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The dimers [{(ηn-ring)MCl}2(μ-Cl)2] ((ηn-ring)M = (η5-C5Me5)Ir, (η6-p-MeC6H4iPr)Ru) 

react with the modified cysteines S-benzyl-L-cysteine (HL1) or S-benzyl-α-methyl-L-

cysteine (HL2) rendering cationic complexes of formula [(ηn-ring)MCl(κ2N,S-HL)]Cl 

(1, 2) in good yield. Addition of NaHCO3 to complexes 1 and 2 gave equilibrium 

mixtures of neutral [(ηn-ring)MCl(κ2N,O-L)] (3, 4) and cationic [(ηn-ring)M(κ3N,O,S-

L)]Cl (6Cl, 7Cl) complexes. Similar mixtures were obtained in one-pot reaction by 

successive addition of the modified cysteine and NaHCO3 to the above formulated 

dimers. Addition of the N-Boc substituted cysteine derivative S-benzyl-N-Boc-L-

cysteine (HL3) and NaHCO3 to the dimers [{(ηn-ring)MCl}2(μ-Cl)2] affords the neutral 

compounds [(ηn-ring)MCl(κ2O,S-L3)] ((ηn-ring)M = (η5-C5Me5)Ir (5a), (η6-p-

MeC6H4iPr)Ru (5b)). Complexes of formula [(ηn-ring)MCl(κ3N,O,S-L)][SbF6] (6Sb-

8Sb), in which the cysteine derivative acts as tridentate chelate ligand, can be prepared 

by adding one equivalent of AgSbF6 to solutions of compounds 5 or to mixtures of 

complexes 3/6Cl and 4/7Cl. The amide proton of compounds 8aSb and 8bSb can be 

removed by addition of NaHCO3 affording the neutral complexes [(ηn-ring)M(κ3N,O,S-

L3-H)] ((ηn-ring)M = (η5-C5Me5)Ir (9a), (η6-p-MeC6H4iPr)Ru (9b)). Complexes 9a and 

9b can also be prepared by reacting the dimers [{(ηn-ring)MCl}2(μ-Cl)2] with HL3 and 

two equivalents of NaHCO3. The absolute configuration of the complexes has been 

established by spectroscopic and diffractometric means including the crystal structure 

determination of (RIr,RC,RS)-[(η5-C5Me5)Ir(κ3N,O,S-L1)][SbF6] (6aSb). The 
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thermodynamic parameters associated to the epimerization at sulphur that undergoes the 

iridium compound [(η5-C5Me5)Ir(κ3N,O,S-L3-H)] (9a) have been determined through 

variable temperature 1H NMR studies. 
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Introduction 

The coordination chemistry of α-amino acids towards transition-metal ions has been 

extensively studied1 mostly due to the extremely important role that the resulting 

compounds play in a wide variety of biological processes.2 This biological activity is 

often closely related to the nature of the metallic species. Changes in the nuclearity or 

structure of the complexes can strongly modify their biological properties but also small 

variations in the ligands or in their coordination modes may be enough to dramatically 

alter reactivities.3 

Sulphur-containing α-amino acids play a key role in living systems.4 For example, 

cysteine, methionine and glutathione appear to be crucial in the biological chemistry of 

platinum anticancer agents5 and silver (I) acetylmethioninates showed effective 

antimicrobial activities against two Gram-negative bacteria and two yeasts.6 

Cysteine exhibits a wide variety of coordination modes to transition metals 

including monodentate, bidentate or tridentate chelate as well as bidentate chelate and 

bridge at the same time, among others. Although the biological activity of the derived 

complexes depends on both the product distribution and rates of interconversion, the 

factors that govern these features are far for being understood.7 

On the other hand, cyclopentadienyl-iridium(III) and arene-ruthenium(II) 

complexes, containing a wide range of ligands, have shown important biological 

activity as potent anticancer agents both in vivo and in vitro.8,9 For example, half-

sandwich iridium(III) complexes containing 2-phenylpyridine ligands bind strongly 

nucleobase 9EtG indicating that DNA could be a target for these complexes8b and half-

sandwich ruthenium (II) complexes containing diaminohexopyranosides as ligands have 

shown in vitro antiproliferative activity against different cancer cells.9e 
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In the present paper, we study the coordination chemistry of the cysteine-derived 

ligands S-benzyl-L-cysteine (HL1), S-benzyl-α-methyl-L-cysteine (HL2) and S-benzyl-

N-Boc-L-cysteine (HL3) towards (η5-C5Me5)Ir and (η6-p-MeC6H4iPr)Ru moieties. 

Special attention is paid to the different coordination modes that the modified cysteines 

display and to the stereochemistry of the resulting complexes. 
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Results and discussion 

Synthesis of the metallic compounds. 

The synthetic routes developed for the preparation of the new compounds are depicted 

in Scheme 1. The dimers [{(ηn-ring)MCl}2(μ-Cl)2] ((ηn-ring)M = (η5-C5Me5)Ir,10 (η6-p-

MeC6H4iPr)Ru)11 react with the modified cysteines S-benzyl-L-cysteine (HL1) or S-

benzyl-α-methyl-L-cysteine (HL2) (Chart 1) rendering cationic complexes of formula 

[(ηn-ring)MCl(κ2N,S-HL)]Cl (1, 2) in good yield. However, the addition of the N-Boc 

substituted cysteine derivative S-benzyl-N-Boc-L-cysteine (HL3) to solutions of the 

dimers gave intractable mixtures of unidentified species together with unreacted starting 

materials. 

BnS NH2

COOH

S-Benzyl-L-cysteine

HL1

BnS NH2

COOH

S-Benzyl-α-methyl-L-cysteine

HL2

Me

BnS NHBoc

COOH

S-Benzyl-N-Boc-L-cysteine

HL3  
Chart 1. Modified cysteines 

Addition of NaHCO3 to complexes 1 and 2 gave equilibrium mixtures of neutral 

[(ηn-ring)MCl(κ2N,O-L)] (3, 4) and cationic [(ηn-ring)M(κ3N,O,S-L)]Cl (6Cl, 7Cl) 

complexes. Similar mixtures were obtained in one-pot reaction by successive addition 

of the corresponding cysteine-derived ligand and NaHCO3 to the above formulated 

dimers. 

The N-Boc protected ligand HL3 also behaves differently in basic medium. Thus, 

when HL3 and NaHCO3 were added to the dimers [{(ηn-ring)MCl}2(μ-Cl)2], the neutral 

compounds [(ηn-ring)MCl(κ2O,S-L3)] ((ηn-ring)M = (η5-C5Me5)Ir (5a), (η6-p-

MeC6H4iPr)Ru (5b)), in which the amino carboxylate shows a κ2O,S coordination 
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mode, were isolated. However, nitrogen coordination can be forced by removing the 

chloride with subsequent generation of a vacant site. Thus, addition of one equivalent of 

AgSbF6 to complexes 5 gave rise to the cationic complexes [(ηn-ring)M(κ3N,O,S-

L3)][SbF6] ((ηn-ring)M = (η5-C5Me5)Ir (8aSb), (η6-p-MeC6H4iPr)Ru (8bSb)) in which, 

along with the sulphur and the oxygen, the nitrogen atom is also coordinated to the 

metal. The L1 and L2 containing cationic analogues [(ηn-ring)M(κ3N,O,S-L)][SbF6] 

((ηn-ring)M = (η5-C5Me5)Ir, L = L1 (6aSb), L2 (7aSb); ηn-ring = (η6-p-MeC6H4iPr)Ru 

L = L1 (6bSb), L2 (7bSb)) were isolated by adding one equivalent of AgSbF6 to 

mixtures of 3 and 6Cl or 4 and 7Cl. 

M

Cl

Cl

Cl
M

Cl

1/2 M*
Cl

NH2

BnS* CO2H

+

M*
Cl

NH2

O

O

R1

SBn

M*
Cl

S*Bn

O

O
NHBoc

M*
O S*Bn

NHR2

R1

O

+

M*
O S*Bn

N*Boc

O

NaHCO3

NaHCO3

HL3, 2 NaHCO3

HL1, HL2 AgSbF6

AgSbF6

R1

M
R1 Ir Ru
H
Me

3a
4a

3b
4b

M
R1 Ir Ru
H
Me

1a
2a

1b
2b

M = Ir (5a), Ru (5b)

M = Ir; R2 = H; R1 = H (6a+), Me (7a+)
           R2 = Boc; R1 = H (8a+)
M = Ru; R2 = H; R1 = H (6b+), Me (7b+)
             R2 = Boc; R1 = H (8b+)

M = Ir (9a), Ru (9b)

M = (η5-C5Me5)Ir, (η6-p-MeC6H4iPr)Ru

HL3, NaHCO3

R1 = H; R2 = Boc

*

*

*

*

*

 
Scheme 1. Preparative routes for complexes 1-9 

Finally, the amide proton of compounds 8aSb and 8bSb can be removed by 

addition of NaHCO3 affording the neutral complexes 9a and 9b, respectively. 

Alternatively, complexes 9 can also be prepared by reacting the dimers [{(ηn-

ring)MCl}2(μ-Cl)2] with HL3 and two equivalents of NaHCO3. 

All these preparative routes are essentially similar to those recently reported for the 

(η5-C5Me5)Rh analogues.12 
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Molecular structure of the complex (RIr,RC,RS)-[(η5-C5Me5)Ir(κ3N,O,S-L1)][SbF6] 

(6aSb). 

Single crystals of the complex were grown by slow diffusion of diethyl ether into dry 

methanolic solutions of the compound and the solid state molecular structure was 

determined by X-ray diffraction. A molecular representation of the cation is depicted in 

Figure 1 and selected geometrical parameters are listed in Table 1. The structural 

features found in 6aSb are similar to those recently reported for the rhodium analogue 

[(η5-C5Me5)Rh(κ3N,O,S-L1)][SbF6].12 Complex 6aSb exhibits the common “three-

legged piano-stool” geometry, with three fac positions occupied by an η5-C5Me5 group 

and the three remaining coordination sites held by the S-benzyl-L-cysteine which adopts 

a κ3N,O,S coordination mode. According to the ligand priority sequence,13 the absolute 

configuration is RIr,RC,SS. 

 
Figure 1. Molecular representation of the cation of 6aSb 

 

Table 1. Selected bond distances (Å) and 
angles (º) for 6aSb 

Ir-S 2.3646(9) S-Ir-O(1) 85.32(7) 

Ir-N 2.137(3) S-Ir-Cta 131.03(4) 

Ir-O(1) 2.114(2) N-Ir-O(1) 75.28(11) 

Ir-Cta 1.7812(1) N-Ir-Cta 134.91(8) 

S-Ir-N 81.40(8) O(1)-Ir-Cta 128.79(6) 
a Ct represents the centroid of the η5-C5Me5 ring 
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The tridentate coordination of S-benzyl-L-cysteine leads to the formation of two 

five-membered, Ir-O-C-C-N and Ir-S-C-C-N, and one six-membered Ir-S-C-C-C-O 

metallacycles. Ring puckering parameters (q = 0.558(3), Ф = 155.2(3)°; q = 0.632(3), φ 

= -41.1(3)°; q = 1.240(2), φ = -170.0(1)°; θ = 100.7(1)°; respectively)14 are 

characteristic of 5E/T1, E5 and B4,1 conformations. The adopted conformations in the 

metallacycles minimize the steric impediments between the bulkiest fragments, with the 

C5Me5 and benzyl groups occupying pseudoequatorial and pseudoaxial positions, 

respectively, in the six-membered ring. 

