necessary a 72h 

incubation for almost all isolates to be able to form biofilm on glass slides. 

The results obtained by the microtiter plate and FISH methods after a 72h incubation period 

are very similar, but the differences observed may be explained by the differences between 

broth media used in both studies, as Muller Hinton Broth (MHB) was used in the microtiter 

plates assay and diluted Tryptic Soy Broth (TSB) was used in FISH. Although different media 

composition can influence biofilm formation in Salmonella, both are nutrient poor broths, 

which are most effective in promoting biofilm formation by Salmonella spp. (Stepanović et al. 

2003, Stepanović et al. 2004). Therefore, differences between results by both methods may 

also be explained by the fact that Salmonella isolates adhere in higher numbers to 

hydrophobic materials, such as the polystyrene that constitutes the microtiter plates, in 

comparison with hydrophilic materials, such as the glass of the slides used in FISH (Garrett 

et al. 2008, Krasowska & Sigler 2014).  

As evaluated by microtiter assays, biofilm production ability increased between the isolates 

collected in 2006 (0.743 ± 0.035) and in 2011 (0.981 ± 0.085). The improvement of biofilm-

forming ability through the years may be responsible for an increased aptitude of this serovar 

to persist in the environment for longer periods of time. Therefore, biofilm-forming ability by 

this serovar could be one of the reasons accountable for its rise and dissemination, not only 

in Portugal but also worldwide. More studies are required to confirm this hypothesis, since 

data regarding biofilm formation is lacking in many EU countries (Hopkins et al. 2012, Wasyl 

& Hoszowski 2012, Mandilara et al. 2013). 
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Recently, a report from 2015 demonstrated other possible causes for the rise of this serovar, 

highlighting the detection of a high occurrence of genes responsible for copper and silver 

tolerance, among the two major Salmonella 1,4,[5],12:i:- clones circulating in Europe, which 

might enhance the adaptation or expansion of these strains in metal-contaminated 

environments (Mourão, Novais, Machado, Peixe & Antunes 2015).  

Additionally, it was also observed that biofilm formation varied between the origin locations of 

Salmonella 1,4,[5],12:i:- isolates under study. Despite of the low number of samples available 

in some regions, differences found between isolates from each district may be responsible 

for distinct abilities to persist in the environment.  

 

 
Conditions simulating those encountered in vivo can influence in vitro biofilm 

formation Salmonella 1,4,[5],12:i:- 
 

 

Biofilm, as an important virulent factor, may play a role during colonization and infection of 

the intestinal tract, which is not fully understood due to technical constraints. Most studies 

aiming at evaluating biofilm-forming ability by bacterial isolates are performed using 

microtiter assays with conventional media (Stepanović et al. 2004, Karaca et al. 2013, Mishra 

et al. 2015). This technique is relatively easy to perform, but the media used in these assays 

are usually Luria Bertani or MHB, which composition does not correlate to the environment 

found in the gastrointestinal tract. To address this issue, a low cost adaption from the high-

throughput screening microtiter assay method was develop to simulate the passage of 

Salmonella 1,4,[5],12:i:- through the gastrointestinal track, especially regarding pH, motility 

and the presence of digestive enzymes.  

The passage of Salmonella through the stomach represents an important barrier to prevent 

intestinal colonization. Due to the gastric acid, bile salts and the short retention time of 

digestive components, microorganisms sparsely colonize the stomach. As confirmed by our 

study, following the simulation of the gastric passage, the number of Salmonella that survive 

these conditions is low (Macfarlane & Dillon 2007, Steenackers et al. 2012). 

Also, human gastrointestinal conditions may decrease bacteria’s ability to adhere and form 

biofilms. Two main observations may endorse this conclusion. First, intestinal conditions may 

promote the formation of weak biofilms. According to Stepanović classification, also applied 

in this study, a largest number of Salmonella 1,4,[5],12:i:- isolates forming weak biofilms was 

found when applying simulated intestinal fluid under static conditions, in comparison with 

incubation in conventional media, where the isolates were able to form moderate and strong 

biofilms. Secondly, dynamic conditions applied mimicking the human gastrointestinal motility 

may decrease bacteria’s adhesion ability and impair the first step of biofilm formation. Biofilm 

production in simulated intestinal fluid under dynamic conditions decreased with incubation 
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time and was lower in comparison with incubation in the same medium under static 

conditions, at all three time points evaluated (24h, 48h and 72h). Moreover, the scarce 

reports available that evaluated biofilm formation under dynamics conditions are in 

accordance to our observations (Stepanović, Vukovic, Jezek, Pavlovic & Svabic-Vlahovic 

2001, Stepanović et al. 2003). In fact, such conditions should be included as a parameter 

during biofilm evaluation, in particular of clinical isolates, where motility can deeply affect 

bacterial adhesion (Stepanović et al. 2003, Seixas et al. 2014a).  

