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Abstract

Motivation: The computational investigation of DNA binding motifs from binding sites is one of the

classic tasks in bioinformatics and a prerequisite for understanding gene regulation as a whole. Due

to the development of sequencing technologies and the increasing number of available genomes,

approaches based on phylogenetic footprinting become increasingly attractive. Phylogenetic foot-

printing requires phylogenetic trees with attached substitution probabilities for quantifying the evolu-

tion of binding sites, but these trees and substitution probabilities are typically not known and cannot

be estimated easily.

Results: Here, we investigate the influence of phylogenetic trees with different substitution proba-

bilities on the classification performance of phylogenetic footprinting using synthetic and real data.

For synthetic data we find that the classification performance is highest when the substitution prob-

ability used for phylogenetic footprinting is similar to that used for data generation. For real data,

however, we typically find that the classification performance of phylogenetic footprinting surpris-

ingly increases with increasing substitution probabilities and is often highest for unrealistically

high substitution probabilities close to one. This finding suggests that choosing realistic model as-

sumptions might not always yield optimal predictions in general and that choosing unrealistically

high substitution probabilities close to one might actually improve the classification performance

of phylogenetic footprinting.

Availability and Implementation: The proposed PF is implemented in JAVA and can be down-

loaded from https://github.com/mgledi/PhyFoo

Contact: martin.nettling@informatik.uni-halle.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene regulation is a highly complex process in nature based on sev-

eral sub-processes such as transcriptional regulation including DNA

methylation (Smith and Meissner, 2013), histone modifications

(Tessarz and Kouzarides, 2014) and promotor escaping (Sainsbury

et al., 2015) as well as post-transcriptional regulation including

modulated mRNA decay (Schoenberg and Maquat, 2012), siRNA

interference (de Fougerolles et al., 2007; Tam et al., 2008) and al-

ternative splicing (Luco et al., 2010; Sultan et al., 2008). One im-

portant step in this complex process is the regulation of

transcriptional initiation by the interaction of transcription factors

(TFs) with their binding sites (Hobert, 2008; Voss and Hager,

2014). Hence, identifying transcription factor binding sites (TFBSs)

and inferring their binding motifs is a prerequisite in modern
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biology, medicine and biodiversity research (Nowrousian, 2010;

Villar et al., 2014).

The last decade has witnessed a spectacular development of

sequencing technologies unleashing new potentials in identifying

TFBSs (Kulakovskiy et al., 2010; Furey, 2012; Lasken and McLean,

2014; van Dijk et al., 2016). Due to the increasing number of avail-

able genomes of different species and due to increasing computa-

tional resources, approaches for de-novo motif discovery based on

phylogenetic footprinting have become increasingly attractive.

Examples of highly popular tools for phylogenetic footprinting are

FootPrinter (Blanchette and Tompa, 2003), PhyME (Sinha et al.,

2004), MONKEY (Moses et al., 2004a), PhyloGibbs (Siddharthan

et al., 2005), Phylogenetic Gibbs Sampler (Newberg et al., 2007),

PhyloGibbs-MP (Siddharthan, 2008) and MotEvo (Arnold et al.,

2012). Supplementary Table S1 provides a comparison of these tools

regarding the used evolutionary model, sequence model and learning

principle.

One prerequisite for most phylogenetic footprinting approaches

are multiple sequence alignments (MSAs) of upstream regions of

orthologous genes of multiple not too closely related species

(Anisimova et al., 2013). These MSAs capture phylogenetic infor-

mation, and the key idea of using these MSAs as starting point for

phylogenetic footprinting results from the observations that (i) func-

tional TFBSs are phylogenetically conserved and (ii) phylogenetic-

ally conserved TFBSs are aligned in MSAs. Examples of highly

popular tools for aligning non-coding genomic regions are T-Coffee

(Notredame et al., 2000), WebPRANK (Löytynoja and Goldman,

2010) and MAFFT (Katoh and Standley, 2013).

Phylogenetic footprinting improves the de-novo motif discovery

by incorporating phylogenetic dependencies within the MSA in con-

trast to approaches based on sequences from only one species.

Substitution models of DNA sequence evolution such as the F81

model (Felsenstein, 1981) have been adapted to model the evolution

of TFBSs in a position-specific manner, and it has been shown that

these adapted models, which we call phylogenetic footprinting mod-

els (PFMs) for brevity, can detect TFBSs more accurately than mod-

els that neglect phylogenetic dependencies (Clark et al., 2007; Gertz

et al., 2006; Hardison and Taylor, 2012; Hawkins et al., 2009;

Moses et al., 2004a; Nettling et al., 2017).