Comparison of the structure of 6aSb with that of the isolated S-benzyl-L-cysteine, 

whose crystal structure exhibits two independent molecules,15 revealed the lengthening 

of S-C(13) (6aSb: 1.832(4) Å, HL1: 1.810(3) and 1.805(4) Å) and O(1)-C(11) bonds 

(1.292(4) Å, HL1: 1.268(4) and 1.258(4) Å), due to the coordination of sulphur and 

oxygen atom to the metal. However, the N-C(12) bond is less affected (6aSb: 1.478(4) 

Å, HL1: 1.486(4) and 1.496(4) Å). 

Protons of the NH2 fragment of the cysteine derivative are involved in strong N-

H···O hydrogen bonds and weak N-H···π interactions with carboxylate and benzyl 

groups of neighbouring molecules, stabilizing the solid state structure (See ESI†). 

Characterization of the metallic compounds 

The new complexes were characterized by analytical and spectroscopic means (see 

Experimental section). Assignment of the NMR signals was verified by two 

dimensional homonuclear and heteronuclear correlations. The IR spectra showed strong 

ν(C=O) absorptions in the 1610-1730 cm−1 range (carboxylate) and around 1760 cm−1 

(Boc).16 The SbF6 derivatives present a strong band around 650 cm−1 attributed to this 
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anion. The 1H NMR data are consistent with the presence of the C5Me5 and cysteine-

derived ligands in a 1:1 molar ratio, in all cases. 

Regarding the stereochemistry of the new complexes, in all of them, the metal is a 

stereogenic centre and, therefore, two stereoisomers, epimers at the metal, can be 

obtained. The R at carbon enantiomer of the cysteine-derived ligands was employed and 

we estimate that, due to the soft reaction conditions employed, no changes in the 

configuration at this carbon occur in the course of the reactions. Therefore, we assume 

that the configuration of the carbon of the modified cysteine is R in all complexes. 

Notably, in complexes bearing κ3N,O,S coordinated cysteine derivatives, the R 

configuration at carbon forces the metal to exclusively adopt the R configuration.12 On 

the other hand, when the sulphur coordinates to the metal (compounds 1, 2, 5-9) two 

isomers with opposite configuration at sulphur could be formed. Additionally, in 

compounds 8 and 9, the nitrogen is also a stereogenic centre with two possible 

configurations. 

Complexes with κ2N,S coordination mode. No base has been added in the preparative 

reaction of complexes 1 and 2. A broad peak in the 1H NMR, centred at around 9.5 ppm 

(complexes 1) or at around 6 ppm (complexes 2),17 indicates that the proton of the 

carboxylic group was not dissociated. Consistently, the IR spectra present a very broad 

absorption centred at around 2950 cm-1 (ν(OH)) and the carboxylic ν(C=O) band 

appears in the 1715-1729 cm-1 range, 60-100 cm-1 shifted to greater energies than that of 

compounds 3-9 in which the carboxylic group is deprotonated (see Experimental 

section). 

At room temperature, the NMR spectra of compounds 1a,b and 2a show two sharp 

sets of signals, in 92/8 (1a), 80/20 (1b) and 91/9 (2a) molar ratio, attributed to the SM,RC 

and RM,RC diastereomers. However, for complex 2b three sets of resonance signals, in 
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64/27/9 molar ratio, were registered. We assume that in complexes 1 and 2 the sulphur 

is coordinated to the metal and, therefore, it is a stereogenic centre. For complexes 1a,b 

and 2a, either only one epimer at sulphur is obtained or both epimers quickly exchange 

in solution. However, for complex 2b, probably the two epimers at sulphur either of the 

SM,RC or of the RM,RC isomer were observed. 

Variable temperature proton NMR experiments, in the 298-213 K range, show an 

apparent broadening of the resonance signals in all cases but no splitting of the signals 

was observed even at the lowest temperature recorded and NOESY spectra were not 

informative about the stereochemistry of the compounds. 

However, the circular dichroism (CD) spectra of the mixtures present a positive 

Cotton effect centred at around 340 nm for the iridium complexes and at around 360 nm 

for the ruthenium analogues. As we will comment later, the positive sign of this 

maximum is associated to an S configuration at the metal centre and, therefore, the 

configuration of the major isomer of complexes 1 and 2 would be SM,RC. 

Table 2. Chemical shift of the C5Me5 protons in 
the iridium complexes 

κ2-coordination κ3-coordination 
 δ(C5Me5)  δ(C5Me5) 

1a 1.66, 1.73 6aCl 1.87 
2a 1.64, 1.67 7aCl 1.88 
3a 1.60, 1.67 6aSb 1.92 
4a 1.55, 1.58 7aSb 1.84 
5a 1.43, 1.66, 1.60, 1.71 8aSb 1.84 
  9a 1.93 

 
The value of the C5Me5 protons chemical shift in complexes 1a and 2a, 1.64-1.73 ppm, 

is characteristic of a bidentate chelate coordination of the cysteine-derived ligands 

(Table 2). The carbon resonance of the methylene group bonded to the stereogenic 

carbon of the cysteine derivative (CH2C*) appears at 36.76-38.83 ppm for the 

complexes with the HL1 ligand (1a,b) and at 38.71-45.27 ppm for the complexes with 
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the modified cysteine HL2 (2a,b). These values were characteristic for the methylene 

group when it is engaged in a metallacyle ring (Table 3). 

Table 3. Chemical shift of the methylene carbon CH2C* and number of metallacycles in 
which the CH2C* group is engaged 

Ir  HL1 HL2 HL3 Number of 
Metallacycles 

1a 36.76, 38.83 -- -- 1 
2a -- 38.71, 40.51 -- 1 
3a 40.66, 41.05 -- -- 0 
4a -- 45.89, 46.22 -- 0 
5a   34.67, 37.56, 35.02, 37.03 1 

6aCl 32.24 -- -- 2 
6aSb 31.37 -- -- 2 
7aCl -- 36.47 -- 2 
7aSb -- 35.84 -- 2 
8aSb -- -- 28.13 2 

9a -- -- 32.00 2 
Ru 1b 37.67, 38.38 -- -- 1 

2b -- 39.91, 44,35, 45.27 -- 1 
3b 45.60 -- -- 0 
5b -- -- 33.48, 33.48, 35.69 1 

6bCl 32.80 -- -- 2 
7bCl -- 37.70, 36.75 -- 2 
6bSb 31.05 -- -- 2 
7bSb -- 35.98 -- 2 
8bSb -- -- 31.81 2 

9b -- -- 32.57, 33.44 2 
 

Reaction of complexes 1 and 2 with NaHCO3. The carboxylic group of compounds 

1 and 2 can be deprotonated with NaHCO3. Formally, the resulting carboxylate group 

displaces the chloride from the coordination sphere of the metal giving rise to the 

κ3N,O,S coordinated cationic complexes 6Cl and 7Cl. These complexes are in 

equilibrium with the corresponding κ2N,O neutral compounds 3 and 4 in which the 

chloride replaces the coordinated SBn arm in complexes 6Cl and 7Cl (Eq. 1). In the 

Table of Eq. 1, the relative amounts of neutral and cationic complexes, the isomeric 

composition and configuration of the obtained mixtures, in chloroform, are shown. 

For the iridium complexes, NMR measurements at room temperature indicate that 

the two epimers at the metal of the κ2N,O complexes 3a and 4a were present in 90/10 

and 89/11 molar ratio, respectively. Under the same conditions, only the RIr,RC isomer 
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of the cationic complexes 6aCl and 7aCl was detected. If present, the epimers at the 

sulphur were not resolved even at 193 K. 

M*
Cl

NH2

O

O

R1

SBn

M*
O S*Bn

NH2

R1

O

Cl

Eq. 1

6Cl, 7Cl

M*
Cl

NH2

Bn*S CO2H

Cl

NaHCO3

R1

1, 2

M = (η5-C5Me5)Ir, (η6-p-MeC6H4iPr)Ru

3, 4

- NaCl, - CO2, - H2O*
*

*

 
M R1 Compounds, Composition and Configuration 

 

 

 

 

Ir H 3a (91 %) 

SIr,RC (90 %) / RIr,RC (10 %) 

6aCl (9 %) 

RIr,RC 

Ru H 3b (4 %) 

SRu,RC 

6bCl (96 %) 

RRu,RC,SS (96 %) / RRu,RC,RS (4 %) 

Ir Me 4a (54 %) 

SIr,RC (89 %) / RIr,RC (11 %) 

7aCl (46 %) 

RIr,RC 

Ru Me 4b 

Not detected 

7bCl (100 %) 

RRu,RC,SS (96 %) / RRu,RC,RS (4 %) 

Solvent: CDCl3 

For the ruthenium complexes, a small amount of a single epimer at the metal of 3b 

(4 %) was present in CDCl3, at room temperature. The amount of the other metal epimer 

should be negligible. For the methylated cysteine-derived ligand HL2, the presence of 

the corresponding bidentate chelate complex 4b can be excluded because the 

composition of the mixture, that depends on the solvent (see below), does not change 

significantly in CD3OD. Under the same conditions, the two epimers at sulphur were 

observed for the cationic tripodal complexes 6bCl and 7bCl in 96/4 molar ratio in both 

cases. Most probably, the S at sulphur diastereomer, for which less steric hindrance 

between the C5Me5 and Bn groups is expected, was the most abundant isomer. 

In acetone, the CD spectrum of the 3a/6aCl mixtures showed a positive Cotton 

effect centred at 344 nm. However, negative maxima at 334 and 332 nm were recorded 
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for 3b/6bCl mixtures and 7bCl, respectively. As free α-amino acids do not show Cotton 

effects above 230 nm,18 this absorption was tentatively assigned to transitions 

associated to the metal. On the other hand, the major isomer of the iridium complex 4a 

shows a NOESY relationship between one of the CH2Ph methylene protons and the 

C5Me5 protons indicating that the configuration at iridium is S. Taking into account all 

these observations, we propose the SIr configuration to the major epimer of the complex 

3a. 

As it can be seen in the Table of Equation 1, the composition of the mixtures 

strongly depends on the metal, the cysteine derivative and the solvent employed. Thus, 

the amount of cationic compound is greater for the ruthenium complexes than for the 

corresponding iridium ones, the equilibrium is shifted to the left when the methylated 

cysteine-derived ligand HL2 (R1 = Me) replaces cysteine derivative HL1 (R1 = H) and, 

as expected, the relative concentration of the cationic chlorides 6Cl and 7Cl is higher in 

methanol than in chloroform. 

Thus, for example, while a 3a/6aCl molar ratio of 91/9 was measured in 

chloroform for iridium complexes, for the ruthenium analogues only a 4 % of 3b was 

measured in the mixture with 6bCl. As complex 4b was not detected in chloroform, we 

assume that, in this solvent, the equilibrium of a mixture of the methylated cysteine 

derivative ruthenium complexes 4b and 7bCl is completely shifted to the left (Eq. 1). 

Regarding the solvents, for mixtures 3a/6aCl and 4a/7aCl molar ratios of 91/9 and 

54/46 were measured in chloroform; these ratios decrease to 39/61 and 16/84, 

respectively, in a polar solvent such as methanol. 

