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Abstract 31 

1. Environmental trace element composition can have an important impact on ecosystem and 32 

population health as well individual fitness. Therefore carefully assessing bioaccumulation 33 

of trace elements is central to studies investigating the ecological impact of pollution. 34 

Colonial birds are important bioindicators since non-invasive sampling can easily be 35 

achieved through sampling of chick feathers, which controls for some confounding factors of 36 

variability (age and environmental heterogeneity). However an additional confounding 37 

factor, external contamination (ExCo), which remains even after washing feathers, has 38 

frequently been overlooked in the literature. 39 

2. We developed a new method to reliably interpret bioaccumulation of 10 trace elements (As, 40 

Cd, Cr, Cu, Hg, Ni, Pb, Se, Sn, and Zn) in feathers using chicks of a colonial species: the 41 

Greater Flamingo, Phoenicopterus roseus. First, only shafts were used to remove ExCo 42 

retained in vanes. Second, we applied a thorough washing procedure. Third, we applied a 43 

new analytical method to control for ExCo, which assumes that ExCo is mainly due to 44 

adhered sediment particles and that the relative concentration of each trace element will be 45 

similar to sediment geochemical composition of sampling sites. We validated this new 46 

methodology by comparing trace element composition and particle composition (by 47 

scanning electron microscopy and mass-spectrometry) of washed and unwashed feathers. 48 

3. The washing procedure removed < 99% of K indicating that most of the ExCo from salt was 49 

removed. Scanning electron microscopy and mass-spectrometry revealed that some sediment 50 

particles remained after washing, especially clays which are likely to severely bias 51 

bioaccumulation interpretation. We successfully controlled for ExCo by calculating the ratio 52 

of ExCo due to sediment using the geochemical fingerprint of sediment samples. Our 53 

methodology leads to conservative estimates of bioaccumulation for As, Cd, Cr, Cu, Hg, Ni, 54 

Pb, Se, Sn, and Zn.  55 



4. We have validated a new more reliable method of analysing trace element concentrations in 56 

feathers, which effectively controls for ExCo, if geochemical sediment data can be 57 

meaningfully compared to ExCo of feathers. We have demonstrated that overlooking ExCo 58 

leads to potentially erroneous conclusions and we urge that the method applied in this study 59 

be considered in future studies. 60 

 61 

Introduction 62 

Most metals and trace elements are omnipresent in the environment as a consequence of natural 63 

processes and anthropogenic activities. Some of them play an essential role in biological processes 64 

(e.g. metabolism, neuronal functions). However, other elements (e.g. mercury, lead, cadmium, 65 

arsenic, etc.; Kabata-Pendias & Pendias 2001) may also exert detrimental, toxic effects on species if 66 

they accumulate in the food chain (Amaral et al. 2006) which will negatively affect fitness and life 67 

history traits of plants and animals, as well as cause diseases in wildlife and humans (Nriagu 1989; 68 

Järup 2003). 69 

During the last centuries, the anthropogenic exposure level of trace elements has hugely 70 

increased after the industrialization era, especially in wetlands, which, in many cases, act as 71 

geochemical endpoints and tend to accumulate pollution (Reddy & DeLaune 2008). The total 72 

concentration of metals in soil and sediments persists for a long time because they do not undergo 73 

microbial degradation (Kirpichtchikova et al. 2006). It has been demonstrated that metals from 74 

anthropogenic inputs are often weakly associated to the finest fraction of the top layers of sediment 75 

and organic matter (e.g. Salomons & Förstner 1984; Palanques et al. 1995; Migani et al. 2015) and 76 

consequently tend to be much more bioavailable and bioaccumulable than the same elements of 77 

natural origin (Bryan et al. 1979; Di Giuseppe et al. 2014). Monitoring environmental metal 78 

contamination and investigating how organisms are affected by the excess of trace element intake 79 

or, more generally, the alteration of the natural geochemical profile is of central importance in 80 



evolutionary ecology and human and wildlife health. A prerequisite for such monitoring is to 81 

develop reliable methods to correctly measure metal exposure, intake, and bioaccumulation. 82 

For several decades, birds have proven to be valuable biomonitors for various types of 83 

pollutants, including metals (Furness & Greenwood 1993). Ecotoxicological studies in the last three 84 

decades have frequently used feathers in order to assess metal accumulation in birds and feather 85 

analysis has proven to be a very informative tool to unravel various physiological, ecological and 86 

toxicological processes inherent to individuals and populations (Burger 1993; Smith et al. 2003; 87 

Tsipoura et al. 2008). An important advantage of feathers with respect to blood metal concentration 88 

is that feathers are relatively easy to collect, preserve, and transport and sampling is virtually 89 

harmless to birds (Burger 1993). Moreover, metal accumulation in feathers generally represents a 90 

longer-term contamination process, while levels in blood represent a recent contamination directly 91 

associated with feeding (Carvalho et al. 2013). Since concentration levels in feathers reflects the 92 

body accumulation during the entire time of feather development, potential age biases can be 93 

circumvented by restricting the analyses to chick feathers. However, external contamination (ExCo) 94 

has always challenged researchers and has often been overlooked (but see: Hahn et al. 1993; Fasola 95 

et al. 1998; Ek et al. 2004; Hollamby et al. 2006; Valladares et al. 2010; Borghesi et al. 2016). 96 

ExCo is defined as the part of the concentration that is not attributable to bioaccumulation in the 97 

keratin structure (i.e. metals stored during feather growth as an effect of internal bioaccumulation 98 

and metabolic processes, hereafter referred to as bioaccumulation for brevity). ExCo is normally 99 

attributed to atmospheric dust, water, or deposition of contaminants on feathers during preening 100 

(Dmowski 1999; Dauwe et al. 2002; Jaspers et al. 2004). However, a recent study on the Greater 101 

