
1

Thread Assignment in Multicore/Multithreaded
Processors: A Statistical Approach

Petar Radojković, Paul M. Carpenter, Miquel Moretó, Vladimir Čakarević, Javier Verdú, Alex Pajuelo,
Francisco J. Cazorla, Mario Nemirovsky and Mateo Valero, Fellow, IEEE

Abstract—The introduction of multicore/multithreaded processors, comprised of a large number of hardware contexts (virtual
CPUs) that share resources at multiple levels, has made process scheduling, in particular assignment of running threads to
available hardware contexts, an important aspect of system performance. Nevertheless, thread assignment of applications
running on state-of-the art processors is an NP-complete problem.
Over the years, numerous studies have proposed heuristic-based algorithms for thread assignment. Since the thread assignment
problem is intractable, it is in general impossible to know the performance of the optimal assignment, so the room for improvement
of a given algorithm is also unknown. It is therefore hard to decide whether to invest more effort and time to improve an algorithm
that may already be close to optimal.
In this paper, we present a statistical approach to the thread assignment problem. First, we present a method that predicts the
performance of the optimal thread assignment, based on the observed performance of each thread assignment in a random
sample. The method is based on Extreme Value Theory (EVT), a branch of statistics that analyses extreme deviations from the
population mean. We also propose sample pruning, a method that significantly reduces the time required to apply the statistical
method by reducing the number of candidate solutions that need to be measured. Finally, we show that, if no suitable heuristic-
based algorithm is available, a sample of several thousand random thread assignments is enough to obtain, with high confidence,
an assignment with performance close to optimal. The presented approach is architecture and application independent, and it
can be used to address the thread assignment problem in various domains. It is especially well suited for systems in which the
workload seldom changes. An example is network systems, which typically provide a constant set of services that are known
in advance, with network applications performing a similar processing algorithm for each packet in the system. In this paper,
we validate our methods with an industrial case study for a set of multithreaded network applications on an UltraSPARC T2
processor. This article is an extension of our previous work [44], which was published in Proceedings of 17th International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS-2012).

Index Terms—Scheduling, Thread assignment, Multithreading, Statistical estimation, Extreme value theory

F

1 INTRODUCTION
Multithreaded processors1 are comprised of several cores
executing threads that share resources at multiple lev-
els [57]. For example, in a CMP processor where each core
supports concurrent execution of several threads through
SMT, all simultaneously running threads share global re-
sources such as the last level of cache and the I/O. In
addition to this, threads running in the same core share
core resources such as the Instruction Fetch Unit, and the
L1 instruction and data caches. Therefore, the way that
threads are assigned to cores determines which resources
they share, and this, in turn, may significantly affect the

• P. Radojković, P. M. Carpenter, M. Moretó, and V. Čakarević
are with Barcelona Supercomputing Center (BSC), Barcelona,
Spain. email: {petar.radojkovic, paul.carpenter, miquel.moreto,
vladimir.cakarevic}@bsc.es

• J. Verdú and A. Pajuelo are with UPC, Barcelona, Spain. email:
{jverdu, mpajuelo}@ac.upc.edu

• F. Cazorla is Scientific Researcher in the Spanish National Research
Council (IIIA-CSIC) and with BSC, Barcelona, Spain. email: fran-
cisco.cazorla@bsc.es

• M. Nemirovsky is ICREA Research Professor and with BSC, Barcelona,
Spain. email: mario.nemirovsky@bsc.es

• M. Valero is with UPC and BSC, Barcelona, Spain. email: ma-
teo@ac.upc.edu

1. In this paper, the term “multithreaded processor” refers to any
processor that has support for more than one thread running at a time. Chip
Multiprocessors (CMPs), Simultaneous Multithreading (SMT), Coarse-
grain Multithreading, Fine-Grain Multithreading processors, or any com-
bination of them are multithreaded processors.

system performance. In processors with several levels of
resource sharing, thread scheduling is comprised of two
steps. In the first step, usually called workload selection,
the OS selects the set of threads (workload) that will be
executed in the processor in the next time slice, from a set
of ready-to-run threads. In the second step, called thread
assignment, each thread in the workload is assigned to a
hardware context (virtual CPU) of the processor.

Dynamic thread scheduling may potentially vary the
amount of processing time made available to applications
during their execution, which can significantly affect the
performance of HPC applications [24][40] and reduce the
performance provided by commercial network processors.
Since maximizing the amount of computation power deliv-
ered to running parallel applications is critical to achieving
high performance and scalability, many commercial sys-
tems already use Lightweight Kernels (LWKs) with static
scheduling, such as CNK [50] in BlueGene HPC systems,
and Netra DPS [2] which is mainly used in networking.

LWKs with static scheduling are especially well suited
for network systems. Typically, these systems provide a
constant set of services which is known in advance, and
network applications generally perform a similar processing
algorithm for each packet in the system. Therefore, in a
networking environment, the workload is typically known
beforehand, and it changes infrequently at runtime. In these
systems, dynamic thread scheduling is not indispensable,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/93126943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

and the main scheduling decision is to determine a good
assignment of concurrently-running threads. In general, in
systems in which the workload seldom changes, finding
a good thread assignment becomes the most important
process scheduling problem.

In state-of-the-art multithreaded processors, finding an
optimal thread assignment is an intractable problem. It is
NP-complete even for simplified models of the applications
and system architecture [22]. The problem is especially
complicated when the number of hardware contexts (virtual
CPUs) is large, or when processor resources are shared at
multiple levels [47][57]. In this case, it is hard to predict
the impact of resource sharing on system performance, as
shown by several studies in diverse application domains;
e.g. parallel applications on massive multithreaded proces-
sors [47], multiple applications running on SMTs [16],
and data centre applications on commodity CPUs [55]. As
the number of possible thread assignments is vast (e.g.
1050) [16][18][29][45], and increases rapidly, both with
the number of threads and with the number of hardware
contexts, it is impractical to use exhaustive search to find
the optimal thread assignment.

Over the years, numerous studies (see Section 7) have
proposed heuristic-based algorithms to address the thread
assignment problem. Since the thread assignment problem
is intractable, it is in general impossible to know the
performance of the optimal assignment, so the room for
improvement of a given algorithm is also unknown. It is
therefore hard to decide whether to invest effort to try
to improve an algorithm that may already be close to
optimal.

In this paper, we present a statistical approach to the
thread assignment problem. First, we present a method that
predicts the performance of the optimal thread assignment
based on the observed performance of each thread assign-
ment in a random sample. This method is based on Extreme
Value Theory (EVT), a branch of statistics that analyses
extreme deviations from the population median. We also
propose and evaluate sample pruning, a method that reduces
the number of random thread assignments that need to be
executed on the target platform, which in turn reduces the
time needed for the overall analysis. Finally, we show that
the performance of the best observed thread assignment in
a random sample is likely to be close to optimal, so if
no suitable heuristic-based algorithm is available, a good
thread assignment could be found using random sampling
on its own. This paper extends our previous work [44], as
discussed in Section 7.

EVT is an important branch of statistics, which has
found multiple applications in civil engineering, finance and
emergency planning. It provides many powerful theorems
and tools, but its application in computer science and
engineering is marginal. The statistical approach described
in this paper can be applied to other intractable problems in
many diverse fields of computer science and engineering. In
fact, we have already applied it successfully to compilation
of multithreaded streaming applications [43]. The statistical
analysis infers the population maximum (or minimum)

based on a random sample, in a way that is independent of
the problem being addressed. As such, it does not require
a profound understanding of the target system, so it can be
employed without a significant investment in effort or time.
The method is particularly useful in the evaluation of any
new proposed heuristics-based algorithm.

The rest of this paper is organized as follows. Sec-
tion 2 describes the application domain and motivates the
need for static thread assignment. Section 3 presents the
experimental environment used in our study. Section 4
presents the statistical method that estimates the optimal
system performance, with an emphasis on understanding
and intuition. Section 5 proposes sample pruning, which
reduces the time needed to apply the statistical method.
Section 6 presents the random sampling method, which can
find a good solution when no suitable heuristic is available.
Section 7 describes the related work, and Section 8 presents
the conclusions. Finally, Appendix includes detailed de-
scription of the benchmarks and the statistical method.

2 BACKGROUND
In this paper, we focus on the problem of thread assignment
for network applications running on multithreaded proces-
sors. Network applications are increasing in importance,
with the increasing number and complexity of Internet
services, and the tremendous growth in Internet traffic.
Providing high-performance network services is critical
to sustaining online services and avoiding packet drop,
since network processors are saturated by the high network
bandwidth, and it is constantly increasing.

In order to provide high throughput and low latency,
network applications impose specific requirements on the
hardware and operating system. Network applications ex-
hibit significant parallelism at multiple levels [58], so
they are well suited to run on massively multithreaded
processors. These processors are able to process numerous
packets concurrently, through the simultaneous execution
of a large number of hardware contexts.