One fundamental prerequisite for phylogenetic footprinting is a

phylogenetic tree including substitution probabilities attached to

each of its branches, and choosing an appropriate phylogenetic tree

and appropriate substitution probabilities is pivotal for the classifi-

cation performance of phylogenetic footprinting (Kc and Livesay,

2011). However, estimating substitution probabilities within TFBSs

is substantially harder than estimating them e.g. in protein-coding

regions for at least two reasons:

First, the positions of TFBSs are unknown when performing

phylogenetic footprinting, whereas the positions of protein-coding

regions are known when estimating substitution probabilities there.

Second, protein-coding regions are much longer than TFBSs, so one

can use a much larger number of bases for estimating substitution

probabilities for protein-coding regions than for TFBSs.

Estimating substitution probabilities within TFBSs is challeng-

ing, but several valuable studies have been performed in this direc-

tion (Doniger and Fay, 2007; Pollard et al., 2010; Schaefke et al.,

2015; Tu�grul et al., 2015). For example, studies on synthetic data

have indicated that small substitution probabilities in the motif and

moderate substitution probabilities in the flanking sequences can be

preferable for motif recognition (Sinha et al., 2004), and studies on

different yeast species have confirmed these findings and shown that

the likelihood of the Jukes-Cantor model (Jukes and Cantor, 1969)

increases relative to a thymine background (‘polyT’) for small sub-

stitution probabilities in the motif and moderate substitution proba-

bilities in the flanking sequences (Moses et al., 2004b).

These and similar findings, however, have not lead to a robust

approach of estimating substitution probabilities within TFBSs prior

to or as part of phylogenetic footprinting, so the substitution proba-

bilities are often simply taken from the literature or guessed, and

their influence on the classification performance of phylogenetic

footprinting has not yet been studied systematically.

Here, we study this influence based on a synthetic dataset and

five real datasets of the TFs CTCF, GABP, NRSF, SRF and STAT1.

Specifically, we describe the PFM, the datasets, the tested phylogen-

etic trees, the performance measure, and implementation details in

section Methods, and we study the classification performance of

phylogenetic footprinting as a function of the substitution rate for

synthetic and real datasets, compare the results to those of phylogen-

etic footprinting based on expert trees from the literature, and dis-

cuss the findings in the context of several factors that affect the

evolution of TFBSs in sections 3 and 4.

2 Materials and methods

In this section we describe (i) the used notation and the likelihood

calculation of the PFM, (ii) the investigated datasets, (iii) the per-

formance measure, (iv) the systematic investigation of phylogenetic

trees and (v) the implementation of the PFMs.

2.1 Phylogenetic footprinting model
2.1.1 Notation

Our data contains N alignments, with each alignment containing O

sequences (one per observed species) of length Ln.

Our phylogenetic model incorporates the existence of H add-

itional hidden species, that is, species for which we cannot observe

their sequences. Both hidden and observed species conform a tree.

Thus, for each species k but the root, pa(k) denotes the ancestor of

species k in the tree. The root species is noted r.

Our probabilistic model contains a random variable Su;k
n for each

nucleotide 1 � u � Ln of each species 1 � k � OþH of each

alignment 1 � n � N. These random variables take values in the

set of bases A ¼ fA;C;G;Tg. We note paðSu;k
n Þ the uth nucleotide in

the nth alignment of species pa(k) (the ancestor of k). By definition,

the root has no ancestor and hence paðSu;r
n Þ ¼1. We also refer to

nucleotide Su;k
n as Au;k

n when species k is observed, and as Yu;k
n when

species k is hidden. Furthermore we note by Yu;:
n (respectively Su;:

n )

the set containing each random variable Yu;k
n (respectively Su;k

n ), with

Oþ 1 � k � OþH and Yn the set containing every random vari-

able in Yu;:
n with 1 � u � Ln:

An alignment An may or may not contain a TFBS. This is

encoded in variable Mn, with M0
n indicating that alignment An does

not contain a motif and M1
n indicating that alignment An does con-

tain a motif.

2.1.2 Likelihood

The probability that the alignment An is generated by the PFM can

be written as

pðAnjhÞ ¼ pðAnjM0
n; hÞ � pðM0

njhÞ þ pðAnjM1
n; hÞ � pðM1

njhÞ

with variable Mn taking a Bernoulli distribution and h denoting

model parameters, namely the topology of the phylogenetic tree, the

substitution probabilities and the evolutionary model with its
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stationary probabilities for the flanking regions as well as the TFBS

regions.

We need to specify the probability for non-motif-bearing pðAnj
M0

n; hÞ and for motif-bearing alignments pðAnjM1
n; hÞ. For reasons of

clarity we omit h in the following.