Flamingo, Phoenicopterus roseus, pointed out the major importance of sediment particles in 102 

complicating the interpretation of analytical results (Borghesi et al. 2016). Most of the previous 103 

field studies have tried to remove ExCo through washing, however to date no washing procedure is 104 

completely effective in ensuring the total removal of ExCo from feathers (Cardiel et al. 2011; Espín 105 

et al. 2014). Furthermore, so far no studies have tried to quantify the magnitude of ExCo and to 106 



consequently validate the bioaccumulation data of trace elements. To continue to use feathers as 107 

indicators of bioaccumulation of trace elements, it is important to improve the methodology by 108 

reducing the relevance of ExCo, and at the same time, find new methods for estimating more 109 

accurate data about bioaccumulated concentrations. 110 

In our study, we adopted five measures for that purpose: 1) we used only shafts, because 111 

feathers deprived of vanes capture dirt less efficiently (Cardiel et al. 2011); 2) we sampled chicks, 112 

which avoids variability due to age; furthermore chicks have sediment particles of proven origin 113 

entangled in their plumage; 3) we used local geochemical information from sediments collected 114 

around nesting islets, in order to compare the local geochemical fingerprint to the element ratios in 115 

feathers (Borghesi et al. 2016); 4) we chose an extensive set of elements (14), including some of 116 

which are supposed to have little or no bioaccumulation and are useful to check for ExCo in the 117 

investigated sites as they are indicators of clays (i.e. Al and La) and other fine fractions of the 118 

sediment such as oxides and hydroxides (i.e. Fe), and salt (i.e. K). The comparison between 119 

sediment and feather concentrations has been performed by adopting a new method capable of 120 

estimating the relative importance of ExCo for each element and to correct the analytical result for 121 

ExCo. The aim of this study is to validate this new method. 122 

In order to achieve this goal, we used the Greater Flamingo as a model species. The ecology 123 

and biology of this species are well known due to long term studies (Johnson & Cézilly 2007), a 124 

major advantage for an ecotoxicological study. The Greater Flamingo has a large breeding range 125 

including many important Mediterranean wetlands (Balkız et al. 2007), feeds mainly on small 126 

benthonic invertebrates by filtering sediments of brackish wetlands and saltpans. During feeding it 127 

can ingest a considerable quantity of sediments from which the organic matter contained therein is 128 

digested as a component of diet (Jenkin 1957). Their particular feeding behaviour leads flamingos to 129 

be directly exposed to polluted sediments. In addition, flamingos feed their chicks with a liquid 130 

secreted from the upper digestive tract, rich in proteins, fat, carotenoids, blood cells, and, as a 131 

consequence, with part of the pollutants previously bioaccumulated and metabolized (Lang 1963; 132 



Fisher 1972). All of these reasons make greater flamingo chicks a good choice among birds as an 133 

environmental indicator of the effect of trace element accumulation in Mediterranean wetlands 134 

(Borghesi et al. 2011, 2016). However, from the age of 3 weeks old, chicks form a large crèche in 135 

the muddy and brackish wetland near the vicinity of the breeding islet (Johnson & Cézilly 2007), 136 

leading to high exposure to local environmental elements. Therefore, as highlighted by Borghesi et 137 

al. (2016), ExCo can dominate trace element concentration of Greater Flamingo chick feathers.  138 

 139 

Methods 140 

Sample collection 141 

All of the feathers from flamingo chicks were collected between July and August 2014, during the 142 

ringing operations in three breeding colonies of the western Mediterranean: Aigues-Mortes (AIG), 143 

southern France (N 43° 33’, E 4° 11’); Fuente de Piedra (FDP), southern Spain (37° 06’N, 04° 144 

45’W) and the heavily polluted Odiel marshes (ODI) (Guillén et al. 2011), southern Spain (37º 17′ 145 

N, 06º 55′ W) (Figure 1). All of the sampled birds were between 5 and 8 weeks old (Johnson & 146 

Cézilly 2007). Ten feathers were obtained by cutting the distal part from random individuals using 147 

stainless steel scissors. We selected the longest internal scapulars that were protected from aerial 148 

deposition (Borghesi et al. 2011, 2016). Feathers were kept in envelopes at room temperature until 149 

analysis. In addition for each sampling site we collected seven sediment samples of 200-500g within 150 

and on the reeve of the water body where the breeding islet was situated. Each of the 21 sediment 151 

samples was kept in plastic containers in dry room temperature conditions prior to analysis. 152 

 153 

Sample preparation and analysis 154 

We chose to analyse 14 elements in both sediments and feathers. Ten elements were chosen because 155 

of environmental concern: As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Sn, and Zn (ATSDR 1994; Hamasaki et 156 

al. 1995; Hamilton 2004; Cempel & Nikel 2006; Stern 2010; Tchounwou et al. 2012; Walters et al. 157 



2014; Herrmann et al. 2016). Aluminium, Fe, K and La were chosen as indicators of clay and the 158 

finest fraction of sediment (Leeder 1982). 159 

a. Sediments  160 

Digestion and trace analysis of sediment samples was carried out by ACME Labs, Vancouver 161 

(Canada). Samples were digested with a modified aqua regia solution of equal parts concentrated in 162 

HCl, HNO3 and DI-H2O for one hour in a heating block within a hot water bath. Digestion of 163 

sediments was done using a modified aqua regia solution from ACME labs in order to compare 164 

sediment element concentration to element concentration obtained by nitric-chloridric acid digestion 165 

of organic material. Indeed the acidic solution of both methods should have a similar dissolving 166 

effect on samples (whether sediment or biological). The modified aqua regia solution was chosen 167 

since it is even more similar to the solution used for feather dissolution than the stronger original 168 

aqua regia solution (3HCl:1HNO3). This sediment digestion method has previously been 169 

successfully used when analysing feathers in previous studies (Borghesi et al. 2016). Each sample 170 

volume was equalised with diluted HCl. The concentrations of 64 chemical elements (Ag, Al, As, 171 

Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, In, K, La, 172 

Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pd, Pr, Pt, Rb, Re, S, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, 173 

Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr) were determined by Inductively coupled plasma mass 174 

spectrometry (ICP-MS). To evaluate the analysis quality, an Internal Reference Material (IRM), 175 

named DS10, with a composition similar to our sediment samples, was used. Only the 14 trace 176 

elements analysed in feathers are considered in this study (Al, As, Cd, Cr, Cu, Fe, Hg, K, La, Ni, Pb, 177 