Network-oriented systems require run-time environments
that provide high performance, high-speed packet process-
ing and predictable execution time. To that end, these sys-
tems use low-overhead low-noise run-time environments,
which reduce the performance impact of system overhead
incurred by management threads [2]. Such runtime envi-
ronments reduce system overhead by providing only the
essential system services. One feature omitted by several
widely used lightweight runtime environments is dynamic
thread scheduling.

In networking environments, threads are typically
mapped to hardware contexts statically, i.e. before runtime.
This is because network applications typically perform
a fixed processing algorithm, applied to each packet that
arrives, which is known beforehand and seldom changes
over time.

Optimal thread assignment requires a deep knowledge
of the resource requirements of the various threads and an
understanding of how the threads interact at each shared
processor resource. It is difficult to determine the optimal

3

thread assignment without running many experiments, the
number of which rapidly increases with the number of hard-
ware contexts, amount of resource sharing, and the number
of concurrently running threads. The problem is even harder
when the applications themselves are multithreaded, since
to determine the bottlenecks, the designer must be aware
of how the threads communicate.

Thread assignment is typically done in one of three ways:

(1) Manual assignment: A skilled designer determines
a good thread assignment based on a detailed analysis
of the target architecture and offline profiling [57]. The
analysis is complex, and its complexity increases with the
number of processor hardware contexts, number of levels
of resource sharing, and number of simultaneously running
threads. Manual thread assignment is expensive and time
consuming, and any change in the application or hardware
platform requires the whole analysis to be repeated.

(2) Performance predictors: Numerous studies propose
methods to predict the performance of different thread
assignments for a given workload, based on architecture-
dependent heuristics (see Section 7). Since the number of
possible thread assignments is huge, it is infeasible to pre-
dict the performance of all assignments. The predictors are
therefore used to estimate performance for a sample of as-
signments and determine the best assignment in the sample.
In addition, the predictors introduce an error when estimat-
ing performance, so the assignment with the best predicted
performance may not be the actual best one. Another draw-
back of most currently-available performance predictors is
that they do not support multithreaded applications.

In both, manual thread assignment and performance pre-
dictors, a change in architecture or workload may require
significant extra time and effort to recalculate the thread
assignment. When thread assignment is done manually, the
designer must repeat the analysis. When using performance
predictors, the prediction algorithm may require significant
changes.

(3) Load balancing and cache affinity: State-of-the-
art fully-fledged OSs, such as Linux and Solaris, use a
load balancing mechanism [3][56] to equally distribute the
load of the running threads among all available scheduling
domains (e.g. cores of the CMP architecture). In addition,
cache and TLB affinity algorithms [3][56] keep each thread
assigned to a single logical CPU in order to avoid cache
and TLB misses that would be caused by thread migration.
Although these techniques improve performance, they are
insufficient to fully exploit the capabilities of current multi-
threaded processors with several levels of resource sharing.
Load balancing does not take into account the differing
amounts of processor resources used by the various co-
running threads, and therefore it may ignore the best
schedules, considering them to be “unbalanced” [16]. In our
previous studies [44][45][46], we evaluate load-balancing
thread assignment for networking applications running on
the UltraSPARC T2 processor, measuring a significant
performance loss compared with the optimal assignment,
of up to 48%.

Hardware

Pipeline 0
IFU IFU

LSU

L1 Instruction Cache

L1 Data Cache

DTLB

ITLB

Hardware

Pipeline 1

Core 0 Core 1 Core 7

.
.
.
.
.

.
.
.
.
.

Crossbar

I/O L2 Cache

IEU IEU

Hardware

Pipeline 0
IFU IFU

LSU

L1 Instruction Cache

L1 Data Cache

DTLB

ITLB

Hardware

Pipeline 1

Core 0 Core 1 Core 7

.
.
.
.
.

.
.
.
.
.

Crossbar

I/O L2 Cache

IEU IEU

Fig. 1. Schematic view of the three resource sharing
levels of the UltraSPARC T2 processor

Importance of knowing the optimal system perfor-
mance. Numerous studies present algorithms for thread
assignment on multithreaded processors (see Section 7). A
new proposal would, in an ideal world, be compared with
the optimal solution, but, in general, the optimal cannot be
found without running all valid thread assignments. Several
authors [4][18][45], therefore, verify their proposals with
respect to either a naive thread assignment, in which threads
are randomly assigned to the virtual CPUs of the processor,
or Linux-like assignments, in which the number of threads
per core or per scheduling domain is balanced. It is our
position that the evaluation of these proposals would be
significantly improved if they were compared to an estimate
of the optimum. This argument is described in more detail
in the ASPLOS publication [44].

3 EXPERIMENTAL ENVIRONMENT AND
METHODOLOGY
We evaluated the statistical analysis using multithreaded
network applications running in a real industrial environ-
ment. We used two SPARC Enterprise T5220 servers, each
of which contained one UltraSPARC T2 processor. One
T5220 machine generated the network traffic using the
Oracle Network Traffic Generator (NTGen) [2]. NTGen is
a software tool that produces IPv4 TCP/UDP packets, with
a set of configuration parameters controlling various packet
header fields. This machine was connected via a 10Gb link
to the second T5220 machine, on which we executed the
selected thread assignments. In all experiments presented
in the study, we verified that NTGen generated sufficient
traffic to saturate the network processing machine. The
performance bottleneck was therefore the packet processing
speed, which is determined by the performance of the
selected thread assignment.

3.1 UltraSPARC T2 processor
The UltraSPARC T2 is a multithreaded processor [1] with
eight cores connected through a crossbar to a shared L2
cache (see Fig. 1). Each core supports eight hardware
contexts, four on each execution pipeline, giving a total of
64 hardware contexts for the entire processor. Threads may,
therefore, share (and compete for) hardware resources at
three different levels: IntraPipe, IntraCore, and InterCore.
Resources at the IntraPipe level, such as the Instruction
Fetch Unit (IFU) and the Integer Execution Units (IEU),
are shared among threads running in the same hardware

4

pipeline. The IntraCore resources, such as the Load Store
Unit (LSU), L1 instruction cache, L1 data cache, data and
instruction TLBs, as well as Floating Point and Graphic
Unit (FPU), and Cryptographic Processing Unit, are shared
among threads running on the same core. Finally, the
InterCore resources, including the L2 cache, on-chip in-
terconnection network (crossbar), memory controllers, and
the interface to off-chip resources, are shared among all
threads running on the processor [57].

3.2 Netra DPS
Networking systems use lightweight runtime environments
to reduce the overhead that would be introduced by a fully-
fledged OS [42]. One of these environments is Oracle’s
Netra DPS [2]. In order to reduce overhead and noise,
Netra DPS omits certain common OS features, includ-
ing virtual memory, interrupt handling, daemons, context
switching, and the run-time process scheduler. A thread
always runs to completion on its assigned hardware context,
without preemption. The assignment of running threads to
processor hardware contexts (virtual CPUs) must therefore
be performed statically at compile time. It is the responsi-
bility of the programmer or toolchain to determine which
hardware context will execute each particular thread.

3.3 Benchmarks
This section briefly describes the benchmarks that we used
in this study. Detailed presentation of the benchmarks
is included in Appendix A. Note that, since Netra DPS
omits standard OS features including dynamic memory
allocation and file management, we had to adapt some of
the benchmarks to execute in this environment.

The benchmarks used are described next:
(1) IP Forwarding (IPFwd) application decides where

to forward a packet for the next hop based on the destination
IP address. Depending on the size of the lookup table
and destination IP addresses of the packets that are to
be processed, IPFwd may exhibit significantly different
memory behavior. In order to cover different cases of
IPFwd memory behavior, we created two variants of the
IPFwd application, both based on the IPFwd application
included in the Netra DPS distribution [2]: (i) The lookup
table fits in the L1 data cache (IPFwd-L1); (ii) The lookup
table entries are initialized to make IPFwd continuously
access the main memory (IPFwd-Mem benchmark).

(2) Packet analyzer is a program that can intercept and
log traffic passing over a network or part of a network [15].
The packet analyzer used in the experiments captures
each packet that passes through the Network Interface
Unit (NIU), decodes the packet, and analyzes its content
according to the appropriate RFC specifications.

(3) Aho-Corasick is a string matching algorithm. String
matching is the basic technique to analyze network traffic
at the application layer. In the experiments presented in this
paper, we used the Aho-Corasick algorithm to search the
packet payloads for the keywords in the Snort Denial-of-
Service set of intrusion detection rules (version 2.9).

Memory Queue

Network

Interface UnitR

P Memory Queue

TNetwork

Interface Unit

Network

Interface Unit

Network

Interface

Unit

Traffic from

NTGen

Fig. 2. The schematic view of the benchmarks

(4) Stateful packet processing is an important com-
ponent of state-of-the-art network monitoring tools and
intrusion prevention and detection systems. Unlike stateless
applications, which process packets independently (exam-
ples include the IPFwd, Packet analyzer, and Aho-Corasick
benchmarks above), stateful packet processing keeps infor-
mation from the processing of previous packets.