2.1.3 Likelihood of a non-motif-bearing alignment

The probability that alignment An is generated by the PFM as a non-

motif bearing alignment is

pðAnjM0
nÞ ¼

X
Yn

pðAnjYn;M
0
nÞ: (1)

We assume that each single nucleotide alignment is independent

of any other nucleotide alignment given h and M0
n. Furthermore, we

assume that in each nucleotide alignment, the species satisfy the con-

ditional independencies encoded by the phylogenetic tree. Thus,

pðAnjM0
nÞ ¼

QLn

u¼1

P
Yu;:

n
pðSu;:

n jM0
nÞ (2)

¼
QLn

u¼1

P
Yu;:

n

QOþH
k¼1 pðSu;k

n jpaðSu;k
n Þ;M0

nÞ (3)

where

pðSu;k
n ¼ ajpaðSu;k

n Þ ¼ b;M0
nÞ ¼

pa
0 if k ¼ r

ck � pa
0 þ ð1� ckÞda¼b if k 6¼ r

(

according to the F81 model, where the base distribution of each pos-

ition of the background sequence is denoted by p0, the probability

of a nucleotide a in the background sequence is denoted by pa
0, and

the substitution probability from the ancestor species to species k is

denoted by ck. For more realistic phylogenetic models ck might also

depend on specific nucleotide transitions.

2.1.4 Likelihood of a motif-bearing alignment

The probability that alignment An is generated by the PFM as a

motif bearing alignment is

pðAnjM1
nÞ ¼

XLn�Wþ1

‘n¼1

X
Yn

pðAn;Yn; ‘njM1
nÞ: (4)

where W is the length of the TFBS and ‘n is the position of the TFBS

in alignment An. Since single nucleotide alignments are assumed in-

dependent and considering the conditional independencies in the

phylogenetic tree we have

pðAnjM1
nÞ ¼

XLn�Wþ1

‘n¼1

pð‘njM1
nÞ
YLn

u¼1

X
Yu;:

n

pðSu;:
n j‘n;M

1
nÞ (5)

with pðSu;:
n j‘n;M1

nÞ ¼
QOþH

k¼1 pðSu;k
n jpaðSu;k

n Þ; ‘n;M
1
nÞ and

pðSu;k
n jpaðSu;k

n Þ;‘n;M1
nÞ

¼

pa
0 if k¼ r and u< ‘n or u� ‘nþW

pa
u�‘nþ1 if k¼ r and ‘n � u< ‘nþW

ck�pa
0þð1�ckÞda¼b if k 6¼ r and u< ‘n or u� ‘nþW

ck�pa
u�‘nþ1þð1�ckÞda¼b if k 6¼ r and ‘n � u< ‘nþW

8>>>>>><
>>>>>>:

As for the non-motif-bearing alignment, the base distribution of

each position of the background sequence is denoted by p0 and the

probability of a nucleotide a in the background sequence is denoted by

pa
0. The base distributions of a motif sequence of length W are denoted

by pw with w 2 ½1; . . . ;W� and the probability of a nucleotide a at

position w in a motif sequence is denoted by pa
w. The substitution

probability from the ancestor species to species k is denoted by ck.

Finally we assume motifs to be uniformly distributed, thus hav-

ing that pð‘njM1
nÞ ¼ 1

Ln�Wþ1, which completes the specification of

the likelihood function.

2.2 Data
2.2.1 Real data

The data used in this work originate from human ChIP-Seq data of

the five TFs CTCF, GABP, NRSF, SRF and STAT1 Jothi et al. (2008);

Valouev et al. (2008) and gapped alignments of the ChIP-Seq target

regions from human with orthologous regions from monkey, cow,

dog and horse. The original data provided by Arnold et al. (2012)

consist of 900 gapped alignments for each of the five TFs. Each

gapped alignment consists of sequences from six species. Since gapped

alignments have a higher risk of showing mathematical side effects,

we process them to derive ungapped alignments following three steps:

(i) We remove the species that causes the highest number of gaps in all

alignments. Accordingly, we remove sequences from opossum and

keep orthologous regions from human, monkey, cow, dog and horse.

(ii) In each alignment, we remove all alignment columns that contain

at least one gap. (iii) We remove all alignments that are shorter than

21bp, which is the length of the longest TFBS motif (NRSF) in the

presented studies. Supplementary Table S2 shows details about the re-

sulting datasets. All datasets are available as Supplementary Material.

2.2.2 Synthetic data

The synthetic dataset used in this work is generated using the PFM

specified in section 2.1 with a star topology.

