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Summary

Biology is an analytical and informational science
that is becoming increasingly dependent on chemi-
cal synthesis. One example is the high-throughput
and low-cost synthesis of DNA, which is a foundation
for the research field of synthetic biology (SB). The
aim of SB is to provide biotechnological solutions to
health, energy and environmental issues as well as
unsustainable manufacturing processes in the frame
of naturally existing chemical building blocks. Xenobi-
ology (XB) goes a step further by implementing non-
natural building blocks in living cells. In this context,
genetic code engineering respectively enables the re-
design of genes/genomes and proteins/proteomes
with non-canonical nucleic (XNAs) and amino (ncAAs)
acids. Besides studying information flow and evolu-
tionary innovation in living systems, XB allows the
development of new-to-nature therapeutic proteins/
peptides, new biocatalysts for potential applications
in synthetic organic chemistry and biocontainment
strategies for enhanced biosafety. In this perspective,
we provide a brief history and evolution of the genetic
code in the context of XB. We then discuss the latest
efforts and challenges ahead for engineering the
genetic code with focus on substitutions and addi-
tions of ncAAs as well as standard amino acid reduc-
tions. Finally, we present a roadmap for the directed
evolution of artificial microbes for emancipating rare
sense codons that could be used to introduce novel
building blocks. The development of such xenomi-
croorganisms endowed with a ‘genetic firewall’ will

also allow to study and understand the relation
between code evolution and horizontal gene transfer.

Xenobiology research directions

Biology is an analytical and informational science that is
becoming increasingly dependent on chemical synthesis.
The high-throughput and low-cost synthesis of DNA, for
example, is the foundation of the field of synthetic biol-
ogy (SB). The aim of SB is to provide urgent biotechno-
logical-based sustainable solutions to problems in the
health, energy and environmental sectors (Acevedo-
Rocha, 2016). This sort of biotechnology is performed
under the frame of naturally existing chemical building
blocks. Compared with the rich methods of synthetic
organic chemistry (Walsh et al., 2005), however, the
diversity of chemistries used by natural organisms is sur-
prisingly narrow; thus, limiting a wide range of useful
and chemically diverse biotransformations.
To address this issue, the field of xenobiology (XB)

aims to endow biological systems with artificial chemistry
absent in natural organisms (Schmidt, 2010). XB is a
highly diverse area, which two main research directions
(Fig. 1). One involves the design and synthesis of alter-
native nucleic acids (xenonucleic acids, XNAs) based
upon new base pairs, sugars and modified backbones
(Benner and Sismour, 2005; Pinheiro and Holliger,
2012). The second major area concerns engineering the
genetic code of proteins and proteomes with non-canoni-
cal amino acids (ncAAs) (Bacher et al., 2004; Budisa,
2004).
Introducing new functional members of XNA into either

DNA or RNA and ncAAs into proteins breaks the univer-
sality of the genetic code of living organisms, alienating
these from other natural life forms (Budisa, 2014). This
alienation gives access to possible orthogonal life
because both living systems cannot share information
with each other, i.e. a ‘genetic firewall’ is built (Acevedo-
Rocha and Budisa, 2011). Furthermore, these synthetic
organisms are not able to grow if they are not supplied
with synthetic nutrients (trophic containment) (Marliere,
2009). Combination of a genetic firewall with an ‘alien
ersatz’ increases the degree of biocontainment (Herde-
wijn and Marliere, 2009).
Notably, the difference between SB and XB is that the

former generates genetically modified organisms (GMOs)
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based on natural chemical building blocks [e.g. canonical
amino acids (cAAs)], whereas the latter aims at creating
chemically modified organisms (CMOs) in which the
chemical building blocks are artificial (Acevedo-Rocha,
2016). The likelihood of spreading genetic material from
GMOs/CMOs into the environment is still underestimated
and not well studied (Schafer et al., 2011). Thus, biocon-
tainment of GMOs/CMOs is an active research area for
enhancing biosafety in XB (Schmidt and de Lorenzo,
2016), among many other SB-based research endeavours
(Moe-Behrens et al., 2013). The idea of ‘biocontainment’
is of particular interest, as it represents a tool for under-
standing the relationship between the evolution of the
genetic code and horizontal gene transfer. This area is
well-debated in the field of molecular evolution (Gogarten
and Townsend, 2005).
In this perspective, we briefly discuss the origin and