In the iridium compounds, the C5Me5 proton resonance was affected by the 

coordination mode. While in the tripodal compounds 6aCl and 7aCl this signal appears 

near of 1.90 ppm, in the bidentate chelate complexes 3a and 4a these protons resonate at 
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about 1.60 ppm, a value comparable to those measured for the also bidentate chelate 

complexes 1a and 2a (Table 2). 

The chemical shift of the CH2C* methylene carbon is strongly affected by the 

coordination mode. Thus, while in the κ3N,O,S complexes 6aCl and 6bCl, in which this 

group is included in the M-O-C-C-N and M-S-C-C-N metallacycles, it appears at about 

32.5 ppm, in the κ2N,O compounds 3 and 4a, in which this methylene group is pendant, 

it resonates from 40.66 to 46.22 ppm (Table 3). An intermediate value of the chemical 

sift was encountered when this methylene is included only in one metallacycle, as it is 

the case of compounds 1 and 2 (Table 3). 

Reactions with HL3 in basic medium. Complexes 5a and 5b were prepared by reacting 

the dimers [{(ηn-ring)MCl}2(μ-Cl)2] with HL3 in the presence of one equivalent of 

NaHCO3. 

M*
Cl

S*

O

O
NHBoc

M = Ir (5a), Ru (5b)

HL3, NaHCO3
Bn

Eq. 2

*

M

Cl

Cl

Cl
M

Cl

1/2

 

In these complexes, the metal, the asymmetric carbon of the cysteine derivative and 

the sulphur atom are stereogenic centres. As the configuration at the carbon is fixed, 

four diastereomers are possible. In fact, the four isomers were isolated for the iridium 

complex 5a, in 62/21/9/8 molar ratio, and three isomers in 64/27/9 molar ratio were 

obtained for the ruthenium complex 5b. 

The ν(CO) frequency, 1630 and 1622 cm-1 for 5a and 5b, respectively, suggests a 

monodentate coordination for the carboxylate group. The values of the chemical shift of 

the C5Me5 protons in 5a, 1.43-1.71 ppm, indicated a bidentate chelate coordination for 

the amino carboxylate ligand (Table 2). The CH2C* methylene carbon is deshielded 
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with respect to the analogue methylene carbon in the corresponding tripodal complexes 

8aSb and 8bSb (Table 3). 

All these spectroscopic data pointed to a κ2O,S coordination mode for the amino 

carboxylate in complexes 5. Most probably, coordination of the nitrogen is inhibited 

sterically, by the presence of the bulky Boc substituent, as well as electronically, by 

delocalization of the nitrogen electron pair by conjugation to the CO double bond. 

A NOE enhancement was observed in the C5Me5 protons of the major isomer of the 

iridium complex 5a when the pro-R proton of the CH2C* group was irradiated. This 

NOE relationship suggests that the configuration at the iridium in this isomer is S. 

No relevant changes have been observed in the NMR spectra of the complexes 

from 298 to 193 K. 

Chloride abstraction in complexes 3-5. Addition of AgSbF6 to solutions of mixtures of 

3 and 6Cl or 4 and 7Cl or pure 5 afforded the cationic complexes 6Sb-8Sb in which the 

cysteine-based ligand featured a κ3N,O,S coordination mode (Scheme 1, Eq. 3). The 

iridium complex 8aSb was alternatively prepared by reacting [{(η5-C5Me5)IrCl}2(µ-

Cl)2] with 4 equivalents of AgSbF6 and subsequent addition of HL3 in the presence of 

NaHCO3. 

Compounds 6Sb and 7Sb contain three stereogenic centres: the metal, the 

asymmetric carbon of the cysteine derivative and the sulphur atom. As stated above, in 

half-sandwich bearing κ3N,O,S coordinated (R)-cysteine derivatives, the only possible 

configuration for the metal is R. Therefore, two diastereomers, epimers at sulphur, 

namely RM,RC,RS and RM,RC,SS, could be obtained.19 

In the temperature range 298-193 K, the NMR spectra of the iridium complexes 

6aSb and 7aSb consisted of only one set of resonance signals. Therefore, either the 
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sulphur only adopts one configuration or both epimers at sulphur quickly exchange even 

at 193 K. The configuration at sulphur of solid 6aSb, determined by diffractometric 

methods, is S (see above). However, for their ruthenium counterparts 6bSb and 7bSb, 

the NMR spectra revealed that, in solution, the two epimers at sulphur RM,RC,SS and 

RM,RC,RS were present. From steric grounds we propose that the less abundant isomer (5 

% in 6bSb and less than 3 % in 7bSb) was the R at sulphur diastereomer. 

M*
Cl

NH2

O

O

R1

SBn

M*
Cl

S*Bn

O

O
NHBoc

3, 4

5

AgSbF6

− AgCl, acetone

M = Ir; R1 = R2 = H (6aSb); R1 = Me, R2 = H (7aSb);
            R1 = H, R2 = Boc (8aSb)
M = Ru; R1 = R2 = H (6bSb); R1 = Me, R2 = H (7bSb);
            R1 = H, R2 = Boc (8bSb)

*

*

M*
R2HN S*Bn

O

C

O
R1

SbF6

*
Eq. 3

 

Again, the NBoc containing compounds 8aSb and 8bSb behaved differently. In 

spite of the nitrogen also being a stereocentre, only one stereoisomer was obtained. 

Furthermore, in solution, hydrolysis of the Boc moiety renders small amounts of 6aSb 

(about 8 %) and of 6bSb (about 10 %), respectively. Additionally, about 18 % of other 

compound has been detected by NMR. Probably, this compound is the solvated 

complex in which a solvent molecule occupies the vacant site resulting from the 

decoordination of the NBoc arm of the cysteine derivative in 8aSb. In fact, after 

addition of MeCN (30 equiv.) to a dichloromethane solution of the mixture, the 

percentage of this compound increases from 18 to 25 %. 

The chemical shift of the C5Me5 protons in the iridium compounds 6aSb-8aSb 

(1.84-1.92 ppm, Table 2) indicated a κ3N,O,S coordination for the cysteine-derived 
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ligands and the strong shielding measured for the CH2C* methylene carbon in 

complexes 6 and 7 with respect to 3 and 4a (more than 8 ppm, Table 3) was attributed 

to the inclusion of this carbon into the M-N-C-C-S and M-O-C-C-C-S metallacycles. 

Deprotonation of complexes 8. Treatment of the complexes 8aSb and 8bSb with 

NaHCO3 afforded the corresponding neutral deprotonated compounds 9a and 9b. These 

complexes can also be prepared treating the dimers [{(ηn-ring)MCl}2(μ-Cl)2] with HL3 

in the presence of 2 equiv. of NaHCO3 (Eq. 4). 

8Sb

M*
BocH*N S*Bn

O

C

O

SbF6

 MeOH

− 2 NaCl

M = Ir, 9a; Ru, 9b

M*
Boc*N S*Bn

O

C

O

 − NaSbF6

2 NaHCO3, HL3

NaHCO3

M

Cl

Cl

Cl
M

Cl

1/2

*

*
Eq. 4

 

At 298 K, the proton and carbon NMR spectra of complex 9a consist of only one 

set of sharp peaks but two sets of peaks in 68/32 molar ratio were observed for 9b, at 

the same temperature. 

The CD spectrum of complex 9a presents a negative maximum centred at 352 nm 

assigned to an R configuration at the metal. 

The chemical shift of the C5Me5 protons in 9a (1.93 ppm) and that of the CH2C* 

methylene carbon in both compounds (32.00 ppm, 9a and 32.57 and 33.44 ppm, 9b) 

strongly suggest that, in the reaction, the κ3N,O,S coordination mode has been retained 

and that, therefore, the configuration at both metal and cysteine-derived ligand carbon is 

R. However, the nitrogen and the sulphur atoms are also stereogenic centres and, as only 
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one or two isomers were detected at 298 K, most probably the complexes undergo 

equilibrating processes in solution at this temperature. At this respect, the recently 

reported crystal structure of the rhodium analogue12 [(η5-C5Me5)Rh(κ3N,O,S-L3-H)] 

reveals that the nitrogen adopts an almost planar geometry and DFT calculations 

showed a very low energy transition state for the epimerization process at this atom. 

Probably, a consequence of the planarization is the shift of ca. 5 ppm to low field of the 

resonance of the asymmetric carbon, C*, adjacent to the nitrogen, with respect to that of 

the related protonated complex [(η5-C5Me5)Rh(κ3N,O,S-L3]+.12 In fact, a similar 

deshielding was observed for this carbon in complexes 9a (Δδ = 4.6 ppm) and 9b (Δδ = 

6.6 ppm). Hence, we argue that also in complexes 9 inversion at nitrogen is low energy-

demanding and that the observed isomers for 9b are the two epimers at sulphur which, 

in turn, can be also observed for the iridium complex, by lowering temperature.19 

To verify this issue, a variable temperature NMR study, in the range 298-183K, was 

undertaken for complex 9a. The singlet attributed to the tBu substituent of the Boc, 

which resonates at 1.39 ppm at 298 K, was taken as reference. On cooling, this singlet 

broadens out, coalesces at about 264 K and splits into two differently populated signals 

(85/15 ratio) below 238 K. The low temperature limiting spectrum was achieved at 193 

K. The process obeys a first-order rate law, with derived activation parameters at 293 K 

of ΔH# = −0.55 ± 0.03 kcal·mol−1, ΔS# = −44.3 ± 6.0 cal·mol−1·K−1 and ΔG# = 12.4 ± 

2.3 kcal·mol−1 (see ESI†). These values are very similar to those recently reported for 

the rhodium analogue. In particular, the relatively high negative value measured for ΔS≠ 

indicate that the epimerisation at sulphur could take place through an associative 

mechanism identical to that calculated for the rhodium analogue: de-coordination of 

sulphur, coordination of a solvent molecule, turning around the C-S bond, de-

coordination of the solvent molecule and re-coordination of sulphur.12 
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In summary, while the RIr,RC,SS and RIr,RC,RS diastereomers of complex 9a were 

quickly exchanging at 298 K, the corresponding isomers of complex 9b can be 

separately observed at this temperature. These data suggest again that epimerization at 

sulphur is more energy-demanding in the ruthenium complex. For steric grounds, in 

both cases, the most abundant isomer would be the S at sulphur epimer (see above). 

Conclusions 

Cysteine derivatives HL1, HL2 and HL3 display a variety of coordination modes 

towards (η5-C5Me5)Ir and (η6-p-MeC6H4iPr)Ru moieties. Examples of neutral κ2N,S, 

monoanionic κ2N,O, κ2S,O and κ3N,O,S, as well as, dianionic κ3N,O,S have been shown. 

