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ABSTRACT 

The fabrication procedure of hollow iron oxide nanoparticles with large surface to volume ratio 

by a single step gas condensation process at ambient temperature is presented. Fe clusters formed 

during the sputtering process are progressively transformed into hollow cuboids with oxide shells 

by the Kirkendall mechanism at the expense of oxygen captured inside the deposition chamber. 

TEM and Raman spectroscopy techniques point to magnetite as the main component of the 

nanocuboids, however the magnetic behavior exhibited by the samples suggests the presence of 

FeO as well. In addition, these particles showed strong stability after several months of exposure 

to ambient conditions making them of potential interest in diverse technological applications. In 

particular, these hierarchical hollow particles turned out to be very efficient for both As(III) and 

As(V) absorption, (326 and 190 mg/g, respectively), thus making then of strong interest for 

drinking water remediation. 
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Introduction 

It is expected that material design in terms of morphology, i.e. increase of the surface to volume 

ratio, may propitiate substantial advantages for some technological applications in comparison 

with bare solid particles. For this reason, hollow nanoparticles prepared by taking advantage of 

the Kirkendall effect, i.e. different interdiffusion rates of atomic species, for instance, cobalt and 

oxygen, constitutes a very interesting approach.1 Hollow nanoparticles benefit from an increased 

(doubled) surface area,2 which determines their chemical and physical properties, but are also 

attractive owing to their potential capability of carrying high payloads within the void interior. 

Therefore, strong interest for determining the real potential applications of these nanoparticles in 

biomedicine, catalysis, energy storage, etc, exists nowadays.3,4,5,6 The usual method of 

fabricating hollow nanoparticles follows a chemical template-based approach.7 However, 

template-based methods are expensive and require time-consuming processes of synthesis, which 

make implementation in large-scale applications complicated. For those reasons, in recent years 

many efforts have been concentrated into one-pot solvothermal methods or post-oxidation in air 

at high temperatures.8,9 However, notable differences exist between products obtained through 

each route. See for example, the case of cobalt oxide nanoparticles produced in a simple air 

oxidation process compared with Co3O4 hollow nanoparticles obtained from the analogous 

solution-phase process.10 In addition, when oxidizing the particles in solution at temperatures 

above 200 °C, the growth of crystal domains creates large structural strain which, in most of the 

cases, leads to the fragmentation of the shell and thus compromise long-term stability and 

practical applications. Therefore, a general approach aimed to define a simple and rational 

method for fabricating hollow nanoparticles is still lacking. 
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Besides the strong dependence of the magnetic properties on composition, interfacial effects, 

shape and size, studies regarding the control of particles’ morphology and novel strategies for 

designing magnetic nanostructures at wish are scarce. For instance, when iron nanoparticles are 

oxidized a broad range of morphologies, including hollow and core/shell structures11 are 

observed. The latter results of special interest due to their particular features because of exchange 

coupling effects providing opportunities to control the magnetic properties of the bond.12,13,14 In 

fact, reports about shape control of nanoparticles obtained by wet synthesis routes are almost 

reduced exclusively to the case of noble metal nanoparticles such as Ag, Au, Pt. For this reason, 

physical methods are gaining more and more attention since they allow a better control of the 

shape and size distribution of nanoparticles.15 In this sense, gas-phase techniques have 

undergone remarkable advances in recent years, after Haberland et al.16 developed a nanocluster 

fabrication system based on magnetron sputtering. This gas aggregation cluster source allows 

accomplishing a continuous production of particles with a broad range of sizes, while at the same 

time offers control over chemical composition and structure. A good example of the synthesis of 

multiple-shell nanoparticles by this method is the work by Huttel et al.17Another example is the 

sputtering and gas aggregation of pure Fe0 nanoparticles in ultrahigh vacuum conditions and 

their posterior oxidation under atmospheric pressure in order to obtain non-equilibrium 

morphologies such as iron-oxide cuboids.18 Magnetic nanoparticles with a cube-like geometry 