evolution of the genetic code from the point of view of XB.
We then describe the various strategies for engineering
the genetic code, including the use of amino acid aux-
otrophic strains, suppression of stop codons, reassign-
ment of sense codons and reduction of the standard
amino acid repertoire. We also highlight the efforts on
metabolic, genome and strain engineering for improving
efforts for engineering the genetic code. Finally, we
discuss the importance and challenges ahead for the
directed evolution of xenomicroorganisms towards the
understanding of evolutionary innovation and for enhanc-
ing biocontainment strategies.

Origin and features of the genetic code

The genetic code is universal in all three domains of life
eukaryotes, bacteria and archaea (Woese et al., 1990). It
allows the transmission of genetic information stored in
DNA from one generation to the next one. Transcription of
protein-encoding genes into RNA enables the translation
machinery to convert this information into proteins, which
are the executors of the genetic information. A reliable
and accurate translation of the linear RNA-sequence into
a functional protein is ensured by tRNAs. These adaptor
molecules read the mRNA in a three-base letter sequence
code, i.e. in triplets (Crick et al., 1961).
The chemistry of the universal translational appara-

tus is highly standardized: DNA consists of four differ-
ent bases (A, T, G and C) and there are 43 = 64
possible triplet combinations for encoding 20 cAAs. An
important feature of the genetic code is its codon
degeneracy, i.e., the genetic code is redundant
because several triplets can code the same amino
acid (Lagerkvist, 1978). Briefly, there are 61 sense
codons coding for amino acids and 3 stop codon sig-
nals (UAA: ochre, UGA: opal and UAG: amber) that
are responsible for terminating protein biosynthesis at
the ribosome (Fig. 2). The assignment of one triplet to
one amino acid is not random: the degeneracy of the
genetic code enables an organism to choose between
abundant and rare codons. The number of triplets is
often directly proportional to the abundance of the

Fig. 1. Experimental approaches in xenobiology to re-design the flow of genetic information. Left: the central dogma of molecular biology is
shown. DNA is replicated and transmitted to the descendants or transcribed into RNA. Translation subsequently gives rise to proteins, making
up the functional proteome. Recent advances show that the introduction of artificial base pairs as XNA can also replicate and proliferate (Maly-
shev et al., 2014). To date, however, this information cannot be transcribed or translated in vivo. Incorporation of ncAAs into the proteome was
shown to be feasible if evolutionary pressure is applied (Hoesl et al., 2015). Right: Methods and levels of the genetic code re-design that
enables the partial or full re-design of informational flow in biology according to Budisa (2014).
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amino acid in the proteome. For example, the amino
acid tryptophan, which is relatively rare (present in
approx. 1.5% in the proteome of Escherichia coli), is
only encoded by the single UGG codon, whereas argi-
nine (around 5.5% distribution in the E. coli proteome)
is decoded by six triplets (Lajoie et al., 2013).
In E. coli, out of the 61 sense codons, two are unique

(methionine and tryptophan) while the rest are degener-
ate, with amino acids being encoded by as little as two
and as much as six triplets (Fig. 2). In the latter case, sev-
eral of the codons are rare (e.g., arginine) and allow an
organism to control the expression rate of proteins, thus
providing a selective advantage when adapting to a
changing environment (Subramaniam et al., 2013a). For
example, protein translation of abundant and rare codons
seems to be equally fast when E. coli grows in medium rich
of amino acids. In nutrient-deficient media, by contrast,
translation velocity of rare codons is substantially
decreased, suggesting that the intracellular amino acid
concentration is important for efficient reading of rare
codons and not the isoacceptor tRNA abundance (Li et al.,
2012; Subramaniam et al., 2013b; Ling et al., 2015).
An unresolved question is why the 20 cAAs were

