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Abstract. We investigate the occurrence of shear banding in nematogenic fluids under planar Couette flow,
based on mesoscopic dynamical equations for the orientational order parameter and the shear stress. We
focus on parameter values where the sheared homogeneous system exhibits regular oscillatory orientational
dynamics, whereas the equilibrium system is either isotropic (albeit close to the isotropic-nematic transi-
tion) or deep in its nematic phase. The numerical calculations are restricted to spatial variations in shear
gradient direction. We find several new types of shear-banded states characterized by regions with regular
oscillatory orientational dynamics. In all cases shear banding is accompanied by a non-monotonicity of the
flow curve of the homogeneous system; however, only in the case of the initially isotropic system this curve
has the typical S-like shape. We also analyze the influence of different orientational boundary conditions

and of the spatial correlation length.

1 Introduction

The emergence of banded structures in complex fluids un-
der shear flow is a paradigmatic example of an instability
in a correlated soft matter system far from equilibrium.
Above a critical value of the applied shear rate (or shear
stress), the formerly homogeneous system becomes unsta-
ble and separates into macroscopic bands with different
local shear rates (stresses), see refs. [1,2] for recent re-
views. Typical systems where shear band formation has
been observed experimentally are wormlike micelles [3],
liquid-crystalline polymers [4], colloidal suspensions [5],
but also non-ergodic soft systems such as glasses [6]. In
all cases, the flow leads to reorganization of the fluid’s
microstructure which then feeds back into the flow field.
This eventually leads to a non-monotonicity of the flow
curve, that is, the relation between shear stress and shear
rate. In that sense, non-monotonic flow curves are signa-
tures of shear banding. Theoretically, shear banding (and
the related vorticity banding [7]) has been studied mainly
via continuum models. An important example is the diffu-
sive (non-local) Johnson-Segelman (DJS) model [8,9] for
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shear thinning systems, i.e., systems in which the viscosity
decreases with the stress, which form shear bands along
the gradient direction. Moreover, particle resolved simula-
tions [10,11] have revealed insight into microscopic mech-
anisms accompanying shear thinning and shear thickening
systems.

In the present paper we focus on shear banding in ne-
matogenic fluids whose anisotropic constituents can ar-
range into orientationally ordered, yet translationally dis-
ordered states. Prominent examples are wormlike micelles
and colloidal suspensions of rod-like particles, both of
which display flow-induced spatial instabilities in experi-
ments. From the theoretical side, the shear-induced behav-
ior of nematogenic fluids has been intensely studied on the
basis of nonlinear equations for the dynamics of the ori-
entational order parameter, the so-called Q-tensor, with
coupling to the concentration [12] or for dense systems
deep in the nematic phase [13-16]. Contrary to the DJS
model, the Q-tensor models allow to investigate directly
the impact of shear on the structure (on a coarse-grained,
order parameter level), from which the shear stress can
then be derived by additional relations.

Already for homogeneous systems, these Q-tensor
models predict many interesting effects such as the shear-
induced shift of the isotropic-nematic transition [17-19],
and the occurrence of dynamical states with regular or
even chaotic oscillatory motion of the nematic direc-
tor [14,15]. Indications of such time-dependent dynam-
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ical states under steady shear flow have also been ob-
served in many-particle simulations [10,11] and in exper-
iments [20,21]. In addition, Q-tensor models have been
used to explore spatial inhomogeneities, yielding shear
banding between differently steady (aligned) states close
to the isotropic-nematic transition [12] and in parameter
regimes where the dynamics of the homogeneous system
is chaotic [22-24].

In the present article we consider (as in [24]) systems
at constant concentration where deviations from the ap-
plied flow profile are taken into account in the Stokesian
limit. Our purpose is to extend the earlier studies [22,25]
on shear banding in nematogenic fluids along the gradi-
ent direction in several ways. First, we focus on parame-
ters where the homogeneous systems exhibits regular os-
cillatory dynamics (contrary to previous works targeting
chaotic motion [22,23]). These are, on the one hand, ini-
tially (i.e., at 4 = 0) isotropic systems at low tumbling
parameters and high shear rates, which display wagging
motion [26] and, on the other hand, initially nematic sys-
tems where dynamical modes such as tumbling and kayak-
ing are well established (see e.g. ref. [15]). Second, we
consider both, homogeneous and inhomogeneous systems
(with inhomogeneities in gradient direction) in order to
identify the signatures of shear banding in the homoge-
neous flow curves. In fact, only one of the considered sys-
tems is characterized by a “van der Waals”-like flow curve
(which is familiar, e.g., within the DJS model [9]); the
other ones rather exhibit discontinuities. Third, we ex-
plore systematically the impact of different orientational
boundary conditions and different correlation lengths. For
an earlier study on the basis of the Doi-Marrucci-Greco
model, see refs. [23,27]. We show, in particular, that ap-
propriate boundaries can induce banding in otherwise ho-
mogeneous states. Further, we discuss the consequences
for the stress of the system in the banded state.

The article is organized as follows. In sect. 2 we in-
troduce the set of dynamical equations for spatially in-
homogeneous, anisotropic fluids at constant density (with
inhomogeneities along the direction of the shear gradi-
ent). Numerical results are presented in sect. 3. There,
we first discuss (sect. 3.1) spatially homogeneous systems
sheared from isotropic or nematic states and obtain the
corresponding flow curves. Section 3.2 is then devoted to
the appearance of shear bands and the impact of boundary
conditions. This work finishes with concluding remarks
and an outlook in sect. 4.