are of interest because of their potential benefits for enhancing effective magnetic anisotropy, 

dipolar interactions, packing density and alignment.19 However, while there are several synthetic 

procedures to prepare hollow spherical nanoparticles, the methods to prepare cubic shape 

nanoparticles are scarce.20 
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Herein we present a method to prepare magnetite (Fe3O4) hollow nanocuboids with a large 

surface to volume ratio in a single step process. Their magnetic and structural stability under 

ambient conditions was checked for a period of 6 months without noticeable degradation. We 

have also investigated, in particular, their used as adsorbents for capturing of hazardous 

pollutants in water detecting high specificity to arsenic which allows expecting potential 

application in drinking water remediation technology. 

Experimental Section 

Nanoparticles were prepared in a home-built cluster source connected to a vacuum system with 

base pressure in the low 10−6 Torr. A 1 in. diameter DC magnetron with a Fe target (99.95% 

purity) was operated typically at 100 W. Deposition took place at a nozzle-substrate distance of 

25 cm with a constant flux of argon of 65 sccm, and pressures in the low 10−3 Torr. Corning glass 

was used as substrate except for the samples grown for transmission electron microscopy (TEM) 

imaging, where the nanoparticles were deposited directly on TEM carbon-coated grids, and for 

arsenic adsorption experiments, where native-oxide terminated silicon substrates were preferred. 

Immediately after deposition, the samples were removed from the chamber into ambient 

surroundings. TEM and scanning TEM (STEM) in high angle annular dark field (HAADF) mode 

were used to study the crystallinity, morphology, size, and dispersion of the samples by means of 

a Tecnai F20 microscope working at 200 kV. Digital diffraction patterns (DDP) or power spectra 

were obtained from selected regions in the micrographs. No changes induced by the electron 

beam were detected in any of the samples.21

The Micro-Raman study was done by using a Jobin-Yvon T64000 monochromator with a liquid 

nitrogen cooled charge-coupled detector. A excitation light line of 514.5 nm from an Ar-ion laser 

was used. The incident and scattered beams were focused by using an Olympus microscope with 
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a ×50 objective to give a spot size of about 2 µm. Samples consist of few layers of nanoparticles 

and hence we probed the whole thickness. Due to the polycrystalline nature of the samples 

unpolarized Raman spectra were taken. An average of ten points was measured on each sample 

showing a large uniformity over the whole sample surface.  

The magnetic properties of percolating thin films were measured using a Quantum Design 

MPMS-2 SQUID magnetometer in the magnetic field range of ±50 kOe and from 10 to 350 K. 

Magnetic measurements and TEM analysis were repeated on selected samples to analyze aging 

effects on magnetic and microstructural properties over a period of 6 months of exposure to 

ambient conditions. The amount of iron for each sample was measured using an inductively 

coupled plasma mass spectrometer (ICP-MS) from Agilent (model 7500cx). 

To investigate the arsenic adsorption performance of percolating samples on Si substrates, they 

were submerged in 20 mL of As(III) or As(V) solution; to this end solutions NaAsO2 and 

Na2HAsO4•7H2O in distilled water were prepared. The contact time was approximately 1 h, the 

concentration used was 10 mg/L, and HCl was added to adjust the pH value at 6. X-ray 

photoelectron spectroscopy (XPS) spectra were performed with a Phoibos 150 analyzer (SPECS 

GmbH, Berlin) in ultra-high vacuum conditions (base pressure 1×10-10 mbar) using a 

monochromatic aluminum K-alpha X-ray source (1486.74 eV). The calibration of energies was 

done by using the C1s peak at 284.8eV, associated to adventitious carbon. The energy resolution, 

of about 0.58 eV, was determined by measuring the FWHM of the Ag 3d5/2 peak using a 

sputtered silver foil. 