selected by evolution even though several other non-pro-
teinogenic amino acids were available in the ‘primordial
soup’ (Kvenvolden et al., 1971) including norvaline and
norleucine? Special cAAs can be added to the standard
amino acid repertoire. For instance, many organisms

use the 21st (selenocysteine, SeCys, or Sec) and 22nd
(pyrrolysine, Pyl) amino acids (Fig. 2) for adaptive pur-
poses (Chambers et al., 1986; Srinivasan et al., 2002).
The evolution of the genetic code is a historical pro-

cess and we will most probably always remain agnostic
about its origin and sequence of events that lead to the
current codon–amino acid associations. Upon the eluci-
dation of the genetic code in 1964 (Nirenberg and Leder,
1964), Crick postulated a ‘frozen accident theory’ which
assumes that the association of particular amino acids to
their codons was accidental until the point where any
further member expansion would be lethal to cells due to
functional protein destabilization (Crick, 1968). This con-
cept has been questioned for many times during the last
decades; the plasticity and evolvability of the standard
genetic code is postulated to be plausible, as supported
by the finding of distinct alternative genetic codes in
prokaryotes (Oba et al., 1991), eukaryotic nuclear gen-
omes (Sugita and Nakase, 1999) and mitochondrial gen-
omes (Inagaki et al., 1998). Additional widely accepted
concepts about the origin of the genetic code include
stereochemical (Pelc, 1965), adaptive (Woese, 1965)
and co-evolution (Wong, 1975, 2005) theory.
Before it was ‘frozen’, the early genetic code under-

went evolution and expansion, which is encompassed by
two main theories about codon reassignment. Figure 3
summarizes them and explains possible evolutionary
mechanisms for codon reassignment to other amino

Fig. 2. The genetic code structure in the RNA format in a radial representation. Chart from inside to outside: a triplet of mRNA (50?30) is
assigned to one of the 20 canonical amino acids or a stop codon. The natural expansion of the genetic code of selenocysteine (SeC) at opal
and pyrrolysine (Pyl) at the amber and opal stop codons is depicted (Courtesy provided by Dr Stefan Oehm) (Oehm, 2016).
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acids: codon capture (Osawa et al., 1992) and ambigu-
ous intermediate (Schultz and Yarus, 1994) theory. The
codon capture theory postulates that genomic composi-
tion changes due to GC pressure could impose alterna-
tive codon usage mainly due to changes at the third
base position of a codon. Owing to this pressure, a
potential codon can disappear, making a particular cog-
nate tRNA obsolete. Reappearance of the codon due to
random drift would lead to its recognition by another
tRNA (that could also charge another amino acid) lead-
ing to codon reassignment, i.e., change the identity of
the codon. Conversely, the ambiguous intermediate the-
ory postulates an appearance of mutant tRNA in compe-
tition with the cognate tRNA. In the course of selective
pressure, the latter might lose the race against the
mutant tRNA, hence giving rise to another amino acid
meaning [see Fig. 3 and (Budisa, 2006a)].

Code and metabolic engineering of auxotrophic
strains

Genetic code engineering aims to use ncAAs as building
blocks in proteins. It exploits the flexibility of the compo-
nents involved in protein translation mainly aminoacyl-
tRNA synthetases (aaRSs) and tRNAs (Fig. 4). While
many aaRSs have evolved mechanisms to differentiate
between naturally abundant and structurally related
amino acids (especially metabolic intermediates) (Sch-
midt and Schimmel, 1994), most ncAA that can be

incorporated with this approach do not occur in natural
environments. In the laboratory, however, a codon can
be read ambiguously by mischarging tRNAs (i.e. a cog-
nate tRNA can be charged with two different yet similar
substrates). For example, methionyl-tRNA synthetase
charges its cognate tRNAMet