The metal, the asymmetric carbon of the cysteine derivative and, in some instances, the 

sulphur and the nitrogen atoms are stereogenic centres. In most cases, the absolute 

configuration of the complexes has been determined, in solution, by NMR and CD 

spectrocopies and for 6aSb, in the solid state by diffractometric methods. In the iridium 

complexes, the chemical shift of the C5Me5 protons discriminates between κ2 and κ3 

coordination modes. The chemical shift of the CH2C* methylene carbon is a useful 

diagnostic for the inclusion of this group into metallacycles. In complexes in which the 

cysteine-based ligand is κ3 coordinated, the metal adopts exclusively the same 

configuration than the carbon of the cysteine derivative with the subsequent reduction of 

the number of possible isomers. The configuration at sulphur is governed by the steric 

hindrance between the C5Me5 and benzyl substituents within the formed metallacycles 

and epimerization at sulphur is less energy-demanding for the iridium complexes than 

for the ruthenium analogues. Finally, in the iridium complex 9a, the thermodynamic 

parameters for the epimerization at sulphur have been determined by variable 

temperature proton NMR measurements. 
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Experimental section 

General information 

General Comments. All preparations have been carried out under argon. All solvents 

were treated in a PS-400-6 Innovative Technologies Solvent Purification System (SPS) 

and degassed prior to use. Infrared spectra were recorded on Perkin-Elmer Spectrum-

100 (ATR mode) FT-IR spectrometer. Carbon, hydrogen, nitrogen and sulphur analyses 

were performed using a Perkin-Elmer 240 B microanalyzer. 1H and 13C spectra were 

recorded on a Bruker AV-300 (300.13 MHz), a Bruker AV-400 (400.16 MHz) or a 

Bruker AV-500 (500.13 MHz) spectrometers. In both, 1H NMR and 13C NMR 

measurements the chemical shifts are expressed in ppm downfield from SiMe4. J values 

are given in Hz. COSY, NOESY, HSQC, HMQC and HMBC 1H-X (X = 1H, 13C) 

correlation spectra were obtained using standard procedures. CD spectra were 

determined in acetone (ca. 5 × 10−4 mol L−1 solutions) in a 1 cm path length cell by 

using a JASCO J-810 spectropolarimeter. Cysteine derivatives HL1 and HL3 are 

commercially available from Acros and Aldrich, respectively. Cysteine-based ligand 

HL2 was prepared as reported in ref. 12. 

Preparation of the complexes [(η5-C5Me5)IrCl(κ2N,S-HL)]Cl, (HL = HL1 (1a), 

HL2 (2a) and [(η6-p-MeC6H4iPr)RuCl(κ2N,S-HL)]Cl, (HL = HL1 (1b), HL2 (2b)). 

At room temperature, to a suspension of the corresponding dimer [{(ηn-ring)MCl}2(μ-

Cl)2] (0.16 mmol), in 10 mL of CH3OH, 0.32 mmol of the corresponding cysteine 

derivative were added. The resulting yellow solution was stirred for 1 h and then was 

filtered to remove any insoluble material. The solution was concentrated under reduced 

pressure to ca. 1 mL. The slow addition of Et2O led to the precipitation of a yellow solid 

which was washed with Et2O (3 × 5 mL) and vacuum-dried. 
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[(η5-C5Me5)IrCl(κ2N,S-HL1)]Cl (1a). Yield: 74 %. Diastereomeric ratio: 92/8. Anal. 

calcd for C20H28Cl2IrNO2S, %: C, 39.4; H, 4.6; N, 2.3; S, 5.3. Found, %: C, 39.4; H, 

4.8; N, 2.2; S, 5.3. IR (solid, cm−1): ν(OH) 2916 (vbr), ν(C=O) 1724 

(s). CD (acetone, 5.1 × 10−4 M, 298 K): λ, nm, (Δε): 341 (+ 4.34). 

SIr,RC diastereomer (92 %). 1H NMR (500.13 MHz, CD2Cl2, 298 K, 

ppm): δ 10.6 - 8.9 (vbr, 1H, OH), 7.68 - 7.20 (2 × m, 5H, HAr), 6.80 (pt, J = 9.7 Hz, 1H, 

NH), 4.98 (d, J = 8.9 Hz, 1H, NH), 4.78 (AB system, JAB = 11.1 Hz, 2H, CH2Ph), 4.22 

(m, 1H, C*H), 3.57 (ABXX’ system, JAB = 13.3, JAX = 10.9, JAX’ = 3.1 Hz, 2H, CH2C*), 

1.66 (s, 15H, C5Me5). 13C{1H} NMR (125.8 MHz, CD2Cl2, 298 K, ppm): δ 170.11 

(C=O), 133.49, 130.85, 128.75, 128.46 (CAr), 91.27 (C5Me5), 60.37 (C*), 38.48 

(CH2Ph), 36.76 (CH2C*), 8.46 (C5Me5). 

RIr,RC diastereomer (8 %). 1H NMR (500.13 MHz, CD2Cl2, 298 K, ppm): δ 7.68 - 7.20 (2 

× m, 5H, HAr), 4.51 (d, JAB = 11.8 Hz, 1H, CH2Ph), 4.20 (1H, CH2Ph), 3.76 (m, 1H, 

C*H), 3.41 (m, 1H, CH2C*), 2.72 (pt, 11.9 Hz, 1H, CH2C*), 1.73 (s, 15H, C5Me5). 

13C{1H} NMR (125.8 MHz, CD2Cl2, 298 K, ppm): δ 170.44 (C=O), 133.23, 130.46, 

128.95, 128.44 (CAr), 91.61 (C5Me5), 61.01 (C*), 39.68 (CH2Ph), 38.83 (CH2C*), 8.84 

(C5Me5). 

[(η6-p-MeC6H4iPr)RuCl(κ2N,S-HL1)]Cl (1b). Yield: 85 %. Diastereomeric ratio: 

80/20. Anal. calcd for C20H27Cl2NO2RuS, %: C, 44.9; H, 5.5; N, 2.6; S, 6.0. Found, %: 

C, 45.2; H, 5.8; N, 2.6; S, 6.1. IR (solid, cm−1): ν(OH) 2963 (vbr), ν(C=O) 1721 (s). CD 

(acetone, 5.0 × 10−4 M, 298 K): λ, nm, (Δε): 358 (+ 2.49). 

SRu,RC diastereomer (80 %). 1H NMR (500.13 MHz, CD2Cl2, 298 K, ppm): δ 10.0 - 8.2 

(vbr, 1H, OH), 7.76 - 7.22 (m, 5H, HAr), 7.14 (brs, 1H, NH), 5.97, 5.65, 5.34, 4.97 (4 × 

d, J = 5.6 Hz, 4H, HA, HB, HA′, HB′), 4.39 (AB system, JAB = 11.2 Hz, 2H, CH2Ph), 4.15 

(m, 1H, C*H), 4.08 (br, 1H, NH), 2.53 (ABXX’ system, JAB = 12.7, JAX = 7.3, JAX’ = 4.5 

Cl

Ir
Cl

BnS

NH2

HO2C H



22 
 

Hz, 2H, CH2C*), 2.87 (sept, J = 6.7 Hz, 1H, Hi), 1.99 (s, 3H, Me), 

1.28 (d, J = 6.7 Hz, 6H, Mei, Mei′). 13C{1H} NMR (125.8 MHz, 

CD2Cl2, 298 K, ppm): δ 169.81 (C=O), 134.02, 130.59, 128.77, 

128.68 (CAr), 110.91, 98.76 (Cp-cymene), 84.83, 84.61, 84.05, 83.64 

(CHA, CHB, CHA′, CHB′), 57.70 (C*), 37.86 (CH2Ph), 37.67 (CH2C*), 30.82 (CHi), 22.69, 

21.30 (Mei, Mei′), 17.54 (Me). 

RRu,RC diastereomer (20 %). 1H NMR (500.13 MHz, CD2Cl2, 298 K, ppm): δ 10.0 - 8.2 

(vbr, 1H, OH), 8.15 (brs, 1H, NH), 7.76 - 7.22 (m, 5H, HAr), 5.64, 5.48, 5.42, 5.01 (4 × 

d, J = 5.6 Hz, 4H, HA, HB, HA′, HB′), 4.32 (AB system, JAB = 10.9 Hz, 2H, CH2Ph), 3.54 

(m, 1H, C*H), 2.72 (sept, J = 6.8 Hz, 1H, Hi), 3.32 (ABXX’ system, JAB = 13.6, JAX = 

11.5, JAX’ = 10.2 Hz, 2H, CH2C*), 2.03 (s, 3H, Me), 1.24 (d, J = 7.0 Hz, 3H, Mei), 1.21 

(d, J = 6.9 Hz, 3H, Mei′). 13C{1H} NMR (125.8 MHz, CD2Cl2, 298 K, ppm): δ 170.24 

(C=O), 133.95, 130.61, 129.00, 128.84 (6C, CAr), 108.31, 100.81 (2C, Cp-cymene), 84.50, 

84.14, 84.01, 83.56 (CHA, CHB, CHA′, CHB′), 59.38 (C*), 39.22 (CH2Ph), 38.38 (CH2C*), 

30.63 (CHi), 21.83, 21.79 (Mei, Mei′), 18.07 (Me). 

[(η5-C5Me5)IrCl(κ2N,S-HL2)]Cl (2a). Yield: 85 %. Diastereomeric ratio: 91/9. Anal.20 

calcd for C21H30Cl2IrNO2S·H2O, %: C, 39.3; H, 5.0; N, 2.2; S, 5.0. Found, %: C, 39.1; 

H, 5.0; N, 2.2; S, 5.0. IR (solid, cm−1): ν(OH) 2973 (vbr), ν(C=O) 1715 (s). CD 

(acetone, 5.1 × 10−4 M, 298 K): λ, nm, (Δε): 335 (+ 1.28). 

SIr,RC diastereomer (91 %). 1H NMR (500.13 MHz, CDCl3, 298 K, ppm): δ 7.55 - 7.33 

(2 × m, 5H, HAr), 6.20-5.30 (vbr, 1H, OH), 4.51 (AB system, J = 11.7 Hz, 2H, CH2Ph), 

3.56 (AB system, J = 10.8 Hz, 2H, CH2C*), 2.00 (brs, 3H, C*Me), 1.64 

(s, 15H, C5Me5). 13C{1H} NMR (125.8 MHz, CDCl3, 298 K, ppm): δ 

169.82 (C=O), 132.70, 130.58, 129.05, 128.95 (CAr), 91.87 (C5Me5), 

67.75 (C*), 44.90 (CH2Ph), 38.71 (CH2C*), 24.99 (C*Me), 8.84 (C5Me5). 
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RIr,RC diastereomer (9 %). 1H NMR (500.13 MHz, CDCl3, 298 K, ppm): δ 7.55 - 7.33 (2 

× m, 5H, HAr), 4.62 (AB system, J = 11.5 Hz, 2H, CH2Ph), 3.62 (AB system, J = 11.3 

Hz, 2H, CH2C*), 1.93 (brs, 3H, C*Me), 1.67 (s, 15H, C5Me5). 13C{1H} NMR (125.8 

MHz, CDCl3, 298 K, ppm): 130.63, 129.21, 129.00 (CAr), 92.20 (C5Me5), 67.64 (C*), 

45.23 (CH2Ph), 40.51 (CH2C*), 25.50 (C*Me), 9.07 (C5Me5). 

[(η6-p-MeC6H4iPr)RuCl(κ2N,S-HL2)]Cl (2b). Yield: 70 %. Isomeric ratio: 64/27/9. 

Anal.20 calcd for C21H29Cl2NO2RuS·3H2O, %: C, 43.1; H, 6.0; N, 2.4; S, 5.5. Found, %: 

C, 43.4; H, 6.4; N, 2.3; S, 5.5. IR (solid, cm−1): ν(OH) 2961 (vbr), ν(C=O) 1729 (s). CD 

(acetone, 5.5 × 10−4 M, 298 K): λ, nm, (Δε): 362 (+ 0.63). 