Se, Sn, and Zn). As for feathers, concentrations in sediments are expressed in mg/Kg. 178 

b. Feathers  179 

Vanes were manually separated from shafts by keeping fingers of one hand on the feather tip and 180 

then detaching each vane by pulling from the top to bottom with the other hand. Subsequently, the 2 181 

mm distal portion (which still had some tiny barbs) was cut off. This method allowed us to obtain 182 

rachides completely deprived of barbs and the cuticle connecting barbs to the shaft. From each 183 



specimen, five rachides were prepared, in order to reduce variability between feathers and obtain 184 

enough feather weight per sample. 185 

Thirty-nine samples in AIG and 40 samples in FDP and ODI (in total 119 samples, 186 

corresponding to 595 rachides) were thoroughly washed through three steps by sequentially using 187 

acetone, Triton X(™) detergent, and deionized water. During each step, washing sonication was 188 

performed for 20 minutes. After washing, feathers were dried in a dry box at room temperature. 189 

From this point forward we now refer to the latter feather samples as “washed feathers”. 190 

In order to test the effect of washing on feather trace element composition, we duplicated 10 191 

individuals from each site (30 of the 119 individuals in total). For this treatment, five rachides from 192 

each individual (a total of 150 rachides) of similar weight were directly sent to the digestion process 193 

described below (i.e. no washing procedure was performed prior to digestion). From this point 194 

forward we now refer to the latter feather samples as “unwashed feathers”. 195 

All samples (approximately 0.100 g from each sample) were digested and analysed at the 196 

Trace Element Analysis Core Laboratory of Dartmouth College, Hanover, NH, USA. Digestion was 197 

carried out in 0.5 ml acid mixture (9:1 HNO3:HCl) and then diluted to a final volume of 10 ml with 198 

deionized water in polypropylene tubes. Digestion was performed with open polypropylene vessels 199 

in a microwave digester reaching a temperature of 105°C (Beck et al. 2013). Similar digestion 200 

methods have previously been used to analyse feathers (Latta et al. 2015) and toenails (Amaral et al. 201 

2012; Davis et al. 2014; Punshon et al. 2015; Freeman et al. 2015). Total concentration of 14 trace 202 

elements (Al, As, Cd, Cr, Cu, Fe, Hg, K, La, Ni, Pb, Se, Sn, and Zn) were measured by Agilent 203 

8800 ICP-MS. QA/QC was evaluated by adding to the batches: blanks (frequency: one every 25 204 

samples); six samples of oyster, tomato, and hair Standard Certified Materials (2 of each type). 205 

Matrix duplicates and matrix duplicate spikes were also digested and analyzed (frequency: 1 every 206 

21 and 19 samples, respectively), and fortified blanks added in batches (frequency: 1 every 50 207 

samples). Additional QC consisted of reporting calibration checks and blanks (see Supplementary 208 

Materials Tables S1-S8). The average recovery of the separate digestions from the National Institute 209 



of Standards and Technology (NIST 1566b, 1573a, NIES #13), for As, Cd, Cu, Fe, Pb, Se, and Zn 210 

was around 100%, for K was 117.5% (SD 11.5%), and, for Hg, La and Ni was around 80% (see 211 

Supplementary Materials Table S4). For Al and Cr recovery averaged around 30% presumably 212 

because these metals were in a form that is not solubilized by the open vessel acid digestion used 213 

here (Beck et al. 2013). Tin analyzed in the feather samples was not certified in the NIST standards. 214 

Since QA/QC of all trace elements were very good and hair was the most comparable certified 215 

reference material (CRM) with feathers, Al and Hg concentrations were corrected using the hair 216 

CRM whereas Cr, K, La, and Ni for the other available CRMs (tomato and oyster), since no 217 

reference values for these metals were available for hair. Concentrations in feathers are expressed in 218 

mg/Kg dry weight (dw).  Method detection limits (MDLs) were calculated as three times the 219 

standard deviation of the average value of the 6 calibration blanks, and based on a sample weight of 220 

100 mg. Limits of quantification (LOQs) have also been calculated as 3 times the MDL (see 221 

Supplementary Materials Table S8). 222 

 223 

Examination of feather with Scanning Electron Microscopes (SEM) 224 

In order to make morphological observations of external particles and possibly infer the nature of 225 

external contaminants, shaft segments 1 cm long have been scanned with a Jeol JSM-5400 Multi-226 

Purpose Digital SEM equipped with WDS and EDS Systems at University of Bologna, Department 227 

of Biological, Geological, and Environmental Sciences (BiGeA). Six feather shafts were selected 228 

from each site (18 feather shafts in total), and prepared for SEM without any washing treatment (i.e. 229 

the same treatment as unwashed feathers). In addition, 3 feather segments from ODI were scanned 230 

after a thorough cleaning procedure with tap water, a commercial detergent, and acetone (i.e. 231 

substantially the same treatment as washed feathers but without sonication). 232 

 233 

Correction of element concentrations in feathers for environmental contamination 234 



Feathers, even washed, retain a certain quantity of sediment (see results). For the sake of argument, 235 

if we assume that all bioaccumulation is masked by ExCo, analytical results from chick feathers 236 

should tend to represent the geochemical characteristics of local sediments instead of the actual 237 

assimilation and accumulation in keratin structure of trace elements. If so, the relative abundances 238 

of elements in sediment and feathers should be similar. In contrast, if elements are mostly 239 

bioaccumulated then they should be in a higher concentration than expected if the chemical 240 

fingerprint of feathers is only determined by ExCo. Using the 14 elements analysed in this study, 241 

and investigating the ratios between concentration in feathers and sediment, we can check which 242 

elements in feathers are clearly enriched with respect to expected ExCo concentrations. 243 

By investigating sediment element concentration, we are able to infer what the predicted 244 

concentration of feather elements would be if ExCo was 100% (predicted external contamination; 245 

PExCo) for each element. Here a reference element which indicates ExCo needs to be carefully 246 

chosen. The reference should be an element that: 1) is analytically reliable, 2) that is dominant in the 247 

source of ExCo (in our case soil and sediment) and 3) that is either negligibly or not bioaccumulated 248 

(i.e. concentrations are dominated by ExCo). A previous study (Cardiel et al. 2011) has suggested 249 

that Al is a good indicator of ExCo because it is known to be scarcely metabolized by birds (Beyer 250 

et al. 1999) and it is a main component of clays and hydroxides (Moore & Reynolds 1989). 251 