A negative set of 1000 non-motif-bearing alignments each of

length L ¼ 300 is generated. Each non-motif bearing alignment is

generated in two steps as follows. (i) Sample the primordial se-

quence. For each position u 2 ½1;L� of the sequence, sample a nu-

cleotide from the uniform distribution p0. (ii) For each of the

descent species o 2 f1; . . . ;5g, sample a mutated sequence given the

primordial sequence position-wise. For each position u 2 ½1;L�,
apply the F81 Felsenstein (1981) mutation model with the equilib-

rium distribution p0 and substitution probability c ¼ 0:2 to the nu-

cleotide of the primordial sequence at position u.

A positive set of 750 motif-bearing alignments each of length

L ¼ 300 is generated. Each motif-bearing alignment is generated as

follows:

(i) Sample the primordial sequence given a TFBS length of W ¼ 15.

(a) Sample the start position ‘ 2 ½1;L�W þ 1� of the TFBS

from the uniform distribution.

(b) For each position u 2 ½1; ‘� 1� and u 2 ½‘þW;L� of the

flanking sequence, we sample the nucleotide at position u

from the uniform distribution p0. For each position

u 2 ½‘; ‘þW � 1� of the TFBS, we sample the nucleotide

at position u from the distribution pu�‘nþ1. The distribu-

tion pw with w 2 f1; . . . ; 15g is uniformly drawn from the

simplex.

(ii) For each of the descent species o 2 f1; . . . ; 5g, sample a mutated

sequence given the primordial sequence position-wise.

(a) For each position u 2 ½1; ‘� 1� and u 2 ½‘þW;L� of the

flanking sequence, apply the F81 mutation model with the

equilibrium distribution p0 and substitution probability

c ¼ 0:2 to the nucleotide of the primordial sequence at

position u.

(b) For each position u 2 ½‘; ‘þW � 1� of the TFBS, apply the

F81 mutation model with the equilibrium distribution

pu�‘nþ1 and substitution probability c ¼ 0:2 to the nucleo-

tide of the primordial sequence at position u.
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2.3 Phylogenetic trees
To systematically investigate the influence of different phylogenetic

trees on classification performance and hence on motif prediction,

we introduce two simplifications. First, the underlying phylogenetic

tree is a star topology implying that all species have one common an-

cestor. Second, all branches in the star topology have the same

length, i.e. the probability that a base in the primordial sequence is

replaced by a new base in a descendant sequence is the same for all

sequences.

Now, it is possible to systematically vary the substitution proba-

bilities c ¼ f0:05; 0:1; . . . ;1:0g, where c is inversely proportional to

the phylogenetic relatedness. Small c encode close phylogenetic rela-

tions and large c encode distant phylogenetic relations. Especially,

c ¼ 1:0 implies that the species are phylogenetically unrelated,

i.e. the sequences of each alignment are statistically independent.

2.4 Classification performance
We evaluate all PFMs by a stratified repeated random sub-sampling

validation by estimating all PFMs from a training set and measuring

classification performance on a test set as follows.

In step 1, we generate two training sets and two disjoint test sets

for each of the five TFs as follows. We randomly select 200 align-

ments from the set of alignments of a particular TF as positive train-

ing set, leaving the remaining alignments as positive test set. We

perform a base shuffling on the positive set of alignments of the

same TF to get a negative set of alignments. We randomly select 200

alignments from this set of alignments as negative training set and

leave the remaining alignments as negative test set.

In step 2, we train a foreground model on the positive training

set and a background model on the negative training set by expect-

ation maximization (Lawrence and Reilly, 1990) using a numerical

optimization procedure in the maximization step. We restart the ex-

pectation maximization algorithm, which is deterministic for a given

dataset and a given initialization, 20 times with different initializa-

tions and choose the foreground model and the background model

with the maximum likelihood on the positive training data and the

negative training data, respectively, for classification. We use a

likelihood-ratio classifier of the two chosen foreground and back-

ground models, apply this classifier to the disjoint positive and nega-

tive test sets, and calculate the area under the receiver operating

characteristics curve and the area under the precision recall curve as

measures of classification performance.

We repeat both steps 100 times and determine (i) the mean area

under the receiver operating characteristic curve and its standard

error and (ii) the mean area under the precision recall curve and its

standard error.

2.5 Implementation
In order to investigate the influence of different phylogenetic trees in

a fair and detailed way, we implement the proposed PFM based on

the freely available Java Framework Jstacs (Grau et al., 2012).

Among others, Jstacs provides ready-to-use sequence models for re-

use, numerical and non-numerical optimization procedures for

model estimation, serialization of models and methods for the statis-

tical evaluation of results. In contrast to existing tools which are typ-

ically focused on application, using Jstacs we are able to compare

different PFMs in a detailed way by extracting mandatory informa-

tion about the inferred models and the predicted TFBSs.