Results and Discussion 
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The nanoparticles used in this work were prepared by the combination of gas–aggregation 

technique and magnetron sputtering. Sputtered Fe atoms are cooled down in the cluster source 

and then aggregate by collisions with flowing Ar gas. Differential pumping drags the clusters 

through a small nozzle into the deposition chamber. Clusters are finally softly deposited onto a 

sample holder at room temperature, thus presumably retaining their original shape. In principle, 

mean nanoparticles’ size can be controlled by a careful selection of the deposition conditions 

(sputtering power, the travelling distances, the chamber pressure and the Ar gas flow rates).17 

Previous reports showed that a oxygen-rich atmosphere into the deposition chamber during 

processing leads to the formation of Fe/Fe oxide core/shell clusters.22

 

 Quite differently in our 

case, the oxygen partial pressure (medium vacuum conditions) in addition to the Ar atmosphere 

warrants reactive sputtering, thus a chemical reaction occurs leading to the formation of iron 

oxide shells before clusters were deposited on the substrate. Figure 1A shows a typical HAADF 

STEM micrograph of as-prepared sample making evident the formation of cuboid-like 

nanoparticles. 

Figure 1. Size distribution and particle morphology. (A) HAADF STEM picture of the Fe 
particles deposited on a carbon-coated copper grid. (B) Particles sizes histogram. The curve 
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corresponds to a log-normal probability distribution. (C) Contrast line profile of a nanoparticle 
revealing the existence of a Kirkendall void in the center of the cuboid.  

 

The HAADF STEM data fit to a log-normal size distribution (Figure 1B) with a mean particle 

length of 7 nm and 25 % standard deviation, determined by collision statistics and Brownian 

aggregation in the gas phase.23 Line profiles (Figure 1C) reveal the presence of a void in the 

center of a nanoparticle. High resolution TEM (HRTEM) of an individual particles (see Figure 

2A) demonstrates the hollow nature of the cuboids, with interior cavities about 2-3 nm 

surrounded by a ∼ 2 nm thick polycrystalline shell. The reflections of the power spectrum pattern 

(Figure 2B) can be indexed using the cubic spinel structure of Fe3O4 (magnetite) and/or γ-Fe2O3 

(maghemite), it is notoriously difficult to distinguish between them, or an intermediate phase 

between both.24

 

 Notice that the indexed reflections correspond to different locations in the 

nanoparticle, as shown in Figure 2C, where a filtered Fourier transform composition illustrates 

the polycrystalline nature of the nanocuboid shell.  

Figure 2. (A) High-resolution TEM image of a nanocube. The corresponding power spectrum 
(B) makes evident the plolycrystalline character of the shell. (C) Filtered Fourier transform 
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composition showing the polycrystalline nature of the nanoparticle cuboid shell, the reflections 
found in B have been plotted in different colors and superposed to the HRTEM image in A. (D) 
HRTEM image of a bigger particle with intermediate shape between solid and hollow.  

 

It may be assumed that Fe nanocubes were the seeds where these iron-oxide hollow nanocuboids 

grown. At this point it is important to note that complete oxidation of cubic Fe nanoparticles 

seems to promote a change of geometry towards approximately spherical shapes, which is not 

the case observed here.18 Even though iron oxidation has been profusely studied in this context in 

the past, the actual composition of the native oxide is not well established yet. Furthermore, the 

oxide composition always differs from that corresponding to a stoichiometric bulk oxide.25 There 

is also a suggestion that the oxide phase changes depending on the distance from the nanoparticle 

core.26 In principle, different oxide compositions can be obtained depending on temperature, 

oxygen partial pressure and sizes, because the Kirkendall effect is controlled by diffusion.27 For 

short timescales, the oxidation process is dominated by the Cabrera-Mott-like mechanism that 

leads to initial oxidation and the rapid development of about 3 nm-thick oxide shell around the 