However, we found that Al is extracted in smaller concentrations by the acid digestion step than 252 

most of the other elements (see above). As a consequence a certain amount of ExCo of elements 253 

will be overlooked when using Al as the geochemical reference even if corrected using the CRM 254 

and, analytically, Al is not a sufficiently reliable element to be used as a reference element. In 255 

contrast Fe is well recovered by the methods applied in this study (see Supplementary Materials 256 

Tables S1-S8 for QA/QC results), it is reported to be only negligibly bioaccumulated in shafts of 257 

seabirds (Howell et al. 2012) and it represents a wider gamma of compounds in sediments than Al 258 

and La (Reddy & DeLaune 2008). Finally, it is important to note that a small amount of Fe maybe 259 

bioaccumulated, which means that we are actually using a conservative approach and may be 260 



slightly overestimating ExCo. For sound biological interpretation the latter is highly preferable than 261 

ignoring ExCo and reporting highly inflated bioaccumulated values. However we found a strong 262 

correlation between Al, Fe and La concentration in washed feathers, further suggesting that ExCo 263 

dominates bioaccumulation for these elements (see Supplementary Materials Figure S1-S4) 264 

(Borghesi et al. 2016). For all of the aforementioned reasons we chose to infer feather PExCo using 265 

Fe. We calculated the PExCo of feathers as: 266 

௜݋ܥݔܧܲ 	ൌ 	
௝ݕ௜ݔ
௝ݖ

 

where ݔ௜
	  is the concentration of Fe in the feather sample i and ݕ௝ is the concentration of the element 267 

studied in sediment at the breeding colony j and ݖ௝ is concentration of Fe in sediment at breeding 268 

colony j. From PExCo, we can deduce the proportion of element concentration found in feather that 269 

is due to ExCo (external contamination factor; ExCoF): 270 

௜ܨ݋ܥݔܧ 	ൌ 	
௜݋ܥݔܧܲ
௜ݓ

 

where ݓ௜ is the element concentration of interest of the feather sample i. Using these two simple 271 

equations we estimated, for each feather, the proportion of ExCo for each element within each 272 

breeding colony site. For pedagogical reasons, we also applied the above equations to median 273 

feather concentrations for each breeding site and intervals which encompass 95% of the data (i.e. xi 274 

and wi are median values or 95% intervals of each element for each breeding site instead of for each 275 

individual feather). For each feather, we were then able to correct element concentration for ExCo 276 

by using the following formula: 277 

௜ݓ	݀݁ݐܿ݁ݎݎ݋ܿ ൌ ௜ݓ	 െ ሺܨ݋ܥݔܧ௜ ∗  ௜ሻݓ

 278 

Statistics 279 

All statistics were carried out in R version 3.2.4 (R Core Team 2016). To investigate the effect of 280 

washing of feathers on element concentrations we applied a paired Wilcoxon-Pratt signed-rank test 281 



(Pratt 1959) between element concentrations for feathers that were not washed and for feathers that 282 

were washed (n = 30). We calculated r as a measure of effect size which is the z-value divided by 283 

the square root of the sample size (in our case 30; Pallant 2007). An r value between 0.1-0.3 is 284 

considered as small, a value between 0.3-0.5 to be medium and finally any value above 0.5 is 285 

considered as large. Median differences between washed feathers and unwashed feathers as well as 286 

associated 95% confidence intervals were also reported. 287 

To investigate the effect of correcting ExCo on element concentration of feather shaft we 288 

calculated the mean difference in feather concentration between raw element concentration of 289 

feather shaft and element concentration of feather shaft corrected for ExCo (n = 119) and the 290 

associated Cohen’s D (Cohen 1988) (note that applying a paired Wilcoxon-Pratt signed-rank test 291 

here always yielded a significant result since ExCo correction always reduces concentration of 292 

elements, however this does not allow us to assess whether ExCo correction had a negligible or 293 

strong effect). Since many element concentrations were not normally distributed we calculated 95% 294 

confidence intervals by bootstrapping (1000 bootstraps) as recommend by Nakagawa and Cuthill 295 

(2007) using the boot package implemented in R (Canty & Ripley 2015). A Cohen’s D of below 0.2 296 

is considered as negligible, between 0.2-0.5 small, between 0.5-0.8 medium and larger than 0.8 as 297 

large (Nakagawa & Cuthill 2007). We therefore considered that ExCo correction to have an 298 

appreciable effect on element concentration when Cohen’s D was equal to or greater than 0.2. 299 

 300 

Results 301 

The effect of washing feathers 302 

The washing procedure significantly reduced trace element concentration for 12 of the 14 elements 303 

analysed in feathers: Al, As, Cd, Cr, Cu, Fe, K, La, Ni, Pb, Se, and Zn (Figure 2). The effect was 304 

strong (r > 0.500) for Al, As, Cu, Cd, Cr, Fe, K, La, Ni, and Zn. A medium effect (r > 0.300) was 305 



observed for Se and Pb. For Sn and Hg washing did not significantly reduce trace element 306 

composition (Figure 2).  307 

 308 

Examination of feathers with SEM 309 

SEM examination of 18 unwashed shaft segments of 1 cm revealed a large diversity of particles 310 

which densely covered the feathers. A quantitative count of external particles was not possible due 311 

to their abundance and complexity. A large number of particles (>200) were found, most of them 312 

predominantly composed of sulphur (S) associated with other elements. We concluded that these 313 

particles were probably mostly from organic matter derived from feathers, which were discarded 314 

from further analysis. Of the remaining particles, one to six putative external contaminants per 315 

segment were thoroughly examined for their dimension, shape and chemical composition (for the 316 

most abundant elements only according to instrumental limitations). This resulted in a total of 66 317 

lithic particles analysed for their element composition by SEM. 318 

The analysed particles tended to range from less than 1 to 30 μm in all segments, although 319 

on rare occasions, they measured up to 100 μm. Particles appeared as amorphous terrigenous 320 

aggregations (Figure 3a), definite solid crystals (Figure 3b), piles of stacked sheets (Figure 3c), 321 

electrostatically adhered soft objects, or a combination of the aforementioned. 322 

