Connecting ABT with a SAT Solver

Jesis Girdldez-Cri ?, Guillermo Martin-Sanchez?, and Pedro Meseguer ?

4[IIA - CSIC, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
b Universidad Complutense de Madrid, Av. Séneca 2, 28040 Madrid, Spain

guillemartinsan@gmail.com {jgiraldez,pedro}@iiia.csic.es

Abstract. Many real-world problems are nowadays encoded into SAT instances
and efficiently solved by CDCL SAT solvers. However, some scenarios require dis-
tributed problem solving approaches. Privacy is often the main reason. This causes
the distributed SAT problem. In this work, we analyze how this problem can be
tacked in an efficient way, and present ABTsar, a new version of the ABT al-
gorithm adapted to solve distributed SAT instances. It combines ABT execution
with calls to CDCL SAT solvers and clause learning. ABTgar is sound and com-
plete, properties inherited from ABT, and solves local problems efficiently by using
CDCL SAT solvers.

Keywords. distributed SAT, clause learning, ABT

1. Introduction

The Boolean Satisfiability problem (SAT) is one of the most popular problems in Com-
puter Science, from both theoretical and practical sides. As the first known NP-complete
problem, it has been considered intractable during decades. However, recent advances in
SAT solving have allowed that many SAT instances can be solved efficiently in practice.
This is the case of many real-world applications, e.g., planning. They are translated into
SAT instances and solved by efficient SAT solvers. Specifically, these solvers are known
as CDCL SAT solvers, whose main component is the learning of new clauses derived
from the conflicts found during the search. See [6] for a survey on CDCL SAT solvers.

The previous scenario is a centralized approach, i.e., the whole instance to solve
is known by a single agent. However, real-world applications may require a distributed
approach, where the problem instance is distributed among a set of agents but no agent
knows the whole instance. Privacy is the main requirement for distributed problem solv-
ing: agents collaborate to find a solution but they do not want to reveal its sensitive in-
formation. Then, it is crucial to assure that the information exchanged during the solving
process is just the strictly needed. This is the case of multi-agent planning (MAP) [5,2,3],
where privacy matters. Hence, centralized approaches are not appropriate.

Distributed constraint satisfaction problems (distributed CSP) provide a suitable
framework to model problems that require a distributed solving process. Distributed CSP
can be translated into SAT, causing the distributed SAT problem. Asynchronous Back-
tracking (ABT) [7] was the pioneer algorithm to solve distributed CSP. Since SAT can
be seen particular case of CSP, ABT can also solve distributed SAT. ABT is sound and
complete, and it offers a reasonable level of privacy, so it seems to be a suitable candidate

to participate in the resolution of MAP instances. On the other hand, CDCL SAT solvers
appears to be a powerful tool to solve centralized problems. Notice that a MAP instance
can be seen as composed of two coupled elements: (i) solving each local subproblem
(i.e., the internal problem of each agent), where centralized methods have been shown as
the most efficient choice, and (ii) the process of assuring coherence among the solutions
of the local subproblems, that is mostly a communication issue between agents.

In this paper, we analyze how these two methods can be combined to solve dis-
tributed SAT. We present ABTsaT, a new version of ABT which is interfaced with a
CDCL SAT solver, combining the key elements of both techniques. Each agent uses
CDCL techniques to find partial solutions to its subproblem, or getting unsatisfiability
cores when unsolvable. Communication between agents is performed following the ABT
algorithm, which is sound and complete. In addition, ABT is enhanced with clause learn-
ing, and activity-based policies for its removal, improving its original performance.

2. Background

A CSP is defined by the tuple (X,D,C), where x; € X is a variable that takes value in a
finite and discrete D; € D, and C is a set of constraints over the variables X. The goal is
to find an assignment of values to all variables satisfying all constraints, or prove that it
does not exist. SAT can be seen as a particular case of CSP, in which X is a set of Boolean
variables, i.e., their domains only have two possible values. A literal is either a Boolean
variable x or its negation —, and a clause is a disjunction of literals. A SAT instance ¢
is written in Conjunctive Normal Form (CNF) if it is a conjunction of clauses (it is well-
known that every propositional formula can be expressed in CNF). To satisfy a formula
¢ in CNF, every clause must be satisfied. This requires that, at each clause, at least one
literal must be assigned to true. Notice that, under this formulation, each clause can be
seen as a different constraint. A distributed CSP is defined by the tuple (X,D,C,A, @),
where (X,D,C) are as in CSP, A is a set of agents, and ¢ : X — A a mapping function
of each variable to an agent. A distributed SAT instance is a tuple (¢,A, &), where ¢ is a
propositional formula in CNF, and A and « are as in distributed CSP.