Fe core. Afterward, hollow structures are formed because iron outward diffusion rate through the 

shell is larger than oxygen inward diffusion, and at the end this process leads to the coalescence 

of vacancies left behind into a single central void. In fact, it has been previously shown that in 

the case of Fe nanoparticles at relatively low temperatures (below 250 ºC) there is a critical size 

above which full reaction with air is not possible, indicating a limiting thickness of ∼ 8 nm for 

which solid particles may be fully converted into hollow oxides.11 According to this, in the case 

of large enough nanoparticles, the partial oxidation will promote the formation of core/shell 

nanostructures with a Fe core trapped inside the oxide shell.28 It is important to mention here that 

particles used in this work are just about these sizes. A careful observation allows identifying 
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several particles (about 10 % of the total) that fit quite well with the above suggested growth 

scheme (i.e., uncompleted oxidation), as shown in Figure 2D where the core is clearly traceable 

as the darker inner region. The appearance of bridges with the nanoparticle outermost shell and 

the asymmetric distribution of differentiated contrast regions might well be a result of strain-

mediated ionic transport.18 Similar features has been previously reported for the case of cobalt 

nanoparticles.13 

To gain a deeper insight into the growth process and the actual microstructure of the 

nanoparticles we have also analyzed the role of aging processes. Since TEM and electron 

diffraction techniques alone cannot give a detailed picture of different oxide phases we have also 

used Raman spectroscopy, since different bands in the Raman spectrum correspond directly to 

specific frequency vibration modes that could be very helpful to identify particular oxide phases. 

In particular, maghemite differs from magnetite in that it contains no divalent iron species. Due 

to the fact that the ionic radius of Fe (II) is larger than that of Fe (III), Fe (II)-O bonds are longer 

and weaker than Fe (III)-O bonds; this shifts-up the vibration frequency in the Raman spectrum, 

and hence Raman analysis allows distinguishing between these phases. 

 

Figure 3. Raman spectra of the as-grown sample and effect of laser power heating. Scans are 
vertically shifted for the sake of clarity: top spectrum corresponds to the as-synthesized sample; 
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increasing laser power density, middle spectrum, shows a mixture of both magnetite and 
maghemite phases; further increase of laser power heating leads to the transformation into 
hematite (bottom spectrum). Red, blue and black vertical bars indicate the expected phonon 
mode frequencies for magnetite, maghemite and hematite nanoparticles respectively, according 
to Ref. 29. 
 

Raman spectra of samples at different stages of nanostructural transformation are depicted in 

Figure 3. To avoid sample degradation due to laser heating during observation the laser-beam 

power density was set to 0.6 kW/cm2. This fact was carefully checked through successive scans. 

The Raman spectrum of the as-prepared sample is shown in the upper part. The main features of 

the spectrum are two bands, a main band centered at 668 cm−1 and a secondary one with peaks at 

ca. 545 and 330 cm−1, that have been assigned to A1g, T2g and Eg vibrational modes of magnetite, 

respectively.29 Increasing three times the laser power density, to 1.8 kW/cm2, promotes local 

heating of the sample and, as a result of it, bands are shifted to lower wavenumbers and become 

broader.30

On the basis of these observations, it is reasonable to assume that the as-synthesized hollows are 

made of Fe3O4. However, some of the observed magnetite bands are very close to those of the 

non-stoichiometric iron oxide known as wüstite (FeO). In fact, Raman spectrum of FeO is very 

 In addition, a shoulder at ∼710 cm-1 appears, indicating the formation of maghemite. 

Maghemite is a metastable phase between magnetite and hematite, and has a very similar 

crystalline structure to the former. As temperature increases phase transitions proceed as 

indicated: Fe3O4 γ-Fe2O3 α-Fe2O3. Further increase of the laser density (∼6 kW/cm2) causes 

the appearance of the characteristic bands of hematite (see lower curve in Fig. 3), namely two 

A1g modes (220 and 491 cm-1), and the Eg modes at 285, 397 and 597 cm-1. Thus, clearly 

indicating that α-Fe2O3 nucleates after a maghemite-like phase has been formed from magnetite. 