Benchmark implementation: As shown in Fig. 2, each
benchmark is divided into three threads: Receiving (R),
Processing (P), and Transmitting (T). R, P, and T threads
communicate through memory queues and process network
packets in a pipelined fashion. The workload consists of
several benchmark instances running concurrently, each of
which has the R, P, and T threads. This is a common way
to implement network applications [2][62].

Summary: The presented benchmarks represent a good
testbed for the analysis of thread assignment techniques
because:

(1) Each benchmark instance has three different threads,
so even when the workload consists of several instances of
the same benchmark, the system must deal with heteroge-
neous threads.

(2) The benchmarks stress the hardware resources of the
UltraSPARC T2 processor at all three sharing levels [57].

(3) Each benchmark instance has threads that communi-
cate through shared memory queues. The benchmark per-
formance also depends on the distribution of interconnected
threads among processor cores (L1 cache domains).

(4) Thread assignment has a significant impact on per-
formance. We detect performance variation of up to 49%
between different thread assignments of the same workload.

3.4 EVT requirements and sampling methods
EVT has two main prerequisites, which should be vali-
dated before applying the theory to a particular real-life
problem [25]. The first prerequisite is that the sample
under study is comprised of independent and identically
distributed (i.i.d.) observations. The second prerequisite is
that the probability distribution of the statistics under study
should be continuous. These requirements and the statistical
tests used for their evaluation are discussed in detail in
Appendix B.2.

3.5 Methodology
In all experiments, we simultaneously executed eight
benchmark instances, giving 24 threads. We could not
execute more than eight benchmark instances because of
a limitation in the experimental environment: the on-chip
Network Interface Unit (NIU) of the UltraSPARC T2
processor can split the incoming network traffic into up

5

to eight DMA channels, and, under Netra DPS, each DMA
channel can be bound to at most one receiving thread.

In order to ensure stable results, we measured the
execution time to process three million network packets
per benchmark instance. This means that each application
thread had a loop that executed three million times. The
execution time of each experiment was around 1.5 seconds,
with the precise duration depending on the benchmark and
on the performance of the thread assignment under test.

4 ESTIMATION OF THE OPTIMAL PERFOR-
MANCE – POT METHOD
The best way to evaluate any thread assignment approach
is to compare the performance of the thread assignment
provided by the approach with the performance of the op-
timal assignment, i.e. with the optimal system performance.
The difference in performance gives the maximum potential
for improvement of the proposed scheduling approach.
Since thread assignment is NP-complete and the number
of possible thread assignments is vast, the optimal system
performance cannot be determined [29]. In this paper,
we propose using statistical inference methods to estimate
the optimal system performance, based on the measured
performance of a sample of random thread assignments.

4.1 Peak Over Threshold (POT) method
We estimate the performance of the optimal thread as-
signment using Extreme Value Theory (EVT). EVT is a
branch of statistics that studies extreme deviations from the
population median [7][10]. One of the EVT approaches is
the Peak Over Threshold (POT) method. The POT method
takes into account the distribution of the observations that
exceed a given (high) threshold. For example, in Fig. 3, the
observations x1, x4, x5, and x7 exceed the threshold u and
constitute extreme values that can be used in POT analysis.

The POT method can be explained using the cumulative
distribution function (CDF). For example, assume that F
is the CDF of a random variable X , which is defined as
F (x) = P(X ≤ x). The POT method can be used to
estimate the cumulative distribution function Fu of values
of x above a certain threshold u. The function Fu is called
the conditional excess distribution function and it is defined
as:

Fu(y) = P(X − u ≤ y | X > u), 0 ≤ y ≤ xF − u,

where X is the observed random variable, u is the
threshold, y = x − u are the exceedances over the
threshold, and xF ≤ ∞ is the right endpoint of the
cumulative distribution function F . Fig. 4 shows the
CDF of a random variable X (upper chart) and the
corresponding conditional excess distribution function
Fu(y) (lower chart).

The POT method is based on the Pickands-Balkema-
de Haan theorem [6][41]:

Theorem 1: For a large class of underlying distribution
functions F , the conditional excess distribution function

Performance

Observations

Fig. 3. Extreme values over the threshold u

0

1

0

1

Fig. 4. Cumulative distribution function F (x) and corre-
sponding conditional excess distribution function Fu(y)

Fu(y), for u large, is well approximated by Generalized
Pareto Distribution Gξ,σ(y) where

Gξ,σ(y) =

{
1− (1 + ξ

σy)
−1/ξ for ξ 6= 0

1− e−y/σ for ξ = 0

for y ∈ [0, (xF − u)] if ξ ≥ 0 and y ∈ [0,−σξ] if ξ < 0.

4.2 Application of POT to thread assignment
Theorem 1 means that the Fu of numerous distributions that
present real-life problems can be approximated with GPD.
For each particular problem, the decision as to whether
GPD can be used to model the problem, is made based on
how well the sample of observations can be fitted to Gener-
alized Pareto Distribution (GPD). GPD is defined with two
parameters: shape parameter ξ and scaling parameter σ. An
important characteristic of GPD used in this study is that
for ξ < 0, the upper bound of the observed value (in our
study, the performance of the optimal thread assignment)
can be computed as u − σ

ξ , where u is the selected
threshold and σ and ξ are the GPD parameters [23][30].

We use the POT method to estimate the optimal system
performance, i.e. the performance of the optimal thread
assignment, for a given workload based on the measured
performance of the sample of random thread assignments.
Application of POT method to the thread assignment prob-
lem is explained in detail in Appendix B. In this section,
we present a brief intuitive overview of the main steps of
the analysis.

The application of the POT method to the thread assign-
ment problem involves the following four steps:

Step 1: Generate the sample of random thread assign-
ments, execute the assignments on the target machine,
and measure the performance of each assignment. The
method used to generate random thread assignments and

6

0%

5%

10%

15%

20%

Number of random thread assignments in the sample

Es
tim

at
ed

 p
er

fo
rm

an
ce

im

pr
ov

em
en

t [
%

]

0%

5%

10%

15%

20%

 Number of random thread assignments in the sample

Es
tim

at
ed

 p
er

fo
rm

a n
ce

im

pr
ov

em
en

t [
%

]

(a) Aho-Corasick benchmark (b) IPFwd-L1 benchmark

Fig. 5. Impact of the sample size on the estimation of the optimal performance

experimental methodology are described in detail in Ap-
pendix B.2 and Section 3.5, respectively.

Step 2: Select the threshold u. Selection of the threshold
u is an important step in POT analysis. In this study, the
threshold u is selected using graphical methods: sample
mean excess plot [23][30] and quantile plot [7][30].

Step 3: Fit the GPD function to the observations that
exceed the threshold and estimate parameters ξ and σ.
Once the threshold u is selected, the observations over
the threshold can be fitted to GPD, and the parameters of
the distribution can be estimated. Different methods can be
used to estimate the parameters of GPD from a sample of
observations [9][26][27][53]. In our study, GPD parameters
were estimated using the likelihood function, a statistical
method that estimates distribution parameters based on a
set of observations [5].

Step 4: Estimate the optimal system performance, i.e. the
upper performance bound of all thread assignments. The
point estimate of the Upper Performance Bound (UPB) is
computed as ÛPB = u− σ̂/ξ̂, where σ̂ and ξ̂ are estimated
values of the GPD parameters. The upper bound of the
observed value can be determined only for ξ̂ < 0 which is
satisfied for all data sets that are presented in this paper.
In addition to the UPB point estimate, in order to indicate
the confidence of the estimate, we compute the confidence
intervals of the estimated UPB. UPB confidence interval
is computed using likelihood ratio test [5] and Wilks’s
theorem [13][60][61].

4.3 POT Evaluation
This section evaluates the POT statistical method by apply-
ing it to the thread assignment problem for multithreaded
network applications on the UltraSPARC T2 processor.
Also, we determine how many random thread assignments
are required to obtain a precise estimate of the optimal
performance.

4.3.1 Applicability of the POT method to the thread
assignment problem
There are several reasons why the POT method may fail to
produce an estimate. First, the exceedances may not fit to
a GPD. This can be easily detected in Step 2 and Step 3
of the POT analysis (see Appendix B.3). Second, the upper
bound of the estimated optimal performance may diverge
to infinity (ξ ≥ 0). Finally, the estimation of the optimal

system performance (Step 4 of the POT method) is based
on an iterative method that may not converge to a solution
(for more details, see Appendix B.3).

Therefore, the first step of our evaluation is to check
whether or not the POT method is able to produce an
estimate of the optimal performance. For each benchmark,
we generated a uniformly distributed sample of 5,000
random thread assignments and executed them on the
UltraSPARC T2 processor. We then attempted to apply the
POT method to the 5,000 observed performance measure-
ments. The method successfully produced an estimate of
the optimal performance, for all benchmarks under study.