A nogood is an assignment (a conjunction of variable-value pairs) that cannot be
extended consistently into a solution [4]; it has been found inconsistent either by the
original constraints/clauses of the problem or by the search process. In the context of tree
search, a nogood justifies the (temporary) removal of a value in the domain of a certain
variable. This variable is the deepest variable in the search tree mentioned in the nogood.
When all values of a variable are removed by nogoods, a new nogood can be produced
by resolution [1,4]. For example, let us assume that D, = {a,b}, and both values are
forbidden by nogoods ng; and ng,:

ngy:(x;=vi)A(y=a)

et (2 —Vz)/\(y_b)} = ngnew s (10 = Vi) A 2 =v2)

This is clear since the assignment x; = v{ Axp = v2 forbids all values of variable y, and
hence no solution exists under this assignment. Therefore, the negation of this nogood
must be satisfied by any solution. Often, this negation —(x; = v; Axp, = v;) is written as
an implication x| = v{ = xy # v;, where left-hand side of = is abbreviated as 1hs and
the right-hand side is abbreviated as rhs. Without loss of generality, hereinafter we only
consider Boolean variables, and its notation using literals.

2.1. CDCL SAT solvers

CDCL SAT solvers are inspired in the DPLL procedure (i.e., a depth-first search), but
they incorporate a number of new techniques. One of the most important is clause learn-
ing, which summarizes in new clauses the conflicts found in the past, in order to avoid
them in the future. Empirically, it has been shown as a key element to solve real-world
SAT instances, as planning instances are. During the search, a conflict occurs when all the
literals of a certain clause took values, and the clause is not satisfied by any of them. The
current (partial) assignment is, hence, a nogood. Applying conflict analysis techniques,
this learnt clause is reduced, keeping only those literals that derived the conflict.

2.2. ABT

ABT is the pioneer asynchronous algorithm to solve distributed CSP. ABT is executed
autonomously in each agent, which takes its own decisions and informs of them to other
agents; no agent has to wait for decisions of others. ABT is sound and complete, and
finds a solution in finite time. ABT requires a total order among agents.

ABT can solve distributed SAT. In that case, each agent knows the total order among
agents, the set of variables owned by it (local variables) and the set of clauses where its
local variables appear. Initially, two agents are connected if their variables share a clause.
More agents can be connected during ABT execution (see below). An agent must evalu-
ate the subset of clauses where it is the lowest agent in the clause, according to the total
order. So it must know the values of the variables in the clause owned by other agents.
Each agent keeps an agent view, the set of values it believes are assigned to variables
of higher agents connected with it, and a nogood store, a set of received nogoods dur-
ing execution. Agents exchange assignments and nogoods. When an agent takes a value,
informs of it to agents connected with it that appear lower in the order. When an agent
cannot find a consistent assignnment for its variables, it generates a nogood and sends
it to the closest agent in such nogood. If an agent receives a nogood including another
agent not connected with it, it requests to add a link from that agent to itself. This is done
until a solution is found, or until it is proven that no solution exists. ABT messages are:

® OK?(ag,val): it informs agent ag that the sender has taken the value val.

e NGD(ag,ng): it informs agent ag that the sender considers ng as a nogood.
e ADL(ag): it asks agent ag to set a direct link to the sender.

e STP: the sender has found that there is no solution.

The ABT pseudocode for distributed SAT appears in Figure ??, where sel f is the
agent that executes ABT, I'"(self) and I'* (sel f) are the set of higher and lower agents
connected with sel f, and the rest of elements are self-explanatory.