It is also observed that those changes of spectrum are irreversible. 
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similar to that of magnetite,30 with only a small shift in the main peak position. Eventhough 

Wüstite is unstable at room temperature in bulk form it could be stabilized by surface energy 

contributions at the nanometric scale. In addition, wüstite also shows small lattice mismatch (~ 

3%) respect to the spinel lattice. The presence of Fe3O4 along with FeO has been previously 

reported.31,32,33 It is reasonable to consider that the oxidation is progressive (in fact, we stress that 

particular attention should be paid to evidences regarding the non-porous nature of the oxide 

shell and the impenetrability by gases and liquids neither during the synthesis nor post-

preparative procedures),34 therefore, the higher oxidation states would be present at the outer 

regions of the hollow shell whereas the wüstite-like phase would be confined to the interior 

surface. Alternatively, a shell structure based on magnetite but with octahedral vacancies would 

also be likely,35 and therefore would show no indication whatsoever for the presence of Verwey 

transition (TV) at 120 K.36 Then, a next plausible possibility which requires further exploration is 

our samples consist of a mixture of the type Fe3O4-FeO, instead of single-phase 

nonstoichiometric magnetite. Aging effects on the magnetic properties were studied by 

measuring hysteresis loops and thermal dependence of the magnetization after following a zero-

field cooling-field cooling (ZFC-FC) process (see Figure 4) after exposure to ambient 

atmosphere for several months. Similar results to that of as-prepared samples were obtained thus, 

making evident the stability of the hollow nanoparticles. 
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Figure 4. (A) Field-cooling and zero-field-cooling (FC-ZFC) magnetization measured with an 
applied magnetic field of 100 Oe. Similar results were obtained after a long lasting (six months) 
exposure to ambient conditions. Inset: Blocking temperature dependence on the characteristic 
relaxation time determined from ac susceptibility measurements. (B) Normalized hysteresis 
curves at 10 K after ZFC (red) and FC (blue) from 300 K. (C) Shift of the hysteresis loop after a 
FC process making evident the existence of an exchange bias field.  
As expected, the system exhibits superparamagnetic behavior with a blocking temperature (TB) 

around 190 K. The blocking mechanism originates from the competition between thermal energy 

(which amounts kBT where kB is the Boltzmann constant), magnetic anisotropy energy E 

(proportional to KeffV, the effective anisotropy times the mean particle volume), and inter-

particles interaction. Obviously, a particle size distribution like that depicted in Figure 1B will 

result in a blocking temperatures distribution given place to a broad peak in the ZFC curve, as 

shown in Figure 4A. Though, the estimated TB is higher than the one anticipated from the 

effective magnetic volume of the hollows (i.e. the shells) and the usual Keff for iron oxides.19 The 

latter is directly probed by temperature-dependent ac susceptibility measurements (see inset in 

Figure 4A). As pointed out by Néel, the relaxation of the magnetic moment of a single-domain 

magnetic particle takes place through a thermally activated process according to the Arrhenius 

law, i.e. τ = τ0 exp(E/kBT), being τ the relaxation time and τ0 the atomic time scale characteristic 

of the system (typically  ∼10-9 s). It implies that the blocking temperature of the system depends 

on the observation time window, i.e. measuring the magnetization as a function of the 

temperature at a given frequency is equivalent to measure it as a function of the field frequency 

at a fixed temperature. It is important to mention here that, even the generalized Arrhenius law 

has been extensively used to describe relaxation processes in many materials, the meaningless 

physical values of τ0 (∼ 10-25 s) obtained in this cases indicate that it is not appropriated to 

describe de magnetic relaxation process of our hollow nanoparticles.  It is so because the Néel-

Arrhenius model strictly considers a system of single-domain non-interacting identical particles 
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with their magnetization axes parallel to the applied magnetic field. However, the hollow iron 

oxide nanostructures described here have a multidomain crystallographic structure (see Figure 

