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Abstract. Biological microswimmers often inhabit a porous or crowded environment such as soil. In order
to understand how such a complex environment influences their spreading, we numerically study non-
interacting active Brownian particles (ABPs) in a two-dimensional random Lorentz gas. Close to the
percolation transition in the Lorentz gas, they perform the same subdiffusive motion as ballistic and
diffusive particles. However, due to their persistent motion they reach their long-time dynamics faster
than passive particles and also show superdiffusive motion at intermediate times. While above the critical
obstacle density ηc the ABPs are trapped, their long-time diffusion below ηc is strongly influenced by the
propulsion speed v0. With increasing v0, ABPs are stuck at the obstacles for longer times. Thus, for large
propulsion speed, the long-time diffusion constant decreases more strongly in a denser obstacle environment
than for passive particles. This agrees with the behavior of an effective swimming velocity and persistence
time, which we extract from the velocity autocorrelation function.

1 Introduction

Active matter has been in the focus of intense research for
the last decade [1–4]. On small length scales it describes
the motion of biological microswimmers such as swim-
ming bacteria or motile cells, and of artificial microswim-
mers, such as active Janus particles or self-propelled emul-
sion droplets [5–10]. In a homogeneous environment, mi-
croswimmers at low Reynolds number first move ballis-
tically and then cross over to enhanced diffusion due
to random rotational motion of their swimming direc-
tion [4, 11]. Active Brownian particles provide a simple
stochastic model for microswimmer such as active Janus
particles [2], which in contrast to bacteria do not tumble.

Natural microswimmers usually do not move in ho-
mogeneous environments but encounter soft and solid
walls, obstacles [12–16], or even more complex environ-
ments like the intestinal tract [17], porous soil [18], and
blood flow [19]. A heterogeneous environment can be re-
alized in different ways, both in experiments and theory,
e.g., by regular or irregular patterns of obstacles [20–32],
mazes [33], arrays of funnels [16, 34–38], pinning sub-
strates [39], or patterned light fields, which control the ve-
locity of the microswimmer [40,41]. For a review see [4,42].

In real systems the heterogeneities of the environment
are mosty irregular. One way to model them is the random
Lorentz gas [43–45]. In this approach the obstacles are
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fixed and randomly distributed with a given area fraction.
The properties of the Lorenzt gas change fundamentally
with varying density. In particular, it shows a transition
to continuum percolation [46], where the complementary
free space stops to percolate through the whole system. As
a consequence, the dynamics of a test particle in such a
Lorentz gas crucially depends on density. Above a critical
obstacle density, the test particle can no longer explore
the whole environment but stays trapped and long-range
transport is effectively suppressed. Höfling et al. have ob-
served that in two dimensions and close to the critical
density diffusive and ballistic particles show the same sub-
diffusive motion in a random Lorentz gas [44,47–50].

Microswimmers can interact in different ways with
obstacles. For example, Chepizhko et al. have studied
self-propelled particles in an environment of randomly
distributed point-like obstacles. Instead of implementing
steric interactions, they let the self-propelled particles de-
flect from the point-like obstacles with a characteristic
turning speed [26]. Depending on the system parameters,
this setting can lead to trapped states where particles cir-
cle around an obstacle and thus to subdiffusive motion.
It also shows interesting effects during collective motion.
For example, transport in the presence of obstacles is op-
timized by a specific noise value [27,30].

Reichhardt et al. also observe an optimal noise value
for run and tumble particles in a disordered environ-
ment [28]. In the limit of zero noise or infinite run length,
even for a small number of obstacles diffusion can go to
zero as the particles become completely trapped [51].
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In this article we will investigate an active Brow-
nian particle (ABP) moving in a random Lorentz gas
implementing explicit steric interactions between ABP
and obstacles. We will demonstrate that it performs the
same subdiffusive motion as ballistic and diffusive parti-
cles close to percolation. Besides this universal feature,
ABPs explore their environment faster than passive par-
ticles due to their persistent motion and therefore reach
their long-time dynamics at earlier times. At intermedi-
ate times their dynamics is superdiffusive. A determining
characteristic of ABPs is that they are stuck to the obsta-
cles due to their self-propulsion. This has consequences for
the diffusive spreading below the critical obstacle density.
Namely, for large propulsion speed, the long-time diffu-
sion constant decreases more strongly in a denser obstacle
environment than for passive particles. We rationalize this
behavior by studying the velocity autocorrelaton function,
which motivates us to introduce an effective swimming ve-
locity and persistence time.

