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Abstract Figuring in sustainability in product development requires a profound
understanding of the cause and effect of engineering decisions along the full
spectrum of the product lifecycle and the triple bottomline of sustainability.
Sustainability design targets can contribute to mitigating the complexity involved,
by means of a formalised problem description. This article discusses how sus-
tainability design targets can be defined and presents methods for systematically
implementing these targets into the design process. To that end, different means of
decision support mechanisms are presented. They comprise (a) use cases of target
breakdowns in subsystems, (b) systematic reduction of solution space and (c) as-
sistance in design activities to ensure achievement of sustainability design targets.
This paper explains how interfaces to engineering tools such as Computer Aided
Design/Engineering (CAD/CAE) or Product Data/Lifecycle Management
(PDM/PLM) can be put in place to make the process of retrieving information and
providing decision support more seamless.

Keywords Decision support � Sustainable design � Product development �
Sustainability targets

1 Challenges in Sustainable Product Development

The topic of Sustainable Product Development (SPD) has been discussed in aca-
demic research since the early nineties with a strong focus on the environmental
perspective (e.g. by Allenby 1991). In this context, numerous approaches have been
developed, while some success-stories, e.g. the diffusion of LCA into industrial
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practice (Kara et al. 2014), have been achieved. However, nearly thirty years after
the sustainability debate emerged, industrial production remains far from being
sustainable [e.g. in the sense of exceeding planetary boundaries (Steffen et al.
2015)]. This insight leads to the question of what specific challenges need to be
overcome in product design to improve the overall situation.

From a practical perspective, a range of factors influence the successful imple-
mentation process of SPD, such as:

• personal motivation of actors (e.g. incentives for fostering sustainability inte-
gration into product design),

• available resources (e.g. time budget for SPD method application) or
• lock-in effects (e.g. existing contracts with suppliers of unsustainable materials).

While these practical barriers can be solved by appropriate managerial oversight
in the respective companies, great potential remains untapped in the research on
SPD. A major challenge in this context is to find solutions for decreasing the
complexity attached to SPD decision-making. Yet a sustainable design can only be
achieved if design engineers develop subsystems in accordance with their influence
on the triple bottomline (economic, environmental and social sustainability) at each
and every step along the way of the entire product lifecycle (see Fig. 1). One
approach for coping with this complexity is to break the problem down to smaller
sub-problems which are easier to handle (problem modules). Figure 1 gives an
example of which modules can be considered in the context of SPD (e.g. envi-
ronmental impacts of electronic recycling).

Nevertheless, this reductionist approach may not prove to be sufficient due to the
diverse interrelations between problem modules (e.g. better recyclable electronics
may lead to economic problems in production). A key task of SPD research
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Fig. 1 Modules of sustainable product development problems
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therefore lies in enabling engineers to anticipate these dependencies by means of
methodological guidance as well as by enhanced knowledge and information
supply. Thus, rather than searching for solutions to specific problem modules, this
article will focus on providing novels mechanisms for increasing the transparency
of decision-making.

2 Methods for Supporting Decision-Making in SPD

A wide variety of approaches for supporting decision-making in SPD have been
developed in the last years. Baumann et al. (2002) classify existing approaches for
environmental sustainability into six categories which still apply today in the field
of SPD:

Analytical tools try to quantify the impact on the three dimensions of sustain-
ability with varying precision. Life Cycle Sustainability Assessment as a combi-
nation of Life Cycle Assessment, Life Cycle Costing and Social Life Cycle
assessment (Neugebauer et al. 2015) is utilised for more accurate estimations in later
design phases, at which point plenty of information about the product is available.
More simplified approaches (e.g. by Collado-Ruiz and Ostad-Ahmad-Ghorabi 2013)
can be utilised in earlier phases as a form of heuristic prediction of impacts.

Checklists and guidelines provide best practices for guiding engineers along in
the design process. They can be utilised in the early phases but are less helpful for
decision-making for specific design problems. In the environmental realm,
exhaustive collections of design guidelines have long since existed (Telenko et al.
2016). Guidelines for sustainable design are scarce. The most mature approach is
based on a modular set of guiding questions which are also referred to as “tem-
plates” (Ny et al. 2008).

Rating and ranking tools provide possibilities for the simple but structured
comparison of different solution options, based mostly on qualitative or semi-
quantitative evaluation (see for example Shuaib et al. 2014).

Organizing tools furthermore help structure the design process by involving
multiple stakeholders in the form of workshops or structured interviews.