Isomer A, 64 %. 1H NMR (500.13 MHz, CD3OD, 298 K, ppm): δ 7.58 - 7.40 (m, 5H, 

HAr), 5.76, 5.40, 5.37, 4.46 (4 × d, J = 5.9 Hz, 4H, HA, HB, HA′, HB′), 4.30 (AB system, 

JAB = 11.0 Hz, 2H, CH2Ph), 3.16 (AB system, JAB = 11.8 Hz, 2H, 

CH2C*), 2.87 (sept, J = 6.9 Hz 1H, Hi), 1.91 (s, 3H, Me), 1.67 (s, 3H, 

C*Me), 1.30, 1.28 (2 × brs, 6H, Mei, Mei′). 13C{1H} NMR (125.8 

MHz, CD3OD, 298 K, ppm): δ 173.86 (C=O), 135.43, 131.77, 130.38, 

130.13 (CAr), 112.46, 99.90 (Cp-cymene), 87.78, 84.96, 84.29, 83.10 (CHA, CHB, CHA′, 

CHB′), 64.82 (C*), 45.27 (CH2C*), 39.78 (CH2Ph), 32.08 (CHi), 26.18 (C*Me), 23.67, 

20.89 (Mei, Mei′), 18.84 (Me). 

Isomer B, 27 %. 1H NMR (500.13 MHz, CD3OD, 298 K, ppm): δ 7.58 - 7.40 (m, 5H, 

HAr), 5.63, 5.34, 5.20, 4.56 (4 × d, J = 6.3 Hz, 4H, HA, HB, HA′, HB′), 4.34 (AB system, 

JAB = 11.0 Hz, 2H, CH2Ph), 3.38 (AB system, JAB = 11.4 Hz, 2H, CH2C*), 2.79 (sept, J 

= 6.8 Hz, 1H, Hi), 1.84 (s, 3H, Me), 1.44 (s, 3H, C*Me), 1.26, 1.25 (2 × brs, 6H, Mei, 

Mei′). 13C{1H} NMR (125.8 MHz, CD3OD, 298 K, ppm): δ 134.84, 131.74, 130.33, 

130.06 (CAr), 113.34, 98.68 (Cp-cymene), 85.89, 85.78, 85.39, 82.87 (CHA, CHB, CHA′, 

Ru
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CHB′), 65.53 (C*), 44.35 (CH2C*), 39.91 (CH2Ph), 32.51 (CHi), 23.39, 21.31 (Mei, Mei′), 

17.61 (Me). 

Isomer C, 9 %. 1H NMR (500.13 MHz, CD3OD, 298 K, ppm): δ 7.58 - 7.40 (m, 5H, 

HAr), 4.02 (AB system, JAB = 11.9 Hz, 2H, CH2Ph), 2.66 (sept, J = 6.8 Hz, 1H, Hi), 

1.25, 1.24 (2 × brs, 6H, Mei, Mei′). 13C{1H} NMR (125.8 MHz, CD3OD, 298 K, ppm): δ 

136.21, 131.80, 131.51, 130.21 (CAr), 100.97 (Cp-cymene), 85.87, 84.80, 84.08, 823.10 

(CHA, CHB, CHA′, CHB′), 42.61 (CH2Ph), 39.91 (CH2C*), 32.01 (CHi), 22.98, 22.34 

(Mei, Mei′), 18.22 (Me). 

Preparation of the complexes [(η5-C5Me5)IrCl(κ2N,O-L)] (L = L1 (3a), L2 (4a), 

L3 (5a)), [(η5-C5Me5)Ir(κ3N,O,S-L)]Cl (L = L1 (6aCl), L2 (7aCl)) and [(η6-p-

MeC6H4iPr)RuCl(κ2N,O-L)], (L = L1 (3b), L2 (4b), L3 (5b)) [(η6-p-

MeC6H4iPr)RuCl(κ3N,O,S-L)]Cl (L = L1 (6bCl), L2 (7bCl)). At room temperature, 

to a suspension of the corresponding dimer [{(ηn-ring)MCl}2(μ-Cl)2] (0,32 mmol), in 10 

mL of MeOH, 0.64 mmol of the corresponding cysteine-derived ligand, HL1 or HL2, 

were added. The resulting yellow (Ir) or orange (Ru) solution was stirred for 15 min and 

then 64.7 mg (0.77 mmol) of NaHCO3 were added. The suspension was vigorously 

stirred for 2 h and then concentrated in vacuum until dryness. The residue was extracted 

with CH2Cl2 (4 × 5 mL) and the resulting solution was concentrated under reduced 

pressure to ca. 3 mL. The slow addition of n-hexane led to the precipitation of a yellow 

solid which was washed with n-hexane (4 × 5 mL) and vacuum-dried. The solid was 

spectroscopically characterized as a mixture of 3 and 6Cl (HL1) or 4 and 7Cl (HL2) 

compounds. With the ligand HL3, pure complexes 5 were obtained. Yield: 3a + 6aCl, 

74 %; 3b + 6bCl, 74%; 4a + 7aCl, 56 %; 7bCl, 65 %. 
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3a + 6aCl, Anal.20 calcd for C20H27ClIrNO2S·2H2O, %: C, 39.4; H, 5.1; N, 2.3; S, 5.3. 

Found, %: C, 39.5; H, 5.3; N 2.5; S 5.6. IR (solid, cm−1): ν(C=O) 1611(s). CD (acetone, 

3.8 × 10−4 M, 298 K): λ, nm, (Δε): 344 (+ 2.81). 

3b + 6bCl, Anal.20 calcd for C20H26ClNO2RuS·2H2O, %: C, 46.4; H, 5.8; N, 2.7; S, 6.2. 

Found, %: C, 46.8; H, 5.8; N, 2.9; S, 6.5. IR (solid, cm−1): ν(C=O) 1653 (s). CD 

(acetone, 5.0 × 10−4 M, 298 K): λ, nm, (Δε): 334 (−0.60). 

4a + 7aCl, Anal.20 calcd for C21H29ClIrNO2S·3H2O, %: C, 39.3; H, 5.4; N, 2.2; S, 5.0. 

Found, %: C, 39.1; H, 5.2; N, 2.2; S, 4.6. IR (solid, cm−1): ν(C=O) 1653 (s). 

7bCl, Anal.20 calcd for C21H28ClNO2RuS·3H2O, %: C, 45.9; H, 6.2; N, 2.6; S, 5.8. 

Found, %: C, 45.6; H, 5.8; N, 2.7; S, 5.8. IR (solid, cm−1): ν(C=O) 1642 (s). CD 

(acetone, 5.1 × 10−4 M, 298 K): λ, nm, (Δε): 332 (−1.34). 

[(η5-C5Me5)IrCl(k2N,O-L1)] (3a). Yield: 67 %. Isomeric ratio: 90/10. 

SIr,RC diastereomer (90 %). 1H NMR (300.13 MHz, CDCl3, 298 K, ppm): δ 7.70 - 7.12 

(2 × m, 5H, HAr), 6.35 (br, 1H, NH), 4.66 (AB system, JAB = 11.2 Hz, 

2H, CH2Ph), 4.45 (br, 1H, NH), 3.87 (brs, 1H, C*H), 3.59, 2.82 (2 × 

br, 2H, CH2C*), 1.60 (brs, 15H, C5Me5). 13C{1H} NMR (125.8 MHz, 

CDCl3, 298 K, ppm): δ 179.48 (C=O), 133.58, 130.77, 128.69, 128.42 

(CAr), 90.99 (C5Me5), 61.40 (C*), 40.66 (CH2C*), 37.40 (CH2Ph), 8.45 (C5Me5). 

RIr,RC diastereomer (10 %). 1H NMR (300.13 MHz, CDCl3, 298 K, ppm): δ 3.92 (d, J = 

12.8 Hz, 1H, CH2Ph), 3.87 (1H, C*H), 3.70 (1H, CH2Ph), 3.54 (1H, CH2C*), 2.55 (pt, J 

= 12.3 Hz, 1H, CH2C*), 1.67 (brs, 15H, C5Me5). 13C{1H} NMR (125.8 MHz, CDCl3, 298 

K, ppm): δ 91.04 (C5Me5), 61.40 (C*), 41.05 (CH2C*), 39.40 (CH2Ph), 8.80 (C5Me5). 

[(η5-C5Me5)Ir(κ3N,O,S-L1)]Cl (6aCl). Yield: 7 %. 

Ir
ClO

NH2O

H

BnS



26 
 

RIr,RC diastereomer. 1H NMR (300.13 MHz, CDCl3, 298 K, ppm): δ 4.42 

(brd, J = 12.4 Hz, 1H, CH2Ph), 4.29 (brs, 1H, C*H), 4.06 (brd, J = 12.4 

Hz, 1H, CH2Ph), 3.54 (1H, CH2C*), 2.32 (d, J = 13.3 Hz, 1H, CH2C*), 

1.87 (brs, 15H, C5Me5). 13C{1H} NMR (125.8 MHz, CDCl3, 298 K, 

ppm): δ 89.04 (C5Me5), 60.69 (C*), 38.26 (CH2Ph), 32.24 (CH2C*), 9.25 (C5Me5). 

[(η6-p-MeC6H4iPr)RuCl(k2N,O-L1)] (3b). Yield: 3 %. 

1H NMR (500.13 MHz, CDCl3, 250 K, ppm): δ 5.05, 4.57 (2 × brs, 2H, 

CH2C*), 4.31, 3.85 (2 × brs, 2H, CH2Ph), 1.85 (s, 3H, Me). 13C{1H} 

NMR (125.8 MHz, CDCl3, 250 K, ppm): δ 45.60 (CH2C*), 38.08 

(CH2Ph), 17.91 (Me). 

[(η6-p-MeC6H4iPr)Ru(κ3N,O,S-L1)]Cl (6bCl). Yield: 71 %. Isomeric ratio: 96/4. 

RRu,RC,SS diastereomer (96 %). 1H NMR (500.13 MHz, CDCl3, 250 K, ppm): δ 7.55 - 

7.35 (m, 5H, HAr), 6.83 (br, 1H, NH), 6.73 (br, 1H, NH), 5.50, 5.38, 5.33, 4.98 (4 × s, 

4H, HA, HB, HA′, HB′), 3.96 (AB system, JAB = 11.1 Hz, 2H, CH2Ph), 3.93 (brs, 1H, 

C*H), 3.36 (AB system, JAB = 13.1 Hz, 2H, CH2C*), 2.70 (br, 1H, 

Hi), 2.11 (s, 3H, Me), 1.25, 1.23 (2 × d, J = 7.2 Hz, 6H, Mei, Mei′). 

13C{1H} NMR (125.8 MHz, CDCl3, 250 K, ppm): δ 178.45 (C=O), 

133.64, 130.46, 129.36, 129.15 (CAr), 107.37, 96.99 (Cp-cymene), 

84.72, 83.27, 82.86, 81.57 (CHA, CHB, CHA′, CHB′), 58.89 (C*), 41.04 (CH2Ph), 32.80 

(CH2C*), 31.26 (CHi), 22.61, 22.42 (Mei, Mei′), 18.44 (Me). 