The article is structured as follows. In sect. 2 we intro-
duce the equations of motion of the ABP and model the
obstacle environment as a random Lorentz gas. In sect. 3
we recap the dynamics of a passive Brownian particle in
the Lorentz gas and compare it to the ABP in sect. 4.
Finally, in sect. 5 we discuss how the long-time diffusion
coefficient of an ABP and its persistent motion is reduced
in the presence of obstacles using the velocity autocor-
relation function. We finish with concluding remarks in
sect. 6.

2 Introduction of the model

2.1 Active Brownian particle interacting with obstacles

Our model of a microswimmer is a circular active Brown-
ian particle (ABP) with radius Rs. It moves with a con-
stant velocity v0 along a direction e in a two-dimensional
environment filled with circular obstacles of radius Ro.
The particle also experiences rotational and translational
thermal noise. Thus, the Langevin equations governing the
dynamics of the ABP reads [2, 4]

dr(t)
dt

= v0e(t) + μT
∑

i

Fi
o +

√
2DT ηT (t),

de(t)
dt

=
√

2DRηR(t) × e(t), (1)

where DT and DR are the respective translational and
rotational diffusion constants. Furthermore, ηT (t) is a
rescaled stochastic force and ηR(t) a rescaled stochastic
torque, both with zero mean and Gaussian white noise
correlations:

〈ηT,R(t)〉 = 0, (2)

〈ηT,R(t1) ⊗ ηT,R(t2)〉 = 1δ(t1 − t2). (3)

Note that the stochastic torque always points out of the
x, y plane, ηR = ηR

z ez.

Finally, the interaction force Fi
o between an ABP and

obstacle i is modeled by pure volume exclusion. It derives
from the Weeks-Chandler-Anderson potential, which is a
Lennard-Jones potential cut off at the minimum:

V =

⎧
⎪⎨

⎪⎩

4ε

[(σ

r

)12

−
(σ

r

)6
]

+ ε, for r < d∗,

0, for r ≥ d∗.

(4)

Here, d∗ = 21/6σ = Rs + Ro is the distance, where the
potential is minimal and where it also vanishes. The re-
sulting force in eq. (1) is then given by Fo = −∇V . Hy-
drodynamic interactions are neglected in this model.

The motion of the active Brownian particle in free
space is fully characterized by the dimensionless Péclet
number, which compares the times needed for diffusive
and active motion along a distance Rs,

Pe =
2Rsv0

DT
. (5)

Moreover, in a homogeneous bulk system the ABP moves
ballistically on the persistence length Δsr = v0τr, where
τr = 1/DR is the persistence time completely determined
by the rotational diffusion constant.

2.2 Lorentz model and continuum percolation

We model the heterogeneous environment by a random
Lorentz gas, where circular obstacles are randomly dis-
tributed in the plane and with positions fixed in space
(spatial Poisson point process) [52]. The obstacles are as-
signed a reduced density or area fraction η = πR2

o/A,
where A is the area of the system. However, since the
obstacles can fully penetrate each other, the actual area
fraction is [53]

φo = 1 − e−η. (6)

Percolation theory gives some first insights how an
ABP moves through the random Lorentz gas. It provides
a critical density for the transition to an infinite cluster
of overlapping disks percolating through the whole sys-
tem [53] or for the percolating free space between ob-
stacles [48]. In two dimensions the critical particle area
fraction for the percolating cluster of connected disks is
φo,c = 0.67637 ± 0.00005 [53], while the critical void area
fraction for the percolating free space is φv,c ≈ 0.324 [48].
The latter determines whether the ABP ultimately per-
forms diffusive motion or becomes localized (localization
transition). In two dimensions the two area fractions add
up to one, because the percolating clusters of free space
and of overlapping disks are complementary to each other.
They can only coexist in strongly anisotropic systems but
not in the random Lorentz gas with its isotropic distri-
bution of disks. In three dimensions this restriction is no
longer valid.

In our simulations we always choose the reduced den-
sity η instead of the actual area fraction φo. Using eq. (6)
the critical value of the reduced obstacle density is ηc =
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Fig. 1. Left: Trajectory of a passive Brownian particle in a heterogeneous environment with reduced obstacle density η = 0.3.
Right: Trajectory of an ABP with Pe = 100 under the same conditions. Time along the trajectories is encoded by color according
to the color bar.