Software and expert systems assist in applying methods by automating certain
steps of the method application or by simplifying the process of researching for
information through databases (e.g. LCA software such as GaBi.1 Furthermore,
IT-support of this kind has the potential to enable one’s own methodological
approaches like the Eco-Pas software tool by Duflou and Dewulf (2005). The latest
approach for IT-based decision support is the integration of SPD methods in
engineering tools like CAD (e.g. Solidworks Sustainability Pro2 and in PDM
systems (Ciroth et al. 2013). Nevertheless, these approaches are limited to the

1https://www.thinkstep.com/software/gabi-lca/.
2http://www.solidworks.de/sustainability/.
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assessment of the current design progress and the relative comparison to a reference
design without actual guidance. Furthermore, the underlying impact model and the
dependencies between engineering decisions as well as the sustainability impact
have all yet to be made transparent to the engineer. In particular, trade-offs between
the sustainability dimensions are not being intensively researched since most of
available methods focus on the environmental sustainability perspective. The fol-
lowing three characteristics summarise insights on methods for sustainable product
development (see Buchert et al. 2014 and Sect. 4.3):

• Existing methods focus on assessment. There is a lack of engineering approa-
ches that assist engineers in the form of offering support for design synthesis.
Guidelines can be utilised for synthesis but are often not sufficient for addressing
a specific design problem.

• Availability of information in conceptual design is usually scarce. Analytic
approaches require a lot of information and are therefore only utilised once
major decisions have already been made.

• Insufficient transparency on system relations between product design decisions,
sustainability impacts and product life cycle stages prohibits a systematic exam-
ination of the specific trade-offs and side-effects attached to engineering decisions.

3 Integration of Sustainability Targets into the Design
Process

The complexity of cause and effect chains presents a major challenge for judgment
calls in sustainable product development. One favourable way of reducing the
complexity factor in the whole process lies in defining targets which specify the
most relevant influencing factors for the problem and which provide a basis from
which to develop further decision-making models (Bretzke 1980). Hence, it needs
to be clarified how “sustainability design targets” can be formulated in a compli-
mentary fashion to basic technical or functional requirements. A starting point for
addressing this problem is to pinpoint the causal relations between engineering
decisions and sustainability impact. This is achieved by classifying different types
of information to different categories in a fixed order illustrated in Fig. 2. The
categories and their respective relationships will be introduced in the following
paragraphs. A more detailed description can be found in (Buchert et al. 2016).

The scheme developed is based on the separation of product characteristics
(I) and properties (II) as defined by Weber et al. (2003) in the scope of their
“Property Driven Product Development (PDD)” approach. Category (III) refers to
the sustainability impact of a product on various stakeholders such as the envi-
ronment, health aspects of employees and customers as well as the financial sta-
bility of the company (III). In order to connect the design engineering perspective (I
and II) with the sustainability impact view (III), the category product properties
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was subdivided into three subclasses, each of which takes the perspective of the
product life cycle (IIa–IIc) into consideration. Category IIa consists of technical
properties that are defined directly as a result of engineering decisions for product
characteristics. The definition of the characteristic’s material and geometry defines,
for example, the technical property weight. When technical properties are combined
and enriched with influences from outside the system, boundary lifecycle-phase
oriented properties are determined (IIb). The prediction of durability in the usage
phase of a pedelec frame is, for example, based on technical properties such as
tensile strength or stiffness, but also relies on user behaviour. This type of property
defines how a product interacts with its surrounding systems within specific life-
cycle phases (e.g. durability, remanufacturability). If all effects of these interactions
are aggregated along the product lifecycle, (e.g. in terms of cost or emissions)
lifecycle-oriented properties are then derived (IIc). Lifecycle oriented properties can
be understood analogous to the term Lifecycle Inventory which is used in the
context of Life Cycle Assessment to evaluate environmental sustainability.

By analysing the complete scheme, it becomes evident that the influence of
engineering decisions decreases with every level, since other actors in product
creation (e.g. sourcing) likewise have a significant influence on overall product
sustainability impact. Furthermore, external influences (e.g. user behaviour) may
deviate from assumptions stemming from the design process and therefore increase
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Fig. 2 Scheme for linking design decisions to sustainability impact (Buchert et al. 2016)
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uncertainty of predictions for the whole lifecycle of a product. One conclusion from
this analysis is that targets on impact level are less appropriate for design engineers
since they are not trained to relate their actions properly to impact indicators.
Hence, sustainability experts need to be involved in the design process, which
serves to make the most critical lifecycle-oriented properties and the most signifi-
cant lifecycle phases for engineering target definition identifiable. In addition to
sustainability experts, other company roles may also define relevant targets in a
sustainability context, in particular from an economic perspective (e.g. product or
quality managers).