Algorithm 1 shows the pseudocode for inferring a PFM from a

set of alignments. The implementation of the proposed PFM is avail-

able at https://github.com/mgledi/PhyFoo/.

3 Results

In this section, we investigate the classification performance of the

PFM specified in section 2.1 as function of the substitution prob-

ability for a synthetic dataset and five real datasets. The synthetic

dataset is generated using the PFM described in section 2.2. The five

real datasets originate from human ChIP-Seq experiments of the five

TFs CTCF, GABP, NRSF, SRF and STAT1 and MSAs of the pre-

dicted target regions with orthologous regions from monkey, cow,

dog and horse as described in section 2.2.

In section 2.1.1, we study the likelihood of the popular PFM

specified in section 2 as a function of the substitution probability for

the synthetic dataset and the real dataset of TF CTCF. In section

2.1.2, we study the classification performance of the PFM as a func-

tion of the substitution probability for the same datasets. In section

2.1.3, we perform the studies of subsections 1 and 2 for the four

datasets of the TFs GABP, NRSF, SRF and STAT1. In section 2.1.4,

we study the classification performance of the PFM based on three

selected phylogenetic trees for all five datasets of the TFs CTCF,

GABP, NRSF, SRF and STAT1.

3.1 Likelihood on synthetic and real data
First, we test the implemented expectation maximization algorithm

for the PFM specified in section 2.1 and summarized in Algorithm 1

by applying it to synthetic data generated with a substitution prob-

ability of 0.2 as described in section 2.2 and to real data of TF

CTCF. In both cases, we vary the substitution probability c of the

PFMs from 0.05 to 1.0 with increments of 0.05.

In case of synthetic data, we expect the best fit of the PFMs and

thus the highest likelihood when the substitution probability c of the

PFMs is close to the substitution probability of 0.2 used for data

generation. In case of real data of TF CTCF, we expect the best fit of

the PFMs and thus the highest likelihood when the substitution

Algorithm 1. Motif discovery algorithm for the proposed

PFM. Upon random initialization of the model parameters we

iteratively estimate sequence weights and model parameters in

multiple algorithm restarts, where R denotes the number of

restarts of the whole algorithm, and T denotes the number of

iterations. The result is the set of model parameters together

with maximum likelihood.

1: Data: Set of alignments A ¼ fA1; . . . ;ANg
2: Flanking model: Maximize pðAjh1Þ for the model

parameters p0 � h1

3: for r¼1 . . .R do

4: Initialize pw � h1 randomly for w 2 f1; . . . ;Wg
5: for t¼1 . . .T do

6: E-step: Estimate pðAnj‘n;M
1
n; h

tÞ for each position

‘n in each alignment An given the model

parameters ht

7: M-step: Maximize the expected value of the com-

plete-data log-likelihood with respect to

model parameters pw and denote the

resulting argmax by htþ1.

8: end for

9: Keep hTþ1 denoted hr

10: end for

11: Result: h 2 fh1; . . . hRg with maximum likelihood
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probability c of the PFMs is in the range of 0:1 � c � 0:4 accord-

ing to Gertz et al. (2006).

Figure 1a shows the likelihood as a function of the substitution

probability c ranging from 0.05 to 1.0 with increments of 0.05 for

synthetic data, and we observe the expected function with a max-

imum at the substitution probability of c ¼ 0:2, which is equal to

the substitution probability used for data generation. Figure 1b

shows the likelihood as a function of the substitution probability c

for real data of TF CTCF, and we again observe the expected func-

tion with a maximum at the substitution probability of c ¼ 0:2,

which is a reasonable value and in the range of 0:1 � c � 0:4 sug-

gested by Gertz et al. (2006).

These findings indicate that the applied PFM and the applied

maximum-likelihood principle are capable of identifying reasonable

substitution probabilities for synthetic and real data of TF CTCF,

where reasonable substitution probabilities mean substitution prob-

abilities close to those used for data generation in case of synthetic

data and in the range suggested by experts for real data of TF

CTCF.

3.2 Classification performance on synthetic

and real data
Second, we study the classification performance of the PFMs by the

method described in section 2.3 on the same two datasets. We again

vary c from 0.05 to 1.0 with increments of 0.05 and compute

the classification performance as a function of c as described in sec-

tion 2.4.

In case of both synthetic and real data, we expect that the classi-

fication performance looks qualitatively similar to the likelihood as

a function of c, i.e. we expect that the classification performance is

highest for c close to 0.2 for synthetic data and in the range of 0:1

� c � 0:4 for real data of TF CTCF.

Figure 2a shows the classification performance as a function of c

for synthetic data, and we observe the expected function with a

maximum at c ¼ 0:2, which is equal to the substitution probability

used for data generation and equal to the location of the maximum

of the likelihood. These results are in agreement with those of Sinha

et al. (2004) who additionally find that an underestimation of the

true substitution probability leads to a more severe degradation of

the classification performance than an overestimation of equal

magnitude.