− ln(1 − φo,c) ≈ 1.12815. Now, the ABP itself has a fi-
nite extent, so the accessible space for its center of mass
is determined not only by the obstacles but also by the
swimmer radius. The ABPs can only pass between two
obstacles if their distance is larger than 2(Ro + Rs) as-
suming ideal hard-core interactions. Thus, we can map
the problem of an extended swimmer in a random envi-
ronment onto a point-like swimmer in an environment of
obstacles with an effective radius Reff = Ro + Rs = 2Ro

and an effective reduced density ηeff = Nπ(Reff)2/V = 4η
(here and in the following we assume Ro = Rs). There-
fore, we find for the critical reduced density of the actual
obstacles

ηc = ηeff
c /4 ≈ 0.28. (7)

We will see that in our system the localization tran-
sition takes place at densities larger than the theoreti-
cally predicted value ηc ≈ 0.28. This is mainly due to a
finite-size effect. Near to the critical density, the size of
the largest finite cluster of free space (or the largest trap)
diverges as the correlation length: ξ ∼ |η − ηc|−ν . The ex-
ponent ν = 4/3 is known from lattice percolation and also
valid for continuum percolation. In our simulations we can
only realize a finite system with size L and apply periodic
boundary conditions, in order to mimic infinite systems.
The system size L is then an upper bound for the size of
the largest cluster of accessible space given by ξ. Coming
from high densities η, the free space starts to percolate for
ξ ≈ L and the apparent critical density in a finite system is
shifted according to ηc(L) − ηc(∞) ∼ L−1/ν . In contrast
to ref. [48], where the system size was L/Ro = 10000,
we use much smaller systems with a fixed number of
15000 obstacles. Depending on η, the system size becomes
L =

√
A =

√
15000πR2

o/η, which ranges from 140 to 343
for η ∈ [0.1, 0.6] used in our simulations. This is a fac-
tor 100 smaller than in [48] and roughly gives a shift of
ηc(L) − ηc(∞) ∼ 0.02, in agreement with our results pre-
sented below. Finally, note that in contrast to typical stud-
ies of percolation, we keep the number of obstacles fixed
rather than the system size. This makes sense since active
particles strongly accumulate at bounding surfaces which,
therefore, strongly influence the dynamics of ABPs [14].

2.3 System parameters

For all of our simulations we use an environment with
15000 obstacles. To determine the long-time behavior
of the ABPs, we perform simulations with 500 non-
interacting swimmers in the same environment. In order to
study the short-time behavior and especially the velocity
autocorrelation function in more detail, we simulate 100
non-interacting swimmers in upto six different realizations
of the environment, so 600 trajectories in total.

We randomly place the obstacles on a square with area
A and allow them to overlap. Then, the swimmers are
randomly distributed but overlaps with obstacles are not
allowed. If they occur, the relevant swimmers are newly
placed. Since ABPs eventually accumulate at the surfaces
of the obstacles, the random swimmer distribution is not
the steady state of the system. So, before we start our
data acquisition, we let the system equilibrate during a
time 0.5τd. Here,

τd = (2Rs)2/DT (8)

is the time a passive particle needs to diffuse its own size,
while the ABP moves over much longer distances during
τd depending on the Péclet number.

In the following, we set Rs = Ro = R. We give lengths
in units of 2R and rescale time by τd = (2R)2/DT . In
three dimensions the respective thermal diffusion coeffi-
cients for translation and rotation are related by DR =
3DT /(4R2) [4]. Albeit in two dimensions, we use the same
ratio in all our simulations and the ratio of the diffusion
times becomes τr/τd = 1/3. Finally, for the time step Δt in
the Langevin-dynamics simulations we choose Δt ≤ 10−5

in units of τd, where we need to adjust Δt to smaller values
with increasing Péclet number.

3 Influence of the random environment on a
passive Brownian particle

Before presenting our results for ABPs, we review some
basic results for passive Brownian particles. Figure 1
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Fig. 2. Mean squared displacement 〈Δr2〉 (top), local exponent α(t) (center), and local diffusion coefficient D(t)/D0 (bottom)
for (a) a passive and (b) an active Brownian particle. The dashed-dotted lines in the middle graphs indicate α = 2/z ≈ 0.66.

shows a close-up of the system with obstacles in black.
The surrounding excluded volume due to the finite size of
the Brownian particles is indicated by gray rings. We show
the trajectories of the passive and active Brownian parti-
cles, where color encodes time. The trajectory of the cen-
ter of the passive particle (left) is only governed by diffu-
sion. It explores the accessible free space and moves about
eight particle diameters away from the starting point as
expected for t = 10.

To be more quantitative, we discuss the mean squared
displacement, the local exponent α(t), and the local dif-
fusion coefficient D(t) for different reduced obstacle den-
sities as shown in fig. 2(a).