2 Theoretical framework

In the present work we consider systems of uniaxial, rigid
rod-like particles (such as suspensions of fd-viruses [28])
whose orientation is characterized by the unit vector u;
parallel to the symmetry axes of particle i. Following ear-
lier studies within the Doi-Hess theory, the dynamics of
the many-particle system is described by the space- and
time-dependent tensorial order parameter Q(r,t) (thus,
density variations are neglected) [29]. This second-rank
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Q-tensor is defined as

Qlr,t) = \/1275 /S Wl f(r, ) du, (1)

where f(r,u,t) is the space- and time-dependent ori-
entational distribution function (for a microscopic defi-

nition, see, e.g., [26]), and X stands for the symmetric

traceless part of the tensor x. Explicitly, one has 'Eiw =
(xpw +0,)/2 — Tr(x)l,, /3, where 1 and v are Cartesian
indices, I, is the unit matrix, and Tr denotes the trace.
Thus, the Q-tensor is, by definition, a symmetric traceless
tensor. For the special case of uniaxial nematic phases, the
Q-tensor reduces to the form Q = y33/2(nn), where n is
the system-averaged nematic director, i.e., the eigenvec-
tor related to the largest eigenvalue ps. In equilibrium,
13 is proportional to the well-known Maier-Saupe order
parameter, us = 1/10/3S where S = (P2(u - n)) and P,
denotes the second Legendre polynomial [30].

2.1 Mesoscopic dynamical equations

In equilibrium, the orientational order of systems of rod-
like particles is controlled by the temperature T (typical
for molecular fluids) and/or by the number density (con-
centration) p; the latter case is characteristic of colloidal
suspensions of fd-viruses [28]. On a mesoscopic (Q-tensor)
level, the stability of homogeneous (isotropic or nematic)
phases is governed by the Landau-type orientational free
energy density (per unit volume)

TP =AQ:Q) - B(Q-Q):Q+C(Q:Q)°, (2

where A, B and C are dimensionless coefficients. These
can be related to system parameters such as p and the
molecular aspect ratio x as shown, e.g., in [31].

For spatially inhomogeneous phases, an additional con-
tribution to the free energy arises due to the energy cost
associated with local deformations of the alignment field.
For uniaxial nematic order, an expansion of this elastic en-
ergy in terms of the director n was derived by Oseen [32]
and Frank [33]. Rewriting the expression in terms of the
full Q-tensor in the one constant approximation yields

5 = € T(VQ) - (VQ), 3)

where £ is the elastic correlation length, which is related
to the pitch length of the Frank elastic theory [29,30]. On
a microscopical level, ¢ is related to the direct correlation
function of the fluid [34-36].

The presence of shear strongly affects the overall ori-
entational ordering due to the competition between flow-
induced effects on individual molecular orientations (such
as Jeffery orbits [37]) and the relaxation of the entire sys-
tem towards equilibrium (governed by the free energy den-
sity). Moreover, in inhomogeneous systems (with space-
dependent Q-tensor) the orientational dynamics feed back
into the flow profile through the system’s stress tensor.
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Within the Doi-Hess theory this interplay between flow
(characterized through the velocity profile v(r)) and ori-
entational ordering is described by a set of coupled non-
linear equations for Q and v which can be derived on
the basis of non-equilibrium irreversible thermodynam-
ics [38,39]. Disregarding non-convective flow (correspond-
ing to fourth-order derivatives of the alignment), these
equations are given by

dQ £ o
dv
PE =V.-T, (5)

where d/dt = 9/0t + v - V. Mathematically, eq. (4) is a
parabolic equation with H(Q, v) acting as a source term.
From a physical point of view, it describes the dynamical
evolution of the order parameter including a diffusive term
o V2Q due to the elastic energy in eq. (3). The source
term is given by [40,41]

1 1 1
H(Q.v)=202-Q+20-Q— V222 — — &', (6)
Tq Tq

which describes the interplay between flow, entering via
the vorticity £2 = 1/2(VvT — Vv) and the deformation
rate I' = 1/2(VvT + Vv), and relaxation towards equi-
librium, entering via the free energy derivative
or
o = 97" (7)
0Q
Equation (6) further involves the phenomenological
parameter o and the relaxational times 7,4, and 7, [38].
As seen from eqs. (4) and (6), the ratio of these two
times (appearing as a prefactor of I' in eq. (6)) quan-
tifies the perturbation of the system in the absence of
orientational order. It is thus convenient to introduce, as
a coupling parameter, the so-called tumbling parameter
A = —7,4,/7q which is related to the molecular aspect
(length-to-breadth) ratio k viz (see ref. [42])

T 3k -1
A=—L = /o —— 8
Tq 5k24+1 ()

Since A depends only on the aspect ratio, it follows from
eq. (8) that the MDHT is suitable to study spherical par-
ticles (A = 0), disk-like particles (A < 0) and rod-like par-
ticles (A > 0). As stated before, our focus is on rod-like
particles, thus, we consider positive values of the tumbling
parameter.

The second mesoscopic equation (5) is the usual mo-
mentum balance equation [43]; it describes how the flow
field changes due to spatial variations of the stress tensor
T. We here consider a planar Couette flow (see fig. 1)
where the fluid is confined between two infinitely ex-
tended, parallel plates (separated by a distance 2L along
the y-direction) moving in opposite directions. The flow
profile (for a Newtonian fluid) is then given by v(r) =
Jye€,, with 7 the shear rate.
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vV = Jyéy

Fig. 1. Sketch of a planar Couette flow. The rod-like suspen-
sion is enclosed between two infinite parallel plates at y = +L
moving along the x-axis with velocities vy, = +L7.

The full stress tensor can be written as T%' = —pI +

Tasy —|—'E: where the first term represents the (isotropic) hy-
drostatic pressure and the two other terms describe flow-
induced effects [38]. Specifically, T*¥ includes asymmetric

. . r . .
contributions, whereas T is a symmetric traceless tensor
which can be written as

T= 20l +Ty. 9)

According to eq. (9), ?sphts into a Newtonian contribu-
tion (already present in fluids with vanishing orientational
order) and a contribution depending explicitly on the Q-
tensor, that is,

T, = %kBT (—ﬁT’“’@’ + x/iTT‘”’g?VQQ>

Tq q

+20%1@T (Q P —£2Q- v2Q> . (10)

In the present work we neglect the asymmetric part of
the stress tensor (i.e., T®Y = 0), since it typically relaxes
faster to zero than the relevant hydrodynamic processes
considered. Further, in Newtonian flow regimes this anti-
symmetric stress is zero anyway [30,40].