4.3.2 Precision of the estimation
In order to understand how the precision of the estimate
depends on the sample size, we varied the number of thread
assignments in the random sample between 1,000 and
5,000, and estimated the optimal performance for different
sample sizes. Samples that comprise from 1,000 to 4,500
observations are selected as a random subset from the
complete sample of 5,000 thread assignments.

Intuitively, we would expect that, as the sample size is
increased, the precision of the performance estimate would
also increase. In general, larger samples contain more
thread assignments with performance above the threshold,
so that more data values are fitted to the Generalized Pareto
Distribution (GPD), and consequently the estimated GPD
parameters and the optimal performance are all more pre-
cise. This is what we observe. For all the benchmarks used
in the study, we detected that the width of the confidence
bounds reduces as the number of thread assignments in the
sample increases. We also noticed that, as the sample size
increases, the point estimation of the optimal performance
remains roughly the same, and the confidence bounds
converge to this value.

Fig. 5 shows more detail for two illustrative benchmarks:
Aho-Corasick and IPFwd-L1. In each chart, the x-axis
lists the sample size, while the y-axis shows the estimated
performance improvement—the relative difference between
the estimated optimal performance and the actual perfor-
mance of the best thread assignment in the random sample.
The cross markers correspond to the point estimation of
the optimal performance, and the error bars show the
confidence bounds for the 0.95 confidence level.

For the Aho-Corasick benchmark, with 1,000 random

7

1

0

Min measured
performance

Max measured

performance

Step 2: Select the
threshold u

Step

1:

Generate

1000s of random

thread

assignments.

Execute

them

on the

target HW platform. Measure

the

performance.

Step 3: Fit the performanace of thread
assignments over the threshold to the GPD

(at most 5% of the initial sample size)

Step 4: Estimate the optimal system performance
Empirical Cumulative
Distribution Function
Empirical Cumulative
Distribution Function

1

0

Max measured
performance

Step 1: Generate 1000s of random thread assignments.
Predict their performance.

0.5

Min measured
performance

Step 4: Select the
threshold u

Step 5: Fit the performanace of thread
assignments over the threshold to the GPD

(at most 5% of the initial (generated) sample size)

Step 3: Execute the remaining thread
assignments on the target HW platform.
Measure their performance.
Plot the right portion of the eCDF.

Step 2: Disregard predicted
low-performing thread assignments

Step 6: Estimate the optimal system performance
Empirical Cumulative
Distribution Function

(a) Baseline POT algorithm (b) Sample-pruning SP-POT algorithm

Fig. 6. Application of the statistical methods to the thread assignment problem

thread assignments, the width of the 0.95 confidence in-
terval is around 5%, which is still sufficient to estimate
the optimal performance with high precision. On the other
hand, for the IPFwd-L1 benchmark, an estimation based
on 1,000 random thread assignments has wide confidence
bounds of almost 20%, as can be seen in Fig. 5(b). For this
benchmark, precise estimation of the optimal performance
requires at least 2,000 thread assignments. Results for
the IPFwd-Mem, Packet Analyzer, and Stateful benchmarks
follow a similar trend as that of the IPFwd-L1 benchmark
(Fig. 5(b)).

We therefore conclude that the appropriate sample size
for precise estimation of the optimal performance depends
on the benchmark under study. If the user requires a partic-
ular precision, we propose the following iterative method.
The user first generates a small sample, of approximately
1,000 thread assignments, and produces an estimate of the
optimal performance using the POT method. If the precision
of the estimate does not satisfy the user’s requirements,
then the sample size should be increased and the analysis
repeated, until it does.

5 SAMPLE PRUNING – SP-POT METHOD
Our analysis of the time needed for the POT method shows
that most of that time was spent on executing random thread
assignments on the UltraSPARC T2 processor. This section
proposes sample pruning, a method that reduces the time
required for the statistical analysis, by executing a smaller
number of thread assignments on the target machine. We
also present the Sample Pruning POT (SP-POT) method,
which integrates sample pruning into the POT method. We
then evaluate SP-POT performance, finding an eightfold
reduction in analysis time for a negligible difference in the
estimate.

5.1 SP-POT Motivation
The POT method requires performance measurements for
thousands of random thread assignments. Obtaining this
data requires that each thread assignment is executed on
the hardware platform under study, which involves, in
total, a significant amount of execution time. For example,
in our study, executing 5,000 random thread assignments
on the UltraSPARC T2 processor took, depending on the

benchmark, between 1.5 and 2.5 hours. On the other hand,
the remaining steps of the analysis can be completed
in a few minutes: generating 5,000 uniformly distributed
random thread assignments takes less than a minute, and
the POT statistical analysis is done within a similar time.
This means that, in our study, more than 95% of the time
needed for the overall analysis was expended on executing
the random thread assignments on the hardware platform.

In order to examine the opportunity to reduce the exper-
imentation time, we analyze the POT algorithm presented
in Section 4. Fig. 6(a) shows an overview of the POT
algorithm from the perspective of the Empirical Cumulative
Distribution Function (ECDF) of the performance mea-
surements on the hardware platform. The x-axis gives the
performance of the thread assignments, from the minimal
to the maximal observed in the sample. The y-axis is
the fraction of the thread assignments in the sample with
performance less than or equal to the value on the x-axis.

In the POT algorithm, Steps 3 and 4, which fit the
GPD function to the observations then estimate the optimal
system performance, only depend on the thread assignments
that exceed threshold u, as does calculating the confidence
interval using the method described in the appendix. Since
the GPD is fitted to the tail of the distribution, this threshold
is typically chosen at the 95th percentile or above [23][30],
meaning that only about 5% of the thread assignments are
used in Steps 3 and 4 (see Fig. 6(a)). The remaining thread
assignments, which comprise at least 95% of the execution
time, are disregarded from the rest of the analysis.

5.2 Sample Pruning and SP-POT Algorithm
We propose sample pruning, a method that reduces the
number of random thread assignments that need to be
executed on the target platform, which in turn reduces the
time to apply the overall analysis. Both the sample pruning
technique and the enhanced version of the POT algorithm,
which is known as SP-POT, are illustrated in Fig. 6(b). This
figure plots the ECDF of the performance measurements, in
a similar way to Fig. 6(a). Application of the POT statistical
method with sample pruning to the thread assignment
problem is comprised of the following six steps:

Step 1: Generate the sample of random thread assign-
ments, and predict the performance of each of them. The

8

performance of a given thread assignment can be predicted
using a heuristic based on analysis of the application
hardware requirements and properties of the target plat-
form. Previous studies that address the process scheduling
problem for multithreaded processors [20][45][46][51][52]
present several systematic methods to predict the perfor-
mance of workloads executed on multithreaded processors.
Any such method may be used to predict the performance
of the randomly-generated thread assignments.

Step 2: Disregard predicted low-performing thread
assignments. Thread assignments predicted to have low
or medium performance are unlikely to be in the upper
tail of the ECDF, i.e. they are unlikely to be in the 5%
of the best-performing assignments, and therefore unlikely
to be fitted to the GPD. We therefore discard them from
further analysis. In this study, we analyze three levels of
sample pruning, by eliminating the thread assignments with
predicted performance in the bottom 50%, 75%, and 90%,
respectively.

Step 3: Execute the remaining thread assignments on the
target hardware platform, and measure their performance.
These values are used to create the right-hand portion of the
ECDF, as illustrated in Fig. 6(b). This figure shows the case
where 50% of the thread assignments are to be executed
on the real hardware. As before, the x-axis of the ECDF
ranges from the minimal to maximal performance, but as
measured in the pruned sample (the diagram has the same
scale as before only for simplicity in presentation). Since
the ECDF is plotted for the 50% of thread assignments with
medium to high predicted performance, the y-axis ranges
from 0.5 to 1.

Step 4: Select the threshold u.
Step 5: As before, fit the GPD function to the perfor-

mance observations that exceed the threshold, and estimate
parameters ξ and σ.

Step 6: Produce the point estimate and confidence
bounds of the optimal system performance, as before.

Steps 4, 5, and 6 of the SP-POT algorithm, which
includes sample pruning, are exactly the same as Steps 2, 3,
and 4 of the baseline POT algorithm from Section 4
(compare also Fig. 6(a) and 6(b)).

5.3 SP-POT Evaluation
This section evaluates the SP-POT method by applying it
to all the benchmarks under study, in a similar way to the
analysis of the POT method in Section 4.3. The bench-
marks were executed in the environment that comprises
UltraSPARC T2 processor and Netra DPS low-overhead
runtime environment, as described in Section 3. In all
the experiments, we simultaneously executed 24 software
threads, the maximum number that could be executed in
the current experimental environment (see Section 3.5).