Figure 3 provides a reference framework for integrating sustainability targets
into the design process by differentiating between different stakeholders involved
and by identifying challenges for successful target integration. Potential for decision
support in the other direction is identified with this framework. Respective chal-
lenges are introduced in the following paragraphs.

Once sustainability targets are defined by the respective experts, they then have
to be broken down into technical subsystems or assemblies by system engineers
(see Fig. 3). This step poses a special challenge, since it is not clear how narrowly a
target should be formulated in order to be effective in the sense of sustainability
improvement. It can be argued which level of the scheme shown in Fig. 2 is most
appropriate for which respective purpose. The more specifically the target is defined
(e.g. on the level of technical properties such as weight), the less opportunities
remain for domain engineers to find a creative solution to foster sustainability
performance. Furthermore, unintended side effects can occur since the domain
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Fig. 3 Framework for decision support based on sustainability design targets
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engineers may not be informed about the intended effect of the target in terms of
sustainability improvement (e.g. changing to a lighter material to save fuel con-
sumption of a car may shift the environmental burden to material production). In
this context, how exactly targets should be allocated to subsystems for establishing
the basis for a sustainable solution configuration also needs to be evaluated.

Another challenge which needs to be overcome to properly address sustain-
ability targets in the design process, lies in the identification of sustainable and
technically feasible configurations of system elements and inherent product char-
acteristics. This task is troublesome since multiple configurations are possible, and
it also needs to be determined which components can be reused and where new
developments are necessary. This reduction of the solution space decreases the
effort for further design activities and therefore increases efficiency and effective-
ness of the design process.

Domain engineers then finally develop suitable solutions according to the given
requirements. In that pursuit, it is necessary to evaluate whether the current design
process and estimated product performance in different PCP stages are compliant
with given sustainability design targets. Furthermore, providing specific advisory
tips towards achieving these targets can be beneficial. Hence, a range of activities
might be necessary, such as, ideation for new and more sustainable products,
comparison of solution concepts, and/or final solution assessment. A broad set of
methods has been developed for assisting in these tasks. The challenge therein lies
in selecting the right method for each and every task along the way in the product
development process.

The challenges described are also summarised in Fig. 3 and are viewed by the
authors a handy framework of reference for implementing sustainability targets in
the design process. Decision support tools can play a viable role in overcoming
these challenges by fostering transparency on sustainability cause and effects and
by increasing the availability of information for the engineer. New approaches for
decision support to that effect are therefore presented in the following chapters
addressing these aspects.

4 Decision Support for Integrating Sustainability Design
Targets

This section introduces three concepts for addressing the challenges for integrating
sustainability targets into the design process. The respective approaches are
explained based on the example of a pedelec (i.e. an electric bicycle) redesign
project. Exemplary questions raised within the scope of this project are illustrated in
Fig. 4 and will provide use cases for decision support mechanisms which have been
developed.
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4.1 Breakdown of Sustainability Targets for Product
Architecture Decisions

Proper breakdown of sustainability targets from desired impacts to technical
influencing-factors introduces an array of hurdles for design teams. Yet defining
targets at the system level and for respective subsystems can be seen as one of the
most crucial tasks in the design process, since the basis for implementing engi-
neering strategies is defined in this step. In many companies, heuristics are followed
to define their strategies. Automotive companies choose, for example, “lightweight
design” to reduce fuel consumption of their vehicles. The problem with heuristics is
that they are often formulated for one specific target without considering
side-effects and concomitant relations with other company targets. Thus, it can be
helpful to give an overview of which options are available to achieve targets or, on
the flip-side, to see which indicators can be affected by design changes. A good
example of a missing link in cause and effect chains can be found when considering
decision-making on product architecture. The majority of companies modularise
their products to limit internal complexity, to decrease their time to market, and to
increase external variance for customers at the same time (Gleisberg et al. 2012).
Nevertheless, other relevant targets have to be considered, such as flexibility of the
product to allow multiple product use-cases and disassembly to provide reuse
opportunities or simplification of maintainability.

In order to increase the transparency of relations between modularisation deci-
sions and sustainability targets, a qualitative concept map was developed. An
extract of the map is displayed in Fig. 5. The full map contains 77 modularisation
drivers (i.e. targets and sub-targets) and 44 modularisation metrics. The map is

How should the pedelec 
be modularized?

Which drive concept 
should be chosen?

Which materials are suitable for 
the bicycle frame?