2.2 Explicit equations of motion

Equations (4) and (5) can be rewritten in terms of scaled
variables; this is described in detail in appendix A (see
also [31]). One obtains

Do evqenQ), (1)
dv 1.~

where the tilde indicates scaled quantities and the param-
eter [ appearing in eq. (12) is defined as

24C%5L%m

= . 1
ﬁ B2kBTTq ( 3)



Page 4 of 13

This coefficient, or rather the ratio between 3 and the
scaled viscosity 7jis, defines the Reynolds number of the
solvent
. L2
Re— P _ P (14)
Niso Niso

Experiments of shear-induced instabilities are typically
performed at low Reynolds numbers, Re < 1 [24,44]. In
this limit the momentum balance equation (12) is

V.-T=0. (15)

We note that due to the time dependence of Q(t), the
total stress T evaluated through eqgs. (9) and (10) gener-
ally also depends on time. However, at each time the total
stress has to fulfill eq. (15). The resulting velocity profile
(obtained by solving eq. (9) under the condition eq. (15))
can therefore deviate from the linear profile assumed ini-
tially. This is clearly essential for the description of spatial
symmetry-breaking such as shear banding.

In the following we drop the tilde (~) on all variables;
all quantities then appear with the same symbols as orig-
inally. We also set 0 = 0 since this parameter has minor
effect on the dynamics of the system for planar Couette
flow geometry (see [45,46]). Regarding the spatial varia-
tion of the Q-tensor and the stress, we restrict ourselves
to a one-dimensional investigation along the y-axis, i.e.,
the direction of the shear gradient (see fig. 1). Thus, we
here exclude the possibility of banding in vorticity (z) di-
rection.

The resulting dynamical equations are simplified by
expressing the Q-tensor in terms of a standard orthonor-
mal tensor basis, that is, Q = Z?:o ¢;B; (for a de-
tailed definition of the orthonormal tensor basis, see ap-
pendix B). The coefficients qg, g1 and g2 are related to or-
dering within the a-y plane (i.e., the shear plane), whereas
g3 and gy refer to out-of-plane ordering [47]. From the or-
thogonality of the basis functions (B; : B; = 4;;) it follows
that ¢; = Q : B;, which allows to rewrite egs. (11) into a
set of scalar equations. Explicitly, one has

%:— +€282q§),

%Z—sﬁﬁ-va 8y2’
%:—@2—’7%%4-528(12 ?7

% = —P; + %W%@ +§2%,
I T (16)

In egs. (16) the quantities @; are non-linear functions of
the ¢; (stemming from the free-energy derivatives); they

Eur. Phys. J. E (2016) 39: 88

are given by

3
Dy = (@—3%—&-2(12)%4-3((]%4'(13)—§(Q§—QE)7

O +6q0+20°) 1 — 5V3 (g3 — i),

O + 6q0 +2¢%) g2 — 3\fq3q4,

O —3qo +2¢%) g3 — 3V3(q1g3 + q2q4) ,

/\/\/\/\

Dy —3q0 +2¢%) g1 + 3V3 (q14 — 4243) , (17)
where © = 24 AC/B? (see appendix A) and ¢> = Zf:o q.
Finally, the momentum balance equation (12) becomes (in
the regime of low Reynolds numbers)

8(252

6T
0="-2=12 771507 +\f >\

gy

2)¢? . (18
- Ve TR 13)
Equation (18) indicates that the only non-vanishing com-

ponent of the stress tensor is T5, which corresponds to the
in-plane stress 17, .

2.3 Numerical calculations

Equations (16)—(18) are integrated numerically using a
fourth order Runge-Kutta scheme [48] with a fixed time
step At =2 x 1073 and a grid spacing of Ay =5 x 1073,
The gradient terms are discretized by a central finite dif-
ference scheme of fourth order. At the boundaries, asym-
metric stencils (using only available grid points) are im-
plemented [48]. The calculations are initialized with val-
ues of qo,...,qs matching the boundary conditions (see
below), to accelerate the calculations we additionally use
a small random perturbation. To find steady configura-
tions of the system we monitor the evolution of qq, ..., qs
and Th, disregarding transient behavior. The resulting dy-
namical states are characterized employing an algorithm
that recognizes the periodicity and sign change of the time
dependent components qq, . .., qs [49,14].

It turns out that the solution of egs. (16)—(18) is quite
sensitive to initial conditions; thus all calculations have
been repeated several times. Further, we have checked that
the steady-state solutions do not change with decreasing
At (however, the numerical stability does depend on the
grid spacing).

Regarding the boundary conditions at the plates (y =
+L), we assume “strong anchoring” conditions, that is,
the Q-tensor at the plates is constant in time, but may
have different symmetries. We further assume that the de-
gree of ordering is given by the corresponding equilibrium
value.

Though these assumptions are clearly an idealization,
we note that, from an experimental point of view, it is
indeed possible to realize different boundary conditions
by chemical or mechanical treatment of the plates [50—
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Fig. 2. Sketch of the boundary conditions applied to the tensor
Q at the plates: (a) Isotropic (see eq. (19)) (b) Planar nematic
(eq. (20)) (c) Vertical nematic (eq. (21)) and (d) Planar de-
generate (eq. (22)).

53]. Here we focus on the following cases (see fig. 2),

y=L

Q L= 0 (Isotropic), (19)
y——
y=L 3 g ;

Q L= g e el (Planar nematic), (20)
y——
y=L 3 g A : i

Q V3 psté,e,  (Vertical nematic), (21)
y=L 3 g A

Q o ==\ 5 15T eyey (Planar degenerate), (22)

where p5? is the equilibrium value of the alignment ten-
sor in the nematic phase. Equations (19) and (22) de-
scribe disordered states where the rod orientations are
distributed, either in all three directions (“isotropic”) or
within the plane of the plates, i.e., in the z-z plane (“pla-
nar degenerate”). The other two boundary conditions cor-
respond to nematic states, with the director lying either
in the plane of the plates (“planar nematic”) or along
the gradient (y-) direction (“vertical nematic”). We note
that the latter boundary condition is sometimes referred
to as “homeotropic”. Similar boundary conditions for Q
were implemented in a study of the Doi-Marrucci-Greco
model [23,27]. Regarding the velocity field, we implement
no-slip boundary conditions, that is v,(y = +£1) = £1 (in
reduced units).