In Step 1 of SP-POT algorithm, we predicted the per-
formance of the thread assignments using the BlackBox
scheduler [46]. The BlackBox scheduler is a model that
predicts the performance of different thread assignments
of applications running on multithreaded processors. There
are three principal reasons that motivated us to choose this

4.10

4.12

4.14

4.16

4.18

4.20

No sample
pruning

50% 75% 90%

Millions

Pruning level -
Portion of the random thread assignments that

are disregarded after the performance prediction

Es
tim

at
ed

 p
er

fo
rm

an
ce

 o
f

th
e
op

tim
al

 th
re

ad
 a

ss
in

m
en

t
[P

ac
ke

ts
 P

er
 S

ec
on

d
- P

PS
]

Fig. 7. Sample pruning evaluation (Aho-Corasick)

performance predictor. First, the BlackBox scheduler is one
of the few methods designed to predict the performance
of multithreaded applications. Second, the model can be
easily adapted to different applications, since it requires no
data about the hardware requirements of the applications
under study, nor does it require any modifications to the
application source code. Third, the model requires minimal
information about the target processor architecture and it
can be easily applied to different hardware platforms.

Our analysis has three main goals. First, we evaluate
whether or not the SP-POT algorithm with sample pruning
could produce a performance estimate of the optimal thread
assignment. Second, we quantify the error that is introduced
by sample pruning. Finally, we analyze the speedup in
analysis time, compared with the baseline POT algorithm.

For each of the benchmarks under study, we applied the
SP-POT statistical algorithm to the same sample of 5,000
randomly-generated thread assignments used in Section 4.3.
We applied three levels of sample pruning, at the 50%,
75%, and 90% levels, meaning that the indicated proportion
of thread assignments were discarded, leaving 50%, 25%,
or 10% of them to be executed on the UltraSPARC T2
processor. The SP-POT algorithm successfully estimated the
performance of the optimal thread assignment in all the
experiments.

Fig. 7 quantifies the estimation error introduced by sam-
ple pruning, in the case of the Aho-Corasick benchmark.
This benchmark is representative of our results, since we
observed similar behaviour for all benchmarks under study.
The figure plots the point estimate and confidence bounds
for the baseline POT algorithm, with no sample pruning,
and for the SP-POT algorithm at multiple pruning levels.
The algorithm and pruning levels are indicated on the
x-axis. When 50% or 75% of the thread assignments with
predicted low/mid performance were discarded from the
analysis, the optimal performance estimate matched the
estimation of the baseline POT algorithm. At the 90%
pruning level, i.e. in the experiment in which only 10%
of the generated random thread assignment were executed
on the hardware platform, the error introduced by sample
pruning is still negligible. The error of the point estimation
is 2,100 packets per second (PPS) or 0.05%. The error of
the estimated confidence bound width is 6,700 PPS, which
coresponds to 0.16% of the point estimate.

Finally, we compare the time needed for the overall
statistical analysis with and without sample pruning. Gen-
erating 5,000 random thread assignments required less

9

than a minute. Executing the thread assignments, for the
Aho-Corasick benchmark on the UltraSPARC T2 processor,
required around two hours. Finally, the POT analysis is
done in approximately two minutes. The overall analysis for
the Aho-Corasick benchmark without any sample pruning
therefore required approximately 2 hours and 3 minutes.

Sample pruning did not affect the time needed to generate
the random thread assignments, nor did it affect the time for
the POT statistical analysis. The SP-POT algorithm requires
an additional step: prediction of the performance of each
randomly-generated thread assignment. In our experiments,
the BlackBox scheduler predicted the performance of all
5,000 thread assignments in about two seconds. This time
was roughly the same for all benchmarks under study. On
the other hand, the time required to run the random thread
assignments was roughly proportional to the number of
thread assignments executed, so it reduced significantly. For
example, for the Aho-Corasick benchmark at the 90% prun-
ing level, all experiments on the UltraSPARC T2 processor
were executed in less than 12 minutes. The overall analysis
time using the SP-POT method at the 90% sample pruning
level was therefore around 15 minutes, eight times faster
than the baseline POT method.

The analysis time for a given benchmark depends on
how long it takes to execute on the target hardware plat-
form. Nevertheless, all benchmarks under study gave results
comparable with those presented for Aho-Corasick.

To summarize, the presented case study showed that
sample pruning is a promising way to significantly reduce
the time required to apply the POT method to the thread as-
signment problem. We showed that even aggressive pruning
at the 90% pruning level introduced a negligible estimation
error. In this case, applying the sample pruning technique to
the Aho-Corasick benchmark reduced the overall analysis
time from more than 2 hours to 15 minutes.

5.4 Excessive pruning

Since at most 5% of the best-performing thread assignments
are fitted to the GPD, one may consider a more aggressive
level of pruning, by executing just 5% of the thread
assignments on the target platform. This approach, however,
did not provide a good optimal performance estimate.

The main reason for this was the prediction error of
the BlackBox scheduler. The BlackBox scheduler is a
simplified model, so, like all performance predictors, it is
subject to error. Therefore, some of 5% of the predicted
best-performing thread assignments were not within the
actual best-performing ones. The performance prediction
error of the BlackBox scheduler significantly altered the
shape of the datasets used by the POT statistical method.
The SP-POT method at the 5% level failed to produce a
performance estimate, for all benchmarks under study.

In general, it is important to note that the accuracy of SP-
POT depends on the accuracy of the performance predictor.
Evaluation of multiple performance predictors and their
suitability for sample pruning is an interesting avenue of
future work.

6 RANDOM SAMPLING APPROACH TO
THREAD ASSIGNMENT
In this section, we analyze whether a good thread assign-
ment can be found by taking the best thread assignment
from the random sample. This approach is especially useful
if a heuristic-based algorithm is not available for the user’s
problem. First, we compute the probability that a random
sample of n thread assignments captures at least one of
the p% of the best-performing assignments, where p is
between 0 and 100. We then evaluate the random sampling
approach by comparing its performance with the estimate
of the optimal thread assignment produced by the statistical
techniques.

6.1 Probability that random sampling detects a
good thread assignment
The probability that a sample of random assignments
selected from a vast population contains the assignment
with the optimal performance is low. However, it is not
clear what the probability is that a sample of random
assignments contains at least one of the assignments with
a good performance.

Assume that event A is the probability that a sample
contains at least one thread assignment from the p% of
best-performing assignments. Event A′ is the opposite
of event A, representing the probability that the random
sample contains zero thread assignments from p% of the
best-performing assignments. If the number of possible
thread assignments is large (i.e. the population is large),
the probability that a single assignment is in the lower
(100− p)% of the population is 100−p

100 . We assume that
the sample is selected from a finite population of all thread
assignments using sampling with replacement. Sampling
with replacement means that at any draw, all assignments in
the population are given an equal chance of being drawn,
no matter how often they have already been drawn [14].
In addition to this, we assume that the selected thread
assignments in the sample are mutually independent and
uniformly distributed. Taking into account these assump-
tions, the probability that all n assignments in the sample
are contained in the lower (100− p)% of the population is
computed as: P (A′) = (100−p100)n. As A and A′ are opposite
events, the sum of probabilities that they occur is equal to
1, since P (A) + P (A′) = 1. Therefore, the probability of
the event A can be computed as:

P (A) = 1− P (A′) = 1−
(
100− p
100

)n
We observe that the probability that a sample of random

thread assignments contains at least one of the p% of the
best-performing assignment is independent of the popula-
tion size (i.e. the number of possible thread assignments).
However, we have to be aware that this is valid only for
large populations with uniform sampling, which is satisfied
in the case of thread scheduling problems in state-of-the-art
multithreaded processors [44].

Fig. 8 plots the probability P (A) for the samples
of different size and for different percentages of the

10

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

Pr
ob

ab
ili

ty

Number of thread assignments in a sample
[logarithmic scale]

Percent of the best-performing
thread assignments

10%
5%2%1%

25%

Fig. 8. Probability that a sample contains a thread as-
signment from p% of the best-performing assignments

best-performing thread assignments. The x-axis of the
figure shows the number of assignments in the sample (n),
while the y-axis presents the probability that the sample
contains at least one from p% of the best-performing thread
assignments. The figure shows data for p = 1, 2, 5, 10,
25. We derive three conclusions from Fig. 8. First, that
the probability asymptotically approaches 1 as the number
of thread assignments in the sample increases. Second, as
the fraction of the best-performing assignments decreases
(from 25% to 1% in the figure) the probability approaches
1 slower (more thread assignments are required to reach a
high probability). Finally, we observe that small samples
of below 10 elements are unlikely to capture any thread
assignment from 1%, 2%, and 5% of the best-performing
ones. However, a sample of several hundred random ob-
servations is sufficient to capture at least one of 1% or
2% of the best-performing thread assignments with a very
high probability. This means that, if we assume that 1%
or 2% of the best-performing assignments have a good
performance, simply running several hundred or several
thousand randomly selected thread assignments is sufficient
to capture at least one assignment with a good performance.

6.2 Random Sampling Approach Evaluation
This section evaluates the random sampling approach.
We follow the experimental methodology described in
Section 3, executing the same benchmarks on the
UltraSPARC T2 with the Netra DPS low-overhead runtime
environment. As before, for all benchmarks, we executed
24 software threads, the maximum possible with the current
experimental environment (see Section 3.5).