By observing the spectrum, a classification of the geological nature of each x-rayed particle 323 

has been provided. As shown in Table 1, a variety of Na and Mg salts emerged as the most abundant 324 

components of particles in all sites. In salts, K was detectable only in AIG samples. Occasionally, 325 

Ca was appreciably present in FDP salts. In all sites, clay particles were often associated with salt 326 

particles. 327 

Aluminium was a common element in clays in all sites, but the composition of other 328 

elements changed according to sites. Potassium was detected in clay particles investigated in AIG, 329 

whereas clays from FDP and ODI showed heterogeneous composition, being either calcic, sodic, or 330 

potassic. Noticeably, Mg was detectable in clays only in ODI samples (7 out 8), which were very 331 



variable in their overall composition and in some cases particularly rich in Fe, Ti, Cr and potentially 332 

many other metals. 333 

Hydroxides were present in particles from all sites, but were not very frequent. They 334 

appeared as Al-hydroxides, Mn was detectable in one particle from FDP. Minerals such as quartz, 335 

mica, chlorite, muscovite and gypsum were occasionally found in ODI samples, while Ca-336 

carbonates were found in FDP. Four particles (2 in FDP and 2 in ODI samples) were apparently 337 

composed uniquely of Al. This may be due to the use of metallic tools, such as scissors and 338 

tweezers. A few lithic particles containing Cl or Ca remained undetermined. 339 

In addition to the 18 unwashed shafts, three different shaft segments from ODI (the site 340 

where external contaminants are more likely to be rich in trace elements) were analysed by SEM, 341 

which were submitted to a washing procedure with water and detergents and then rinsed under 342 

running water. Much less lithic particles were visibly found, but some scattered particles were still 343 

present. In general, they were less frequent, smaller and seemed less complex in shape. At least 5 344 

lithic objects were found and have been classified as sodium chloride crystals (2), carbonatic 345 

mineral (2), metallic aluminum (1). 346 

Using geochemical data to assess the importance of ExCo on shaft trace element concentration 347 

We found strong variation between elements of the importance of ExCo on trace element 348 

concentration in feathers. For Cu, Hg, Se, and Zn we found a median ExCoF lower than 0.5% in all 349 

the investigated sites and 95% of the data (95% interval; hereon referred to as 95%Iter) ranged 350 

between 0.3% and 0.7% indicating that Cu, Hg, Se, Zn are clearly bioaccumulated in feathers and 351 

dominate ExCo (Table 2). In contrast, for Al, K, and La median ExCoF were much higher than 352 

100% (Table 2) suggesting that ExCo dominates any bioaccumulation for these elements. The ExCo 353 

was less clear cut for the other elements (As, Cd, Cr, Ni, Pb, and Sn; Table 2). Among these 354 

elements, Sn seems to be mostly bioaccumulated, with little variation between sites and median 355 

ExCoF ranging between 2-5% (Table 2). For As, Cd, Cr, Ni, and Pb, the ExCoF was more variable 356 

between the sampling sites. Arsenic had ExCoF of 14% (95%Iter = 3-43%) in AIG, ExCoF of 38% 357 



(95%Iter = 18-87%) in FDP, and only a ExCoF of 3% (95%Iter = 2-8%) in ODI (Table 2). There 358 

was a lower variation of the effect of ExCo for Pb which has a ExCoF of 13% (95%Iter = 6-20%) in 359 

AIG, ExCoF of 22% (95%Iter = 14-37%) in FDP and a ExCoF of 10% (95%Iter = 5-15%) in ODI 360 

(Table 2). For Cd, Cr, and Ni, there was strong variation of the effect of ExCo on trace element 361 

concentrations within site, although there was little variation between sites (Table 2). For Cd, we 362 

calculated a median ExCoF of 21%, 32% and 35% in ODI, AIG and FDP respectively (Table 2). 363 

For Ni, median ExCoF ranged between 26-47% (AIG>FDP>ODI), with 95%Iter within site ranging 364 

between 13-78%, 10-91%, 9-39% in AIG, FDP, and ODI, respectively (Table 2). For Cr, AIG and 365 

ODI had a median ExCoF of 20% and 22% respectively (95%Iter=5-92% and 4-53% respectively), 366 

while FDP had the highest ExCo for this element (median ExCoF=31%, 95%Iter = 7-78%; Table 2). 367 

 368 

Using geochemical data to correct for external contamination of feathers 369 

Correcting each individual sample mirrored median ExCoF results (Figure 4). Prior to ExCoF 370 

correction Al, La and K could erroneously be interpreted as bioaccumulated (Figure 4). However, 371 

ExCoF correction revealed that actually Al, La and K concentrations in feather is likely to be almost 372 

entirely due to external contamination and bioaccumulation is either highly unlikely or below 373 

instrumental detection limits (Figure 4). Of the remaining elements ExCoF had an appreciable effect 374 

(Cohen’s D > 0.200) on element concentration for Ni and Pb (Figure 4). However, ExCoF 375 

correction had a negligible effect (Figure 4; Cohen’s D < 0.200) on the concentration of 376 

bioaccumulation for As, Cd, Cr, Cu, Hg, Se, Sn and Zn (Figure 4).  377 

 378 

Discussion 379 

 Our results show that our novel methodological approach efficiently dealt with external 380 

contamination found in feather shafts and significantly changed interpretation of feather element 381 

concentration. We sampled chicks which allowed us to control for the effect of age on 382 

bioaccumulation and the shorter time of exposure to external environmental agents than adults 383 



(Burger 1993). Prior to analysis, we took two methodological measures to minimise ExCo and 384 

unreliable biological interpretations. First, unlike most studies in feathers, in this study we removed 385 

the vanes in order to limit the tendency of feathers to entangle dirt among barbs (Cardiel et al. 386 

2011). Furthermore, vane and shaft sequester metals differently, (Bortolotti 2010; Howell et al. 387 