CAT with a variety of
methionine (Met) analogues, homologues and surrogates
into heterologous-expressed proteins (Wiltschi et al.,
2009). The best know example is selenomethionine
(SeMet), which can almost quantitatively replace Met in
proteins and proteomes in suitable auxotrophic strains
(Cowie and Cohen, 1957; Budisa et al., 1995). We and
others have shown many examples of potential applica-
tions of such an approach for Met analogues and
beyond during the last two decades (Mohammadi et al.,
2001; Link and Tirrell, 2005; Acevedo-Rocha et al.,
2013; Bohlke and Budisa, 2014; Piotrowski et al., 2015).
In another example, the incorporation of norleucine (Nle)
into a lipase allow the engineering of a highly active
‘cold-wash’ enzyme (Hoesl et al., 2011).
Till date, more than 50 ncAAs (mostly Met, Trp, Tyr,

Phe, Pro, Arg, Lys analogues) (Budisa, 2006b) (Fig. 4A)
have been incorporated into proteins using this approach.
Unfortunately, most of these experiments are limited to
individual xeno-proteins overexpressed from auxotrophic
strains. Although this is an important research area that
can give rise to potential applications in biocatalysis, it is
important to consider the costs of supplying expensive
ncAAs into a big fermenter. For this reason, genetic code

Fig. 3. The codon capture and ambiguous intermediate theory for codon reassignment in the historical development of the genetic code. While
in codon capture (left) the endogenous tRNA disappears due to the removal of its designated codon, in ambiguous intermediate theory (right)
the exogenous tRNA is in direct competition with the cognate one. In the end, both theories end up in a reassigned codon. Figure modified
according Santos et al. (2004) and Budisa (2006a).
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engineering can be combined with metabolic engineering.
For example, we implemented a biosynthetic route in for
the biosynthesis of the ncAA azido homoalanine (Aha) by
expressing in trans O-acetylhomoserine sulfhydrylase
(cgOAHSS) from Corynebacterium glutamicum in the
Met-auxotroph E. coli strain B834 while supplying the
strain with O-acetyl-homoserine and inorganic sodium
azide (NaN3) as precursors (Ma et al., 2014). This engi-
neering effort resulted in an approach for a more econom-
ical production of Aha-labelled proteins, which can be
selectively modified via ‘click chemistry’ with different
molecules for protein immobilization or labelling (De
Simone et al., 2016). Likewise, the group of Wiltschi
recently afforded a strain able to produce Nle-labelled
proteins in sufficient economically amounts (Anderhuber
et al., 2016). This kind of experiments will become more
important if applications of ncAAs in biocatalysis are likely
to succeed. Ideally, the precursors of the ncAA should be
biosynthesized starting from a cheap carbon source such
as glucose. We envision more synergies between meta-
bolic and genetic code engineering in the years to come.

Code engineering by stop codon suppression

In contrast to the ambiguous decoding of sense codons
by ncAAs as explained above, the meaning of a stop
codon can be suppressed by introducing engineered
orthogonal pairs (Fig. 4B). The most common pairs are
the Methanocaldococcus jannaschii TyrRS:tRNATyr

CUA-
pair, and PylRS:tRNAPyl

CUA-pairs from Methanosarcina
barkeri and Methanosarcina mazei. This stop codon sup-
pression (SCS) approach allows the site-specific incor-
poration of ncAAs into a target protein, which is usually
overexpressed (Hoesl and Budisa, 2012). Because alter-
ation of the protein structure is minimal, it is possible to
study protein function with an unprecedented level of
accuracy. For example, it is possible to study protein
conformation by F€orster resonance energy transfer, fol-
low intracellular protein localization (using fluorescent
ncAAs as probes) or determine protein–protein interac-
tions by using cross-linking ncAAs (Lang et al., 2015).
The SCS methodologies have matured in the last

years, offering researchers with a plethora of ncAAs to

(A)

(B)