Fig. 4 Exemplary engineering decisions with an influence on pedelec sustainability
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structured from top to bottom regarding the information categories identified in
Fig. 2 and the type of decisions addressed (from strategic to tactic and from tactic to
operational level). The grey boxes visualised in Fig. 5 mark one possible way
through the map starting with sustainability targets on impact level at the top. This
particular way is explained for the example of setting targets for a pedelec archi-
tecture definition. At impact level (III), different sustainability indicators may be
relevant for a pedelec. In this example, climate change and customer value were
chosen as important impact categories. In practice, the selection of indicators relies
on legal requirements as well as on company strategy, which may also include
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voluntary agreements. Customer value relies on the total cost of ownership (life-
cycle cost) of the pedelec. Yet, there are also other factors to consider, such as
functionality, which can be enhanced by upgradeability of the pedelec (e.g. with a
stronger motor or an additional roof). The environmental impact category Climate
Change is determined by total greenhouse gas emissions (GHG) along the pedelec
lifecycle.

To reduce total emissions, the production phase of the pedelec should be con-
sidered since it contributes almost half of the total GHG emissions of a pedelec
(Neugebauer et al. 2013). The most important contribution of modularisation at
decreasing GHG emissions in production is to increase the time the product can be
used (service time), since a longer utilisation period ultimately decreases the
amount of products which have to be manufactured. If less products need manu-
facturing, absolute production cost likewise decreases. Furthermore, remanufac-
turing or reusing are possible measures for increasing the service time of the
product. Both End of Life (EOL) options can be fostered by increasing the ease of
disassembly or by grouping components in such a way that the sorting of com-
ponents can be improved upon (e.g. by clustering components with same materials).

In contrast to other product characteristics, like material or geometry decisions,
sustainability targets cannot be broken down to the individual component level (e.g.
a targeted efficiency of a motor). Targets for modularisation can only be formulated
on a system level since modularisation considers how different components are
organised.

By going through the map, it should be noted that the strategic paths chosen may
also lead to side effects. Increasing service time may, for example, impact the
business model by decreasing sales revenue due to the fact that less products are
sold. Furthermore, production could turn out to be less efficient, leading to the
necessity of downsizing the production system. Smaller production may lead to
personnel shifts, layoffs etc. Due to this multitude of effects, it can be difficult to
find a suitable system boundary for strategic modularisation decision-making.
Furthermore, missing quantification of relations between targets and modularisation
metrics poses a barrier toward the quantitative assessment of modularisation effects.
For enhanced decision-making in support roles, new quantified models for modu-
larisation impact will thus have to figure into play (see Sect. 5).

4.2 Model Based Reduction of the Solution Space

Targets which are broken down and formulated as constraints can be used to reduce
the solution space and eliminate the design solutions that do not comply with the
defined constraints. Calculating the fulfilment of constraints for possible solutions
manually is however time-consuming. Each option for all variable characteristics
(e.g. each material and geometric parameters) would have to be assessed in order to
determine all the viable solutions. If relations between a choice of characteristic and
constraints associated with a target are formalised on a quantitative basis, viable
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solutions can be calculated automatically. Consequently, a formalised model
expands the option pool for considering a high amount of configurations and
multiple targets. Configuration options from predecessor products can be used as a
basis for identifying solution options (Buchert et al. 2016). This model-based
approach shall now be demonstrated with the simple example of a pedelec frame.

Based on a previous LCA study, emissions for wrought material production
were identified as an important lifecycle phase oriented property (Neugebauer et al.
2013). Hence, the indicator “CO2 emissions in material production” was selected as
a sustainability target for improving the pedelec frame. Furthermore, the durability
of the pedelec frame in the use phase was chosen as a second target. The
frame-durability determines a part of the value provided to the customer and may
contribute to an overall reduction of CO2 emissions if the lifetime of the pedelec is
extended. Another reason for choosing durability as a target is to verify that a
decision on material matters does not negatively affect the use-phase of the bicycle
frame. Durability is a lifecycle-oriented property implying that influences (load and
forces) from the respective lifecycle phase (use phase) are either assumed based on
experience or on user studies or empirical studies of similar processes. The accurate
determination of the frame durability would require a combination of different
models for simulating the material strength under both static and dynamic load as
well as for usage behaviour. In that pursuit, durability was examined by means of
simplified analysis of axial frame deformation and v. Mises strength in comparison
to tensile strength of the material. Figure 6 displays the causal relations between
durability and CO2 emission in material extraction with the product characteristics
material and geometry.