3.1 Mean squared displacement

For a Brownian particle in two dimensions, diffusing in
free space, the mean squared displacement is given by
〈Δr2(t)〉 = 4DT t and shown by the black curve in the
upper graph of fig. 2(a). At small obstacle densities (η =
0.1, 0.2) the mean squared displacement behaves similar
to the free case, however, with a smaller diffusion coef-
ficient (note the double-logarithmic plot). For very high
obstacle densities (η = 0.5, 0.6) it eventually saturates at
finite values. At intermediate obstacle densities we observe
subdiffusive behavior also at long times. Thus, the mean
squared displacement shows a transition from a linear to
a localized regime via subdiffusion. In an inifinitely ex-

tended system, the latter occurs exactly at the critical
density ηc, where the free space does not percolate any
more. Beyond this density particles are trapped in regions
of finite size and the mean squared displacement saturates
at 〈Δr2(t)〉 equal to the areas of these regions. All this
is thoroughly reviewed in ref. [48]. We will now be more
quantitative to be able to compare with the ABPs.

3.2 Local exponent

Subdiffusive behavior is indicated by 〈Δr2(t)〉 ∝ tα with
an exponent α < 1. Thus we determine the local exponent

α(t) =
d log〈Δr2(t)〉

d log t
(9)

from the mean squared displacement and plot it in the
middle graph of fig. 2(a). In free space (η = 0) α(t) does
not change in time and is always one. Also for low η the
exponent fluctuates around one, which indicates that the
particle dynamics is still governed by conventional diffu-
sion and the obstacles do not have much impact, whereas
for very high η the exponent tends to zero as expected
when particles become trapped or localized. For inter-
mediate obstacle densities η the local exponent α(t) is
smaller than one and indicates subdiffusive behavior. In
particular, at η = 0.28 the exponent reaches the value
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α = 2/z = 2/3.036 ≈ 0.66 as expected at the percolation
transition and shown by the dashed-dotted line. However,
for most parameters the exponent has not yet reached a
stationary value.

In an inifinite system close to percolation, particles
exhibit subdiffusion below the correlation length ξ of the
fractal cluster of free space. Then, on lengths larger than
ξ they either become trapped (η < ηc) or diffusive (η >
ηc) [53]. Subdiffusion persists exactly at η = ηc, where
ξ diverges. In finite systems the correlation length ξ is
bounded by the system size L. So any subdiffusive motion
at short times with 〈Δr2(t)〉 < ξ2 is only transient and will
ultimately become trapped for η ≥ ηc(L) with an expo-
nent α = 0 or turn into normal diffusion for η < ηc with an
exponent α = 1. Thus, in fig. 2(a), middle graph the curve
for η = 0.28 and probably also for η = 0.3 will ultimately
reach one for long times beyond our simulated times,
whereas the curves for larger η clearly tend towards zero.

Passive particles diffuse slowly and in contrast to active
particles need a long time to explore their environment.
Together with the diverging ξ close to the percolation
transition, this explains why in fig. 2 only the exponents
far from the critical density (η = 0.1, 02 and η = 0.6) have
reached the stationary values of one and zero, respectively.

3.3 Local diffusion coefficient

Another quantity to characterize the mean squared dis-
placement is the local diffusion coefficient

D(t) =
1
4

d〈Δr2(t)〉
dt

. (10)

In the lower graph of fig. 2(a) we plot it normalized by the
diffusion coefficient in free space, D0, which is DT for pas-
sive particles. Already at low densities η the diffusion co-
efficient D(t) is not constant in time. At η = 0.1 it slightly
decreases and around t = τd saturates at a ratio D(t)/D0

below one. For η = 0.2 the ratio decreases further and
takes more time to become stationary. For obstacle densi-
ties above the percolation transition D(t) tends to zero as
expected. In agreement with the discussion in sect. 3.2, at
intermediate densities the time to reach a diffusive state
with a constant D(t) or a localized state with D(t) = 0
becomes very large close to the critical density η = ηc(L).

Analyzing the local exponent α(t) and the local
diffusion coefficient D(t)/D0 shows that obstacles at low
densities η act as an additional source of noise, while at
high obstacle densities η they confine the available space
of the swimmers to a finite extent. A good discussion of
the scaling behavior of the dynamics of Brownian parti-
cles in a heterogeneous environment close to percolation
is found in [48].

4 Influence of the random environment on a
microswimmer

In this section we first study how the complex environ-
ment influences the motion of ABPs moving at Pe = 100,
as an example. We show how the dynamics of the swimmer
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Fig. 3. Mean distance of an ABP to the closest obstacle,
〈d〉/(2R), plotted versus η for different Pe. Inset: Probabil-
ity for the ABP to have a distance d smaller than 1.1(2R) to
the nearest obstacle, P (d/(2R) < 1.1).

changes with obstacle density. The results to be discussed
below are plotted in fig. 2(b). In sect. 4.4 we will com-
pare ABPs of different velocities close to the percolation
transition.

