
USING CNNs TO CLASSIFY AND GRASP
CLOTH GARMENTS

A degree thesis

Submitted to the Faculty of

Escola Tècnica d’Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Enric Corona

In partial fulfillment

of the requirements for the degree in

Bachelor’s degree in electronic Systems Engineering

Advisors:

Antoni Gabàs

Guillem Alenyà

Ramon Bragós

Barcelona, June 2016

Abstract

Identification and manipulation of deformable objects are currently considered as one of the
most challenging tasks in the field of robotics. Their unpredictable shape and pose makes it
very difficult to identify them and retrieve their most relevant parts.

The aim of this project is divided in two tasks. First, to recognize a garment between four
previously modeled types. And second, to search for suitable grasping points in order to
bring the cloth from its initial random position to a known configuration. Both tasks are
solved using Convolutional Neural Networks (CNNs) trained with both real and synthetically
generated clothing depth images.

We developed a method to detect, after the garment is recognized, two garment-based prede-
fined grasping points. A CNN is used to predict their visibility and position, choosing between
rotating or grasping the garment. Once grasped the first, the second point is predicted simi-
larly with a more specialized CNN.

i

Resum (Catalan)

La manipulació i identificació d’objectes deformables actualment es considera un dels proble-
mes més ambiciosos en l’àmbit de la robòtica. A causa de la seva forma i posició imprevisibles,
és molt difícil reconèixer-los i identificar les seves parts més rellevants.

L’objectiu d’aquest projecte es divideix en dues parts. Primer, reconèixer una peça de roba
entre quatre models prèviament definits. I segon, buscar punts adients per agafar la roba, per
tal de portar-la des d’una posició aleatòria a una configuració coneguda. Ambdues tasques es
solucionen mitjançant Xarxes Neuronals Convolucionals (CNNs) entrenades amb imatges de
profunditat reals i sintèticament generades.

Hem desenvolupat un procés per detectar, després d’identificar la peça de roba, dos punts
prèviament definits per agafar cada peça de roba. Una CNN prediu la visibilitat i posició dels
dos punts, per saber si girar la roba o agafar-la. Un cop agafat el primer, el segon punt es
prediu de forma semblant amb una CNN més especialitzada.

ii

Resumen (Spanish)

La manipulación e identificación de objetos deformables actualmente se considera uno de
los problemas más ambiciosos en el ámbito de la robótica. Debido a su forma y posición
imprevisibles, reconocerlos e identificar sus partes más relevantes es muy difícil.

El objetivo de este proyecto se divide en dos partes. Primero, reconocer una prenda de ropa
entre cuatro modelos previamente definidos. Y segundo, buscar puntos adecuados para coger
la ropa, para traerla desde una posición aleatoria a una configuración conocida. Ambas tareas
se solucionan mediante Redes Neuronales Convolucionales (CNNs) entrenadas con imágenes
de profundidad reales y sintéticamente generadas.

Hemos desarrollado un proceso para detectar, después de identificar la prenda de ropa, dos
puntos previamente definidos para coger cada prenda de ropa. Una CNN predice la visibilidad
y posición de los dos puntos, para saber si girar la ropa o cogerla. Una vez cogido el primer
punto, el segundo punto se predice de forma parecida con una CNN más especializada.

iii

Acknowledgements

There are many people to whom I would like to thank their support and help during the time
I have been working in this project.

First, I wish to thank my tutors. Guillem, to admit me in the laboratory almost without
knowing me and always suggest new approaches and ideas I had not considered. To Toni, for
teaching and guiding me through all this project. To Ramon, that accepted me as his student
and helped me with the bureaucracy of the thesis.

I would like to thank my colleagues in the laboratory and office 19, specially to Sergi and
Gerard, who have helped me in many technical problems.

Finally, to the people who have helped me get where I am, my parents, family and friends.
Thank you for your constant support and help.

iv

Revision history and approval record

Table 1: Document history.

Revision Date Purpose

0 04/06/2016 Document creation

1 25/06/2016 Document revision

2 27/06/2016 Document approval

Table 2: Document distribution list.

Name E-mail

Enric Corona ecorona@iri.upc.edu

Antoni Gabàs toni2332@gmail.com

Guillem Alenyà galenya@iri.upc.edu

Table 3: Revision and approval history.