Durability is dependent on the stiffness of the frame and on forces applied during
use. The relations between material parameters such as young’s modulus and
stiffness follow principles of physics. The causal relations can thus be captured in

Lifecycle-oriented properties

Technical properties

Product characteristics

Forces Durability (v. Mises 
strength, deformation)

CO2 emissions in 
material extraction

Stiffness Mass

Yield strength

Material

Geometry

Young‘s modulus Radius, length, angle, ...

Process

Fig. 6 Relations to calculate lifecycle oriented properties
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mathematical equations. The v. Mises strength and the deformation can be calcu-
lated by an automatic FEM analysis. An existing frame CAD and FEM model from
a predecessor product were utilised as a basis for the respective calculations. Since
the new design may deviate from the original frame, the results calculated can only
be understood as heuristic. Nevertheless, the process yields valuable insights about
which materials are suitable for given requirements already in conceptual design,
with the assumption that the frame design does not change significantly.

Figure 7 gives an example of how the data model for a decision support tool can
be structured. The classes are instantiated for the selection of a material for the
pedelec frame. The following dependencies between different classes of informa-
tion were formalised:

• Constraints (broken down targets) are associated with product properties.
• Product properties can be calculated based on further properties, constants or

characteristics.
• The CO2 emission for wrought material, for example, can be calculated by the

property mass times the constant CO2 emissions per kg wrought material.
• The constant CO2 emissions per kg can be derived from an environmental

database, e.g. the ELCD database, thus through an IT-interface.
• IT-interfaces require certain data, in this case the ELCD material name, in order

to yield the desired information CO2 emissions per kg material.
• Mass is calculated by volume and density for the material.
• The volume can be easily calculated by a CAD system.
• Possible values for the characteristic (e.g. specific materials) are automatically

derived from a repository which is linked to the model. In the case of the
pedelec, all materials from the Siemens NX database were taken into
consideration.

Target

Constraint
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IT-_Interface

Data

Constant Density

Volume

Product_Property

CO2_Emission_

Wrought_Material

Mass
CO2_Emission_

Per_Kg

ELCD_Database

is calculated of

is retrieved from

is instantiated by

is related to

provides

Fig. 7 Meta model for target calculation with exemplary instantiation
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The software tool interprets all the interconnected steps independently, starting
from a target and proceeding up until the point when it reaches an IT-database. The
tool then derives the required information and successively inserts the information
derived or calculated until a value for the product property concerning a selected
constraint can then be calculated. The benefit of this approach is that all (discrete)
values for a characteristic can be automatically iteratively assessed even if the
required information is dispersed among different IT-tools. The IT-tools are
accessed by respective interfaces e.g. a Service Oriented Architecture (SOA) in-
terface. If all relevant relations are modelled according to the meta-model, the
software tool can automatically calculate viable values for a characteristic and thus
exclude unfitting solution options and reduce the solution space.

In the case of the pedelec frame, the tool proposed 5 different steel versions
which fulfill the CO2 emission and the deformation and strength constraints as a
proof of concept. However, not all materials were listed in the ELCD database and
were therefore excluded. Otherwise more suitable options could have been derived.
The mapping of different material databases moreover remains imprecise and
requires further research in order to boost accuracy. A more detailed description of
this first model prototype can be found in the publication of Stark and Pförtner
(2015).

A discussion of how the use case can be extended to assemblies and entire
product systems can be found in Sect. 5.

4.3 Guidance for Achieving and Proving Compliance
with Sustainability Targets

When sustainability design targets are formulated, engineers have to take action to
prove that compliance with these targets in all stages of the PCP. Furthermore,
guidance is necessary for assisting engineers in achieving the respective targets.
These activities can be steered and supported by design methods. Since many
methods for Sustainable Product Development (at least concerning environmental
sustainability) are available, Ernzer and Birkhofer stated already in (2002) that: “the
difficulty […] is not the development of design methods anymore, but rather the
ability to select the relevant methods.” Hence, a scheme for selecting and com-
bining methods was developed, which allocates a suitable approach to designing
activities necessary for achieving or proving adherence with a sustainability target.
The approach consists of a taxonomy of SPD methods and a method repository
including 29 design methods. Figure 8 shows the three major steps for method
selection and application. Step 1 characterises the definition of milestones.
Milestones constitute a point of time in a design project where the achievement of a
sustainability design target has to be proven.

A relevant sustainability target for a pedelec redesign process could be, for
example, to decrease cost and CO2 emissions in the usage phase with reference to
what specific elements could be broken down into various alternatives for a drive
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concept. Hence, a comparison of variants for the drive concepts regarding CO2

emission and cost is necessary for the process of reporting results at a milestone
towards the end of the conceptual design phase.