2012) which may confuse biological interpretation if analysed together. Indeed, high resolution 388 

images from X-ray fluorescence microscopy of shearwater chick breast feathers revealed a different 389 

distribution of As, Br, Ca, Fe, and Zn among the calamus, shaft and vane (Howell et al. 2012). The 390 

latter study was preliminary and did not give a physiological explanation of such a finding but 391 

pointed out that elements can be mostly concentrated in the calamus (Ca), shaft (As, Br, and Zn), or 392 

vane (Fe). In addition, most of the mass  of a feather is the shaft for a given section of a feather and 393 

this may consequently affect the concentration, according to Bortolotti (2010), which advocates two 394 

mechanisms related to bioaccumulation in feathers depending on each trace element: mass-395 

dependent and time-dependent accumulation. Scanning electron microscopy on our samples 396 

highlighted that a huge quantity of lithic particles and salt crystals are trapped in unwashed feathers, 397 

even when deprived of vanes. Therefore, our second measure was to wash shafts, combining the 398 

most common methods applied in the literature to date (Ansara-Ross et al. 2013; Costa et al. 2013; 399 

Carvalho et al. 2013; Rubio et al. 2016) with a prolonged ultrasonic bath treatment (Weyers et al. 400 

1988). SEM observation also revealed that some ExCo remained in washed feathers and that ExCo 401 

cannot be ignored prior to data analysis. We successfully controlled for the remaining ExCo by 402 

calculating the ratio of ExCo due to sediment using the geochemical fingerprint of sediment 403 

samples. Our methodology allowed us to have conservative estimates of 10 bioaccumulated 404 

elements (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Sn, and Zn). 405 

 406 

The effect of washing 407 

After washing, more than 99% of K was removed (the concentration of K went from 116-809 mg/kg 408 

in unwashed shafts to 0.103-5.051 mg/kg in washed shafts), a much higher percentage than any of 409 



the other elements analysed in this study. Since K is a dominant element in salt, we can conclude 410 

that the washing effect was near complete in removing salt, which is likely to be a dominant residue 411 

in coastal bird feathers. We note however, that despite the effectiveness of washing, some K 412 

remained (0.103 - 5.051 mg/kg), suggesting that either some residual ExCo remained (rare small 413 

salt crystals were observed even in washed shafts by SEM), or some bioaccumulation or both. 414 

The washing treatment of feathers also significantly reduced the concentration of 11 of the 415 

remaining 13 elements, with only Sn and Hg not significantly reduced. For Sn either trace element 416 

concentration from environmental contaminants was negligible relative to the concentration from 417 

bioaccumulation, or the efficiency of the washing procedure was lower than for the other trace 418 

elements. Like most elements, very little is known about the characteristics of Hg ExCo, however 419 

feather concentration of Hg is considered to be a good indicator of bioaccumulation irrespective of 420 

washing procedures (Jaspers et al. 2004; Pedro et al. 2015). Previous studies have shown that Hg 421 

levels in feathers are highly correlated with Hg concentration in the diet (Lewis & Furness 1991, 422 

1993; Hahn et al. 1993; Monteiro & Furness 1995) and in internal tissues (Thompson et al. 1991) 423 

even when potential ExCo is ignored. Furthermore, Hg concentration in feathers is stable over time 424 

under various experimental environmental treatments suggesting that ExCo has little effect on this 425 

element (Appelquist et al. 1984). Our study is therefore consistent with the literature that ExCo of 426 

Hg is irrelevant regardless of the washing treatment. 427 

Observing shafts by SEM demonstrated that unwashed feathers are very rich in lithic 428 

particles and are likely to be the main contributors of ExCo in feathers. Most lithic particles are salt 429 

crystals, clays and other fine residuals which can be removed in part by washing (Font et al. 2007). 430 

In fact, SEM observations on some ODI washed samples revealed that since these lithic particles are 431 

electrostatic and very small (typically 1-30 μm) some ExCo remain, even after the thorough 432 

washing treatment. ExCo of lithic particles from salt crystals is essentially made of Na, Mg, and K 433 

chlorides and Ca and Mg carbonates. However, we believe that any remaining ExCo by salt is likely 434 

to have a negligible effect on metal concentration because K is hundreds of times more concentrated 435 



in salt than Cu, Cr, and Zn (1,800-3,900 mg/Kg of K, 0-1.2 mg/Kg of Cu, 12-14 mg/Kg of Cr, and 436 

7.4-7.5 mg/Kg of Zn in two collected and analysed samples of salt from Aigues-Mortes water; see 437 

dryad data: “Dryad hyperlink if accepted”). In contrast, terrigenous particles, such as clays, hydroxides 438 

and organic matter contain higher concentrations of metals, and the presence of a few of these lithic 439 

particles in a feather sample is sufficient to mask bioaccumulation for some elements (Borghesi et 440 

al. 2016). Therefore, further analytical methods are necessary to soundly interpret feather data. 441 

 442 

Assessing the importance of ExCo on shaft trace element concentration 443 

We found strong variation between elements on the importance of ExCo on trace element 444 

concentration in feathers. On the one hand, ExCo had a negligible effect on trace element 445 

concentrations for some elements (median ExCoF less than 0.5% for Cu, Hg, Se, and Zn; and 446 

around 5% for Sn), while on the other hand, ExCo dominated element concentrations for Al, K, and 447 

La (median ExCoF more than 100%). The latter is consistent with the hypothesis that residual ExCo 448 

after washing is essentially made of clays. Indeed, K is incorporated in the structure of certain clay 449 

minerals such as illite, and commonly adsorbed on the surfaces of many others (Salminen 2005), 450 

and clays have the capability of adsorbing rare earth elements (REEs) released/dissolved during 451 

weathering, with La being one of the most abundant REEs (Moldoveanu & Papangelakis 2012). 452 

Aluminum, K, and La concentrations are therefore good signals of residual ExCo and should only 453 

be used as controls of ExCo in trace element studies in feathers. Regarding the remaining five 454 

elements (As, Cd, Cr, Ni, and Pb), ExCo had a more nuanced effect on trace element concentration 455 