It is worth to mention that recent research in Gram-positive bacteria drew the same 

conclusions regarding the importance of mimicking conditions found in vivo to evaluate 

biofilm formation (Seixas, Varanda, Bexiga, Tavares & Oliveira 2015). In the report, biofilm-

forming ability of isolates obtained from bovine clinical mastitis samples, namely 

Staphylococcus aureus and S. epidermidis were evaluated in conditions simulating the udder 

environment, which also showed that conditions found in vivo may influence in vitro results. 

Interestingly in our study, while biofilm formation by Salmonella clinical isolates is impaired 

under simulated in vivo conditions, in staphylococci isolates under whole milk, which was the 

medium used to simulate the udder environment, biofilm production increased, showing 

higher biofilm production in whole milk in comparison with conventional media (Seixas et al. 

2015). Additionally, regarding biofilm-associated gene expression, a previous study showed 

that TSB medium supplemented with low concentrations of milk could up-regulate biofilm 

related genes (Xue, Chen & Shang 2014). On the other hand, expression of biofilm genes in 

Salmonella was demonstrated to be down-regulated during in vivo infection, and turned on 

again once the bacteria is shedded into the environment, which support our findings (White 

et al. 2008). 

Taking these observations into account, it seems that by approximating experimental 

conditions to those found by bacteria in the human host, it may be possible to obtain a more 

clear insight into the real ability and importance of biofilm production.  
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7.1. Conclusions 

Salmonella 1,4,[5],12:i:- is presently considered one of the most frequent Salmonella 

serovars in Portugal and in many EU countries, having important repercussions to public 

health.  

This thesis represents the first report describing an increase incidence of Salmonella 

1,4,[5],12:i:- from 2006 to 2011 in Portugal, and the presence of areas with a higher risk for 

human Salmonella 1,4,[5],12:i:- infections, in particular, at north in the coastland area, at 

center and at south of Portugal. Although this analysis was based on passive surveillance 

data, which may underestimate the real number of salmonellosis cases, it provided valuable 

information on incidence and trends that may contribute for the development of adequate 

control programs by the authorities, specifically in the districts mostly affected, avoiding extra 

health care costs.  

This rapid expansion of Salmonella 1,4,[5],12:i:- R-type ASSuT in Portugal might be related 

with several factors, including the diversity of pulsotypes, the advantage offered by R-type 

ASSuT and the presence of a core of multiple virulence genes, also along with biofilm 

formation ability. In fact, biofilm-forming ability characterization of Salmonella 1,4,[5],12:i:- 

was not documented in the literature and may be an important advantage that may account 

for the rapid dissemination in our country. The ability to form multicellular communities 

strongly attached to surfaces is widely disseminated in the Portuguese isolates and it was 

also seemed to increase through the years.  

Since biofilm formation is influenced by several factors, its evaluation by mimicking the 

intestinal human tract environment has shown that in vivo conditions may impair biofilm 

formation by Salmonella 1,4,[5],12:i:-. The modified high-throughput method developed may 

provide a better assessment, at a lower cost, of the influence of the gastrointestinal 

environment upon the ability of this serovar to form biofilm. It can be applied in the future to 

other bacteria related with foodborne diseases, providing reliable laboratory results that 

would be more helpful in clinical settings. 

Due to its epidemic and pandemic behaviour, a close surveillance system of Salmonella 

1,4,[5],12:i:- in Portugal, including its resistance profiling, is desirable. The need for 

continuous monitoring associated with the application of harmonized methods to identify this 

serovar may provide accurate knowledge of its epidemiology, contribute for the 

implementation of a national strategy to prevent outbreaks and provide useful information to 

the medical communities in order to rationalize salmonellosis antibiotherapy protocols. 
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7.2. Future Perspectives 

Considering the importance of better understanding the rapid emergence of Salmonella 

1,4,[5],12:i:- in Portugal, future work may include a deeper analysis using bayesian statistics 

in order to find possible associations with others factors, including the presence of animal 

farms. In many reports, pigs are referred as reservoirs for this serovar, and this analysis 

would allow determining a statistical significant link between pig production and the higher 

number of cases in some districts. However, other farm animals should also not be 

disregarded in this analysis. 

Genomic fingerprint by MLST or DNA microarray analysis could also be performed, since 

certain Salmonella 1,4,[5],12:i:- isolates belong to multiple clones, which have emerged 

through independent deletion events, and can only be differentiated by highly sensitive 

molecular methods, providing a better understanding of serovar 1,4,[5],12:i:- molecular 

epidemiology. 

Additionally, since biocides play an essential and effective role in limiting the spread of 

infection and disease, biocide susceptibility assays, also including their efficacy upon biofilm 

formation, may allow to reveal Salmonella 1,4,[5],12:i:- resistance to frequently used 

compounds, which can also be responsible for its increase persistence in the environment. 
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