Figure 2b shows the classification performance as a function of c

for real data of TF CTCF, but here we observe a function that is dif-

ferent from the expected function, different from the function

observed for synthetic data, and different from the likelihood func-

tion of Figure 1b. Specifically, we observe that the maximum is

achieved for an unrealistically high value of c ¼ 1:0, which is clearly

outside of the range of substitution probabilities of 0:1 � c � 0:4

suggested by Gertz et al. (2006) and much greater than the value of

c ¼ 0:2 at which the maximum of the likelihood is located.

This observation is surprising because a substitution probability

of c ¼ 1:0 corresponds to a PFM that assumes the orthologous se-

quences in the MSAs be statistically independent, i.e. phylogenetic-

ally unrelated. It indicates that choosing a realistic substitution

probability in the range of 0:1 � c � 0:4 might lead to an inferior

classification performance of phylogenetic footprinting compared to

choosing an unrealistic substitution probability of c ¼ 1:0.

3.3 Classification performance and likelihood on four

additional real datasets
Third, we study if the phenomenon that the maximum classification

performance is achieved for an unrealistically high value of c is spe-

cific for TF CTCF or possibly also present in other TFs. Hence, we

perform the studies of sections 2.2.1 and 2.2.2 for four additional

ChIP-Seq datasets of TFs GABP, NRSF, SRF and STAT1.

Figure 3a–d shows the four classification performances and the

four likelihoods as functions of c. For the likelihoods, we observe

clear maxima for realistic substitution probabilities in the range of

0:1 � c � 0:2 in all four cases. However, for the classification per-

formances, we observe the four maxima for unrealistically high sub-

stitution probabilities c � 0:8. This observation is again surprising

and states that the classification performance of phylogenetic foot-

printing is higher for an unrealistically high substitution probability

of c ¼ 1:0 than for realistic substitution probabilities in the range of

0:1 � c � 0:4 for all five TFs CTCF, GABP, NRSF, SRF and

STAT1.

In order to test if this result could be an artifact of the choice of

the negative dataset, we study the classification performance when

negatives are taken from the positives of the other datasets as done

by Arnold et al. (2012). We obtain the same surprising results that

the classification performance is higher for a substitution probability

of c ¼ 1:0 than for realistic substitution probabilities for all five TFs

(Supplementary Figs S5, S9, S13, S17 and S21).

Next, we scrutinize the motifs obtained by PFMs with a substitu-

tion probability of c ¼ 1:0. For synthetic data, we find that the

motifs obtained by PFMs with c ¼ 1:0 are highly similar to the

motifs used for data generation (Supplementary Fig. S1). For real

data, we find that the motifs obtained by PFMs with c ¼ 1:0 are

highly similar to the motifs obtained by PFMs with realistic substitu-

tion probabilities in the range of 0:1 � c � 0:4 (Supplementary

Figs S2, S6, S10, S14 and S22). These findings suggest that the

(a) (b)

Fig. 1. Likelihood for different substitution probabilities. We plot the likelihood

on synthetic data and CTCF data for a PFM using a star topology with all sub-

stitution probabilities set to c 2 f0:05; 0:1; . . . ; 1:0g. (a) Synthetic data.

Maximum likelihood is achieved for c ¼ 0:2, the substitution probability used

for data generation. (b) CTCF data. Maximum likelihood is achieved for

c ¼ 0:2, lying in the range of 0:1 � c � 0:4 suggested by the literature

(a) (b)

Fig. 2. Classification performance for different substitution probabilities. We

plot the classification performance on synthetic data and CTCF data for a PFM

using a star topology with all substitution probabilities set to

c 2 f0:05; 0:1; . . . ; 1:0g. (a) Synthetic data. Highest classification performance

is achieved for c ¼ 0:25, which is close to c ¼ 0:2, the substitution probability

used for data generation. (b) CTCF data. Highest classification performance is

achieved for c ¼ 1:0, which is unrealistic and different from the expected re-

sult. We obtain similar results when quantifying the classification perform-

ance by the area under the PR curve (Supplementary Fig. S4)
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motifs obtained by PFMs with an unrealistically high substitution

probability of c ¼ 1:0 might be less biased than naively expected.

3.4 Classification performance using realistic

phylogenetic trees
Fourth, we study if the phenomenon that the maximum classifica-

tion performance is achieved for unrealistically high values of c,

which we observed for PFMs with a star topology, also occurs when

using realistic phylogenetic trees. This study is motivated by obser-

vations that PFMs with phylogenetic trees with realistic tree topolo-

gies have the potential to yield higher classification performances

than PFMs with phylogenetic trees with unrealistic star topologies

(Newberg et al., 2007; Palumbo and Newberg, 2010).