(depending on the element and the site), and the use of these elements in feathers to infer 456 

bioaccumulation needs some ExCoF corrections in order to avoid inflated interpretation of 457 

bioaccumulated concentrations. 458 

 459 

Correcting for the effect ExCo on shaft trace element concentration 460 



By calculating an ExCoF for each individual sample we were able to correct concentration values 461 

for ExCo for each sample by subtracting from the element concentration the proportion of element 462 

concentration that was estimated to be due to ExCo. Of the ten elements of environmental concern 463 

analysed in this study (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Sn and Zn), ExCoF correction for Ni and Pb 464 

did appreciably change mean concentrations (Figure 4). This may have important consequences 465 

when investigating the relationship between element concentration and other variables (such as 466 

body condition or fitness traits), including differences in bioaccumulation between sites which is 467 

beyond the scope of this study.  468 

Trace element concentration in sediment at ODI was higher for 13 out of 14 elements (the 469 

exception was Se which was similar in ODI and FDP, and lower in AIG). These results are 470 

consistent with the extensive literature which demonstrates that ODI is one of the most polluted 471 

estuarine areas in the world (Guillén et al. 2011). However, following careful consideration of 472 

ExCo, appreciably higher trace element concentrations in feathers in ODI were only found for As 473 

and Pb. The latter suggests that there are important differences in how chicks metabolise each 474 

element during feather development and that not all trace elements in feathers are reliable 475 

environmental bioindicators. For example, Al, La and K were negligibly bioaccumulated and 476 

therefore poor bioindicators, whilst the other analysed trace elements were bioaccumulated to some 477 

extent and may be good bioindicators. However, there is strong indication that the bioaccumulation 478 

rate in feathers is not the same for all elements (e.g. the level of Cu, Hg, Se, Sn and Zn in feather 479 

shafts, while high in all samples, appears to be relatively independent of environmental levels, 480 

whilst As, Cd, Cr, Ni and Pb levels seem to be more heterogeneous between individuals and sites). 481 

A detailed interpretation of bioaccumulation and differences between sites is beyond the scope of 482 

this article. 483 

In conclusion, as pointed out by previous studies, without careful consideration of ExCo, 484 

conclusions about the validity of the concentration of element bioaccumulation in feathers are 485 

unreliable. We have developed a new more reliable method of analysing trace element 486 



concentrations in feather shafts which effectively controls for ExCo. While Fe was used as the 487 

reference element to infer ExCo in feathers in this study, a different reference may be used in other 488 

studies depending on sampled species and environmental characteristics, in other words, the 489 

predicted main source of external contamination and the pollutants which are the object of the 490 

research. We also note that while our study focused on feathers, a similar strategy can easily be 491 

applied to other non-invasive organic samples when residual soil/sediment particles may bias 492 

interpretation of bioaccumulation (for example when assessing trace elements in plants, 493 

invertebrates, feaces and hair samples of vertebrates). Many studies continue to overlook ExCo 494 

leading to potentially erroneous conclusions and we urge that methods applied in this study be 495 

considered in future studies investigating bioaccumulation of trace elements in organic samples in 496 

contact with the external environment.  497 
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 707 
Figure 1: Map showing the location of the three breeding colonies sampled for greater flamingo chick 708 

feathers and sediment. Sample sizes of washed feather shafts are in brackets. 709 

 710 

Figure 2: Boxplot of paired unwashed and washed shaft feathers for the 14 elements investigated (n = 711 

30). Median difference between washed and unwashed feathers, 95% confidence intervals, the z-value 712 

and p-value of the paired Wilcoxon-Pratt signed-rank test and the effect size r are shown within the 713 

boxplots of each element. Elements with a * were plotted on the log scale (but were not log transformed 714 

prior to analysis). 715 

 716 

Figure 3: Electron microscopy pictures of three typical examples of three types of particles found in 717 

unwashed feather shafts:  a. amorphous terrigenous aggregations; b. definite solid crystals; and, c. 718 

piles of stacked sheets 719 

 720 

Figure 4: Boxplot of paired shaft feathers not corrected for ExCo and corrected for ExCo for the 14 721 

elements investigated (n = 119). Mean difference and Cohen’s D between not corrected and corrected 722 

concentrations and associated 95% confidence intervals (calculated by bootstrap, n = 1000) are shown 723 

within the boxplots of each element. Elements with a * were plotted on the log scale (but were not log 724 

transformed prior to analysis). 725 
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 727 
Table 1: Summary of element composition for each particle analysed by SEM showing the number of particles 728 
with a certain element composition and its geological interpretation within each site: Aigues-Mortes (AIG), 729 
Fuente de Piedra (FDP) and Odiel marshes (ODI). 730 
 731 

Site  Number of particles  Element composition Geological interpretation

AIG  5  Na, Mg, Cl  Salt crystals
  2  Na, Cl  Salt crystals

  2  Mg, Cl  Salt crystals

  2  Na, K, Cl  Salt crystals

  1  N  Organic matter

  1  K, Cl  Salt crystals

  1  Al, O  Al hydroxide

  1  Al  Aluminum

  1  Al, Si, K, Ca  Clay

  1  Al, Si, K   Clay

  1  Mg, Cl, Al  Salt and Al hydroxide/oxide

  1  Si  Quartz

FDP  3  Na, Mg, Cl  Salt crystal
  2  Cl  Chloride

  1  Mg, Na, Ca, Cl  Salt crystals

  1  Mg, Cl  Salt crystals

  1  Na, Cl  Salt crystal

  1  Mg, Cl, Al, Si, Ca, Fe Salt and clay

  1  K, Ca, Mg, Cl, Al, Si Salt and clay

  1  Mg, Cl, Al, O  Salt and Al oxide/hydroxide

  1  Mg, Cl, Al  Salt crystal and aluminum

  1  Na, Mg, Cl, Al  Salt crystal and aluminum

  1  Na, Cl, Ca, C, O Salt and carbonate

  1  Na, Al, Si  Clay

  1  Ca, C, O, Mn  Carbonate and Mn oxide hydroxide 

ODI  9  Na, Cl  Salt crystals
  4  Mg, Cl  Salt crystal

  2  Na, Mg, Cl  Salt crystal

  2  Mg, Al, K, Ti, Fe, Si Clay (mica)

  2  Si  Quartz

  2  Ca, S, O  Gypsum

  2  Al  Aluminum

  1  Mg, Al, Fe, Si  Clay (phyllosilicates)

  1  Na, Mg, Al, K, Cl, Si Clay (phyllosilicates)

  1  Na, Mg, Al, K, Fe, Si Clay (phyllosilicates)

  1  Al, K, Fe, Si  Clay (phyllosilicates)

  1  Al, Fe, Cr, Ca, Al, Si Clay

  1  Mg, Al, Si  Clay

  1  Cl  Chloride

  1  Ca  Calcium oxide

 732 

  733 



 734 
Table 2: Summary statistics for each samplings site showing median concentration of washed 735 
feathers prior to ExCo correction (Feather), median sediment concentration (Sediment), the 736 
predicted concentration if feather concentration is entirely due to external contamination (PExCo, 737 
see methods for calculation formula), the percentage of feather median concentration explained 738 
by external contamination (ExCo) and intervals which encompass 95% of the data (ExCoQ). 739 
Elements are ordered according to ExCo within each site. Iron (Fe) is highlithed in bold since this 740 
element was used as the reference for PExCo, ExCo and ExCoQ calculations and feather Fe 741 
concentration was assumed a priori to be 100% ExCo. 742 