3 Results and discussion

In this section we present numerical results for shear-
driven systems whose equilibrium configuration (¥ = 0)
is either isotropic [characterized by © > 9/8 in the scaled
free energy (A.4)] or nematic [© < 0]. We divide the dis-
cussion into two parts. In the first part (sect. 3.1) we focus
on the spatially homogeneous system. Here we explore how
the non-zero component of the stress tensor, T, is affected
by the temporal evolution of Q(r,t) and use this informa-
tion to predict the formation of spatial instabilities. The
second part (sect. 3.2) is devoted to the spatial-temporal
behavior for initially isotropic and nematic systems, as
well as to the impact of boundary conditions.

Page 5 of 13

3.1 Homogeneous solutions

Here we consider spatially homogeneous systems where
the boundaries do not play a role, corresponding to the
limit of infinite plate separation, i.e., L — oo. The scaled
correlation length appearing in eq. (11) becomes zero and
thus, all gradient terms in egs. (16) and (18) vanish. In
particular, the stress T5 takes the form

To(t) = V2o + V2XDa(2). (23)

Here we set niso = 1.0.

3.1.1 Homogeneous systems sheared from the isotropic
state

We start by considering systems whose equilibrium state
is isotropic (@ = 1.20). Increasing the shear rate from
zero the system first develops a paranematic (PN), steady
state characterized by weak (yet non-zero) nematic order;
this is illustrated in fig. 3(a). The behavior upon further
increase of 4 then depends on the tumbling parameter A
(recall that the latter is a measure of the aspect ratio).
For A 2 0.62 one observes a transition from paranematic
to shear-aligned (A) state; the latter is also characterized
by a time-independent director (as is the PN state), but
the degree of ordering which can be quantified, e.g., by
the norm ||Q|| = Z?:o q?, is larger [39,47]. The PN-A
transition is accompanied by a narrow region of bistabil-
ity (not visible in fig. 3); in this regime the system’s degree
of ordering depends on the initial condition. This feature
is reminiscent of the first-order isotropic-nematic transi-
tion in equilibrium. For smaller values of the tumbling
parameter (A < 0.62) the A state is unstable; here the sys-
tem develops wagging (W) motion characterized by reg-
ular oscillations of the nematic director within the shear
plane. Overall, the behavior found in the present calcula-
tions agrees qualitatively with that reported in ref. [26];
the quantitative data for the boundary lines somewhat
differ due to the different scaling of the free energy (see
appendix A).

For each of the parameter sets (4, \) we have calculated
the stress T5 (in oscillatory states, we have averaged the
time-dependent stress Th(t) over one period of time. Ex-
emplary results for Ty (t) are given in appendix C). Impor-
tantly, it turns out that different parameter sets can lead
to the same value of Ty. To illustrate this point, fig. 3(a)
includes dashed (blue) lines and solid (green) lines corre-
sponding to two constant values of T5. Moreover, there are
several regions of A where T assumes the same value for
different shear rates. For example, at A = 0.55 there are
three values of ¥ with 75 = 0.6, and for A > 0.7 one finds
two solutions with 75 = 0.4.

Given this multivalued behavior, it is interesting to
consider corresponding flow curves T5(¥). Results for A =
0.55 and A = 1.25 are plotted in figs. 3(b) and (c), re-
spectively. The flow curve for A = 0.55 (see fig. 3(b)) dis-
plays a region with a negative slope (d72/d¥ < 0) between
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Fig. 3. (Color online) (a) State diagram in the plane spanned by tumbling parameter (A\) and shear rate (¥) at © = 1.20
(isotropic equilibrium system). The dotted gray lines indicate the boundaries between three different states: paranematic (PN),
shear-aligned (A) and wagging (W). The dashed (blue) and solid (green) lines connect points with constant stress 7> = 0.4 and
T> = 0.6, respectively. (Second row) Homogeneous flow curves T>(¥) for (b) A = 0.55 and (¢) A = 1.25 (these values are marked
in fig. 3(a) by the vertical dashed lines). The thin horizontal lines indicate the stress values selected in plot (a).

4 ~ 0.357 and ¥ ~ 0.365. Within this region the homo-
geneous flow is mechanically unstable, and as one might
expect (and will be explicitly shown in sect. 3.2.1), the sys-
tem forms a spatially inhomogeneous, shear-banded state.
We also note that the shear rate 4 ~ 0.359 characterized
by Tp = 0.6 and d75/d% < 0 agrees roughly with the cor-
responding point on the boundary line PN-W in fig. 3(a).
This indicates that the orientational transition from the
(steady) PN state to the (oscillatory) W state, on the one
side, and the shear banding instability, on the other side,
are closely intercorrelated.

In contrast, for A = 1.25 (see fig. 3(c)) the flow curve
does not display a region with negative slope. Rather one
observes a discontinuity and, associated with this, hys-
teretic behavior. Upon increase of 4 from the small values,
i.e., from the paranematic (PN) state, the systems dis-
continuously “jumps” to the aligned (A) state only at
4 = 0.14 (which is above the upper blue dashed line in
fig. 3(a)). However, decreasing + starting from the large
shear rates characterizing the A state, the jump occurs at
the much smaller shear rate ¥ ~ 0.06. As we will show
in sect. 3.2.2, the formation of shear bands in this case
(A = 1.25) strongly depends on the boundary conditions.

3.1.2 Homogeneous systems sheared from the nematic state

We now turn to systems which, in thermal equilibrium,
are deep within the nematic phase. Specifically, we set
© = —0.25 in eq. (17). Similar to previous work [15,26]
we find that shear can induce a variety of time-dependent

dynamical states (in addition to the W motion already
appearing in initially isotropic systems, see fig. 3(a)), as
well as a shear-aligned (A) steady state. An overview is
given in fig. 4(a).