In order to evaluate the random sampling approach, we
vary the sample size, and compare the maximum observed
performance with the point estimate from the POT method
(with the largest sample size). Fig. 9 shows the results
for the Aho-Corasick benchmark. The sample size varies
along the x-axis of the figure. Dashed vertical lines separate
the results for tens (from 10 to 90), hundreds (from 100
to 900), and thousands (from 1,000 to 5,000) of random
thread assignments. The y-axis shows the relative difference
between the maximal performance captured in the random
sample and the POT point estimate based on the sample of
5,000 thread assignments.

In order to present meaningful results, each experiment
was repeated 100 times, each using a different uniformly
distributed sample. Repeating the experiments 100 times

0%

2%

4%

6%

8%

10%

12%

Aho-Corasick

Number of random thread assignments in the sample

Es
tim

at
ed

pe

rf
or

m
an

ce
 lo

ss
 [%

]

Fig. 9. Impact of sample size on the performance of
the random sampling approach (Aho-Corasick)

was found to be sufficient for statistical analysis of average
behavior. The figure shows the mean performance loss,
compared with the POT point estimate (cross marker),
together with the standard deviation (error bars).

For tens of random thread assignments in the sam-
ple, we detect a moderate performance loss. We also
detect a relatively high deviation, which indicates that
the performance of the best-captured thread assignment is
significantly different for different samples of the same
size. As the sample size increases, the standard deviation
decreases, which means that different samples of the same
size provide similar performance. Also the best captured
performance slowly converges to the estimated optimal
one. Finally, several hundred or several thousand random
thread assignments capture performance that is very close
to the estimated optimal one, with low standard deviation
of between 1% and 2%. We detect the same trend for all
the benchmarks under study. Therefore, we conclude that
uniformly distributed random sampling can be used to find
a good thread assignment. However, we recommend this
method only when the random sample contains at least
several hundred or several thousand assignments.

7 RELATED WORK

Workload Selection: Several approaches addressing the
workload selection problem propose models that predict
the impact on system performance of interference among
co-running tasks. Snavely et al. [51][52] present the SOS
scheduler, which is, to the best of our knowledge, the
first scheduler that uses profile-based information to com-
pose workloads. The SOS scheduler uses hardware per-
formance counters to find schedules that exhibit good
performance. Eyerman and Eeckhout [20] propose the
probabilistic job symbiosis model, which enhances the
SOS scheduler. Based on the cycle accounting architec-
ture [19][36][37], the model estimates the single-threaded
progress for each job in a multithreaded workload. Other
approaches [12][21][31][48] propose techniques to con-
struct workloads of tasks that exhibit good symbiosis in
shared caches solving problems of cache contention.

Zhan et al. [63][64] propose cache management tech-
niques that consider spacial partitioning and replacement

11

policy. First, these techniques maximize the cache utiliza-
tion by spatially partitioning the cache resources between
simultaneously-running threads. The cache replacement
policy for each running thread is adjusted to optimally
utilize its cache resources.

Doucette and Fedorova [17] classify applications on
the basis of their usage of shared processor resources.
The authors co-schedule applications with base vectors
(micro-benchmarks that specifically stress a single CPU
resource), and measure the slowdown that the application
and base vector experience. This data is used to predict the
performance of any set of applications running concurrently
on the processor.

Kwok and Ahmad [34][35] present a survey and an
extensive performance study of different scheduling algo-
rithms for multithreaded applications running on clusters
of interconnected single-threaded processors. Since each
thread is executed on a single-threaded processor, co-
running threads do not collide in processor resources.
Therefore, the presented scheduling algorithms do not ana-
lyze inter-thread interference in shared processor resources,
which is the focus of our study.

Thread Assignment: Several studies show that the
performance of applications running on multithreaded
processors depends on the interference in hardware re-
sources, which, in turn, depends on thread assign-
ment [4][18][45][55][59]. El-Moursy el al. [18] focus on
multithreaded processors and propose an algorithm that
uses hardware performance counters to profile thread be-
havior and assign compatible tasks on the same SMT core.

Tang et al. [55] study the impact of sharing memory
resources (L2 and L3 cache memory, front side buses, and
a memory controller hub) on Google datacenter applications
running on multisocket/multicore servers. The authors pro-
pose two thread assignment approaches, and demonstrate
that advanced thread assignment methods may significantly
improve the performance of state-of-the-art datacenters.

Our previous studies [45][46] address the problem of
thread assignment of multithreaded network applications
running on processors with several levels of resource shar-
ing. We focus on thread assignment for lightweight kernels
with static scheduling, systems that are especially well
suited for network applications.

Jahn et al. [28] analyze the performance of software-
pipelined applications with running on many-core systems.
The study addresses a challenging scenario in which the
applications show unpredictable and significant variances
in the demand of hardware resources.

Bulpin et al. [8] modify an existing OS scheduler to
calculate dynamic priority of active threads using data
from the hardware performance counters. Parekh et al. [39]
show the importance and the benefit of scheduling that
takes into account process characteristics. The authors
propose an algorithm that reads the values of thread-specific
hardware performance counters to estimate characteristics
of running threads. De Vuyst et al. [16] explore thread
scheduling for optimal performance and energy on mul-

ticore/multithreaded processors. The authors demonstrate
that the load balancing approach used in state-of-the-art op-
erating systems eliminates one of the big advantages of this
architecture: the ability to use unbalanced schedules to allo-
cate the right amount of execution resources to each thread.

Other studies analyze thread scheduling for platforms
comprised of several multithreaded processors [38][54].
McGregor et al. [38] introduce new scheduling policies
that use run-time information from hardware performance
counters to identify the best mix of tasks to run across
processors and within each processor. Tam el al. [54]
present a run-time technique for the detection of data
sharing among different tasks. The proposed technique can
be used by an operating system job scheduler to assign
tasks that share data to the same memory domain (same
chip or the same core on the chip).

Kumar et al. [33] and Shelepov et al. [49] propose
algorithms for scheduling in heterogeneous multicore archi-
tectures. The focus of these studies is to find an algorithm
that matches the application’s hardware requirements with
the processor core characteristics.

Other studies propose solutions for thread assignment
of multithreaded network workloads in parallel processors,
specifically in network processors. Kokku et al. [32] pro-
pose an algorithm that assigns network processing tasks
to processor cores with the goal of reducing the power
consumption. Wolf et al. [62] propose run-time support that
considers the partitioning of applications across processor
cores. The authors address the problem of dynamic thread
re-allocation because of network traffic variations, and
provide thread assignment solutions based on application
profiling and traffic analysis.

Our previous paper [44] is the first publication to apply
Extreme Value Theory to the thread assignment problem.
We extend this work in the current paper, in three directions.
Firstly, we present a detailed analysis of the technique’s
prerequisites, including their validation using statistical
tests. Secondly, in Section 5, we propose and evaluate
the Sample Pruning POT (SP-POT) method. Thirdly, in
Section 6, we evaluate the effect of the sample size on
the random sampling approach, concluding that the method
should only be used when the random sample contains at
least several hundred or several thousand assignments.

An interesting avenue for future work would be to
analyze whether random sampling could be used for hetero-
geneous architectures, e.g. network processors with a num-
ber of special-purpose accelerators. In these architectures,
the process scheduling problem is tightly coupled with
the assignment of sections of code to processing engines,
whether general purpose cores or accelerators. One of the
main challenges would be to design a sampling method
that properly covers the exploration space of all possible
process schedules.

Optimal performance analysis: To the best of our
knowledge, the work of Jiang et al. [29] is the only
systematic study of optimal thread assignment to multi-
threaded processors. The authors analyze the complexity of

12

this problem, and they propose several thread assignment
algorithms. The authors use graphs to model the interaction
between simultaneously-running tasks, and they use graph
search to find the optimal solution. The main drawback of
the study is that the impact of thread interaction on system
performance is assumed to be known beforehand, for all
possible assignments, which is not generally the case.

We present a different approach for finding the perfor-
mance of the optimal thread assignment. We do not try to
find the best-performing assignment, but to capture a thread
assignment with performance close to the optimal one. In
our approach, the optimal system performance is estimated
using statistical inference based on measured performance
of a sample of random thread assignments.

Extreme Value Theory in other domains of computer
science: EVT has also been used in real-time systems for
the estimation of the worst-case execution time (WCET) of
time-critical applications. In real-time environments, and
especially in safety-critical systems, it is indispensable to
provide tight and reliable WCET estimation with excep-
tionally high confidence (e.g. 99.9999999999%). One of
the most important problems in real-time systems is to
ensure that the system conditions during experimentation
and system analysis include all conditions that can lead to
WCET during system deployment. In order to address this
problem, several approaches [11] propose introducing ran-
domization into the timing behavior of the system hardware
and software.