Elements  Feather 
 (mg/kg) 

Sediment 
(mg/kg) 

PExCo
(mg/kg)

ExCo (%) ExCoQ  
(±95%Iter) 

a. Aigues-Mortes (AIG; n = 29) 

Se 1.747 0.05 5.378E-05 0.003 0.002-0.007 
Hg 0.539 0.12 1.291E-04 0.024 0.008-0.073 
Cu 9.848 3.84 4.130E-03 0.042 0.032-0.051 
Zn 43.312 19.7 2.119E-02 0.049 0.033-0.078 
Sn 0.022 1.1 1.183E-03 5.286 1.844-12.998 
Pb 0.061 7.22 7.766E-03 12.673 6.396-19.743 
As 0.016 2.1 2.259E-03 14.050 2.657-42.743 
Cr 0.047 8.6 9.250E-03 19.793 4.687-91.492 
Cd 1.656E-04 0.05 5.378E-05 32.477 7.482-107.562 
Ni 0.021 9.1 9.788E-03 47.151 13.257-78.014 
Fe 7.422 6900 7.422E+00 100 NA 
Al 0.938 3600 3.872E+00 412.619 179.506-1013.137 
La 2.884E-04 2.9 3.119E-03 1081.612 335.137-2588.256 
K 0.088 1000 1.076E+00 1227.041 116.867-1227.041 

   
b. Fuente de Piedra (FDP; n = 30) 

Hg 0.623 0.021 1.365E-05 0.002 0.001-0.006 
Se 1.597 0.6 3.901E-04 0.024 0.015-0.042 
Zn 40.482 19.6 1.274E-02 0.031 0.024-0.058 
Cu 7.225 13.74 8.933E-03 0.124 0.102-0.239 
Sn 0.025 1.2 7.802E-04 3.106 0.113-10.958 
Pb 0.041 13.76 8.946E-03 22.088 13.776-36.628 
Cr 0.033 16 1.040E-02 31.348 6.599-77.545 
Cd 1.289E-04 0.07 4.551E-05 35.317 6.611-91.019 
Ni 0.023 13.4 8.712E-03 37.380 9.961-91.267 
As 0.005 3.1 2.015E-03 37.959 17.532-87.451 
Fe 6.306 9700 6.306E+00 100 NA 
Al 1.410 13400 8.712E+00 618.075 214.011-1218.617 
La 3.187E-04 4.6 2.991E-03 938.422 319.797-1856.099 
K 0.247 4200 2.731E+00 1107.145 137.813-3114.956 

           
c. Odiel (ODI; n = 30) 
Se 1.403 0.5 8.542E-05 0.006 0.004-0.009 
Hg 0.398 0.168 2.870E-05 0.007 0.002-0.020 
Zn 38.652 563.2 9.622E-02 0.249 0.157-0.382 
Cu 8.509 247.1 4.222E-02 0.496 0.334-0.666 
Sn 0.025 2.4 4.100E-04 1.627 0.076-4.419 
As 0.499 91.2 1.558E-02 3.122 1.901-8.036 
Pb 0.148 83.82 1.432E-02 9.666 5.003-15.170 
Cd 1.933E-04 0.24 4.100E-05 21.216 6.641-82.005 
Cr 0.035 45.3 7.739E-03 21.998 3.959-53.040 
Ni 0.021 30.9 5.279E-03 25.735 9.184-38.706 
Fe 7.193 42100 7.193E+00 100 NA 
Al 1.460 23900 4.083E+00 279.655 65.607-599.191 
La 5.760E-04 15 2.563E-03 444.940 107.003-1167.760 
K 0.268 7000 1.196E+00 446.842 65.872-1364.259 
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mean = 3.549e−05; 95CI: 3.054e−05, 4.071e−05;
Cohen's D = 0.073; 95CI: 0.046, 0.270
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mean = 0.010; 95CI: 0.009, 0.011;
Cohen's D = 0.109; 95CI: 0.046, 0.273
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mean = 0.230; 95CI: 0.158, 0.322
Cohen's D = 0.577; 95CI: 0.465, 0.832
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mean = 0.0006; 95CI: 0.0004, 0.0007;
Cohen's D = 1.065; 95CI: 0.830, 1.792
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mean = 0.0084; 95CI: 0.0078, 0.0091;
Cohen's D = 0.386; 95CI: 0.203, 0.655
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mean = 0.00083; 95CI: 0.00076, 0.00090;
Cohen's D = 0.006; 95CI: 0.004, 0.010
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Figure S1: Pairwise Pearson correlation for each of the elements assumed to indicate ExCo (Al,Fe,K,LA) 
analysed in washed feathers in this study prior to ExCo correction (n=119). All correlations are significant except between Fe and K
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Figure S2: Pairwise Spearman correlation for each of the elements assumed to indicate ExCo (Al,Fe,K,LA) 
analysed in washed feathers in this study prior to ExCo correction (n=119) All correlations are significant except between Fe and K
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Figure S3: Pairwise Pearson correlation for each of the elements assumed to indicate ExCo (Al,Fe,K,LA) 
analysed in washed feathers in this study prior to ExCo correction (n=118). Without outlier with Fe = 27.64; All correlations are significant except between Fe and K
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Figure S4: Pairwise Spearman correlation for each of the elements assumed to indicate ExCo (Al,Fe,K,LA) 
analysed in washed feathers in this study prior to ExCo correction (n=118). Without outlier with Fe = 27.64; All correlations are significant except between Fe and K