In the wagging and tumbling (T) state, the nematic
director performs regular, oscillatory motion within the
shear plane (g4(t) = ¢5(t) = 0 Vt), whereas it displays out-
of-plane (yet regular) oscillations in the kayak-tumbling
(KT) and kayak-wagging (KW) state (¢;(t) # 0 Vi =
0,...,4). Only in the A state the director stays constant
in time. Note that, contrary to the case considered be-
fore (see fig. 3), there is no paranematic (PN) state at
© = —0.25 since the system is deep in the nematic regime.
We also note that earlier studies [15,26] investigating sim-
ilar values of © have reported the occurrence of a region
characterized by irregular and even chaotic motion of the
director. This region is located around the point where the
KT, KW and A states meet. Here we did not detect such
a region because our algorithm does not resolve Lyapunov
exponents.

We now turn to the resulting shear stress. The dashed
(blue) and solid (green) lines in fig. 4(a) indicate param-
eter sets at which the orientational dynamics yield the
constant stress values T, = 9.0 and T, = 7.0, respec-
tively. In the first case, the line provides a unique relation
in the sense that an increase of 4 at fixed \ yields only
one crossing with this line. This is different for the case
Ty, = 7.0 where, depending on )\, one or two crossings
can be observed. Exemplary flow curves for two values of
the tumbling parameter are shown in the bottom parts
of fig. 4. At X\ = 0.55 (see fig. 4(b)), where each of the
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Fig. 4. (Color online) (a) State diagram at © = —0.25. The dotted gray lines indicate the boundaries between the different
dynamical states: wagging (W), tumbling (T), kayaking-tumbling (KT), kayaking-wagging (KW), and shear-alignment (A). The
dashed (blue) and solid (green) lines connect points with constant stress 7o = 7.0 and T> = 9.0, respectively. (Second row)
Homogeneous flow curves T>(¥) for (b) A = 0.55 and (c) A = 1.25 (these values are marked in fig. 4(a) by the vertical dashed

lines). The thin horizontal lines indicate the stress values selected in plot (a).

constant-pressure lines is crossed only once, one observes
a monotonic increase of T» with 4. In particular, there is
no discontinuity or cusp even at ¥ & 6.5, where the un-
derlying orientational dynamics changes from out-of-plane
kayaking-tumbling to in-plane tumbling. We note, how-
ever, that a systematic bifurcation analysis (such as the
one in ref. [26], where a very similar system was consid-
ered) would presumably reveal a bistable region character-
ized by the presence of (at least) two attractors between
the pure KT and the pure T state. In such a situation,
the pressure T5 would not be uniquely defined. This as-
pect certainly deserves more attention in a future study.

We now consider the case A &~ 1.25 in fig. 4(a), where
an increase of 4 from small values yields two crossings
with the constant-pressure curve To = 7.0. As seen from
fig. 4(c), the flow curve exhibits a pronounced discontinu-
ity related to the transformation of the (out-of-plane) os-
cillating KT state into the shear-aligned (A) steady state
at 4 &~ 3.67. One also recognizes a strong dependence on
initial conditions (hysteresis), similar to the situation dis-
cussed in fig. 3(c). As we will later discuss in sect. 3.2.2,
the initially nematic system at A ~ 1.25 indeed displays
shear banding.

3.2 Spatiotemporal behavior and shear banding

In the preceding discussion we have found indications of
the formation of inhomogeneous states in both, systems
sheared from the isotropic and systems sheared from the
nematic phase. We now analyze the corresponding systems

(characterized by certain values of the tumbling parame-
ter) further by calculating the full, spatiotemporal behav-
ior of the Q-tensor and the resulting shear stress T5. To
this end we have solved numerically eqs. (16)—(18) using
the methodology described at the end of sect. 2.

Our discussion in this section is divided into two parts,
covering the role of the two key factors impacting the spa-
tial structure of the inhomogeneous systems. These are,
first, the correlation length &, which appears as a prefac-
tor of the gradient term in the orientational free energy
density (see eq. (3)), and second, the boundary condition
for Q at the plates (see eqs. (19)—(22)). The impact of ¢
is discussed in sect. 3.2.1, where we fix the boundary con-
ditions according to the equilibrium configuration of the
system. In sect. 3.2.2 we then explore the role of different
boundary conditions.

3.2.1 Impact of the correlation length

Initially isotropic system. — We first consider the system
at @ = 1.20 and A = 0.55, where we have observed a
region of negative slope in the corresponding flow curve,
T>(%) (see fig. 3(b)). Here we focus on a shear rate within
this regime, 4 = 0.365. In figs. 5(a)—(c) we show the space-
time evolution of the norm of the Q-tensor at three values
of the correlation length. Because the equilibrium state
is isotropic, we choose the boundary conditions according
to eq. (19), that is, the boundaries do not support any
orientational ordering.
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Fig. 5. (Color online) Space-time plot of the norm of the Q-tensor at 4 = 0.365, tumbling parameter A = 0.55 and different
correlation lengths (a) €2 = 107°, (b) ¢ = 10~ and (c) ¢ = 10?3, The equilibrium state is isotropic (@ = 1.20).
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Fig. 6. (Color online) (a) Local shear rate within the banded
state of the initially isotropic system (© = 1.20, A = 0.55, av-
erage (applied) shear rate ¥ = 0.365). (b) Inhomogeneous flow
curves at different correlation lengths. The symbols B (red), %
(blue) and o (green) correspond to €2 = 107°, ¢ = 10~ and
€% = 1073, respectively. As a reference the homogeneous flow
curve is included (black dashed line).

Still, as seen from fig. 5(a), the system forms spa-
tiotemporal structures with locally large values of ||Q||
already at the smallest correlation length considered, £ =
1075, Here, the observed pattern is rather “loose” with its
width changing in time. We also find that, within the in-
homogeneous regions, ||Q]| is oscillating in time. A closer
analysis reveals that the oscillations are consistent with a
wagging (W) state. Outside the inhomogeneous regions,
[|Q|| takes values typical of a paranematic (PN) state.
This behavior is, to some extent, expected since the value
of 4 considered in fig. 5 is very close to the boundary be-
tween the PN and W state (see fig. 3).