8 CONCLUSIONS AND LONG-TERM IMPACT
The introduction of multithreaded processors has made the
assignment of running threads to hardware contexts an
important aspect of system performance. Optimal thread
assignment is an NP-complete problem, and exhaustive
search is impractical given the large number of possi-
ble thread assignments. Numerous studies have proposed
heuristic-based algorithms, but they are seldom evaluated
in comparison with the optimal solution and they usually
make no guarantees on or estimates of their deviation
from optimality, making it hard to know whether to invest
additional effort to improve the algorithm.

In this paper, we proposed a statistical approach to the
problem of optimal thread assignment. We made three main
contributions. First, we presented the POT method, which
predicts the performance of the optimal thread assignment
based on the performance of each thread assignment in a
random sample. The method uses techniques from Extreme
Value Theory (EVT), a branch of statistics that analyses
extreme deviations from the population median. Second, we
proposed sample pruning, which predicts the performance
of each thread assignment in the sample, so that only those
with moderate to high predicted performance need to be
executed on the target hardware platform. We use sample
pruning in the SP-POT method, reducing the analysis
time from about 2 hours to about 15 minutes introducing
negligible estimation error. Finally, we showed that the
performance of the best thread assignment in a random

sample is likely to be close to optimal. When a heuristic-
based approach is not available, a good thread assignment
can be found using random sampling on its own, with
the POT or SP-POT method estimating its deviation from
optimality.

Many other problems in computer science are NP-
complete [22], and therefore intractable. Examples are
found in network design, program optimization, data stor-
age and retrieval, process scheduling, graph and automata
theory. Since problems typically have a vast exploration
space, it is infeasible to find the optimum using an ex-
haustive search. Intractable problems in computer science
are usually addressed using a heuristics-based approach,
designed for a specific problem and metric. Design of
heuristics-based approaches and tuning for different prob-
lems and metrics requires significant effort, and it requires
a deep understanding of the application and the target.

The methods presented in this study are independent of
the problem that is being addressed. They can therefore
be applied to different intractable problems and metrics.
They do not require a profound understanding of the target
system, which significantly reduces the investment in effort
and time. In fact, we have already successfully applied
these techniques to compilation of multithreaded streaming
applications [43]. The approach is also independent of the
target metric, and it can analyze a given system multiple
times using different metrics. It is therefore particularly
well suited for systems that require analysis of different
metrics such as performance, fairness, hardware utilization,
energy or power consumption.

EVT is an important branch of statistics, which has found
multiple applications in civil engineering, material testing,
finance and risk management. It provides many powerful
theorems and tools, which could be of great interest to
the computer science and engineering community. Its ap-
plication in these fields is, however, currently marginal. We
believe that communicating this paper to a broader audience
will encourage new and fruitful applications of EVT in
diverse fields of computer science and engineering.

REFERENCES
[1] OpenSPARCTM T2 System-On-Chip (SOC) Microarchitecture Spec-

ification. Sun Microsystems, Inc, 2007.
[2] Netra Data Plane Software Suite 2.0 Update 2 User’s Guide. Sun

Microsystems, Inc, 2008.
[3] J. Aas, “Understanding the Linux 2.6.8.1 CPU Scheduler,” Silicon

Graphics, Inc. (SGI), 2005.
[4] C. Acosta et al., “Thread to Core Assignment in SMT On-Chip

Multiprocessors,” in Proceedings of the 21st International Sympo-
sium on Computer Architecture and High Performance Computing
(SBAC-PAD), 2009.

[5] A. Azzalini, Statistical Inference Based on the Likelihood. Chapman
and Hall, 1996.

[6] A. A. Balkema and L. de Haan, “Residual life time at great age,”
Annals of Probability, vol. 2, 1974.

[7] J. Beirlant et al., Statistics of Extremes: Theory and Applications.
John Wiley and Sons, Ltd, 2004.

[8] J. R. Bulpin and I. A. Pratt, “Hyper-threading aware process schedul-
ing heuristics,” in Proceedings of the USENIX Annual Technical
Conference (ATEC), 2005.

[9] E. Castillo and A. Hadi, “Fitting the Generalized Pareto Distribution
to data,” Journal of the American Statistical Association, vol. 92,
1997.

13

[10] E. Castillo, Extreme value theory in engineering. Academic Press,
Inc., 1988.

[11] F. Cazorla et al., “Upper-bounding program execution time with
extreme value theory,” in WCET workshop, 2013.

[12] D. Chandra et al., “Predicting Inter-Thread Cache Contention on a
Chip Multi-Processor Architecture,” in Proceedings of the 11th In-
ternational Symposium on High-Performance Computer Architecture
(HPCA), 2005.

[13] H. Chernoff, “On the distribution of the likelihood ratio,” Annals of
Mathematical Statistics, vol. 25, 1954.

[14] W. G. Cochran, Sampling Techniques, 3rd edition. Wiley-India,
2007.

[15] K. J. Connolly, Law of Internet Security and Privacy. Aspen
Publishers, 2003.

[16] M. De Vuyst, R. Kumar, and D. Tullsen, “Exploiting unbalanced
thread scheduling for energy and performance on a CMP of SMT
processors,” in Proceedings of the 20th IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2006.

[17] D. Doucette and A. Fedorova, “Base Vectors: A Potential Technique
for Microarchitectural Classification of Applications,” in Proceed-
ings of the Workshop on the Interaction between Operating Systems
and Computer Architecture (WIOSCA), 2007.

[18] A. El-Moursy et al., “Compatible phase co-scheduling on a CMP of
multi-threaded processors,” in Proceedings of the 20th IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS),
2006.

[19] S. Eyerman and L. Eeckhout, “Per-thread cycle accounting in SMT
processors,” in Proceeding of the 14th international conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2009.

[20] S. Eyerman and L. Eeckhout, “Probabilistic job symbiosis mod-
eling for SMT processor scheduling,” in Proceeding of the 15th
international conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2010.

[21] A. Fedorova et al., “Performance of multithreaded chip multiproces-
sors and implications for operating system design,” in Proceedings
of the annual conference on USENIX Annual Technical Conference
(ATEC), 2005.

[22] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman and Co.,
1979.

[23] M. Gilli and E. Këllezi, “An application of extreme value theory for
measuring financial risk,” Computational Economics, vol. 27, 2006.

[24] R. Gioiosa et al., “Analysis of system overhead on parallel com-
puters,” in 4th IEEE International Symposium on Signal Processing
and Information Technology (ISSPIT), 2004.

[25] D. Griffin and A. Burns, “Realism in statistical analysis of worst case
execution times,” in 10th Intl. Workshop on Worst-Case Execution
Time Analysis, July 2010.

[26] S. Grimshaw, “Computing the maximum likelihood estimates for
the Generalized Pareto Distribution to data,” Technometrics, vol. 35,
1993.

[27] J. R. M. Hosking and J. R. Wallis, “Parameter and quantile estima-
tion for the generalised pareto distribution,” Technometrics, vol. 29,
1987.

[28] J. Jahn et al., “Optimizations for configuring and mapping software
pipelines in many core systems,” in Proceedings of the 50th Annual
Design Automation Conference (DAC), 2013.

[29] Y. Jiang et al., “Analysis and approximation of optimal co-scheduling
on chip multiprocessors,” in Proceedings of the 17th Intl. conference
on Parallel Architectures and Compilation Techniques (PACT), 2008.

[30] E. Këllezi and M. Gilli, “Extreme value theory for tail-related risk
measures,” International Center for Financial Asset Management and
Engineering, FAME Research Paper Series, 2000.

[31] J. Kihm et al., “Understanding the impact of inter-thread cache
interference on ILP in modern SMT processors,” The Journal of
Instruction Level Parallelism, vol. 7, 2005.

[32] R. Kokku et al., “A case for run-time adaptation in packet processing
systems,” SIGCOMM Comput. Commun. Rev., vol. 34, no. 1, 2004.

[33] R. Kumar et al., “Single-ISA heterogenous multi-core architectures
for multithreaded workload performance,” in Proceedings of the 31st
International Symposium on Computer Architecture (ISCA), 2004.

[34] Y.-K. Kwok and I. Ahmad, “Benchmarking and comparison of
the task graph scheduling algorithms,” Journal of Parallel and
Distributed Computing, vol. 59, no. 3, Dec. 1999.

[35] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for al-
locating directed task graphs to multiprocessors,” ACM Computing
Surveys, vol. 31, no. 4, Dec. 1999.

[36] C. Luque et al., “CPU Accounting in CMP Processors,” in IEEE
Computer Architecture Letters, vol. 8, no. 1, 2009.

[37] C. Luque et al., “ITCA: Inter-task Conflict-Aware CPU Accounting
for CMPs,” in Proceedings of the 18th International Conference on
Parallel Architecture and Compilation Techniques (PACT), 2009.

[38] R. L. McGregor, C. D. Antonopoulos, and D. S. Nikolopoulos,
“Scheduling algorithms for effective thread pairing on hybrid multi-
processors,” in Proceedings of the 19th IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2005.