RRu,RC,RS diastereomer (4 %). 1H NMR (500.13 MHz, CDCl3, 250 K, ppm): δ 4.29, 3.43 

(2 × brs, 2H, CH2Ph), 3.05, 2.49 (2 × brs, 2H, CH2C*), 1.99 (s, 3H, Me). 13C{1H} NMR 

(125.8 MHz, CDCl3, 250 K, ppm): δ 38.71 (CH2Ph), 31.82 (CH2C*), 18.44 (Me). 

[(η5-C5Me5)IrCl(k2N,O-L2)] (4a). Yield: 30%. Isomeric ratio: 89/11. 
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SIr,RC diastereomer (89 %). 1H NMR (300.13 MHz, CDCl3, 298 K, ppm): δ 7.65 (br, 1H, 

NH), 7.40 - 7.29 (m, 5H, HAr), 5.71 (br, 1H, NH), 4.51 (AB system, 

JAB = 12.1 Hz, 2H, CH2Ph), 3.90 (AB system, JAB = 10.8 Hz, 2H, 

CH2C*), 1.78 (s, 3H, C*Me), 1.55 (s, 15H, C5Me5). 13C{1H} NMR 

(75.47 MHz, CDCl3, 298 K, ppm): δ 170.98 (C=O), 133.24, 130.76, 

128.83, 128.68 (CAr), 91.17 (C5Me5), 68.26 (C*), 45.89 (CH2C*), 38.87 (CH2Ph), 26.34 

(C*Me), 8.26 (C5Me5). 

RIr,RC diastereomer (11 %). 1H NMR (300.13 MHz, CDCl3, 298 K, ppm): δ 6.47 (br, 1H, 

NH), 5.87 (br, 1H, NH), 4.65 (d, J = 11.3 Hz, 1H, CH2Ph), 4.08 (d, J = 11.3 Hz, 1H, 

CH2Ph), 3.48 (1H, CH2C*), 2.42 (d, J = 10.6 Hz, 1H, CH2C*), 1.58 (s, 15H, C5Me5). 

13C{1H} NMR (75.47 MHz, CDCl3, 298 K, ppm): δ 91.50 (C5Me5), 68.07 (C*), 46.22 

(CH2C*), 40.62 (CH2Ph), 8.49 (C5Me5). 

[(η5-C5Me5)Ir(κ3N,O,S-L2)]Cl (7aCl). Yield: 26 %. 

RIr,RC diastereomer. 1H NMR (300.13 MHz, CDCl3, 298 K, ppm): δ 7.49 - 7.41 (m, 5H, 

HAr), 6.36 (br, 1H, NH), 3.93 (AB system, JAB = 11.9 Hz, 2H, CH2Ph), 

3.65 (br, 1H, NH), 3.49 (brd, J = 13.6 Hz, 1H, CH2C*), 2.17 (brd, J = 

13.6 Hz, 1H, CH2C*), 1.88 (s, 15H, C5Me5), 1.75 (s, 3H, C*Me). 

13C{1H} NMR (75.47 MHz, CDCl3, 298 K, ppm): δ 180.38 (C=O), 

132.37, 130.30, 129.17, 128.89 (CAr), 89.05 (C5Me5), 66.39 (C*), 39.31 (CH2Ph), 36.47 

(CH2C*), 22.50 (C*Me), 9.34 (C5Me5). 

[(η6-p-MeC6H4iPr)Ru(κ3N,O,S-L2)]Cl (7bCl). Yield: 65 %. Isomeric ratio: 96/4. 

RRu,RC,SS diastereomer (96 %). 1H NMR (400.16 MHz, CDCl3, 298 K, ppm): δ 7.62 (br, 

1H, NH), 7.44 - 7.26 (m, 5H, HAr), 6.63 (br, 1H, NH), 5.51, 5.30, 5.17 (3 × d, J = 4.2 

Hz, 4H, HA, HB, HA′, HB′), 3.82 (AB system, JAB = 11.4 Hz, 2H, CH2Ph), 3.22 (d, J = 
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13.6 Hz, 2H, CH2C*), 2.71 (m, 1H, Hi), 2.10 (s, 3H, Me), 1.61 

(s, 3H, C*Me), 1.23, 1.16 (2 × d, J = 7.1 Hz, 6H, Mei, Mei′). 

13C{1H} NMR (100.6 MHz, CDCl3, 298 K, ppm): δ 178.67 

(C=O), 133.67, 130.43, 129.14, 129.01 (CAr), 107.22, 97.48 (Cp-

cymene), 84.87, 83.17, 81.60 (CHA, CHB, CHA′, CHB′), 64.24 (C*), 41.02 (CH2Ph), 37.70 

(CH2C*), 31.14 (CHi), 23.07 (C*Me), 22.55, 22.47 (Mei, Mei′), 18.14 (Me). 

RRu,RC,RS diastereomer (4 %). 1H NMR (400.16 MHz, CDCl3, 298 K, ppm): δ 4.51, 2.97 

(2 × brs, 2H, CH2Ph), 2.97, 2.27 (2 × brs, 2H, CH2C*). 13C{1H} NMR (100.6 MHz, 

CDCl3, 298 K, ppm): δ 41.58 (CH2Ph), 36.75 (CH2C*). 

[(η5-C5Me5)IrCl(κ2O,S-L3)] (5a). Yield: 57 %. Diastereomeric ratio: 62/21/9/8. Anal.20 

calcd for C25H35ClIrNO4S·3H2O, %: C, 41.2; H, 5.6; N, 1.9; S, 4.4. Found, %: C, 40.7; 

H, 5.2; N, 2.1; S, 4.8. IR (solid, cm−1): ν(C=OBoc) 1752 (s), ν(C=O) 1630 (s). 

Isomer A, 62 %. 1H NMR (500.13 MHz, CDCl3, 298 K, ppm): δ 7.62 - 7.56, 7.41 - 7.29 

(2 × m, 5H, HAr), 6.15 (br, 1H, NH), 5.05 (AB system, JAB = 12.2 Hz, 2H, CH2Ph), 4.66 

(br, 1H, C*H), 3.48 (dd, J = 11.8, 1.6 Hz, 1H, CH2C*), 2.43 (dd, J = 

11.8, 11.5 Hz, 1H, CH2C*), 1.45 (brs, 9H, MetBu), 1.43 (s, 15H, 

C5Me5). 13C{1H} NMR (125.8 MHz, CDCl3, 298 K, ppm): δ 175.01 

(C=O), 155.15 (C=OBoc), 133.96, 131.13, 128.59, 128.19 (CAr), 

89.94 (C5Me5), 79.26 (CtBu), 50.01 (C*), 37.44 (CH2Ph), 34.67 (CH2C*), 28.44 (MetBu), 

8.16 (C5Me5). 

Isomer B, 21 %. 1H NMR (500.13 MHz, CDCl3, 298 K, ppm): δ 6.08 (br, 1H, NH), 4.86 

(d, J = 11.4 Hz, 1H, CH2Ph), 3.84 (d, J = 11.4 Hz, 1H, CH2Ph), 3.67 (br, 1H, C*H), 2.99 

(dd, J = 9.9, 4.0 Hz, 1H, CH2C*), 2.58 (dd, J = 9.9, 4.0 Hz, 1H, CH2C*), 1.66 (s, 15H, 

C5Me5), 1.45 (9H, MetBu). 13C{1H} NMR (125.8 MHz, CDCl3, 298 K, ppm): δ 51.65 

(C*), 38.05 (CH2Ph), 37.56 (CH2C*), 8.69 (C5Me5). 
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Isomer C, 9 %. 1H NMR (500.13 MHz, CDCl3, 298 K, ppm): δ 4.62 (m, 1H, CH2Ph), 

4.32 (br, 1H, C*H), 3.92 (d, J = 12.5 Hz, 1H, CH2Ph), 3.47 (1H, CH2C*), 2.84 (pt, J = 

11.2 Hz, 1H, CH2C*), 1.60 (s, 15H, C5Me5), 1.45 (9H, MetBu). 13C{1H} NMR (125.8 

MHz, CDCl3, 298 K, ppm): δ 52.69 (C*), 35.41 (CH2Ph), 35.02 (CH2C*), 8.49 (C5Me5). 

Isomer D, 8 %. 1H NMR (500.13 MHz, CDCl3, 298 K, ppm): δ 4.62 (m, 1H, CH2Ph), 

4.08 (1H, CH2Ph), 3.48 (1H, C*H), 2.66 (dd, J = 13.0, 4.4 Hz, 1H, CH2C*), 2.22 (pt, J = 

13.0 Hz, 1H, CH2C*), 1.71 (s, 15H, C5Me5), 1.45 (9H, MetBu). 13C{1H} NMR (125.8 

MHz, CDCl3, 298 K, ppm): δ 50.72 (C*), 37.44 (CH2Ph), 37.03 (CH2C*), 9.06 (C5Me5). 

[(η6-p-MeC6H4iPr)RuCl(κ2O,S-L3)] (5b). Yield: 79 %. Isomeric ratio: 64/27/9. Anal. 

calcd for C25H34ClNO4RuS, %: C, 51.6; H, 5.9; N, 2.4; S, 5.5. Found, %: C, 51.8; H, 

6.0; N, 2.7; S, 5.7. IR (solid, cm−1): ν(C=OBoc) 1763 (s), 1701 (s), ν(C=O) 1622 (s). 

Isomer A, 64 %. 1H NMR (500.13 MHz, CDCl3, 298 K, ppm): δ 7.63 - 7.34 (m, 5H, 

HAr), 6.03 (br, 1H, NH), 5.94, 5.37, 5.03, 4.66 (4 × d, J = 5.9 Hz, 4H, HA, HB, HA′, HB′), 

4.77 (AB system, JAB = 11.7 Hz, 2H, CH2Ph), 4.35 (br, 1H, C*H), 

3.17 (dd, J = 11.7, 2.1 Hz, 1H, CH2C*), 2.90 (sept, J = 6.7 Hz, 

1H, Hi), 2.29 (dd, J = 11.7, 1.6 Hz, 1H, CH2C*), 2.04 (s, 3H, Me), 

1.41 (s, 9H, MetBu), 1.25, 1.24 (2 × d, J = 6.9 Hz, 6H, Mei, Mei′). 

13C{1H} NMR (125.8 MHz, CDCl3, 298 K, ppm): δ 175.62 (C=O), 155.14 (C=OBoc), 

134.06, 130.98, 128.54, 128.38 (CAr), 106.65, 101.28 (Cp-cymene), 85.94, 84.63, 83.67, 

80.53 (CHA, CHB, CHA′, CHB′), 79.13 (CtBu), 49.58 (brs, C*), 38.71 (CH2Ph), 33.48 (brs, 

CH2C*), 30.30 (CHi), 28.39 (MetBu), 22.14, 22.04 (Mei, Mei′), 18.01 (Me). 

Isomer B, 27 %. 1H NMR (500.13 MHz, CDCl3, 298 K, ppm): δ 5.80 (br, 1H, NH), 4.58 

(br, 1H, C*H), 3.84 (AB system, JAB = 11.6 Hz, 2H, CH2Ph), 2.58 (br, 1H, Hi), 2.17 (m, 

2H, CH2C*),1.96 (br, 3H, Me), 1.48 (brs, 9H, MetBu), 1.18 (br, 6H, Mei, Mei′). 13C{1H} 
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NMR (125.8 MHz, CDCl3, 298 K, ppm): δ 49.58 (C*), 41.43 (CH2Ph), 33.48 (brs, 

CH2C*), 30.80 (CHi), 28.86 (brs, MetBu). 