3. The ABTgst Algorithm

ABT can be directly applied to solve distributed SAT. However, original ABT has to
handle directly the operations of finding compatible assignments and producing new
nogoods, tasks which can be efficiently done by modern SAT solvers. We have connected
the ABT algorithm with a CDCL SAT solver, producing the new version ABTsar, which
maintains the correctness, completeness and termination of original ABT. In this section,
we present ABTgsar and develops its properties.

procedure ABT ()
compute myClausesToEval;
myValue < empty; end < false;
CheckAgentView();
while (—end) do
msg < getMsg();
switch(msg.type)
OK? :ProcessInfo(msg);
NGD :ResolveConflict(msg);
ADL :SetLink(msg);
STP :end + true;
procedure CheckAgentView(msg)
if —consistent(myValue,myAgentView) then
myValue < chooseValue();
if (myValue) then
for each child € T'" (sel f) do
sendMsg:OK?(child,myValue),
else Backtrack();
procedure ProcessInfo(msg)
Update(myAgentView,msg.Assig);
CheckAgentView();
procedure ResolveConflict (msg)
if Coherent(msg.Nogood, I~ (self) U {self}) then
CheckAddLink(msg);
add(msg.Nogood,myNogoodStore);
myValue < empty;
CheckAgentView();
else if Coherent(msg.Nogood,sel f) then
sendMsg:OK?(msg.sender,myValue);

procedure Backtrack()
newNogood < solve(myNogoodStore);
if (newNogood = empty) then
end < true; sendMsg:ST P(system);
else
sendMsg:NGD(newNogood),
Update(myAgentView,rhs(newNogood) <+ unknown);
CheckAgentView();
procedure Update(myAgentView,newAssig)
add(newAssig, myAgentView);
for each ng € myNogoodStore do
if —~Coherent(1hs(ng),myAgentView) then remove(ng, myNogoodStore);
function Coherent(nogood,agents)
for each ag € nogood U agents do
if nogood|ag] # myAgentView|ag] then return false;
return true;
procedure CheckAddLink (msg)
for each (var € 1hs(msg.Nogood))
if (ot(var) ¢ I~ (self)) then
sendMsg:ADL(o(var),self);
add(o(var),I'~ (self));
Update(myAgentView,var < varValue);
procedure SetLink (msg)
add(msg.sender,I't (sel f));
sendMsg:0K?(msg.sender,myValue);

Figure 1. The ABT algorithm for distributed SAT.

3.1. Connection with a SAT solver. Soundness, Completeness and Termination.

ABTsar builds propositional formulas ¢ and asks a SAT solver to get models for them
or, if ¢ is unsatisfiable, get an unsatisfiability core of it, as depicted in Figure 2. The
procedures that differ from the ones of ABT for distributed SAT appear in Figure 3,
where the new or changed lines appear marked with —.

The call to SAT in CheckAgentView returns a compatible value myValue, or if UN-
SAT, a core myCore of the original clauses that make the whole formula unsatisfiable. In
that case, by resolution we can eliminate the local variables of self that appear in myCore.
This is done by the function filter-core, that generates newNogood from myCore.

ABT

¢

(model, core)

SAT Solver

Figure 2. The structure of ABTgar.

procedure CheckAgentView(msg)
if —consistent(myValue,myAgentView) then
— (myValue,myCore) < SAT(myAgentView UmyClausesToEval UnmyNogoodStore);
if (myValue) then for each child € I'" (sel f) do sendMsg:OK?(child,myValue);
else Backtrack(myCore);
procedure Backtrack(myCore)
— newNogood < filter-core(myCore);
if (newNogood = empty) then
end < true; sendMsg:Stop(system);
else
— learn(newNogood);
sendMsg:NGD(newNogood);
Update(myAgentView,rhs(newNogood) < unknown);
CheckAgentView();

Figure 3. The ABTsar algorithm; only changes wrt. original ABT are shown.

The ABT proofs of soundness and completeness [7] remain valid. If a solution ex-
ists, ABTgsar reaches a stable state where all agents satisfy their clauses and no more
messages are exchanged. When no solution exists, the empty clause is produced by some
agent, and the algorithm terminates. This argument also holds for completeness (notice
that filter-core only eliminates variables that are local to the agent). Finally, these
two cases (a solution is found, or the empty clause is produced) occur in finite time, since
in ABTgar there exist no infinite loops in the values of a certain agent: this is direct from
ABT. See [7] for more details in this proof.

3.2. CDCL-based Subproblem Resolution

Each agent must satisfy all clauses for which it is the evaluator (the set myClausesTo-
Eval). In other words, it must find an assignment of its local variables satisfying these
clauses. However, it must also take into account the literals assigned by higher priority
agents, as well as the nogoods generated by lower priority agents. These tasks can be
efficiently performed by a CDCL SAT solver. We build a SAT instance as follows.