In contrast to a passive particle the ABP is much more
in contact with the obstacles and covers a longer path due
to its swimming velocity. This is demonstrated in fig. 1(b)
for an example trajectory at Pe = 100. The ABP spends
less time in the free space but is rather guided along the
walls of obstacle clusters. Due to its overdamped motion
the ABP just stops if its self-propulsive velocity points
perpendicular to a bounding wall. However, as long as the
swimming direction has a component parallel to an obsta-
cle surface, it will slide along the surface. The ABP leaves
the obstacle due to rotational diffusion of its swimming di-
rection (governed by the persistence time τr) and because
the obstacle is curved.

Indeed, fig. 3 demonstrates that the mean distance of
an ABP to the closest obstacle drastically decreases with
increasing Péclet number at the same obstacle density η.
In partiular, for Pe ≥ 50 the mean distance is close to
2R. It varies only little with increasing η and all ABPs
reside close to or at obstacle surfaces. Correspondingly,
the probability of an ABP to be at a distance smaller
than 1.1(2R) to the nearest obstacle increases with Pe
and approaches one (see inset of fig. 3).

4.1 Mean squared displacement

Free space. For an ABP moving with velocity v0 the mean
squared displacement in free space can be written as [11,
54,55]:

〈Δr2(t)〉 = 4DT t + 2v2
0τrt − 2v2

0τ2
r

(
1 − e−t/τr

)
. (11)

From this equation one infers two relevant time scales and
an effective diffusion coefficient at long times. On times
shorter than

τ1 = 4DT /v2
0 = 4τd/Pe2, (12)
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where we used eqs. (5) and (8) to derive the second expres-
sion, translational diffusion dominates over active propul-
sion and the ABPs move by thermal diffusion. Typically,
this regime is only observed at small Péclet numbers. On
times up to the persistence time τr = 1/DR (in two dimen-
sions), self-propulsion dominates and the ABPs move bal-
listically. On times larger than τr the particle orientation
decorrelates and diffusive motion occurs with an increased
effective diffusion coefficient Deff = DT + 1/2v2

0τr. The
ballistic regime and the crossover to enhanced diffusion
around τr = τd/3 is clearly illustrated in the upper graph
of fig. 2(b). The initial diffusive regime occurs at times
smaller than τ1 = 4·10−4τd and is not visible in the graph.

Random environment. Here the mean squared displace-
ment in fig. 2(b) follows the general trend set by passive
particles and ABPs in free space. An inital ballistic or
superdiffusive regime is followed by either effective diffu-
sion at small densities η or a localization at high η, where
〈Δr2(t)〉 saturates at the square of the mean trap size.
Close to the critical percolation density we now observe a
subdiffusive regime, which extends over several decades in
time compared to the passive case. The time spent in the
subdiffusive regime becomes shorter further away from the
critical density (see for example η = 0.4).

Due to their self-propulsion, ABPs cover a much longer
distance than passive particles in the same time (see
fig. 1). As a result, they explore the confining space of
a trap much faster. Thus, the mean squared displacement
of ABPs at densities η = 0.4 and higher saturates at a pro-
nounced plateau much earlier than for passive particles.

At short times, passive particles or slow swimmers ex-
plore the whole free space by diffusion with the same dif-
fusion coefficient. Therefore, all the curves for different
η in the upper graph of fig. 2(a) initially lie on top of
each other. In contrast, for fast ABPs the inital ballis-
tic/superdiffusive motion slows down with increasing η.
ABPs strongly accumulate at the obstacles and the time
they spend in free space decreases with η. Thus, effec-
tively also their mean motility decreases with increasing
η at short times, which explains that the mean squared
displacement in fig. 2(b) is shifted downwards. In sect. 5.2
we will introduce an effective swimming velocity, which
rationalizes the observed behavior.

4.2 Local exponent

Free space. In the middle graph of fig. 2(b) the black solid
line shows the analytic result for the local exponent of
an ABP moving in free space, which we directly calculate
using eq. (11)

α(t) =
d log〈Δr2〉

d log t
=

4DT t + 2v2
0τrt − 2v2

0τrte
−t/τr

〈Δr2〉 .

(13)
Rescaling times by τd and lengths by the diameter 2R,
one shows that the temporal evolution of the local expo-
nent only depends on the Péclet number, which also sets
the time scale for the transition from diffusion to ballis-
tic movement, as τ1 in eq. (12) demonstrates. The second

time scale τd marks the transition from ballistic back to
diffusive motion.