Hence, we study the classification performances of PFMs on syn-

thetic data with different tree topologies and different substitution

probabilities, and we find in all cases the highest classification per-

formances near the substitution probabilities used for data gener-

ation (Supplementary Material section 4.2 and Supplementary Fig.

S25). In addition to generating synthetic data by the F81 substitu-

tion model (Felsenstein, 1981), we also generate them by the more

realistic HKY substitution model Hasegawa et al. (1985) in combin-

ation with different tree topologies and different substitution proba-

bilities, and we find again the highest classification performances

near the substitution probabilities used for data generation

(Supplementary Material sections 4.4 and 4.5 and Supplementary

Figs S27 and S28).

Next, we study the classification performance of the PFM on

real data using a phylogenetic tree and substitution probabilities

from the literature (Arnold et al., 2012). We denote the PFM with a

phylogenetic tree and substitution probabilities from the literature

byMtree
lit , the PFM with a phylogenetic tree with a star topology and

substitution probabilities according to the maximum-likelihood esti-

mates of Figures 1b and 3a–d by Mstar
ML, and the PFM with a

phylogenetic tree with a star topology and substitution probabilities

of c ¼ 1:0 byMstar
c¼1:0.

Figure 4 shows the classification performances ofMtree
lit ;Mstar

ML and

Mstar
c¼1:0 for each of the five TFs CTCF, GABP, NRSF, SRF and

STAT1. Interestingly, we find thatMstar
c¼1:0 yields a significantly higher

classification performance than the other two PFMs. In addition, we

investigate the classification performances of PFMs with a star top-

ology and a tree topology from the literature with branch lengths esti-

mated from the data, and we find also in this case thatMstar
c¼1:0 yields a

significantly higher classification performance than the other two

PFMs (Supplementary Material section 3 and Supplementary Fig. S23).

These findings state that, in case of real data, choosing unrealis-

tic model assumptions—namely a phylogenetic tree with a star top-

ology and substitution probabilities of c ¼ 1:0—might yield higher

classification performances than the same PFMs with more realistic

phylogenetic trees and more realistic substitution probabilities.

4 Discussion

Possible explanations for this unexpected observation might be un-

realistic model assumptions of the substitution model, heteroge-

neous substitution probabilities at different TFBS positions and in

different DNA regions, heterotachious substitution probabilities at

different times of evolution, or the construction of incorrect or at

least partially erroneous MSAs.

Violations of model assumptions sometimes lead to a poor classi-

fication performance or to a strange dependence of the classification

performance on one or several model parameters. Such a situation

might occur in phylogenetic footprinting, where PFMs typically as-

sume the same phylogenetic tree and the same substitution probabil-

ities for all positions of all TFBSs, for all TFBSs and all of their

flanking regions, and for all chromosomal regions and all MSAs des-

pite the fact that all of these assumptions are almost certainly vio-

lated (Conrad et al., 2011; Lercher and Hurst, 2002; Moses et al.,

2003; Schuster-Böckler and Lehner, 2012; Tian et al., 2008; Weber

et al., 2007; Wolfe et al., 1989).

Heterogeneous substitution probabilities among different DNA

regions are omnipresent and typically taken into account when mod-

eling the evolution of proteins or protein-coding genes. However,

this heterogeneity is typically neglected in PFMs, where this

Fig. 4. Classification performance of three PFMs on real data of five TFs. The

PFM Mstar
c¼1:0 (right) outperforms the PFMs Mtree

lit (left) and Mstar
ML (middle),

which implies that assuming phylogenetic independence generally improves

motif prediction. The PFMMtree
lit typically achieves a higher classification per-

formance than the PFMMstar
ML (see Supplementary Table S3 for significances).

For each of the five TFs, we find qualitatively similar results by the area under

PR curve (see Supplementary Fig. S23) with similar significances shown in

Supplementary Table S4. Supplementary Figures S23 also shows a compari-

son of Mstar
c¼1:0;Mstar

ML and Mtree
lit with two additional PFMs (Color version of

this figure is available at Bioinformatics online.)

(a) (b)

(c) (d)

Fig. 3. Classification performance and likelihood for different substitution proba-

bilities. We plot the classification performance (decreasing) and likelihood

(increasing) on data of the four TFs GABP, NRSFm, SRF and STAT1 for substitu-

tion probabilities c 2 f0:05; 0:1; . . . ; 1:0g. (a) GABP. The maximum likelihood is

achieved for c ¼ 0:2. The best classification performance is achieved for c ¼ 1:0.