Written by: Reviewed and approved by:

Date: 05/06/2016 Date: 22/06/2016

Name: Enric Corona Name: Guillem Alenyà

Position: Project author Position: Project supervisor

v

Contents

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Objectives, methods and procedures . 1
1.2 Work plan, milestones and Gantt diagram . 2
1.3 Deviations from the initial plan and incidences 2

2 State of the art 5
2.1 Garment identification . 5
2.2 Bringing clothes to known configurations . 5
2.3 CNNs . 6

3 Convolutional networks theoretical background 7

4 Cloth identification 9
4.1 Approach . 9
4.2 Gathering data . 10

4.2.1 Physics engine environment . 10
4.2.2 Capturing images . 11

4.3 Network description . 12
4.4 Results . 14

5 Bringing cloth to a known configuration 17
5.1 Approach . 17
5.2 Gathering data . 17

5.2.1 First point detection . 18
5.2.2 Second point detection . 19

5.3 Network description . 19
5.3.1 First point detection . 20
5.3.2 Second point detection . 21

5.4 Results . 23
5.4.1 Results in synthetic images . 23
5.4.2 Synthetic images simulations . 23
5.4.3 Results in real images . 24

6 Budget 26

7 Conclusions and future work 27
Garment identification . 27
Bringing cloth to a known configuration . 27
Future work . 28

References 29

Appendices 32

Appendix A Project code 33

Appendix B Abstract of AMDO article 34

Appendix C Trained classifier networks 35

Glossary 36

vi

List of Figures

1.1 Process from grasping garment until having the garment in a known configuration. 1
1.2 Work Breakdown Diagram. 2
1.3 Gantt Diagram. 3

3.1 Artificial network structure. 7

4.1 Goal of chapter 4 in the project’s framework. 9
4.2 Color and depth image of our setup. 9
4.3 Physics engine interface. 10
4.4 Synthetic color 4.4b and depth 4.4a images of jeans obtained with a physics

engine [1]. 12
4.5 From left to right: Synthetic image with no noise, synthetic image with added

kinect noise [2] and depth image taken from real jumper in a similar configuration. 13
4.6 Classifier network structure. 14
4.7 Accuracy and Loss evolution during training in classifier network. 15
4.8 Confusion matrix of identification results. 15
4.9 Real images correctly and mistakenly identified by the classifier network. 16

5.1 Goal of chapter 5 in the project’s framework. 17
5.2 Known configuration for jeans in the simulated environment. 18
5.3 Synthetic ground truth for localizing the first grasp point, in white circles. From

left to right: Jeans, jumper and T-shirt. 18
5.4 Possible grasping points selected for jeans, in simulated environment. 19
5.5 Ground truth in synthetic images, for jeans, jumper and T-shirt. 19
5.6 Structure of the two points predicting network. 21
5.7 Accuracy and Loss during training of our network compared to the specialized

CNNs. 22
5.8 Structure of the last point predicting network 22
5.9 Synthetic simulation of grasping the garment from known points. 24
5.10 Grasping point predictions on real images. 25

7.1 Possible position of cameras to obtain images from more positions. 28

vii

List of Tables
1 Document history. v
2 Document distribution list. v
3 Revision and approval history. v

1.1 Milestones. 3

4.1 Table of trained networks using synthetic images. 13
4.2 Results of cloth identification on this project compared to state of the art. . . . 16

5.1 Trained networks. As CNNs became deeper, the results improved. 21
5.2 Errors per output neuron in final network, where regression error is in cm2. . . 23
5.3 Distance from predicted point to ground truth in centimeters. 23
5.4 Accuracy of grasping process simulation. 24

6.1 Hardware resources. 26
6.2 Human resources. 26

viii

1 Introduction

Robots are under increasing expectation to continue gaining autonomy up to participate in
our daily lives on topics as diverse as elderly care, housework or maintenance. Their ability to
perform repetitive tasks very precisely is essential to any automated process, which combined
to their effectiveness makes them the optimal option for industry. The use of robots has
been extended to places inherently unsafe for humans, such as space exploration or military
tasks. Other types of robots can be found in the medicine field thanks to their precision and
reliability.

Nevertheless, the diversity of topics they can be found working on, contrasts with their still
low self-sufficiency. Robots can be accurately programmed to achieve a list of tasks, but
they become ambiguous when handling new situations. Dealing with deformable objects is
part of this unpredictability and involves a significant challenge for robotics, for the necessity
to employ different artificial intelligence algorithms. Bringing a garment from an unknown
configuration to the known initial position of the following task, such as folding it, presents
as a very demanding task that not only requires complex perceptions but also the proper
algorithms to interpret the information captured and abstract the relevant part.