Fig. 4. Flow chart presentations of two basic in vivo approaches for incorporating non-canonical amino acids into proteins. (A) Auxotrophy-
based selective pressure incorporation (SPI) method exploits the endogenous translational system to load an isostructural analogue onto a
canonical tRNA leading to residue-specific incorporation, i.e. cAA?ncAA substitution. (B) Stop codon suppression (SCS) usually endows the
host with a new orthogonal aaRS:tRNA pair in charge of introducing a given ncAA or more at one or more stop codons. For more details see
Hoesl and Budisa (2012).
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incorporate site-specifically (Wright et al., 2016). How-
ever, the SCS is usually limited because the release fac-
tors (RFs), which are responsible for terminating protein
biosynthesis at the ribosome, compete with the tRNAs,
resulting in a mixture of labelled and truncated protein.
Although the efficiency of ncAA incorporation can be
improved with RF-free engineered strains (Amiram et al.,
2015), additional ‘context effect’ issues persist, which is
still the most probably cause of obtaining low protein
yields. Recently, Ignatova and others provided a more
precise experimental description of these phenomena.
The insertion of a stop codon in a particular sequence
can cause large deviations from natural mRNA folding
energy. Furthermore, it can affect the binding site interac-
tion strength within the ribosome (see e.g. Gorochowski
et al., 2015). In the years to come, we expect to obtain
better in silico models that could predict what the most
suitable sites for inserting stop codons are. Hence, pro-
moting synergies between computational chemistry and
code engineering is an important research endeavour.

Code engineering by sense codon reassignment

Codon reassignment mainly includes the removal of the
endogenous translation components like tRNA and
aaRS, synonymous codon swaps throughout the chro-
mosome or essential genes (Lajoie et al., 2015). For
example, the groups of Isaacs (Rovner et al., 2015) and
Church (Mandell et al., 2015) engineered the genetic
code of E. coli C321.DA (which lacks amber stop
codons) by re-introducing amber stop codons into essen-
tial genes (devising a sort of experimental ‘codon cap-
ture’ approach). Because the UAG codon lacks any
meaning in that distinct strain, these otherwise lethal
stop codons have to be rescued with M. jannaschii
TyrRS:tRNATyr

CUA for p-azido-L-phenylalanine (pAzF) or
biphenyl-L-alanine (bipA) (Xie et al., 2007) respectively.
As the UAG codon has no meaning in strain C321.DA,
both studies converted (‘captured’) this codon into a
sense one by supplying orthogonal pairs. Although both
experiments differ in their strategy and their execution,
they yield the same result: a GMO that cannot grow
without supplying the ncAA, therefore becoming trophi-
cally biocontained. Those synthetic auxotrophic strains
show less than 6 9 10�12 escape mutants per colony
forming unit in various media. Most other techniques for
biocontainment purposes yield higher escape frequen-
cies and suffer from the possibility of cross-feeding of
metabolites produced from other organisms (Schmidt
and de Lorenzo, 2016). Both ncAAs used (pAzF and
bipA) are not available in natural environments. How-
ever, the synthetic auxotrophy only relies on the orthogo-
nal translation system. This system might be stable
under laboratory conditions, but there are many places

where the system could lose its orthogonality, e.g.,
mutating TyrRS to accept any other cAA, introduction of
a natural amber suppressors (supE, supD, supF, supZ,
etc.) or simply reverting the amber sites back to their
original meaning. Thus, long-term evolution experiments
of strain C321.DA in more diverse and rich media are
needed to ensure that it can be biocontained without
reversing its genotype.
While ambiguous decoding and SCS approaches are

always in competition with the original codon meaning
and function of the corresponding amino acid, sense
codon reassignment aims to completely remove the pre-
existent functional information of a certain codon. For
example, isoleucine can be coded by codon AUA, but
there is no tRNAIle

UAU gene in E. coli because the third
base of the tRNAMet

UAC is modified by tRNAIle-lysidine
synthetase (TilS) to lysidine, yielding tRNAIle

LAU that is
read by wobbling at the third base position (Bohlke and
Budisa, 2014). We generated a tilS knockout strain (this
mutation is lethal to the cell leaving more than 5000
codons unassigned) by using a rescue plasmid express-
ing the Mycoplasma mobile IleRS:tRNAIle