Upon increasing the correlation length, &, we observe
from figs. 5(b) and (c¢) that the regions characterized by W
motion become more defined, both in terms of the shape of
the emerging shear band, and in terms of the (increasingly
regular) oscillatory motion of the order parameter. At the
same time the interface between the W and PN region
becomes broader. As a consequence, the W oscillations are
transferred to some extent into the outer region, however,
with a very small amplitude.

A further illustration of the presence of shear bands
is plotted in fig. 6(a), where we present the local shear
rate, ¥(y), for the system at £€2 = 1073. It is seen that the
band in the middle of the system, where the orientational

dynamics is of W type, is characterized by a significantly
higher shear rate than the PN state close to the bound-
aries. To complete the picture, fig. 6(b) shows flow curves
obtained for the inhomogeneous (initially isotropic) sys-
tems at different correlation length. Following previous
studies [54] we have obtained these curves by calculat-
ing the mean value of T5 increasing gradually from lower
to larger values of 4. As a reference, the corresponding
homogeneous flow curve (see fig. 3(b)) is included. Inter-
estingly, the value of T5 corresponding to the banded state
is essentially independent of £; in other words, the value
of T, appears to be unique. This observation is consis-
tent with previous studies on the basis of both, a Q-tensor
model [12] and the DJS model [9]. We further observe from
fig. 6(b) that there is a slight dependence of the value of T
on ¢ at high shear rates beyond the banded state. This is
an effect stemming from the inhomogeneities induced by
the confining walls: the larger £, the larger is the extent
of these inhomogeneities into the bulk-like region between
the plates. In fact, by excluding these regions from the
calculations, the results for Ty completely agree for differ-
ent &.

So far we have focused on an initially isotropic system
at A = 0.55. At the larger tumbling parameter A\ = 1.25,
where the homogeneous calculations (see fig. 3(c)) yield a
discontinuous flow curve T5() (rather than one with neg-
ative slope), the results from the spatially-resolved calcu-
lations are more complex. For isotropic boundary condi-
tions we did not find shear banding behavior, regardless of
the value of £. However, using boundary conditions which
support nematic ordering (such as the planar alignment
in eq. (21) or the vertical alignment in eq. (22)) we do
find a well-defined shear band. This point will be further
discussed in sect. 3.2.2.

Initially nematic system. — We now turn to the system at
© = —0.25 and A = 1.25, where the homogeneous flow
curve (see fig. 4(c)) is discontinuous. Results for the norm
of Q as function of space and time are shown in fig. 7,
where we assumed equivalent planar nematic boundary
conditions (see eq. (20)), but different correlation lengths.

In all cases, one observes a clear spatial separation of
the system into an inner band, where the orientational be-
havior corresponds to the kayak-tumbling (KT) state, and
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Corresponding results for the local shear rate and the
inhomogeneous flow curves are given in fig. 8. Compared
to the initially isotropic system, we see from fig. 8(a) that
the oscillatory (KT) band is characterized by a larger
shear rate than the regions close to the boundaries. In the
vicinity of the boundaries we observe a “spike”, i.e., a nar-
row region where the local shear rate becomes particularly
large. We understand this spike as a result of the com-
petition between the strong anchoring conditions (forcing
planar alignment) and the shear-induced alignment (A) in
the bulk. A further difference comes up when we consider
in fig. 8(b) the values of the stress plateau in the inho-
mogeneous flow curve. Here we find a dependence on the
correlation length; that is, the value of T, at the plateau
increases with £. This contrasts with our corresponding
results for the initially isotropic system (see the discus-
sion of fig. 6). To which extent this dependency is subject
to the initial conditions of the numerical calculations is a
point which has remained elusive so far.

v
Fig. 9. (Color online) Influence of the boundary conditions
on the inhomogeneous flow curves for (a) initially isotropic
systems at © = 1.20, A = 0.55 and (b) initially nematic systems
at © = —0.25, A = 1.25. The correlation length is set to £2 =
1075, As a reference the homogeneous flow curves have been
included.

3.2.2 Role of the boundary conditions

This final section is devoted to the role of the boundary
conditions (see egs. (19)—(22)), which we here assume to
be freely selectable irrespective of the initial state of the
equilibrium system. The correlation length is set to a con-
stant value of €2 = 107° (higher values yield very similar
results). Numerical results for the resulting flow curve of
the inhomogeneous systems already discussed in sect. 3.2.1
are presented in fig. 9.
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Fig. 10. (Color online) a) Space-time plot of the norm of the Q-tensor for the initially isotropic system at @ = 1.20, A = 1.25
with planar nematic boundary conditions. The (average) shear rate and the correlation length are set to 4 = 0.115 and €2 = 107°,
respectively. b) Inhomogeneous flow curves for the system with different boundary conditions upon starting from low shear rates.

¢) Same as b), but starting from high shear rates.

We first consider systems sheared from the isotropic
state at A = 0.55, where we found a clear shear banding in-
stability for fully isotropic boundary conditions (see figs. 5
and 6). As indicated by the flow curves in fig. 9(a), simi-
lar behavior occurs for other (including nematic) bound-
ary conditions. Indeed, as an analysis of the Q-tensor re-
veals, all of the systems form bands (within a range of
shear rates 4 ~ 0.355—y = 0.385) with wagging-like oscil-
lations within paranematic regimes at the plates. Outside
the banding region, the systems are characterized by the
same value of T5.

Moreover, the value of the “selected” stress within the
banding region, T35 ~ 0.59, is essentially independent of
the boundary conditions. The latter only affect the onset
of shear banding upon increasing + from low shear rates.
Specifically, for the two types of isotropic boundary con-
ditions (egs. (19) and (22)), as well as for nematic order-
ing within the plane of the plates (eq. (20)), the system
stays in the homogeneous paranematic state for all 4 up
to the maximum of the flow curve. In contrast, the system
with vertical alignment at the plates, i.e., alignment in the
shear gradient (y-) direction (see eq. (21)), forms bands
once the value of 75 is reached (at ¥ ~ 0.34). In this
sense, the vertical nematic ordering favors the occurrence
of the W state characterized by oscillations in the flow-
gradient plane. For completeness we also note that, upon
decreasing 4 from high values, the system goes without
hysteresis into the banded state (with the same stress),
irrespective of the boundary conditions.