Random environment. In contrast to passive particles, the
ABPs reach their long-time behavior much faster at times
around τd and the transition is more pronounced. This is
clearly demonstrated by the graphs for α(t) in fig. 2. The
exponent of the ABP assumes α = 1 for the diffusive mo-
tion at small η = 0.1, 0.2, becomes zero at high obstacle
densities η = 0.4, 0.5, 0.6, and indicates clear subdiffusive
motion at the intermediate densities η = 0.28, 0.3. As for
passive particles we roughly find α close to 0.66 (dashed-
dotted line) indicating that subdiffusion close to the criti-
cal percolation density is mainly governed by the topology
of free space and not by the difference between Brownian
and ballistic active motion.

At short times the ballistic/superdiffusive regime
shrinks in the presence of obstacles with increasing η and
also the local exponent α decreases. In particular, the
crossover time from ballistic/superdiffusive motion to dif-
fusion shifts to smaller times when η becomes larger. In-
terestingly, at high obstacle densities, η ≥ 0.4, a short
diffusive regime with α = 1 is established before localiza-
tion with α = 0 occurs.

4.3 Local diffusion coefficient

Free space. We readily calculate the local diffusion coeff-
cient of an ABP using eq. (11):

D(t) =
1
4

d〈Δr2(t)〉
dt

= DT +
1
2
v2
0τr −

1
2
v0τre

−t/τr . (14)

It is plotted as the solid black line in the bottom graph of
fig. 2 and shows a plateau at the effective diffusion coeffi-
cient Deff = DT + v2

0τr/2, as already discussed.

Random environment. Very prominently, at low η the
steady-state diffusion coefficient strongly decreases from
the free-space value. Thus, even at low densities, the obsta-
cles have a much more pronounced effect compared to pas-
sive particles and strongly decrease the mobility of ABPs.
For high obstacle densities, η ≥ 0.4, one clearly observes
how D(t) approaches zero. This occurs at smaller times,
when η increases. Finally, in the vicinity of the percola-
tion transition the diffusion coefficient behaves close to
the universal power law, D(t) ∝ t2/z−1, as indicated in
the graph.

4.4 Microswimmers in a random Lorentz gas close to
the percolation transition

In this section we study how ABPs move in a two-dimen-
sional random environment close to the percolation tran-
sition. Investigations of passive particles, both diffusive
and ballistic, demonstrate some universal behavior [48].
In fig. 4 we plot the mean squared displacement 〈Δr2(t)〉
and the local exponent α(t) for ABPs moving with differ-
ent Péclet numbers in an environment with η = 0.29. For
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Fig. 4. Mean squared displacement 〈Δr2〉 (top) and local ex-
ponent α(t) (bottom) for ABPs plotted versus time for differ-
ent Péclet numbers at η = 0.29. The dashed lines show the ana-
lytic results for free space from eqs. (11) and (13). The dashed-
dotted line in the bottom graph indicates α = 2/z ≈ 0.66.

comparison, the dashed lines show the analytic results for
free space without any obstacles from eqs. (11) and (13).

Two features are visible. First, while in free space the
curves for the mean squared displacement are shifted up-
wards with increasing Pe, in the presence of the obstacles
they roughly emanate from the same value at the smallest
time t = 10−3τd. The reason is that ABPs assemble at
and swim against the obstacles as discussed in the begin-
ning of sect. 4. So, in contrast to free space only a small
fraction of them can move forward when rotational dif-
fusion orients their swimming directions away from the
obstacles. In sect. 5.2 we will rationalize this behavior by
introducing an effective swimming velocity veff .

Second, while in free space the ABPs enter the dif-
fusive regime for t > τd, they all show subdiffusive mo-
tion in the random environment close to the percolation
transition. For intermediate times 1 < t/τd < 102 and
for all Péclet numbers the exponent α stays close to the
universal value α ≈ 0.66 shown by the dashed-dotted hor-
izontal line in the lower plot. This indicates that close
to the percolation transition the dynamics of the ABP is
entirely controlled by the random environment regardless
of Pe. One can expect such a behavior from the results
of refs. [48, 49]. For the same random environment they
showed that in two dimensions the transport of passive
particles, either Brownian or ballistic, shares the same uni-
versality class.

5 Long-time diffusion and persistent motion

We now discuss two overall features of ABPs moving in a
random Lorentz gas. First, we look at the long-time dif-
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Fig. 5. Long-time diffusion coefficient D∞ versus η for differ-
ent Pe. D0 is the coefficient for η = 0.

fusion coefficient for densities below the percolation tran-
sition and then address how the persistent motion of an
ABP is reduced in the presence of obstacles using the ve-
locity autocorrelation function.