The second step (see Fig. 8) aims at selecting a suitable method for achieving
targets defined in step 1. To that end, a taxonomy of design methods was put
together (see Table 1).

The taxonomy outlines the design activity which the method supports (e.g.
assessment), as well as information about the effort and information inputs required.
Furthermore, it considers the type of targets which can be addressed by the method
(e.g. addressed sustainability aspects or quantification of the target).

Complimentary to the taxonomy development, 29 SPD methods were success-
fully identified which were found to be compliant with predefined criteria (e.g.
coverage of the whole product lifecycle, accessibility or a focus on technical
products). Figure 9 shows an example for proving achievement of sustainability
targets by selecting appropriate methods for the pedelec drive concept.

In addition to improved method selection, a concept for fostering application of
methods was also implemented for three different methods (Pförtner et al. 2016). The
main idea behind this approach was the development of an information platform
which stores sustainability relevant information for a product and makes it available
for the application of various methods. Only by following this approach does a
combination of different SPD methods become attractive, since effort for informa-
tion search can therein be reduced. Both the selection scheme and the information
platform were implemented in the PDM system Siemens Teamcenter. Hence, nec-
essary product-information (e.g. product structure, weight) can be imported. Further
drawbacks and advantages of the approach are presented in Sect. 5.

Step I Definition of design process and milestone targets

Step III Method application

Product 
planning

Conceptual design

Detailed design

Embodiment design

Embodiment Design

Target: Comparison of drive concepts...

...

Covered sustainability aspects (Rating)
Emissions
Hazadous Substances
Resource Demand
Quality/Competiteveness

0.71 Product Sustainability Index
0.67 Sustainability Radar (STAR*)
0.58 DfE Matrix
0.58 Method for Sustainable Product Development

Step II Method selection

Method application view
(Product Sustainability Index)

Cost

Customer 
value Safety

Energy consumption 
in use

Consumption of 
critical resources

Electric Coupling

Two Rear Motors

Mechanical Coupling

Fig. 8 Method selection and application feature for guiding engineers and to validate design
performance against sustainability design targets
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Table 1 Taxonomy criteria for method selection

Criterion Options

Method purpose Identification of improvement measures, comparison, assessment,
direct selection of product characteristics based on targets

Quantification Qualitative, quantitative, semi-quantitative

Covered sustainability
targets

Emissions, hazardous substances, resource demand,
quality/competitiveness, safety, material origin, cost

User of the method Product manager, product designer, sustainability expert

Effort for application 1 = low, 2 = middle, 3 = high

Necessary information
for application

Requirements/functions, solution concepts, product architecture,
CAD files/EBOM, production process/MBOM, auxiliary
information

Redesign focus Yes/no

Conceptual design

M1: Validation of 
emission and costs 
targets

T1: Identify improve-
ment potential for 
reduction of emission 
and cost

Design engineer

Eco Value Analysis

M2: Validation of 
legal compliance

T2: Assessment of 
RoHs compliance

T3: Assessment of 
conflict minerals 
compliance

Design engineer; 
Sustainability Expert

RoHs & Conflict 
minerals checklist

M3: Validate 
emission and cost 
targets

T4: Validate emission 
and cost targets

Design engineer; 
Sustainability Expert

LCA & LCC

Design process

Milestone for 
validating 
sustainability 
targets

Design 
activities for 
achieving 
sustainability 
targets

Responsible

Selected 
design 
method

Embodiment design Detailed design

Fig. 9 Exemplary method selection results for a pedelec redesign process
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5 Conclusion and Outlook

The last chapters presented different approaches on how the challenges for inte-
grating sustainability targets into the design process (summarised in Fig. 3) can be
addressed. For the specific case of modularisation, it was shown how the breaking
down of sustainability design targets can be supported by qualitative causal dia-
grams (see Sect. 4.1). Nevertheless, qualitative visualisation of decision pathways
can only be a first step towards decision support based on facts and data. What
remains a challenge however, lies, in defining scenarios on how multiple sustain-
ability design targets can be achieved by varying sub-targets for assemblies or
subsystems. A lifecycle CO2 reduction target could be, for example, achieved by
material substitution of a pedelec frame or the more costly development of an
efficient motor. To properly take stock of these side effects and trade-offs, a para-
metric model becomes necessary, which serves to establish connections between
the decision criteria of the three sustainability dimensions. These “dependency
models” can be utilised for setting targets but also for minimizing the solution
spectrum of possible design solutions.