Robotics is a highly multidisciplinary area including mechanics, electronics, computer science
and physics. In order to solve the mechanical procedure of manipulating garments with two
robotic arms, the project described in this document falls in the category of artificial intel-
ligence and computer vision. We assumed the robotic arm has already grasped the garment
from a pile of cloth and it is being held in the field of view of a depth camera. The pile of
cloth would contain different pieces of cloth, so the garment has to be identified and grasped
from a known configuration in order to perform the following task (folding the cloth, dressing
a person, etc.). To bring it to this known position, intrinsic for every piece of cloth, the robot
should recognize the different parts of the cloth and go to grasp the garment from the familiar
point. Figure 1.1 summarizes the whole process with a pair of jeans being grasped by two
Barrett WAM arms [3].

Figure 1.1: Process from grasping garment until we can perform the following task, from the
known configuration.

1.1 Objectives, methods and procedures

The objective of this project is to use Convolutional Neural Networks (CNNs) on depth images
to identify garments and predict how to bring them to known configurations. CNNs are being
increasingly used for visual recognition tasks and their promising results made us consider
using them to identify four types of garments: jeans, jumpers, t-shirts and towels. The four
categories seem to adapt similar forms and have comparable sizes. Therefore, their appearance
in depth images does not vary much.

This poses a challenging identification problem for which we will need many images. Important
identification competitions provide up to one million images to train reliable classifiers CNNs.
Needless to say, getting enough images to train an algorithm that identifies garments presents
as a very time-consuming task. We propose the use of images taken from real garments
combined with a synthetic source of data, simulating the clothing being grasped from points
on their entire surface.

1

Differently, the use of convolutional neural networks is not as extended for regression tasks:
providing a value in a linear scale that represents typically a physical property. In this case,
we expect the algorithm to provide the position in the space of the reference grasping point
for the previously identified clothing.

From our garments to be classified, the towel is a special case where the reference grasping
points would be at the vertexes, which are easily identified in images: When a towel is grasped
and held, the lowest point seen in the images is the vertex as showed by Maitin Shepard et al.
[4]. Thereby, our method would only be applied to the other three categories, from which we
will use the jeans to initially approach the problem and tune the CNN parameters.

Although the color of the cloth provides an important amount of information, we do not want
the algorithm to learn to differentiate between garments based on their color, as garments can
be found on almost any tint. Consequently, the recognition algorithm will be trained only
with depth images. To capture them we are going to use a Xtion depth camera [5], which will
be located at a fixed distance from the garment holding point, to be decided depending on a
balance between wrinkle definition and amount of space observed.

1.2 Work plan, milestones and Gantt diagram

As explained in section 1.3, the work plan was modified in the critical review to add a second
predictor to the regression section. The final Work Breakdown Diagram can be seen in figure
1.2. It consists of three basic modules from which the first is necessary to gather data to
train convolutional networks for the second and third steps. The first and second sections also
include the theoretical study to the physics engine software [1] and CNNs respectively.

Also, table 1.1 and figure 1.3 present the project milestones and the Gantt Diagram, respec-
tively.

Figure 1.2: Work Breakdown Diagram.

1.3 Deviations from the initial plan and incidences

This subsection focuses on precise parts of the project and it should be better understood
reading it afterwards.

As explained in section 5.1, we initially did not thought of dividing the grasping process in
two parts. It was when we trained the first network that we realize that, once we had grasped
the first point, we would need to predict a second. We could possibly make use of the first

2

Table 1.1: Milestones.

WP# Task Short title Milestone/Deliverable Date (Week)

WP1 T1
Generate synthetic data

for classification

Synthetic images are similar

to real ones generated
15/03/2016

WP2 T2 Accuracy testing
The final network is validated

in the real test dataset
12/04/2016

WP1 T4
Generate synthetic data including

the position of their grasp points

Synthetic images generated

to train the regression CNN
22/04/2016

WP3 T1
Regression CNN to predict

the position of two grasping points

The final network is validated

in the synthetic test dataset
05/05/2016

WP3 T2
Regression CNN to predict the

position of the second grasping point

The final network is validated

in the synthetic test dataset
22/05/2016

WP3 T3 Simulate process of grasping point

Simulation from the garment

being identified and brought

to a known configuration

05/06/2016

Figure 1.3: Gantt Diagram.