Isomer C, 9 %. 1H NMR (500.13 MHz, CDCl3, 298 K, ppm): δ 7.63 - 7.34 (m, 5H, HAr), 

6.22 (br, 1H, NH), 5.49, 5.17, 4.90, 4.71 (4 × d, J = 5.8 Hz, 4H, HA, HB, HA′, HB′), 4.53 

(1H, C*H), 4.11 (AB system, JAB = 11.3 Hz, 2H, CH2Ph), 3.22 (d, J = 10.2 Hz, 1H, 

CH2C*), 2.85 (m, 1H, Hi), 2.69 (pt, J = 11.1 Hz, 1H, CH2C*), 2.13 (s, 3H, Me), 1.44 (s, 

9H, MetBu), 1.28 (m, 6H, Mei, Mei′). 13C{1H} NMR (125.8 MHz, CDCl3, 298 K, ppm): δ 

49.55 (C*), 40.21 (CH2Ph), 35.69 (CH2C*), 29.78 (CHi), 28.36 (MetBu), 18.22 (Me). 

Preparation of the complexes [(η5-C5Me5)Ir(κ3N,O,S-L)][SbF6] (L = L1 (6aSb), 

L2 (7aSb), L3 (8aSb)) and [(η6-p-MeC6H4iPr)Ru(κ3N,O,S-L)][SbF6] (L = L1 

(6bSb), L2 (7bSb), L3 (8bSb)). To a solution of mixtures of 3 and 6Cl or 4 and 7Cl or 

pure 5 (0.25 mmol) in 10 mL of acetone, 85.9 mg (0.25 mmol) of AgSbF6 were added. 

After stirring for 1 h, the AgCl formed was filtered off and the solution was 

concentrated under reduced pressure to ca. 3 mL. The slow addition of Et2O led to the 

precipitation of a yellow solid which was washed with Et2O (3 × 5 mL) and vacuum-

dried. Yield: 6aSb, 72 %; 6bSb, 81 %; 7aSb, 69 %; 7bSb, 73 %; 8aSb, 63 %; 8bSb, 51 

%. 

The iridium complex 8aSb can be alternatively prepared as follows: To a solution of 

[{(η5-C5Me5)IrCl}2(µ-Cl)2] (120.0 mg, 0.15 mmol) in acetonitrile (20 ml), 207.4 mg 

(0.60 mmol) of AgSbF6 and 100 mg of 4Å MS were added. The immediate precipitation 

of a white-grey coloured solid was observed. After stirring at room temperature for 3 h, 

the light yellow solution was filtered and 93.9 mg (0.30 mmol) of S-Bn-NH-Boc-L-Cys 

(7) and 25.3 mg (0.30 mmol) of NaHCO3 were added. After stirring for 1 h, the solvent 

was evaporated and the residue extracted in CH2Cl2 (4 × 5 ml). The resulting solution 

was filtered and the filtrate was concentrated to ca 3 ml. The addition of 20 ml of 
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hexane afforded 8aSb as a yellow solid which was filtered off and vacuum-dried. Yield 

63 %. 

[(η5-C5Me5)Ir(κ3N,O,S-L1)][SbF6] (6aSb). Anal.20 calcd for C20H27F6IrNO2SSb·3H2O, 

%: C, 29.0; H, 4.0; N, 1.7; S, 3.9. Found, %: C, 29.1; H, 3.8; N, 1.4; S, 3.7. IR (solid, 

cm−1): ν(C=O) 1654 (s), 1635 (s), ν(SbF6) 650 (s). CD (acetone, 4.4 × 10−4 M, 298 K): 

λ, nm, (Δε): 335 (−5.22). 

RIr,RC,SS diastereomer. 1H NMR (300.13 MHz, acetone-d6, 298 K, ppm): δ 7.54 - 7.32 

(m, 5H, HAr), 6.32 (br, 1H, NH), 5.40 (br, 1H, NH), 4.32 (brs, 1H, C*H), 4.16 (AB 

system, JAB = 12.9 Hz, 2H, CH2Ph), 2.83 (AB part, ABX system, 

JAB = 14.5 Hz, JAX = 3.7 Hz, 2H, CH2C*), 1.92 (s, 15H, C5Me5). 

13C{1H} NMR (75.47 MHz, acetone-d6, 298 K, ppm): δ 177.00 

(C=O), 132.95, 130.46, 129.18, 128.89 (CAr), 89.52 (5C, C5Me5), 

60.36 (C*), 39.14 (CH2Ph), 31.37 (CH2C*), 8.25 (C5Me5). 

[(η6-p-MeC6H4iPr)Ru(κ3N,O,S-L1)][SbF6] (6bSb). Isomeric ratio: 95/5. Anal. calcd 

for C20H26F6NO2RuSSb, %: C, 35.3; H, 3.9; N, 2.1; S, 4.7. Found, %: C, 35.7; H, 3.9; 

N, 2.0; S, 4.7. IR (solid, cm−1): ν(C=O) 1658 (s), 1623 (s), ν(SbF6) 653 (s). CD 

(acetone, 4.9 × 10−4 M, 298 K): λ, nm, (Δε): 334 (−0.75). 

RRu,RC,SS diastereomer (95 %). 1H NMR (300.13 MHz, acetone-d6, 298 K, ppm): δ 7.58 

- 7.40 (m, 5H, HAr), 6.29 (br, 1H, NH), 5.82, 5.79, 5.58 (3 × d, J = 5.7 Hz, 4H, HA, HB, 

HA′, HB′), 5.17 (br, 1H, NH), 4.11 (AB system, JAB = 12.0 Hz, 

2H, CH2Ph), 3.85 (brs, 1H, C*H), 2.78, 2.51 (2 × m, 3H, Hi, 

ABX system CH2C*), 2.17 (s, 3H, Me), 1.31, 1.29 (2 × d, J = 

4.0 Hz, 6H, Mei, Mei′). 13C{1H} NMR (75.47 MHz, acetone-d6, 
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298 K, ppm): δ 175.81 (C=O), 133.82, 130.42, 129.17, 128.98 (CAr), 106.28, 99.42 (2C, 

Cp-cymene), 84.11, 83.44, 82.49, 82.17 (CHA, CHB, CHA′, CHB′), 59.18 (C*), 41.30 

(CH2Ph), 31.05 (CH2C*), 31.04 (CHi), 21.79, 21.46 (Mei, Mei′), 17.32 (Me). 

RRu,RC,RS diastereomer (5 %). 1H NMR (300.13 MHz, acetone-d6, 298 K, ppm): δ 6.06, 

5.66, 5.50, 4.88 (4 × brs, 4H, HA, HB, HA′, HB′), 4.37 (d, J = 11.3 Hz, 1H, CH2Ph), 4.15 

(1H, CH2Ph), 3.85 (1H, C*H), 1.94 (s, 3H, Me), 1.30 (6H, Mei, Mei′). 13C{1H} NMR 

(75.47 MHz, acetone-d6, 298 K, ppm): δ 59.08 (C*), 17.22 (Me). 

[(η5-C5Me5)Ir(κ3N,O,S-L2)][SbF6] (7aSb). Anal. calcd for C21H29F6IrNO2SSb, %: C, 

32.0; H, 3.7; N, 1.8; S, 4.1. Found, %: C, 32.4; H, 3.9; N, 1.8; S, 3.8. IR (solid, cm−1): 

ν(C=O) 1655 (s), 1635 (s), ν(SbF6) 651 (s). CD (acetone, 5.0 × 10−4 M, 298 K): λ, nm, 

(Δε): 333 (−4.63). 

RIr,RC,SS diastereomer. 1H NMR (400.16 MHz, acetone-d6, 298 K, ppm): δ 7.43 - 7.27 

(m, 5H, HAr), 6.01 (br, 1H, NH), 5.64 (br, 1H, NH), 4.09 (AB system, JAB = 12.9 Hz, 

2H, CH2Ph), 2.66 (AB part, ABX system, JAB = 14.4 Hz, JAX = 

2.2 Hz, 2H, CH2C*), 1.84 (s, 15H, C5Me5), 1.48 (s, 3H, C*Me). 

13C{1H} NMR (100.6 MHz, acetone-d6, 298 K, ppm): δ 177.58 

(C=O), 132.89, 130.44, 129.17, 128.85 (CAr), 89.46 (C5Me5), 

65.82 (C*), 39.02 (CH2Ph), 35.84 (CH2C*), 22.11 (C*Me), 8.25 (C5Me5). 

[(η6-p-MeC6H4iPr)Ru(κ3N,O,S-L2)][SbF6] (7bSb). Isomeric ratio: ≥ 97/3. Anal.20 

calcd for C21H28F6NO2RuSSb·3H2O, %: C, 33.6; H, 4.5; N, 1.9; S, 4.3. Found, %: C, 

33.2; H, 4.3; N, 1.5; S, 4.1. IR (solid, cm−1): ν(C=O) 1645 (s), ν(SbF6) 652 (s). CD 

(acetone, 4.9 × 10−4 M, 298 K): λ, nm, (Δε): 334 (−1.18). 

RRu,RC,SS diastereomer (≥ 97 %). 1H NMR (400.16 MHz, acetone-d6, 298 K, ppm): δ 

7.52 - 7.27 (m, 5H, HAr), 6.06 (br, 1H, NH), 5.75, 5.58, 5.52, 5.48 (4 × d, J = 5.8 Hz, 
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4H, HA, HB, HA′, HB′), 5.34 (br, 1H, NH), 4.02 (AB system, JAB = 12.0 Hz, 2H, CH2Ph), 

2.68 (sept, J = 6.9 Hz, 1H, Hi), 2.53 (AB part, ABX system, 

JAB = 14.3 Hz, JAX = 2.6 Hz, 2H, CH2C*), 2.10 (s, 3H, Me), 

1.37 (s, 3H, C*Me), 1.23 (br, 6H, Mei, Mei′). 13C{1H} NMR 

(100.6 MHz, acetone-d6, 298 K, ppm): δ 176.51 (C=O), 

133.79, 130.38, 129.17, 128.96 (CAr), 105.86, 100.01 (Cp-cymene), 84.27, 83.60, 82.85, 

81.96 (CHA, CHB, CHA′, CHB′), 64.31 (C*), 41.24 (CH2Ph), 35.98 (CH2C*), 31.07 (CHi), 

22.43 (C*Me), 21.93, 21.31 (2C, Mei, Mei′), 17.17 (Me). 

[(η5-C5Me5)Ir(κ3N,O,S-L3)][SbF6] (8aSb). Anal.20 calcd for C25H35F6IrNO4SSb·H2O, 

%: C, 33.6; H, 4.1; N, 1.6; S, 3.6. Found, %: C, 33.3; H, 4.3; N, 1.9; S, 4.0. IR (solid, 

cm−1): ν(C=OBoc) 1762 (s), 1698 (s), ν(C=O) 1629 (s), ν(SbF6) 651 (s). CD (acetone, 5.1 

× 10−4 M, 298 K): λ, nm, (Δε): 332 (−4.23). 