In Sect. 4.2, a first prototype of a dependency model was presented with the
simple example of a pedelec frame material selection regarding technical targets
and a CO2 emission limits. The dependency model was represented in an onto-
logical map and interpreted by a self-developed software tool. The model-prototype
developed showed satisfying results, yet remains limited to a single component. In
order to allow consideration of assemblies and complete products, more compre-
hensive models are necessary which comprise libraries of components from pre-
vious design projects that contain sustainability relevant information (e.g. material
composition, GHG emissions, cost etc. (see Buchert et al. 2016). By following this
approach, solution configurations can be identified which are compliant with a set
of sustainability targets. In this context, model design must be simplified due to the
fact that the effort for coupling different models in dispersed IT systems stands
quite high.

In that pursuit of deeper understanding of the product’s interrelation with sus-
tainability impact, Sect. 4.3 presented a more process-oriented perspective on
achieving sustainability design targets. By providing a selection scheme for SPD
methods, the best suitable approach can be assigned to the tasks which are nec-
essary for proving that sustainability design targets were achieved. In addition to the
main findings of a corresponding literature analysis (see end of Sect. 2), a lack of
methods considering all three sustainability dimensions was observed. While sev-
eral methods focusing on environmental sustainability exist, approaches concerning
social sustainability remain scarce. An integrated view of all three dimensions is
indeed nearly non-existent. Furthermore, descriptions of several existing methods
have only scratched the surface, while use cases for successful implementation are
hard to come by. Nevertheless, the developed selection scheme and information
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platform presents the opportunity for combining heterogeneous approaches (such as
qualitative guidelines and quantitative assessment methods) which allow for an
overall more holistic perspective on the product.

References

Allenby, Braden R. 1991. Design for environment: A tool whose time has come. SSA Journal
12(9): 5–9.

Baumann, H., F. Boons, and A. Bragd. 2002. Mapping the green product development field:
engineering, policy and business perspectives. Journal of Cleaner Production 10(5): 409–425.
doi:10.1016/S0959-6526(02)00015-X.

Bretzke, Wolf-Rüdiger. 1980. Der Problembezug von Entscheidungsmodellen. 29: Mohr Siebeck.
Buchert, T., A. Kaluza, F.A. Halstenberg, K. Lindow, H. Hayka, and R. Stark. 2014. Enabling

product development engineers to select and combine methods for sustainable design.
Procedia CIRP 15: 413–418. doi:10.1016/j.procir.2014.06.025.

Buchert, T., A. Pförtner, J. Bonvoisin, K. Lindow, and R. Stark. 2016. Model-based sustainable
product development. In Proceedings of the 14th International Design Conference, ed. Dorian
Marjanovic, Mario Storga, and Neven Pavkovic, 145–154. Stanko Skec: Nenad Bojcetic.

Ciroth, Andreas, Jean-Pierre Theret, Mario Fliegner, Michael Srocka, Volker Bläsig, and Özlem
Duyan. 2013. Integrating life cycle assessment tools and information with product life cycle
management. In Proceedings of the 11th Global Conference on Sustainable Manufacturing,
ed. Günther Seliger, 210–212. Universitätsverlag der TU Berlin.

Collado-Ruiz, Daniel, and Hesamedin Ostad-Ahmad-Ghorabi. 2013. Estimating environmental
behavior without performing a life cycle assessment. Journal of Industrial Ecology 17(1):
31–42. doi:10.1111/j.1530-9290.2012.00510.x.

Duflou, Joost, and Wim Dewulf. 2005. Eco-impact anticipation by parametric screening of
machine system components: An introduction to the EcoPaS methodology. In Product
engineering: Eco-design, technologies and green energy, ed. Doru Talaba, and Thomas Roche,
17–30. Dordrecht: Springer Science + Business Media Inc.

Ernzer, M., and H. Birkhofer. 2002. Selecting methods for life cycle design based on the needs of a
company. In Proceedings of the 7th International Design Conference, ed. Dorian Marjanovic,
145–154.

Gleisberg, Jochen, Oliver Knapp, Stefan Pötzl, and Michael Becker. 2012. Modular products—
how to leverage modular product kits for growth and globalization. http://www.rolandberger.fr/
publications/publications_monde/2012-04-10-Modular_Products.html.

Kara, Sami, Suphunnika Ibbotson, and Berman Kayis. 2014. Sustainable product development in
practice: an international survey. International Journal of Manufacturing Technology
Management 25(6): 848–872. doi:10.1108/JMTM-09-2012-0082.