3

network also to predict the second point, but adapting to the case of the first point being
already grasped (or grasping somewhere near it), a specialized network directly to face this
situation proved to be considerably more efficient.

Also, predicting whether the point was visible or not and its position was not initially planned.
We expected to predict their situation and, then, try to find the point in the image to decide if
it was visible or we should turn the garment. When analyzing the results of the first networks,
we realized of what our final approach should be.

4

2 State of the art

This chapter reviews the most recent research related to the topics treated in this project,
including garment identification, bringing pieces of cloth to known configurations and Convo-
lutional Neural Networks.

2.1 Garment identification

A significant amount of research has been focused in detecting and identifying deformable
objects. The process of isolating a piece of cloth from a pile was identified as the one of the
first tasks to be solved for laundry manipulation in a pioneer work by Kaneko and Kakikura [6,
7]. Their initial work identified three categories: shirt, pants, and towels. Previously to
identification, works such as [8] by Colome et al. study the grasping process from a pile of
clothing, implementing a method to know when we have grasped only one garment.

Latest works commonly consist of an image or pointcloud database taken by a kinect sensor or
a pair of stereo cameras. The main difference resides in the identification method. Willimon et
al. [9, 10] used interactive perception to recognize and classify different small garment types
such as socks and short pants, but their model relies on a color-based image segmentation
that may fail when seeing fully textured clothes. Kita et al. [11, 12] demonstrate the ability
to recognize poses of different garments by matching them to a precomputed database. Li et
al. [13] use a SIFT descriptor which only needs an input image and, therefore, they achieve a
high-speed recognition of clothing: sweater 85%, jeans 70%, and shorts 90%.

Another common approach is based on comparing volumetric features, such as Li et al. [14]
proposing to reconstruct a 3D model by using diverse images of the garment. They extract
volumetric features and match them to an offline database. However, their method requires
having the garment completely rotated, which slows the recognition process. Similarly, Kinect-
Fusion on different deformable objects [15], directly compare the 3D model to the pre-recorded
database, which also requires powerful computational resources.

One approach using convolutional networks is presented by Lao et al. [16], that use them on
color images downloaded from the Internet and achieve an accuracy of 74.5% in identifying
sixteen classes of clothing. More similarly to us, Mariolis et al. [17] used CNNs on depth
images to obtain an accuracy rate of 89.38 % in identification of shirts, pants and towels. In
the first part of our work we presented an approach to identify clothing using only real images
on convolutional networks that takes advantage of a robotic arm to rotate the cloth to have
more views, which was accepted in Conference on Articulated Motion and Deformable Objects
2016 [18].

2.2 Bringing clothes to known configurations

Osawa et al. [19], first proposed two robotic arms to unfold a garment. Their method consisted
of color-based segmentation with a clean background and, therefore, only works for garments
with unique color. Maitin-Shepard et al. [4] propose to detect the corners of a piece of cloth
using geometric cues, consisting of a sequence of grasps that end having the garment always
in the same position. Their approach works for towels, whose known configuration is being
grasped from two vertices. They present that the lowest point of a towel, after some re-grasps,
is always one of the vertexes. This allows to fold previously unseen towels without the necessity
to compute the database. Assuming this as a valid hypothesis, our project does not centre in
predicting where the grasp points are for this garment. Ramisa et al. [20] present a system
that uses a very efficient shape descriptor named FINDDD combining depth and color to find
good grasp candidates on a cloth lying in the table. Therefore, they cannot disambiguate with
more than one view nor choose known grasping points.

Other approaches to manipulate garments involve some kind of artificial intelligence algorithm
to decide where the point is. Doumanoglou et al. [21] proposes the first method to unfold
regular-size clothing with a similar method to ours. They use random forests on the garments’
depth images, trained with a set of images manually taken and labelled, which may be a very

5

time-consuming task method to implement in practice. Also, it may lead to worst results when
seeing new fabrics, although achieves impressive rate of success within their database.

Similarly to us, Li et al. [22] makes use of a physics engine to create a database to train an
algorithm that recognizes the garments’ pose, matches it to a pose achieved with the synthetic
3D model of the same garment, and relates the grasping point of the synthetic image to the
real one. After some re-grasps, the process stops when the pose is matched to the known state.

2.3 CNNs

Convolutional neural networks have a long history in computer vision tasks, having examples
of successful back-propagation training for digit recognition [23] in a few decades ago.