UAU pair to sus-
tain cell viability. The rescue plasmid can be easily
removed in E. coli DtilS and can be exploited to apply
evolutionary pressure to reassign the Ile codon AUA to
another cAA (Doring and Marliere, 1998) or even ncAA.
Another strategy was reported by Sakamoto and co-

workers (Mukai et al., 2015) who reassigned the rare
AGG codon of arginine (Arg) to L-homoarginine (hArg)
and L-N6-(1-iminoethyl)lysine (L-NIL) by using PylRS:
tRNAPyl

CUA-pair. Cells can survive the deletion of Arg
rare codons (argW and argU) only if the evolved PylRS-
system is co-expressed and AGG positions in most
essential genes are exchanged by synonymous codons
(to avoid detrimental effects of AGG-reading as hArg or
L-NIL). Although analytical data were not presented (e.g.
MS/MS experiments in essential genes to verify Arg-
replacement), the exchange of Arg at remaining AGG
positions most probably took place given that both
ncAAs used (hArg, L-NIL) are similar to the cAA Arg
(‘similar replaces similar’) (Moroder and Budisa, 2010).

Code engineering via reduction of the standard
amino acid repertoire

Widely accepted co-evolution theory about the origin of
the genetic code postulates its evolution from a simpli-
fied set of amino acid and extension to recent form with
the expansion of cellular metabolism (Wong, 1981).
Therefore, an experimental model with the reduced
genetic code could provide some insight into evolution-
ary trajectories of amino acids. This was accomplished
by the construction of a functional enzyme using a nine-
amino acid alphabet (Walter et al., 2005). Namely,
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Hilvert and colleagues demonstrated that E. coli lacking
the aroQ gene for chorismate mutase is unable to grow
in media where all sources for tyrosine (Tyr) and pheny-
lalanine (Phe) are withdrawn. This synthetic auxotrophy
can be exploited to screen a library of artificial choris-
mate mutase analogues, in which aroQ is only com-
posed from a nine-amino acid alphabet. It was found
that even this reduced set of amino acids can lead to a
functional, metabolically competent and near to wild-type
growing strain. However, the reduction led to a restricted
diversity ending up with a destabilization of overall pro-
tein structure. These results indicate the need of more
amino acids for robust proteins and explain the evolu-
tionary force towards the increased diversity. A more
general approach towards this issue was reported by
Marli�ere and co-workers: they showed the possibility of
removing Trp from the genetic code (Pezo et al., 2013).
Taking advantage of the conserved and essential his-
tidine (His) residue in the active site of yeast transketo-
lase gene tktY, this position was mutated to the Trp-
codon UGG in trans in a suitably configured E. coli
MG1655 DtktAB strain. Supplying this strain with the
missense tRNAHis

CCA, the UGG codon in the essential
TktY is read as a His leading to a functional gene, which
is the driving force to keep the missense tRNA. Subse-
quently, the system was proliferated in a continuous
pulse feeding regime, yielding 30 times higher mis-incor-
poration of His at Trp positions in proteins. This experi-
ment suggests the possibility of engineering the genetic
code applying evolutionary pressure using a reduced
amino acid alphabet. This is an important research area
whose potentials have not yet been extensively studied
(Oehm, 2016).

Code engineering via experimental evolution

Over more than three billion years, the standard genetic
standard code has not undergone any significant
changes besides some local alterations (Knight et al.,
2001). Therefore, an utmost goal of XB is to introduce
new biochemical building blocks into an organism at
both the genomic and proteomic level. One option is by
performing experimental evolution, which deals with the
long-term cultivation of organisms under controlled con-
ditions. Doubtless, adaptive evolution experiments with
suitably designed metabolic prototypes could accelerate
the propagation, manipulation and analysis of organisms
in a controlled environment. Furthermore, such evolution-
ary adaptation is the most expedient route to generate
artificial biocontained microbes. Because microbes have
fast generation times and large population sizes in a rea-
sonable and manageable dimension of cultivation space,
they are ideal candidates for such experimental setups.
Additionally, populations can be easily frozen for later