We now turn to the initially nematic case (see
fig. 9(b)). Upon increasing + from lower values all systems,
irrespective of boundary conditions, display shear band
formation at shear rates in the range ¥ ~ 3.0+ ~ 4.5;
here they break up into a band with kayaking-tumbling
dynamics (i.e., oscillations out of the shear plane) sur-
rounded by regions of shear-alignment at the boundaries
(see fig. 7 for results with planar nematic boundaries). Fur-
ther, the stress Ty characterizing the banded state seems
to be unique, and the boundary conditions only affect the
onset of shear banding (upon starting from the low-shear
rate branch, where the system is in the KT state). Specif-
ically, we see from fig. 9(b) that the onset of banding is
“delayed” when we use planar degenerate boundaries (see
eq. (22)). These boundary conditions seem to support the

KT state, which is understandable as the KT oscillations
are out of the shear plane and thus, do involve the plane
of the plates. Interestingly, the behavior upon decreasing
the shear rate from the aligned state is different: in that
case, all systems stay in the aligned state until the lower
end of the high-shear rate branch is reached; then they
directly jump into the KT state without an intermediate
shear-banded state.

To summarize, both systems considered in fig. 9 dis-
play shear banding irrespective of the detailed nature of
the boundary conditions, if the shear rate is increased from
low values. The boundary conditions then only influence
the “critical” shear rate at which the homogeneous state
observed at small 4 breaks up into bands. On the con-
trary, shear banding upon decreasing % from high values
is only seen in the initially isotropic system. The behavior
in the initially nematic system thus depends on the ini-
tial conditions, similar to what has been found in the DJS
model [55].

Finally, we come back to a system which we already
considered briefly in sect. 3.1.1, that is, the case ©® = 1.20
and A = 1.25. This initially isotropic system is charac-
terized by a discontinuous homogeneous flow curve (re-
lated to the transition from paranematic to shear-aligned
state, see fig. 3(c)), but does not form clear shear bands
when using disordered boundary conditions (see eqs. (19)
or (22)). Interestingly, this changes when we use “nematic”
boundary conditions with alignment either in the plane
of the plates (eq. (20)) or along the vorticity direction
(eq. (21)). As an illustration, we present in fig. 10(a) the
spatiotemporal behavior of the Q-tensor at £2 = 1077,
with planar nematic boundaries and an imposed shear rate
4 = 0.115. The plot reveals a band with paranematic or-
dering within the outer regions where the system is shear-
aligned. Figure 10(b) shows results for corresponding flow
curves. Consistent with the previous observations, we ob-
serve a plateau in T5(*), related to shear band formation,
only with nematic boundary conditions, whereas the dis-
ordered boundary conditions yield an abrupt change be-
tween two homogeneous states. Yet a different behavior is
found when we decrease the shear rate from high values,
see fig. 10(c): In this case, stable shear bands are found
only for fully isotropic boundary conditions characterized
by three-dimensional disorder.
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4 Concluding remarks

In this paper we have investigated the occurrence of shear
bands in nematogenic fluids based on the mesoscopic Doi-
Hess theory for the orientational order parameter tensor
Q coupled to the shear stress T. We have focused on in-
stabilities along the gradient direction (gradient banding).
Studying sheared systems with different (isotropic or ne-
matic) equilibrium states, different tumbling parameters
(i.e., aspect ratios), and different orientational boundary
conditions, our results reveal complex shear banding be-
havior whose characteristics can be significantly different
from that seen in other models, such as the DJS model
(where the dynamical variable is the shear stress alone). In
most cases considered, the shear bands involve oscillatory
(but not chaotic) orientational motion in certain regions
of space. In terms of parameters, our study extents ear-
lier investigations focusing on the isotropic-nematic tran-
sition [12] or the rheochaotic regime [22,23,25].

“Classical” behavior characterized by the S-shaped
flow curve (obtained from the homogeneous solutions) and
a unique value of the stress in the banded regime (such as
in the DJS model) is found only in one case, namely an
initially isotropic system with relatively small tumbling
parameter. This system displays bands with wagging-like
motion in the inner part and steady alignment close to
the boundaries. In all other cases, the homogeneous flow
curves display a discontinuity (rather than the S-shape).
The observed band formation then depends on the ori-
entational boundary conditions in the sense that certain
boundary conditions can support or hinder the formation
of shear bands. Moreover, in one case we found a strong
dependence on the pathway of the shear protocol. These
observations suggest that the mechanisms of shear band-
ing and stress selection are more complex than in simpler
(such as the DJS) models [9,56].

An important question arising from the present work
concerns the relation between the parameter sets (6, A, 5)
considered here and the system’s “phase” diagram under
shear. In many nematogenic systems the relevant variable
for the isotropic-nematic transition is the concentration,
which does not occur explicitly in our approach. However,
there is an implicit concentration dependence through the
free energy functional (specifically, the prefactor 6 of the
quadratic term). Based on that dependence, we have pro-
posed in an earlier study [26] a phase diagram in the
concentration-shear rate plane, which qualitatively resem-
bles earlier results [2,12]. In particular, the diagram re-
produces the shear-induced shift of the isotropic-nematic
transition towards smaller concentrations, as well as a
critical shear rate beyond which the transition becomes
continuous. Based on ref. [26] we find that the initially
isotropic state with small tumbling parameter (with 6 =
1.20, A = 0.55) considered here is very close to the critical
point (see fig. 7 in [26]). The appearance of shear banding
(in gradient direction) in this situation is indeed consistent
with earlier predictions for systems of colloidal rods, such
as suspensions of fd-viruses [2,28]. The other parameter
sets considered in the present work lie deep in the nematic
phase of the concentration-shear rate phase diagram.
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A further interesting point concerns the occurrence of
shear bands in vorticity direction, a scenario which we
have implicitly ruled out by focusing on inhomogeneities
along the y-direction alone. Indeed, vorticity banding has
been predicted to occur in colloidal rod (fd-virus) sus-
pensions at conditions within the isotropic-nematic spin-
odal under shear [2]. Conceptually, vorticity-banded states
are characterized by the same shear rate (rather than
same shear stress as gradient-banded states) [57]. With
this background, the shape of the (homogeneous) flow
curves obtained here (namely those characterized by dis-
continuities and large hysteresis) may be taken as an in-
dication for vorticity banding. This point certainly war-
rants further investigation. Another important direction
is the investigation of (binary) mixture system which have
even more complex dynamics already in the homogeneous
case [31]. Work in these directions is in progress.
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Appendix A. Dimensionless form of the
dynamical equations