But its due to the increasing computational power of GPUs, that the number of applications
based on CNNs is incrementing, leading to recent successes of deep networks for image clas-
sification, that have achieved competition-winning numbers on contests involving datasets of
more than one million images, particularly the network proposed by Krizhevsky et al. [24]
and GoogLeNet [25] in ImageNet competition [26].

In recent years, the evolution of new techniques to train not only CNNs but also normal
artificial networks, such as dropout [27] and batch normalization [28] have boosted Convolu-
tional Neural Networks in a very diverse number of applications that may be related to image
processing.

6

3 Convolutional networks theoretical back-
ground

Artificial neural networks are a set of mathematical models inspired in humans’ central nervous
systems. Each neuron aggregates its inputs and passes them to a nonlinear activation that
is fed to the next step. Neural network structures are usually formed by an ensemble of
layers (Figure 3.1) that reduce the incoming dimensionality at the same time as they process
nonlinearly the input values, which makes them able to approximate more complex functions.
Nonlinearities are usually either rectified linear units (ReLUs) [29] or sigmoids [30]. ReLUs
derivatives are easier to compute than sigmoids’, resulting in networks having them train
faster.

Figure 3.1: Artificial network structure.

The weights on each layer are tuned based on a training process, where all the available data
is shown to the network to generate a certain loss function.

Backpropagation [31] consists of minimizing this loss function step by step by changing the
parameters of every network, where the size of each step is determined by the learning rate.
If it is bigger the function will be learnt more rapidly, although having it too large can make
the process diverge.

When training, there are different methods that improve the results depending on the appli-
cation. The ones used in this project were Adam [32] and stochastic gradient descent with
Nesterov momentum [33]. The first adapts by itself the learning rate depending on the last
range of losses, making it very fast to train. The second trains normally but conserving a
history of weight modifications that helps to avoid local minimums.

Convolutional Neural Networks (CNNs) are a specific type of neural networks that are giving
very favorable results in computer vision tasks. The input image is processed by convolutional
layers that help the following layers to have a better representation of what structures appeared
on the initial image. The layers used on this project are:

• Convolutional: The layers in charge of processing the image divided in portions and give
a better understanding of the input image. They are attached to nonlinear activations
applied usually after the convolution, adding complexity to the network.

• Pooling: After convolutional layers, it is usual to find a pooling layer that reduces the
dimensionality of the image resizing the image. This can be done finding the maximum
value or the average of the numbers to be pooled. Pooling layers help to produce invari-
ance on the position of the image, but difficult the following layers to understand what
portion of the image values come from.

• Normalization [28]: Layers that normalize their inputs have been proved to increase the
training speed of the algorithm, although gives worst results when the network is given
different types of images from the training ones.

• Fully connected: These are formed by sets of simple neurons and process the data
provided by the convolutional and pooling layers. Usually, one or two fully connected
layer combine all the features found previously and pass them to the last layer, which is
either a softmax or a linear layer.

7

• Softmax [34]: The softmax layer is used to classify between different possibilities. It
returns the probability for the subject to pertain in each class.

• Linear: Linear units are simple neurons without the nonlinear activation, where the
amount of neurons depends on the number of outputs we want to have. Instead of
classifying, they are used to predict a value related to the input data, i.e. the number
of faces in an image.

Training CNNs requires a big amount of data, which usually consists of images, involving also
an important amount of RAM memory and disk space. Not only that, a Graphics Processing
Unit (GPU) makes the process much more efficient and helps to reduce dramatically the
training time.

Ground truth is an important term for this project, meaning the correct results labelled to
the corresponding image. It refers to the correct values of the dataset and are being used to
train the CNNs and calculate the results of the networks.

8

4 Cloth identification

This section explains the process of training a garment recognizer, which includes taking photos
of real images, the generation of synthetic images, developing different Convolutional Neural
Networks and fine-tunning them to optimize the network and get the maximum accuracy.
Figure 4.1 shows the position of this part in the whole sequence.

Figure 4.1: Goal of the current section in the project’s framework.

4.1 Approach

After trying different distances from the camera to the garment, we set the position at 1.5
meters. Although placing the camera further involves the image to be noisier and miss small
wrinkles, the image usually enclosed whole views of the clothing and poses became identifiable.
Figure 4.2 shows the color and depth appearance of our setup to obtain depth images and later
grasp the garments, in this case a jumper, using the two robotic arms [3]. As seen in the depth
image, the garment is only part of the scene and can be filtered by depth, knowing the rest of
the objects are further.