analysis (‘fossils’). Adaptive evolution experiments have
been designed to cultivate E. coli to adapt on glucose,
glycerol and lactate minimal medium, high temperature
irradiation as well as high salt or ethanol concentration
(Blount et al., 2012; Wiser et al., 2013).
Already in the late 1950s, Cowie and Cohen (1957)

demonstrated that Met auxotrophic E. coli grow in Met-
free medium when SeMet is supplied. This proteome
wide exchange of Met by producing functionally essential
enzymes for cell proliferation illustrates how the amino
acid composition of a proteome can be influenced by
external pressure. Another report from 1963 by Rennert
and Anker claims that E. coli cells able to use 50,50,50-tri-
fluoroleucine (TFL) as an analogue for leucine (Leu) can
be isolated from a suitably designed cultivation experi-
ment (Rennert and Anker, 1963). Wong (1983) was able
to adapt a Trp deficient Bacillus subtilis with some few
single-cell transfers to grow on 4-fluoro-L-tryptophan (4F-
Trp) as Trp source. Using the mutagenic agent it was
possible to obtain a derivative exhibiting preference
towards the ncAA. Nevertheless, those old experiments
were not accompanied by precise analytic measure-
ments to quantify the extent of ncAA incorporation (con-
taminations of cAA from media preparation cannot be
excluded – most likely, those sources of cAA were ele-
mental for the observed growth). Moreover, those experi-
ments were conducted in ‘rich’ medium in which
standard amino acids, vitamins and nucleobases were
supplemented. Therefore, only a small portion of the cel-
lular machinery had to adapt to the incorporation of the
ncAA. Bacher and Ellington (2001) adapted the E. coli
strain C600 DtrpE towards 4F-Trp by serially transferring
it to minimal medium while gradually increasing the 4F-
Trp-to-Trp ratio. Unfortunately, the commercial source of
4F-Trp was contaminated with 0.03% Trp (the authors
were not able to withdraw all cAA-source from the
media). Yet they found a strain tolerating high levels of
4F-Trp to a level at which it was toxic for the parental
strain. Due to the lack of next generation sequencing,
only a few relevant genes were sequenced but these
were unchanged (tnaA, trpR, mtr, trpT, bla, gapA), while
others like trpS, aroP and tyrR exhibited single nucleo-
tide polymorphisms. Expression of trpS and aroP mutant
proteins in trans in the ancestral strain led to a growth
advantage in the presence of 4F-Trp. However, those
mutations are not sufficient to let the C600 strain incor-
porate the ncAA at high levels (deep analytics were not
performed). Nevertheless, this experiment improved our
understanding of serial evolution experiments to change
the chemical composition of the proteome.
Based on the experiences gathered on earlier long-

term E. coli cultivation experiments by the groups of
Lenski, Ellington, Bacher and Wong, we also set out to
adapt this bacterium towards an ncAA. In particular, our
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group completely substituted Trp by the analogue
Thienopyrrole-alanine ([3,2]Tpa) in a Trp auxotrophic
strain (Hoesl et al., 2015). To avoid contamination of
Trp traces in commercial ncAA preparations, the strains
were engineered to produce the surrogate by using the
enzyme tryptophan synthase (TrpBA), which conden-
sates the indole analogue [3,2]Thienopyrrole with serine
yielding [3,2]Tpa (Budisa et al., 2001). Rigorous and
high-precision analytics confirmed the almost completely
quantitative replacement of Trp by the surrogate at
20 899 sense codons in E. coli W3110 genome.
Hence, the engineered strain can be defined as ‘trophi-
cally reassigned’ (i.e., the meaning of a codon is rede-
fined throughout the whole proteome). However,
supplementing these cells with Trp reverses them to
‘natural’ ones given that they still favour the incorpora-
tion of the canonical building block. To achieve a Trp-
independent reassignment (i.e. ‘real’ codon reassign-
ment) at all UGG codons across E. coli’s genome – an
experimental strategy for biocontainment still needs to
be developed and executed (Acevedo-Rocha and
Schulze-Makuch, 2015).