5.1 Long-time diffusion coefficient

Below the percolation threshold, the local diffusion con-
stant D(t), which we determine from the mean squared
displacement using eq. (10), assumes a constant value D∞
in the limit of long times. In fig. 5 we plot D∞ versus η
for different Pe and refer it to the respective free-space
value D0(η = 0). All D∞ decrease with increasing ob-
stacle density, however the decrease is stronger for larger
Péclet numbers. While for passive particles the diffusion
coefficient declines by less than an order of magnitude, it
decreases by more than two orders for Pe = 200. The rea-
son is that at such a high Péclet number the ABP is mostly
stuck at the obstacles and hardly explores the space in
between. This can be rationalized by an effective swim-
mining speed smaller than the free-space value v0, which
we introduce in the following.

5.2 Velocity autocorrelation function

The velocity autocorrelation function (VACF) is a means
to demonstrate the persistent motion of microswimmers.
Therefore, we study now how the VACF changes for ABPs
in the random Lorentz gas, in order to extract effective val-
ues for swimming velocitiy, decorrelation time, and persis-
tence length.

Free space. In free space the velocity autocorrelation func-
tion C0(t) = 〈v(t) ·v(0)〉 follows from the Langevin equa-
tion (1) setting Fi

o = 0. With ṙ = v and the properties
of Gaussian white noise as defined in eqs. (2) and (3), the
VACF becomes [56]

C0(t) = 〈v(t) · v(0)〉 = v2
0〈e(t) · e(0)〉 + 2DT δ(t), (15)
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with the orientational correlation function [57]

〈e(t) · e(0)〉 = e−t/τr . (16)

The decorrelation time in two dimensions is τr = 1/DR.
In the following we will also call it persistent time, since it
gives the time scale on which the ABP moves persistently
in one direction. Note, in the absence of external forces,
the deterministic velocity of the ABP always points along
the orientation vector e(t), therefore C0(t) is determined
by the autocorrelations of e(t).

Random environment. In a random Lorentz gas an ABP
interacts sterically with the obstacles, where it cannot
move along its orientation vector e(t). It rather slides
along the boundaries of the obstacles or is stuck in traps
with convex shape formed by the obstacles. Both cases are
illustrated in fig. 1. Because we do not take into account
hydrodynamic interactions with the obstacles and there
are no other torques acting, the dynamics of the orien-
tation vector e(t) is not affected by the random environ-
ment. Thus, its autocorrelation function follows eq. (16).
However, the full VACF strongly depends on the steric
interactions of the ABP with the obstacles and cannot be
calculated analytically. Therefore, we determine it from
the swimmer trajectories. We calculate velocity values at
discrete timesteps [v(t) = Δr(t)/Δt], numerically com-
pute the Fourier transform of the time series, and then the
VACF as C(t) =

∫
〈|v(ω)|2〉eiωtdω/(2π) using the Wiener-

Khinchin theorem [58].
As an example, fig. 6 shows C(t) = 〈v(t) · v(0)〉 in

units of v2
0 for Pe = 100 for different obstacle densities η.

While at η = 0 we nicely recover the expected exponen-
tial decay from the orientational decorrelation, we observe
deviations from it with increasing η. The autocorrelations
in velocity decay faster with increasing η and then drop
sharply to zero. At times much smaller than τd we can
even see anticorrelations in C(t) (not shown). They arise
at times t ≤ τ1 = 4τd/Pe2, where thermal translational
diffusion dominates over active propulsion (see eq. (12)).
While stuck at an obstacle and oriented towards it, Brow-
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Fig. 7. Effective propulsion velocity veff in units of v0 (top) and
effective persistence time τeff in units of τr (bottom) plotted
versus η for different Péclet numbers.

nian motion moves the ABP away from the obstacle and
thereby causes these anticorrelations.

Approximating the VACF by an exponential,

C(t) = v2
effe−t/τeff , (17)

allows us to define an effective propulsion velocity veff and
an effective persistence time τeff . The velocity veff can be
interpreted as the mean velocity of an ABP in the crowded
environment. It is smaller than v0, since the VACF also
averages over ABPs, which are stuck at obstacles or in
traps. The exponential curves determined by least square
fits for the VACF data in the range 0.01τd < t < τd are
shown as dashed lines in fig. 6.

In fig. 7 we show the fit parameters veff (top) and τeff

(bottom) rescaled, respectively, by the intrinsic propulsion
velocity v0 and the orientational decorrelation time τr.
The effective velocity decreases with increasing η since
the ABP has less free space to move forward and thus the
probability to find it at an obstacle with zero or reduced
velocity increases. The same is true for larger Pe, where
the ABP traverses the free space faster and thereby spends
more time being stuck at the obstacles. The persistence
time τeff , on which velocity correlations decay, shows the
same behavior. It decreases with increasing η and Pe, thus
when the ABP spends more time at the obstacles, where
its total velocity changes magnitude and direction.