RIr,RC,SS diastereomer (82 %). 1H NMR (500.13 MHz, CD2Cl2, 298 K, ppm): δ 7.52 - 

7.31 (m, 5H, HAr), 5.69 (brs, 1H, NH), 4.43 (brs, 1H, C*H), 3.96 (brs, 2H, CH2Ph), 2.90 

(AB system, JAB = 13.0 Hz, 2H, CH2C*), 1.84 (s, 15H, C5Me5), 1.61 

(s, 9H, MetBu). 13C{1H} NMR (125.8 MHz, CD2Cl2, 298 K, ppm): δ 

131.88, 130.40, 129.46, 129.30 (4 × brs, CAr), 90.24 (brs, C5Me5), 

64.18 (brs, C*), 39.85 (brs, CH2Ph), 28.13 (brs, CH2C*), 27.72 (brs, 

MetBu), 8.78 (brs, C5Me5). 

Solvate derivative (18 %). 1H NMR (500.13 MHz, CD2Cl2, 298 K, ppm): δ 1.49 (brs, 

9H, MetBu), 1.40 (brs, 15H, C5Me5). 13C{1H} NMR (125.8 MHz, CD2Cl2, 298 K, ppm): δ 

90.14 (brs, C5Me5), 64.18 (brs, C*), 28.01 (brs, MetBu), 7.88 (brs, C5Me5). 

[(η6-p-MeC6H4iPr)Ru(κ3N,O,S-L3)][SbF6] (8bSb). Anal. calcd for 

C25H34F6NO4RuSSb, %: C, 38.4; H, 4.4; N, 1.8; S, 4.1. Found, %: C, 38.6; H, 4.5; N, 
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2.0; S, 4.4. IR (solid, cm−1): ν(C=OBoc) 1760 (s), ν(C=O) 1637 (s), ν(SbF6) 653 (s). CD 

(acetone, 5.0 × 10−4 M, 298 K): λ, nm, (Δε): 401 (−2.93). 

RRu,RC,SS diastereomer. 1H NMR (400.16 MHz, acetone-d6, 298 K, ppm)a: δ 7.47 (br, 

1H, NH), 7.34 - 7.22 (m, 5H, HAr), 5.27, 5.13, 5.01 (3 × br, 4H, HA, HB, HA′, HB′), 3.84 

(AB system, JAB = 11.5 Hz, 2H, CH2Ph), 3.67 (br, 1H, C*H), 

2.59 (AB system, JAB = 15.2 Hz, 2H, CH2C*), 2.49 (m, 1H, Hi), 

1.94 (s, 3H, Me), 1.43 (s, 9H, MetBu) 1.07, 1.05 (2 × d, J = 6.6 

Hz, 6H, Mei, Mei′). 13C{1H} NMR (100.6 MHz, acetone-d6, 298 

K, ppm): δ 177.10 (C=O), 132.92, 130.28, 129.28, 129.12 (6C, CAr), 107.02, 99.08 (2C, 

Cp-cymene), 84.12, 83.21, 82.26, 81.88 (4C, CHA, CHB, CHA′, CHB′), 58.97 (C*), 41.51 

(CH2Ph), 31.81 (CH2C*), 31.01 (3C, MetBu), 28.17 (CHi), 22.17, 21.90 (2C, Mei, Mei′), 

17.77 (Me). 

Preparation of the complexes [(η5-C5Me5)Ir(κ3N,O,S-L3−H)] (9a) and [(η6-p-

MeC6H4iPr)Ru(κ3N,O,S-L3−H)] (9b). At room temperature, to a suspension of the 

corresponding 8Sb complex (0.17 mmol), 14.3 mg (0.17 mmol) of NaHCO3 were 

added. The suspension was vigorously stirred for 3 h and then was concentrated under 

reduced pressure until dryness. The residue was extracted with CH2Cl2 (4 × 5 mL) and 

the resulting solution was concentrated under reduced pressure to ca. 1 mL. The slow 

addition of n-hexane led to the precipitation of a yellow solid which was washed with n-

hexane (4 × 5 mL) and vacuum-dried. Yield: 65 % (9a), 72 % (9b). Alternatively, 

complexes 9a and 9b can be prepared as follows: at 298 K, to a suspension of the 

corresponding dimer [{(ηn-ring)MCl}2(μ-Cl)2] (0.32 mmol), in 10 mL of MeOH, 201.5 

mg (0.64 mmol) of HL3 were added. The resulting yellow (Ir) or orange (Ru) solution 

was stirred for 15 min and then 108.7 mg (1.29 mmol) of NaHCO3 were added. The 

resulting suspension was vigorously stirred for 2 h and then was concentrated under 
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reduced pressure until dryness. The residue was extracted with CH2Cl2 (4 × 5 mL) and 

the resulting solution was concentrated under reduced pressure to ca. 3 mL. The slow 

addition of n-hexane led to the precipitation of a yellow (Ir) or orange (Ru) solid which 

was washed with n-hexane (4 × 5 mL) and vacuum-dried. Yield: 56 % (9a), 73 % (9b). 

[(η5-C5Me5)Ir(κ3N,O,S-L3-H)] (9a). Anal.20 calcd for C25H34IrNO4S·H2O, %: C, 45.8; 

H, 5.5; N, 2.1; S, 4.9. Found, %: C, 45.7; H, 5.4; N, 2.2; S, 4.9. IR (solid, cm−1): 

ν(C=OBoc) 1763 (s), ν(C=O) 1642 (s). CD (acetone, 3.2 × 10−4 M, 298 K): λ, nm, (Δε): 

352 (−4.01). 

RIr,RC diastereomers. 1H NMR (500.13 MHz, CDCl3, 298 K, ppm): δ 7.40 - 7.31 (m, 5H, 

HAr), 5.07 (br, 1H, C*H), 3.97 (AB system, JAB = 13.4 Hz, 2H, CH2Ph), 

2.14 (dd, J = 13.0, 4.5 Hz, 1H, CH2C*), 1.96 (dd, J = 13.0, 0.8 Hz, 1H, 

CH2C*), 1.93 (s, 15H, C5Me5), 1.39 (s, 9H, MetBu). 13C{1H} NMR (125.8 

MHz, CDCl3, 298 K, ppm): δ 181.22 (C=O), 177.60 (C=OBoc), 133.96, 

130.01, 129.07, 128.45 (CAr), 110.07 (C5Me5), 87.94 (CtBu), 68.77 (C*), 39.80 (CH2Ph), 

32.00 (CH2C*), 28.69 (MetBu) 9.40 (C5Me5). 

[(η6-p-MeC6H4iPr)Ru(κ3N,O,S-L3-H)] (9b). Isomeric ratio: 68/32. Anal. calcd for 

C25H33NO4RuS·H2O, %: C, 53.3; H, 6.2; N, 2.5; S, 5.7. Found, %: C, 53.5; H, 5.8; N, 

2.7; S, 5.7. IR (solid, cm−1): ν(C=O) 1623 (s). 

RRu,RC,SS diastereomer (68 %). 1H NMR (500.13 MHz, CDCl3, 223 

K, ppm): δ 7.57 - 7.34 (m, 5H, HAr), 5.81, 5.31, 4.75, 3.40 (4 × d, J = 

5.2 Hz, 4H, HA, HB, HA′, HB′), 4.71 (d, J = 4.4 Hz, 1H, C*H), 4.00 (d, 

J = 5.2 Hz, 1H, CH2Ph), 3.64 - 3.46 (m, 2H, CH2Ph, Hi), 2.34 - 1.99 

(m, 2H, CH2C*), 2.18 (s, 3H, Me), 1.51 (brs, 9H, MetBu) 1.23, 1.18 (2 × d, J = 6.8 Hz, 

6H, Mei, Mei′). 13C{1H} NMR (125.8 MHz, CDCl3, 223 K, ppm): δ 180.86 (C=O), 

161.30 (C=OBoc), 134.52, 130.50, 129.20, 129.15 (CAr), 101.73, 98.02 (Cp-cymene), 84.24, 
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83.80, 81.89, 79.38 (CHA, CHB, CHA′, CHB′), 78.04 (CtBu), 65.57 (C*), 41.23 (CH2Ph), 

32.57 (CH2C*), 31.09 (CHi), 29.13 (MetBu), 25.06 (Me), 19.65, 18.29 (Mei, Mei′). 

RRu,RC,RS diastereomer (32 %). 1H NMR (500.13 MHz, CDCl3, 223 K, ppm): δ 7.57 - 

7.34 (m, 5H, HAr), 6.02, 4.91, 4.87, 3.26 (4 × d, J = 5.2 Hz, 4H, HA, HB, HA′, HB′), 4.80 

(d, J = 4.4 Hz, 1H, C*H), 4.00 (d, J = 5.2 Hz, 1H, CH2Ph), 3.64 - 3.46 (m, 1H, CH2Ph), 

2.73 (sept, J = 6.7 Hz, 1H, Hi), 2.34 - 1.99 (m, 2H, CH2C*), 1.76 (s, 3H, Me), 1.35 (brs, 

9H, MetBu) 0.98 (d, J = 6.3 Hz, 3H, Mei), 0.89 (d, J = 5.5 Hz, 3H, Mei′). 13C{1H} NMR 

(125.8 MHz, CDCl3, 223 K, ppm): δ 180.62 (C=O), 160.99 (C=OBoc), 134.67, 130.31, 

129.28, 129.15 (CAr), 106.06, 92.38 (Cp-cymene), 86.04, 84.75, 81.10, 77.07 (CHA, CHB, 

CHA′, CHB′), 77.95 (CtBu), 65.41 (C*), 40.97 (CH2Ph), 33.44 (CH2C*), 31.06 (CHi), 

28.78 (MetBu), 24.47 (Me), 20.24, 19.12 (Mei, Mei′). 

Crystal Structure Determination of Complex 6aSb 

X-Ray diffraction data were collected at 100(2) K with graphite-monochromated Mo 

Kα radiation (λ = 0.71073 Å) using narrow ω rotations (0.3 º) on a Bruker SMART 

APEX diffractometer. Intensities were integrated and corrected for absorption effects 

with SAINT-PLUS21 and SADABS22 programs. The structure was solved by direct 

methods with SHEXLS-201323 and refined by full-matrix least-squares refinement on 

F2 with SHELXL-2014.24 The absolute configuration was determined on the basis of the 

previously known internal references, and this assignment was confirmed using the 

Flack parameter.25 

Crystal data for complex 6aSb: C20H27F6IrNO2SSb; M = 773.44; yellow prism, 0.140 × 

0.161 × 0.240 mm3; orthorhombic, P212121; a = 8.6130(4) Å, b = 14.4659(6) Å, c = 

19.2824(8) Å; Z = 4; V = 2392.52(18) Å3; Dc = 2.147 g/cm3; μ = 6.837 mm-1; min. and 

max. absorption correction factors 0.293 and 0.422; 2θmax = 57.18º; 34612 collected 
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reflections, 5816 unique reflections; Rint = 0.0202; number of data/restraint/parameters 

5816/2/340; final GoF 1.116; R1 = 0.0137 [5764 reflections, I >2 σ(I)]; wR2 = 0.337 all 

data; Flack parameter x = −0.0051(15); largest difference peak 0.908 e·Å−3. Hydrogen 

atoms (except those of methyl groups) have been included in the model in observed 

positions and freely refined. Two geometrical restraints in a C-H and an N-H bond 

lengths have been included in the refinement. 
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Modified cysteines display five distinct coordination modes towards (C5Me5)Ir and (η6-

p-MeC6H4iPr)Ru moieties. From spectroscopic and crystallographic data, the absolute 

configuration of the resulting quiral compounds has been established. 
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