Roadmap to equip xenomicroorganisms with a
‘genetic firewall’

In the previous sections, we highlighted various
approaches for genetic code engineering. The most pop-
ular one is perhaps the genome-wide replacements of
stop or rare sense codons with synonymous alternatives
in order to design genomes with radically altered genetic
codes, which can be used for biocontainment purposes.
However, owing to the complexity of experimental gen-
ome re-design, it is difficult to avoid changes that impair
cellular fitness, which creates fragile strains. Among
other features, rare codons fine tune translation to facili-
tate the biogenesis of the encoded protein and their syn-
onymous replacements can lethally impact mRNA
secondary structure or ribosome binding sites which is
expected to result in dramatically decreased fitness dur-
ing the genome assembly process (Plotkin and Kudla,
2011). Furthermore, widely used orthogonal pairs are
not as active and accurate as natural aaRSs (Nehring
et al., 2012). An alternative strategy for experimental
genetic code evolution relies on the global substitution
of cAAs with ncAAs (or an addition of ncAAs) assisted
with simple metabolic optimization following an ‘ambigu-
ous intermediate’ engineering concept. In other words,
we propose a novel strategy that relies on liberation of
rare sense codons of the genetic code (i.e. ‘codon
emancipation’) from their natural decoding functions
(Bohlke and Budisa, 2014). This approach consists of
long-term cultivation of bacterial strains coupled with the
design of orthogonal pairs for sense codon decoding. In

particular, directed evolution of bacteria should be
designed to enforce ambiguous decoding of target
codons using genetic selection. In this system, viable
mutants with improved fitness towards missense sup-
pression can be selected from large bacterial popula-
tions that can be automatically cultivated in suitably
designed turbidostat devices. Once ‘emancipation’ is
performed, full codon reassignment can be achieved
with suitably designed orthogonal pairs. Codon emanci-
pation will likely induce compensatory adaptive muta-
tions that will yield robust descendants tolerant to
disruptive amino acid substitutions in response to
codons targeted for reassignment. We envision this
strategy as a promising experimental road to achieve
sense codon reassignment – the ultimate prerequisite to
achieve stable ‘biocontainment’ as an emergent feature
of xenomicroorganisms equipped with a ‘genetic fire-
wall’.

Conclusions

In summary, genetic code engineering with ncAA by
using amino acid auxotrophic strains, SCS and sense
codon reassignment has provided invaluable tools to
study accurately protein function as well as many possi-
ble applications in biocatalysis. Nevertheless, to fully
realize the power of synthetic organic chemistry in bio-
logical systems, we envision synergies with metabolic,
genome and strain engineering in the next years to
come. In particular, we believe that the experimental
evolution of strains with ncAAs will allow the develop-
ment of ‘genetic firewall’ that can be used for enhanced
biocontainment and for studying horizontal gene transfer.
Additionally, these efforts could allow the production of
new-to-nature therapeutic proteins and diversification of
difficult-to-synthesize antimicrobial compounds for fight-
ing against ‘super’ pathogens (McGann et al., 2016).
Yet the most fascinating aspect of XB is perhaps to

understand the genotype–phenotype changes that lead
to artificial evolutionary innovation. To what extent is
innovation possible? What emergent properties are
going to appear? Will these help us to re-examine the
origin of the genetic code and life itself? During evolu-
tion, the choice of the basic building blocks of life was
dictated by (i) the need for specific biological functions;
(ii) the abundance of elements and precursors in past
habitats on earth and (iii) the nature of existing solvent
(s) and available energy sources in the prebiotic environ-
ment (Budisa, 2014). Thus far, there are no detailed
studies on proteomics and metabolomics of engineered
xenomicrobes, let alone systems biology models that
could integrate the knowledge from such efforts. In
2020, we expect to have such kind of analysis in order
to have a clearer picture of the possibilities that artificial
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evolution can offer. We believe that expanding the reper-
toire of the genetic code beyond the canonical 20 (+2)
amino acids will not only change the chemical makeup
of life, but also allow to re-examine our understanding
and current concepts about the origin of the genetic
code and life itself.
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