(b) NRSF. Maximum likelihood is achieved for c ¼ 0:15. The best classification

performance is achieved for c ¼ 0:8. (c) STAT1. The maximum likelihood is

achieved for c ¼ 0:15. The best classification performance is achieved for c ¼ 1:0.

(d) SRF. The maximum likelihood is achieved for c ¼ 0:15. The best classification

performance is achieved for c ¼ 1:0. For each of the four TFs, we find qualitatively

similar curves when quantifying the classification performance by the area under

the PR curve (see Supplementary Figs S8, S12, S16 and S20)
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assumption would lead to potential over-fitting (Hawkins, 2004)

due to the facts that the positions of TFBSs are unknown in phylo-

genetic footprinting and that TFBSs are much shorter than protein-

coding genes.

Heterotachious substitution probabilities, i.e., substitution prob-

abilities that vary with time, are another feature that is typically neg-

lected in PFMs despite being omnipresent in both functional TFBSs

as well as their flanking regions. Neglecting heterotachy might lead

to the estimation of severely biased substitution probabilities, to in-

correct motif predictions, and thus to a poor classification perform-

ance (Kolaczkowski and Thornton, 2004).

Incorrect or at least partially erroneous MSAs are another prob-

lem that might lead to the violation of model assumptions (Kim and

Ma, 2011; Löytynoja et al., 2012). In particular, insertions and dele-

tions as well as heterogeneity in sequence composition such as a

varying GC-content (Hardison and Taylor, 2012) might cause MSA

algorithms to become potentially imprecise and might thus affect all

downstream analyses (Löytynoja and Goldman, 2008).

Maximum-likelihood estimators can be proven to achieve the

highest classification performance in the asymptotic limit of infin-

itely large datasets and under the prerequisite that the models used

for classification are exactly those used for data generation.

However, both prerequisites are typically not fulfilled in practice, so

it often happens that the highest classification performance is not

achieved by those parameters that maximize the likelihood.

This situation apparently occurs for phylogenetic footprinting

in a surprisingly pronounced manner, which seems to indicate that

the likelihoods of currently used PFMs are less affected by violated

model assumptions than their classification performances. On an

intuitive level, PFMs with realistic phylogenetic trees and realistic

substitution probabilities seem to be more strongly affected by het-

erogeneity, heterotachy and errors in MSAs than PFMs with un-

realistically high substitution probabilities, so using such

unrealistically high substitution probabilities might by a temporar-

ily useful choice until more sophisticated PFMs capable of coping

with heterogeneity, heterotachy and errors in MSAs are being

developed.

5 Conclusions

We have studied the influence of choosing different phylogenetic

trees and different substitution probabilities on the likelihood and

the classification performance of PFMs. We have performed these

studies on synthetic and real data obtained from ChIP-Seq experi-

ments performed in human and MSAs of ChIP-Seq positive regions

with upstream regions of orthologous genes in monkey, cow, dog

and horse.

We find that the likelihood depends on the substitution probabil-

ity in a qualitatively similar manner for synthetic and real data,

where it reaches a maximum for realistic substitution probabilities

in the range of 0:1 � c � 0:2. In contrast, we find that the classifi-

cation performance depends on the substitution probability in a

qualitatively different manner for synthetic and real data.

For synthetic data, the classification performance reaches a max-

imum at the values of the substitution probability used for data gen-

eration, which coincide with those values that maximize the

likelihood. For real data, however, it increases with the substitution

probability and stops increasing only at unrealistically high values of

the substitution probability in the range of 0:8 � c � 1, which are

very different from those values that maximize the likelihood.

We find in all of the studied datasets that PFMs using unrealistic

substitution probabilities of c ¼ 1:0 yield higher classification per-

formances than PFMs using realistic substitution probabilities.

One possible explanation for this strange behavior of the classifi-

cation performance on the substitution probability is the presence of

heterogeneous and heterotachious substitution probabilities, which

are neglected by currently used PFMs, and the sensitive dependence

of PFMs on the reconstructed MSAs that might be partially

incorrect.

Apparently, PFMs using unrealistic substitution probabilities of

c ¼ 1:0 are more robust to these and possibly other violations of the

model assumptions than PFMs based on realistic substitution proba-

bilities, and this robustness might lead to less biased parameter esti-

mates and thus more accurate phylogenetic footprints.

This observation leads to the strange practical recommendation

of using PFMs using unrealistic substitution probabilities of c ¼ 1:0

instead of using PFMs using realistic substitution probabilities until

there are more sophisticated models for the evolution of TFBSs and

their flanking regions that take into account heterogeneity and het-

erotachy as well as partially erroneous alignments in a position-

specific manner.
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