It is instructive to introduce an effective persistence
length leff = τeff · veff , which we plot in units of obstacle
diameter 2R in fig. 8. At η = 0, leff coincides of course
with the persistence length of an ABP in free space, v0τr.
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It decreases with increasing η but below η = 0.3 it rises
with Pe, which makes sense. However, for sufficiently large
η we expect leff to be governed by the random environ-
ment of the Lorentz gas, for which the mean free path is
lfree = (RN/L2)−1 = πR/4η [53]. It is plotted as black
dashed line in fig. 8. Indeed, at around η = 0.3, i.e.,
above the percolation density ηc ≈ 0.28, the effective per-
sistence lengths for different Pe are close to lfree, except
for Pe = 10, where translational Brownian motion is still
important. Above η = 0.3 they all lie below the geomet-
rical length lfree and are smallest for the largest Pe, as
expected from the definition of leff .

6 Summary and conclusions

To conclude, in this article we studied the dynam-
ics of active Brownian particles in a two-dimensional
heterogeneous environment of fixed obstacles modeled by
a random Lorentz gas. Using Brownian dynamics simula-
tions, we explored how ABPs with different Péclet num-
bers move at varying obstacle density. The percolation
transition of the Lorentz gas plays a major role for the
long-time dynamics of ABPs, separating long-range trans-
port of ABPs on the one hand from trapping of ABPs on
the other hand. At obstacle densities below the critical
density, ABPs are able to diffuse over long distances, while
at obstacle densities above the critical density all ABPs
are trapped in finite regions. This separation is indepen-
dent of the Péclet number of the ABPs.

Close to the critical obstacle density, we observe that
independent of the Péclet number, ABPs show subdiffu-
sive motion on intermediate time scales with the same
dynamic exponent as passive and ballistic particles. Thus,
we expect that in two dimensions they share the same
universality class with passive diffusive and ballistic par-
ticles. Therefore, the properties of the random Lorentz gas
alone control the transition between long-range transport
and trapping of ABPs as well as the dynamic exponent at

and close to the percolation transition. However, in con-
trast to this universal behavior, we find that ABPs due to
their persistent motion explore their environment faster
than passive particles and, consequently, reach their long-
time dynamics at earlier times. The persistent motion also
makes ABPs superdiffusive on intermediate times.

A main characteristic of ABPs is that they swim
against obstacles and are stuck there until noise rotates
them away from the surface normal. As a result, the long-
time diffusion constant decreases more strongly in a denser
obstacle environment than for passive particles and this
effect becomes stronger for large Péclet numbers. For ex-
ample, for ABPs with Pe = 200 the diffusion constant
decreases by more than two orders of magnitude until an
obstacle density of 0.25, while the decline for passive par-
ticles is below a factor of ten.

Diffusion of ABPs in free space is determined by
propulsion velocity and persistence time, while in a ran-
dom environment obstacles perturb the persistent motion
of ABPs even at low densities. By measuring the veloc-
ity autocorrelation functions from the trajectories of the
ABPs and making an exponential fit, we determined ef-
fective values for propulsion velocity and persistence time.
They indeed decrease with increasing obstacle density and
Péclet number and thereby rationalize the observation for
the long-time diffusion constant.

Based on the current study we aim at extending our
investigations in different directions. For example, we will
place the ABPs into a random environment with a con-
stant gradient in the obstacle density. We expect this set-
ting to induce a drift of the ABPs towards the denser
region. One could view this as a form of taxis similar to
motile cells exposed to a substrate of varying stiffness. The
cells move along a gradient towards regions of largest sub-
strate stiffness thus performing durotaxis [59, 60]. ABPs
also show a motility-induced phase separation [61–64],
where they phase-separate into a gas and dense phase for
sufficiently large propulsion velocity and density. Immo-
bile obstacles can act as nucleation sites of dense ABP
clusters [28] and we will explore how they influence the
phase behavior of ABPs.
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49. M. Spanner, F. Höfling, S.C. Kapfer, K.R. Mecke, G.E.
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Phys. 142, 224109 (2015).

62. M.E. Cates, J. Tailleur, Annu. Rev. Condens. Matter Phys.
6, 219 (2015).

63. S.C. Takatori, J.F. Brady, Phys. Rev. E 91, 032117 (2015).
64. J. Blaschke, M. Maurer, K. Menon, A. Zöttl, H. Stark, Soft
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