In order to rewrite egs. (4) and (5) in a dimensionless
form, we first introduce (see ref. [31]) the scaled order-

parameter tensor Q and the scaled free energy .#°r via
the relations

- Q _ For
Q=— and F'=_—1-. (A1)
15 " F et

Here, 4 is the value of the uniaxial order parameter at
the isotropic-nematic phase transition, % = v/6B/12C,
whereas 7% = 2C u§4 corresponds to a reference value of
the free energy in equilibrium (for more details, see [31]).
Using egs. (A.1) the scaled orientational free energy be-
comes
- O/~ - DN = 1. a2

Fir=2(Q:Q) -v6(QQ):Q+3(Q:Q) . (a2
where © = 24 AC'/B?2. Microscopically, © depends on the
number density and the molecular aspect ratio [31]. Specif-
ically, for a given aspect ratio, © changes sign (from pos-
itive to negative) as the concentration of the system in-
creases and the isotropic-nematic phase transition takes
place. The final expression of the scaled orientational free
energy in eq. (A.2) corresponds exactly to the one in ear-
lier studies (see e.g. [15,40]). However, because of the def-
inition of p4 the scaling of the subsequent variables is
modified by a constant factor.
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To proceed, we introduce (following refs. [31,40]) the
scaled spatial coordinate ¥ = r/L (where L is half of
the separation between the plates, see fig. 1) and the
scaled time 7 = t/t,f with t.f = Tqu§2/§r°;f. Using
these dimensionless variables together with eq. (A.2) in
egs. (4) and (5) we obtain egs. (11) and (12) in the main
text. The scaled correlation length and velocity field are
& = u§2§2/(L29r%’f) and v = v/L7, respectively. Fur-
ther, the nonlinear source term (see eq. (11)) becomes

H(Q,v) =29 2.Q+ 203 - Q+ V22" - &', (A.3)
where 3 = Ftrer, A = A/pk, and the derivative of the
orientational free energy is

#-60-3/6Q Qr2Q:Q)-Q
For the present flow geometry (see fig. 1), the vorticity and
deformation tensors take the form £2 = (1/2)(é"é¥—éve”)
and I' = (1/2)(é%eY + &Yé"), respectively.
Finally, the stress tensor (9) is expressed in terms of
the scaled variables as
~ T 5 - —
T=—— o = —pl+2uoiT +Ta,
pkinfg.

ref

(A4)

(A.5)

where pxin = pkpT/m is the prefactor of the align-

L
ment contribution, Ty, in eq. (10) and 7jiso is such that
Tiso = Miso/ (Pkintret-Frng). The alignment contribution to

the stress then becomes

Tu = VIAE — VAETQ
—20Q ¥+ 202 Q- V2Q. (A.6)
To illustrate the connection between our scaling pro-
cedure and real systems, consider solutions of fd-virus
with a Maier-Saupe order parameter at coexistence Sy ~
0.5 [58] and a cholesteric pitch ~ 107%m [59] in a Couette
cell of L = 1072 m [60]. Assuming a typical relaxation time
Tq ~ 0.01s and using the relation pb = V58, the values
of the scaled variables are A ~ 0.48-0.69, 4 ~ 0.7-2.0 and
€2~ 1.25x1075.

Appendix B. Orthonormal tensor basis

The symmetric traceless order parameter tensor Q has
five independent components. Thus, it can be written in
terms of these components using a standard orthonormal
tensor basis [47]:

4
Q= Zquiv where Bg = \/gézéza

=0
1, — /™ e
B, = 5( €. —€y€,), Ba=V2é,6,,
B; = V2é,é., By=V2¢,. (B.1)
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Fig. 11. (Color online) Temporal behavior of the in-plane com-
ponent of the stress tensor, T> = T>(¢), for (a) initially isotropic
systems at © = 1.20, A = 0.55, ¥ = 0.365 (W state) and (b)
initially nematic systems at ©® = —0.25, A = 1.25, ¥ = 3.65
(KT state). The solid (blue) and dashed (red) lines indicate
the time dependence of T3 and its mean value, respectively.
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This tensor basis has the property B; : B; = §;;, where
0i; is the Kronecker delta. The tensor basis has been used
in a variety of tensor equations describing flow alignment
of liquid crystals [39,47] and the non-linear flow behavior
of gases and molecular fluids [61,62].

Appendix C. Time dependence of the stress
tensor

In this appendix we present exemplary results for the time
dependence of the stress T5 (i.e., the in-plane component
of the stress tensor) in dynamical states with oscillatory
motion of the nematic director. Indeed, the flow curves
plotted in figs. 3 and 4 for the homogeneous systems and
figs. 6(b), 8(b) and 9 for the inhomogeneous systems only
show time-averaged values of the functions T5(t). The full
functions T»(t) follow from eqs. (23) and (17) through the
dependence of Ty on the components of the order param-
eter q;.

To illustrate the time dependence, we show in
figs. 11(a) and (b) the results for an initially isotropic or
nematic system in the W and the KT state, respectively.

We should note that the oscillations of the stress ten-
sor are present in the case of both, homogeneous and in-
homogeneous systems. For inhomogeneous systems, the
instantaneous value of the stress tensor is calculated us-
ing eq. (23). The constant values appearing in the inho-
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mogeneous flow curves (see e.g. figs. 6(b) and 8(b)) are
calculated averaging the value of the stress tensor over a
period of time for each point y/L.
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