2C), which induces a spread of the local anisotropy axes across the shell. Since spins tend to 

align along the local anisotropy axes, a multidomain magnetic structure is formed within each 

particle. In addition, magnetic interaction between domains may also become relevant. For 

instance, competition between exchange terms and anisotropy generates magnetic frustration.13 

Magnetic frustration is also generated by dipolar magnetic interactions in a dense assembly of 

disordered particles with randomly oriented magnetic moments.37 Therefore, the competition 

between the different energy terms leads to a rich variety of magnetic configurations far from the 

simple postulates of single domain non-interacting identical particles of the Néel-Arrhenius 

model. For those reasons we have analyzed the relaxation processes of the hollow nanoparticles 

by using a phenomenological description given by the Vogel–Fulcher law, which is often used in 

the literature to describe the magnetization dynamics of dipole interacting ferrofluids and for 

many cluster glasses.38

12

 The effect of the interaction is taken into consideration through a 

temperature scale T0 that measures the interaction energy, and the relaxation time diverges at T  

T0, i.e. so that for temperatures above T0 the thermal energy dominates the interaction energy. 

This approach provided anisotropy values about 106 erg/cm3 as well as realistic values for the 

response time τ0 and an interaction T0 close to 200 K. This experimental observation indicates: a) 

the presence of magnetic interactions among crystallites, and b) the anisotropy energy per unit 

volume is larger than that of solid counterparts. In fact, the estimated values of Keff are very 

similar to those determined for other non-interacting iron-oxide hollow nanoparticles prepared 

by Kirkendall effect.  This increment of the anisotropy is commonly associated to translational 

symmetry breaking and the lower atomic coordination of surface atoms. In fact, in particles of a 
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few nanometers in diameter surface anisotropy is the dominant contribution, and it can be 

associated to the large proportion of spins with lower atomic coordination. In the case of hollow 

multidomain nanoparticles this effect is further enhanced due to the large amount of spins 

located at the innermost or outermost surfaces of the shell and at the crystallographic domain’s 

interfaces.  Concomitantly, the large disorder in the hollow nanoparticles leads to the reduction 

in the number of spins aligning with the external field, reflected in a very low saturation 

magnetization and a high paramagnetic susceptibility at low temperatures (see Figure 4). 

Our previous results, obtained by Monte Carlo simulations, clearly show that the high-field 

behavior is controlled by the spins of the shell,12 and the polycrystalline nature of the 

nanoparticles.13 The model reproduces a shell with a network of randomly oriented strongly 

interacting crystallographic domains. Thus, the existence of surface spin canting would account 

for both the reduction of magnetization and the non-saturating behavior of the hysteresis curves 

even at large applied fields (Figure 4C). We would like to recall that such magnetic frustration 

can also explain the observed high coercivity and the shift of the hysteresis loop, when cooling 

the samples in the presence of a magnetic field, in agreement with previous results reported in 

polycrystalline maghemite hollow nanoparticles.12 Additionally, in the present case, low 

temperature hysteresis loop (Figure 4C) recorded after a FC process from room temperature, is 

broadened as compared to that measured after a ZFC process and exhibits a non-symmetric 

coercivity enhancement. These features are usually observed when a ferro(i)magnet is in contact 

with an antiferromagnet. Therefore, an alternative explanation considers the co-existence of 

antiferromagnetic and ferromagnetic phases, which coincides with the Fe3O4-FeO shell structure 

proposed above. Previous results by Chalasani and Vasudevan39 make evident the 

superparamagnetic behavior above 190 K in cubic nanocrystals of ~10 nm in length while the 
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spherical nanocrystals of similar size exhibited a large decrease of TB. This significant variation 

of TB depending on the particle morphology was attributed to the appearance of a exchange bias 

field (Hex) in particles of cubic morphology, originated by higher trace amounts of wüstite. 