[39] S. Parekh et al., “Thread-sensitive scheduling for SMT processors,”
Technical report, Department of Computer Science and Engineering,
University of Washington, 2000.

[40] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of the missing
supercomputer performance: Achieving optimal performance on the
8,192 processors of ASCI Q,” in Proceedings of the 2003 ACM/IEEE
conference on Supercomputing (SC), 2003.

[41] J. I. Pickands, “Statistical inference using extreme value order
statistics,” Annals of Statististics, vol. 3, 1975.

[42] P. Radojković et al., “Measuring Operating System Overhead on
CMT Processors,” in Proceedings of the 20th International Sympo-
sium on Computer Architecture and High Performance Computing
(SBAC-PAD), 2008.

[43] P. Radojković et al., “Kernel Partitioning of Streaming Applications:
A Statistical Approach to an NP-complete Problem,” in Proceedings
of the 45th International Symposium on Microarchitecture (MICRO),
2012.

[44] P. Radojković et al., “Optimal Task Assignment in Multithreaded
Processors: A Statistical Approach,” in Proceedings of the 17th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2012.

[45] P. Radojković et al., “Thread to Strand Binding of Parallel Network
Applications in Massive Multi-threaded Systems,” in Proceedings of
the 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), 2010.

[46] P. Radojković et al., “Thread assignment of multithreaded network
applications in multicore/multithreaded processors,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 24, 2013.

[47] M. Roth et al., “Deconstructing the overhead in parallel applica-
tions,” in Proceedings of the 2012 IEEE International Symposium
on Workload Characterization (IISWC), 2012.

[48] A. Settle et al., “Architectural Support for Enhanced SMT Job
Scheduling,” in Proceedings of the 13th International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2004.

[49] D. Shelepov et al., “Hass: A scheduler for heterogeneous multicore
systems,” in ACM SIGOPS Operating Systems Review, 2009.

[50] E. Shmueli et al., “Evaluating the effect of replacing CNK with
Linux on the compute-nodes of Blue Gene/L,” in Proceedings of
the 22nd Annual International Conference on Supercomputing (ICS),
2008.

[51] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a
simultaneous multithreaded processor,” in Proceedings of the 9th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2000.

[52] A. Snavely, D. M. Tullsen, and G. Voelker, “Symbiotic jobscheduling
with priorities for a simultaneous multithreading processor,” in Pro-
ceedings of the 2002 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, 2002.

[53] N. Tajvidi, “Design and implementation of statistical computations
for Generalized Pareto Distributions,” Technical Report, Chalmers
University of Technology, 1996.

[54] D. Tam, R. Azimi, and M. Stumm, “Thread clustering: sharing-aware
scheduling on SMP-CMP-SMT multiprocessors,” in Proceedings of
the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems EuroSys, 2007.

[55] L. Tang et al., “The impact of memory subsystem resource sharing
on datacenter applications,” in Proceedings of the 38th International
Symposium on Computer Architecture (ISCA), 2011.

[56] L. A. Torrey, J. Coleman, and B. P. Miller, “A comparison of
interactivity in the Linux 2.6 scheduler and an MLFQ scheduler,”
Software - Practice and Experience, vol. 37, no. 4, 2007.

[57] V. Čakarević et al., “Characterizing the Resource-Sharing Levels
in the UltraSPARC T2 Processor,” in Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2009.

14

[58] J. Verdú, Analysis and Architectural Support for Parallel State-
ful Packet Processing, PhD Thesis. Universitat Politècnica de
Catalunya, 2008.

[59] L. Weng, C. Liu, and J.-L. Gaudiot, “Scheduling optimization in mul-
ticore multithreaded microprocessors through dynamic modeling,”
in Proceedings of the ACM International Conference on Computing
Frontiers (CF), 2013.

[60] S. S. Wilks, “The large-sample distribution of the likelihood ratio
for testing composite hypotheses,” Annals of Mathematical Statistics,
vol. 9, 1938.

[61] S. S. Wilks, Mathematical Statistics. Princeton University, 1943.
[62] T. Wolf, N. Weng, and C.-H. Tai, “Design considerations for network

processor operating systems,” in Proceedings of ACM/IEEE Sympo-
sium on Architectures for Networking and Communication Systems
(ANCS), 2005.

[63] D. Zhan, H. Jiang, and S. C. Seth, “STEM: Spatiotemporal Manage-
ment of Capacity for Intra-core Last Level Caches,” in Proceedings
of the 43rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2010.

[64] D. Zhan, H. Jiang, and S. C. Seth, “Locality & utility co-optimization
for practical capacity management of shared last level caches,” in
Proceedings of the 26th ACM International Conference on Super-
computing (ICS), 2012.

PLACE
PHOTO
HERE

Petar Radojković is a senior researcher
at the Barcelona Supercomputing Center,
Spain. Petar received the M.Sc. degree in
Computer Science from the University of
Belgrade in 2006. He received M.Sc. de-
gree in Computer Architecture, Networks and
Systems from the Universitat Politècnica de
Catalunya (UPC) in 2009 and the Ph.D. de-
gree in 2013 in the Computer Architecture
Department at the same university.

PLACE
PHOTO
HERE

Paul Carpenter is a researcher at the
Barcelona Supercomputing Center (BSC).
He graduated from the University of Cam-
bridge in 1997, and received his Ph.D. in
computer architecture from the Universitat
Politècnica de Catalunya (UPC) in 2011.
Prior to starting his Ph.D., he was Senior
Software Engineer at ARM in Cambridge,
UK.

PLACE
PHOTO
HERE

Miquel Moretó is a Senior Researcher at the
Barcelona Supercomputing Center (BSC).
Prior to joining BSC, he spent 15 months as a
postdoctoral fellow at the International Com-
puter Science Institute (ICSI), Berkeley, USA.
He received the B.Sc., M.Sc., and Ph.D.
degrees from the Universitat Politècnica de
Catalunya (UPC), Spain. His research inter-
ests include studying shared resources in
multithreaded architectures and hardware-
software codesign for future massively par-

allel systems.

PLACE
PHOTO
HERE

Vladimir Čakarević is a Ph.D. student in
the Computer Architecture Department at the
Universitat Politècnica de Catalunya (UPC).
He is affiliated with Barcelona Supercomput-
ing Center. Vladimir received M.Sc. degree
in Electrical Engineering from University of
Belgrade in 2006 and M.Sc. degree in Com-
puter Architecture, Networks and Systems
from UPC in 2008.

PLACE
PHOTO
HERE

Javier Verdú is a tenure-track lecturer in
the Computer Architecture Department at the
Universitat Politècnica de Catalunya (UPC),
Spain. Verdú received his Ph.D. degree from
the UPC in 2008. His research interests in-
clude performance analysis, optimization of
hardware and software multithreading, and
cloud based systems.

PLACE
PHOTO
HERE

Alex Pajuelo is an associate professor in
the Computer Architecture Department at the
Universitat Politècnica de Catalunya (UPC).
He received his M.Sc. degree in computer
science in 1999 and his Ph.D. degree from
the UPC in 2005. His research interests
include performance evaluation methodolo-
gies, dynamic binary optimization and com-
plex computing-demanding 3D visualization
applications.

PLACE
PHOTO
HERE

Francisco J. Cazorla is a researcher in
the National Spanish Research Council and
Barcelona Supercomputing Center (BSC).
He is currently the leader of the group
on Interaction between the Operating Sys-
tem and the Computer Architecture at BSC
(www.bsc.es/caos). He has worked in re-
search projects with several processor ven-
dor companies (Intel, IBM, Sun Microsys-
tems), as well as in European FP6 and FP7
Projects.

PLACE
PHOTO
HERE

Mario Nemirovsky is an ICREA Research
Professor at the Barcelona Supercomputing
Center. Mario was an adjunct professor at
the University of California at Santa Bar-
bara from 1991 to 1998. He has done re-
search in many areas of computer archi-
tecture, including simultaneous multithread-
ing, high-performance architectures, Big-
Data, IoT, FOG Computing, real-time sys-
tems and network processors.

PLACE
PHOTO
HERE

Mateo Valero is a full professor at Com-
puter Architecture Department, Universi-
tat Politècnica de Catalunya and director
Barcelona Supercomputing Center. He pub-
lished 600 papers and served in organiza-
tion of 300 international conferences. His
main awards are: Eckert-Mauchly, Harry
Goode, ACM Distinguished Service, “Hall
of Fame” member IST European Program,
King Jaime I in research, two Spanish Na-
tional Awards on Informatics and Engineer-

ing. Honorary Doctorate: Universities of Chalmers, Belgrade, Las
Palmas, Zaragoza, Complutense of Madrid and University of Ver-
acruz. Professor Valero is a Fellow of IEEE, ACM, and Intel Dis-
tinguished Research Fellow. He is a member of Royal Spanish
Academy of Engineering, Royal Academy of Science and Arts,
correspondent academic of Royal Spanish Academy of Sciences,
Academia Europaea and Mexican Academy of Science.