Neugebauer, Sabrina, Julia Martinez-Blanco, René Scheumann, and Matthias Finkbeiner. 2015.
Enhancing the practical implementation of life cycle sustainability assessment—proposal of a
Tiered approach. Journal of Cleaner Production 102: 165–176. doi:10.1016/j.jclepro.2015.
04.053.

Neugebauer, Sabrina, Ya-Ju Chang, Markus Maliszewski, Kai Lindow, Rainer Stark, and Matthias
Finkbeiner. 2013. Life cycle sustainability assessment & sustainable product development: A
case study on pedal electric cycles (Pedelec). In Proceedings of the 14th Global Conference on
Sustainable Manufacturing, ed. Günther Seliger, 549–554. Universitätsverlag der TU Berlin.

Ny, Henrik, Sophie Hallstedt, Karl-Henrik Robèrt, and Göran Broman. 2008. Introducing
templates for sustainable product development. Journal of Industrial Ecology 12(4): 600–623.
doi:10.1111/j.1530-9290.2008.00061.x.

Target-Driven Sustainable Product Development 145

http://dx.doi.org/10.1016/S0959-6526(02)00015-X
http://dx.doi.org/10.1016/j.procir.2014.06.025
http://dx.doi.org/10.1111/j.1530-9290.2012.00510.x
http://www.rolandberger.fr/publications/publications_monde/2012-04-10-Modular_Products.html
http://www.rolandberger.fr/publications/publications_monde/2012-04-10-Modular_Products.html
http://dx.doi.org/10.1108/JMTM-09-2012-0082
http://dx.doi.org/10.1016/j.jclepro.2015.04.053
http://dx.doi.org/10.1016/j.jclepro.2015.04.053
http://dx.doi.org/10.1111/j.1530-9290.2008.00061.x


Pförtner, A., T. Buchert, K. Lindow, R. Stark, H. Hayka. 2016. Information management platform
for the application of sustainable product development methods. Procedia CIRP 48: 437–442.
doi:10.1016/j.procir.2016.04.091.

Shuaib, Mohannad, Daniel Seevers, Xiangxue Zhang, Fazleena Badurdeen, Keith E. Rouch, and I.
S. Jawahir. 2014. Product sustainability index (ProdSI). Journal of Industrial Ecology 18(4):
491–507. doi:10.1111/jiec.12179.

Stark, Rainer, and Anne Pförtner. 2015. Integrating ontology into PLM-tools to improve
sustainable product development. CIRP Annals-Manufacturing Technology 64(1): 157–160.
doi:10.1016/j.cirp.2015.04.018.

Steffen, Will, Katherine Richardson, Johan Rockström, Sarah E. Cornell, Ingo Fetzer, Elena M.
Bennett, Reinette Biggs, Stephen R. Carpenter, Wim de Vries, and Cynthia A. de Wit. 2015.
Planetary boundaries: Guiding human development on a changing planet. Science 347(6223):
1259855. doi:10.1126/science.1259855.

Telenko, Cassandra, Julia M. O’Rourke, Carolyn C. Seepersad, and Michael E. Webber. 2016.
A compilation of design for environment guidelines. Journal of Mechanical Design 138(3):
31102. doi:10.1115/1.4032095.

Weber, Christian, Horst Werner, and Till Deubel. 2003. A different view on product data
management/product life-cycle management and its future potentials. Journal of Engineering
Design 14(4): 447–464. doi:10.1080/09544820310001606876.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
The images or other third party material in this chapter are included in the book’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the book’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

146 T. Buchert et al.

http://dx.doi.org/10.1016/j.procir.2016.04.091
http://dx.doi.org/10.1111/jiec.12179
http://dx.doi.org/10.1016/j.cirp.2015.04.018
http://dx.doi.org/10.1126/science.1259855
http://dx.doi.org/10.1115/1.4032095
http://dx.doi.org/10.1080/09544820310001606876
http://creativecommons.org/licenses/by/4.0/

	9 Target-Driven Sustainable Product Development
	Abstract
	1 Challenges in Sustainable Product Development
	2 Methods for Supporting Decision-Making in SPD
	3 Integration of Sustainability Targets into the Design Process
	4 Decision Support for Integrating Sustainability Design Targets
	4.1 Breakdown of Sustainability Targets for Product Architecture Decisions
	4.2 Model Based Reduction of the Solution Space
	4.3 Guidance for Achieving and Proving Compliance with Sustainability Targets

	5 Conclusion and Outlook
	References