Actually, as previously reported, this exchange bias coupling allows obtaining control of the 

superparamagnetic limit of nanoparticles.40 In this sense, the existence of antiferromagnetic-

coupling is also indicated by the decrease of both ZFC and FC branches of the magnetization 

below TB on lowering temperature (see Figure 4A). In addition, the FC magnetic moment 

increases a little from TV ≈ 120 K and peaks at about 200 K. The temperature whereby the 

sudden increase of magnetization takes place coincides with Néel temperature (TN) of FeO. 

Thus, the increase of magnetization can be ascribed to the transition from antiferromagnetic 

ordering to paramagnetic occurring in FeO at TN. Since the previously estimated value of T0 is 

very similar to TN, we believe that this antiferromagnetic to paramagnetic transition is the origin 

of the observed time-dependent relaxation. Finally, the increase of the magnetization below 50 K 

can be simply attributed to the progressive orientation of surfaces/interfaces uncompensated 

spins in the field direction on lowering temperature. Nevertheless, some anomalies of the 

magnetic properties of magnetite around 50 K has been reported previously.41

Regarding to the potential applications of these nanoparticles, previous works on hollow iron 

oxides suggest, for instance, that they will be very promising carriers for future biomedical 

applications. Nevertheless, the interest of hollows for their payload capacity is limited since 

when particle size approaches the dimensions of the molecular payload, more molecules can be 

placed on the surface than inside inner volume. In fact, some recent results make evident that 

preparation of hollow “tanker” nano-carriers smaller than about 100 nm have no sense.

 

42 On the 

other hand, due to the non-porous nature and impenetrability by gases and liquids of the oxide 
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shell,34 the organic materials that can be potentially encapsulated inside the hollow nanoparticles 

is restricted. Indeed, porosity and permeability of the shell need to be routinely increased by acid 

etching prior to drug encapsulation.43 Nowadays, it is not clear why, using the same coating 

strategy, a hollow system can have a higher payload than a solid nanoparticle of the same core 

size. A possibility would be the large occupancy of cation vacancies in hollows shells in 

comparison with that of the solid counterpart.44 This difference could modify the reaction ability 

of transition metal oxides.45

6

 In fact, the enhanced capacity of lithium ion batteries, which make 

them useful for application in energy storage, is due to the high concentration of cation vacancies 

in hollow iron oxide nanoparticles.  

Nevertheless, the large effective specific surface area of the hollow structures is of strong interest 

for other applications such as, for instance, catalysis or selective sensing. In particular we have 

evaluated the efficiency of hollow nanocubes as adsorbent material in a very relevant subject 

such as remediation of environmental pollutants. In this regard, several toxic metalloid elements, 

for instance arsenic, can be found ubiquitously throughout the Earth’s crust, and these elements 

are responsible for important human health problems. For these reasons, the preparation of 

nanostructures that can offer a large effective specific surface area for capturing selectively these 

toxic metalloid elements is of major relevance. To this end, four tests were performed to check 

the efficacy of the hollow nanoparticles for the selective capturing of As: one control (silicon 

substrate without nanoparticles), the particles in distilled water, and two runs with water spiked 

with As(III) arsenite and As(V) arsenate to evaluate its performance. As shown in Figure 5, the 

valence state of As is mostly preserved in the adsorbed species. In particular, the peak observed 

at binding energy 44.0 eV corresponds to the As(III) 3d peak as expected for NaAsO2 or 

As2O3.46,47 A small percentage of As(V) should not be excluded as a result of oxidation occurring 
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by dissolved oxygen or X-ray exposure. On the other hand, As(V) spectrum confirms a single 

peak at 45.3 eV indicative of the sole presence of As(V) species.48

 

 

Figure 5. Effects of sorption of arsenic on the high-resolution XPS spectra at the Fe2p (left) and 
As3d peak (right). Please note the scale change in the x-axis. Scans are vertically shifted for the 
sake of clarity: green and blue lines depict the XPS spectra after reaction with either As(III) or 
As(V). Red line represents the fresh particles in distilled water. The negative controls are 
performed with the substrate alone (black line). Excluding arsenic, no other chemical 
constituents changed following the treatment. 