First, this formula contains all the clauses to be evaluated by the agent. Notice that
these clauses must be satisfied by this agent in all circumstances. Also, it must consider
the values stored in the agent view. Each OK? message contains a set of literals, i.e., a set
of unitary clauses, whose value is already fixed by other agents. Therefore, it is enough
to add these unitary clauses to such formula. Finally, all nogoods that remain active, that
is, are consistent with the agent view of self, must be also included in this formula'.

Solving this SAT instance is equivalent to find an assignment that (i) satisfies all the
clauses to be evaluated by the agent, and (ii) is consistent with the agent view (higher
priority agents) and nogood store (lower priority agents). If the solver returns SAT, it also
returns the assignment satisfying the formula, i.e., the assignment of the local variables
of the agent. On the contrary, if it returns UNSAT, this indicates that no assignment can
be found under the current agent view, and one can produce the conflict clause from
the unsatisfiability core”. In particular, this clause contains all the variables (with its
corresponding phase) that belong to the UNSAT core.

Notice that any nogood that is no longer consistent will be trivially satisfied.
2The reduced set of clauses from which the empty clause can be derived.

3.3. Clause Learning and Removal Policies

In constrast to original ABT, we propose to keep some nogoods received during the
execution in ABTsur, even if they are no longer consistent.> This may be beneficial
because some may become consistent again, after changing the agent view. However,
storing nogoods has drawbacks. Let us consider an agent handling n Boolean variables.
In the worst case, this agent needs the reception of 2" nogoods to produce a new nogood.
If we keep all, the consumption of memory grows exponentially. This problem also exist
in CDCL SAT solvers, where a new learnt clause is produced after each conflict.

In order to reduce this problem, we propose the use of clause removal policies.
In CDCL SAT solvers, these policies remove the less active learnt clauses during the
execution of the solver. The activity of a clause is measured by the number of conflicts
that such clause produces. Similarly, we can measure the effectiveness of each nogood
to produce conflicts, and remove those of them that are no effective any more. A direct
way to do so is using the CDCL SAT solver. Notice that each nogood is encoded as
a clause. They cannot be removed during the execution of the solver. However, their
activity counters are updated. If we keep this information at each call to the solver, we can
know which are the most active nogoods at a certain moment. Therefore, we can directly
apply some clause removal policies in order to reduce their memory consumption.

4. Future Work and Conclusions

We presente ABTsar, a sound and complete algorithm to solve distributed SAT in finite
time, which combines the benefits of CDCL SAT solving techniques to solve real-world
SAT instances with the benefits of ABT to handle communications among agents in dis-
tributed problem solving scenarios. As future work, we plan an extense experimentation,
in order to evaluate the benefits of this approach. In addition, we address the question of
ordering: ABT requires a total order among the problem agents, but, how to select this
order? It would be interesting to analyze if certain orders based on the particular features
of each instance may be beneficial to improve the performance of ABTgsar.

References

[1] A.Baker. The hazards of fancy backtracking. Proc. AAAI’94, pages 288-293, 1994.

[2] M. Benedetti and L. C. Aiello. SAT-based cooperative planning: a proposal. In Mechanizing Mathemat-
ical Reasoning, pages 494-513, 2005.

[3] Y. Dimopoulos, M. A. Hashmi, and P. Moraitis. p-SATPLAN: Multi-agent planning as satisfiability.
Knowledge-Based Systems, 29:54-62, 2012.

[4] G. Katsirelos and F. Bacchus. Unrestricted nogood recording in CSP search. Proc. CP’03, pages 873-877,
2003.

[5] R. Nissim, R. Brafman, and C. Domshlak. A general, fully distributed multi-agent planning algorithm.
Proc. AAMAS’ 10, pages 1323-1330, 2010.

[6] J. P. M. Silva, I. Lynce, and S. Malik. Conflict-driven clause learning SAT solvers. In Handbook of
Satisfiability, pages 131-153. 10S Press, 2009.

[71 M. Yokoo, E. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satisfaction problem: For-
malization and algorithms. IEEE Trans. Know. and Data Engin., pages 673-685, 1998.

3In ABT, nogoods are removed as soon as they become inconsistent.