 

The quantitative analysis of XPS spectra resulted in a As-to-Fe mass ratio which is significantly 

higher for As(III) (0.326) than As(V) adsorption (0.190). These values imply adsorption 

capacities of 326 mg/g and 190 mg/g, respectively. A different distribution of As(V) and As(III) 

species in the present experimental pH conditions may account for the difference in sorption 

behaviors.49 As(III) is met in water as a neutral oxy-ion, H3AsO3, while As(V) exists mainly as 

negatively charged forms, i.e. H2AsO4
-. Therefore, charged As(V) are chemisorbed in a 

monolayer fashion onto the particles surface while a multilayer coverage by physisorbed oxy-

ions is favored for the uncharged As(III). It is to be noted that bidentate binuclear (RAs-Fe ~ 3.3 Å) 
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and tridentate hexanuclear (RAs-Fe ~ 3.5 Å) corner-sharing complexes with FeO6 octahedra were 

recently described as the exact inner sphere forms corresponding to As(V) and As(III) adsorption 

on the structure of magnetite.50 Despite the high initial arsenic concentration used, the results 

reported here indicate that our hollow nanocuboids clearly have a higher adsorption capacity for 

arsenic than those previously reported. For instance, estimated adsorption capacity at residual 

concentration equal to 10 mg/L was found to be around 120 mg/g for As(III) and less than 50 

mg/g for As(V) for feroxyhyte powders sieved to mean particle size of 25 μm.51 Values about 

200 mg/g were achieved in hollow iron−cerium alkoxides  ∼120 nm in size and with the walls 

thickness about 10 nm.52 In our case, the unique hollow nanostructure ∼7 nm length with a shell 

thickness about 2 nm can increase the effective specific surface, improving the rate performance. 

Besides, the hybrid elements (Fe3O4 along with FeO) allow, once in water, for an easier 

exchange between arsenic and the effective sorbent site (α-FeOOH).53 According to the results 

above, we can speculate that such systems could be developed as auxiliary devices for water 

remediation or as sensors for detection and concentration measurements.54 And although the 

subsequent dispersion of such particles, from gas aggregation sources in aqueous solutions, is not 

an easy task, ultrasonication can assist that purpose.55

Conclusions 

 

To summarize, we have successfully fabricated hollowmagnetic nanoparticles by a single-step 

physical route using a single precursor. Fe clusters formed during the sputtering process are 

progressively transformed into hollow cuboids with oxide shells at the expense of oxygen 

captured inside the deposition chamber by the Kirkendall mechanism. TEM and Raman 

spectroscopy techniques strongly indicate that magnetite is the main component of the 
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nanocuboids. However the magnetic behavior exhibited by the samples suggests the existence of 

several oxides in the shell region, with a major contribution from ferrimagnetic Fe3O4 

andfractions of FeO. 

In addition, these particles showed strong stability over several months under ambient 

conditions, despite many other reports indicating the total or partial formation of maghemite 

hollows that would, eventually, break into fragments.  

Hollow nanocuboids offer a large effective specific surface area that turns out to be very 

effective for capturing selectively toxic metalloid elements dissolved in water. In particular, 

when used as adsorbent material for As, these nanocuboids demonstrated a remarkable 

adsorption capacity for both arsenite and arsenate (above 300 and about 200 mg/g, respectively). 

Thus, they have the capability to rapidly sequestrate contaminants within minutes from water 

with a relatively small dose, which would make their application effective and economical. 

Overall, the current gas-aggregation fabrication procedure has demonstrated to be of potential 

interest for the future fabrication of transition-metal oxides particles with hollow interior that can 

be of strong interest for applications in different fields such as magnetism, catalyst, biomedicine 

and other. For instance, ternary CoFe2O4 constructions are believed to exhibit enhanced 

electrochemical activity with respect to the binary metal oxides Fe2O3 and Co3O4.20 We 

anticipate this could be easily achievable by co-sputtering. 
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