Figure 4.2: Our setup to capture depth images of the garment, in this case a jumper,
involving a Xtion camera [5] and two robotic arms [3].

(a) Color image of our setup. (b) Depth image of our setup.

We obtained 2530 depth images of the garments we want to classify, of which some of them
are repeated and the only difference is the camera noise. As our camera is located at a fixed
distance from the robot, the images are captured only from a known distance and centered in
the image in a fixed orientation. This simplifies the training but does not allow much data
augmentation. The only way we could obtain more images from the original ones was to
compute the X-axis symmetry, which doubled the number of images.

The resulting data was divided into train (60 %), to teach the CNN, validation (20 %) and test
(20 %) sets. The validation set helped to determine what changes in the network structure
and parameters help to improve the classification accuracy, while the test images are those the
CNN has never tested until the final model is chosen, to verify the network performance. As
there are very similar images in the set, the validation and test sets contain different garments
than the training, to confirm our model learns to identify these garments.

9

At the end, we did not have much real images and the first networks would not lead to a
correct approximation of the function but mostly retain in memory those training images,
reaching an accuracy of approximately 87%.

4.2 Gathering data

The real data we dispose of is not enough to train an enough reliable network. Consequently,
we decided to simulate synthetic piece of clothing in a physics engine [1], using 3D models of
the garments to be identified in this project. This section will explain how we obtained the
depth images using this Software.

4.2.1 Physics engine environment

The depth images were captured from 36 cameras at a distance of 1.5 meters, covering the
whole visual range at that distance. The pose of the original downloaded garments is initially
as if they were not deformable. To capture images on different poses, a vector of vertexes was
defined on each garment and its being iterated to simulate the cloth is grasped from each of
those points. This vector contains vertexes of only one side of the garment, as the images
are being doubled by computing the X-axis symmetry, and the resulting images would be the
same than computing the same vertexes on the other side. Figure 4.3 shows the interface in
the physics simulator when capturing images.

Figure 4.3: Physics engine interface when capturing depth images of jeans. Cameras are
located in a fixed distance to capture different views of the same pose.

The physics engine has a programmable environment in Maya Embedded Language (MEL)
[35] or python. We programmed diverse scripts in MEL, easier to communicate to the physics
engine classes, that let us automatize the image capturing process. The models we used to
obtain the synthetic images were open source 3D cloth in the of jeans, jumpers and T-shirts,
whereas we created the towels as simple plane deformable objects of diverse sizes and widths.
In order to create the cameras and initialize our working environment for the jeans cloth, we
used the following MEL code. To model synthetic cameras with the characteristics of the real
cameras we are using, their focal length and image size were specifically defined. Also, the
pictures were saved in TIF format of 16 bits to minimize the quantification error.

string $cloth = "Jeans";
file -import "/Users/ecorona/Downloads/jeans.obj";
setAttr "defaultRenderGlobals.imageFormat" 4;

// Select Jeans and convert to deformable with standard characteristics:
select -r $cloth ;
createNCloth 0;
setAttr "nClothShape1.stretchResistance" 1;

10

setAttr "nClothShape1.compressionResistance" 0.1;
setAttr "nClothShape1.bendResistance" 0.025;

// Create cameras
for($i=0; $i <36; ++$i){

camera -focalLength 33.152;
float $x = 150* cos (($i*10) *3.14159/180);
float $z = 150* sin (($i*10) *3.14159/180);
move -r $x 0 $z;
float $rotation = (90 - $i*10);
rotate -r -os -fo 0 $rotation 0;
string $instruction = "cameraShape"+($i+1) + ".mask";
setAttr $instruction 0;
string $instruction = "cameraShape"+($i+1) + ".locatorScale";
setAttr $instruction 10;

}

Listing 4.1: MEL code to load jeans 3D model, set our environment with the deformable
properties and cameras.

As observed, MEL is syntactically similar to Perl and, although it was a new language for
us, still provides two main advantages respect to python. First, the physics engine offers a
built-in command echo server, which is created for MEL, and lets execute lines without having
to create scripts. And second, most of inner working of the physics engine is formed by MEL
commands, which provides many insights into undocumented features.

4.2.2 Capturing images

To simulate the garment being grasped, the position of a vertex is moved to the center and
fixed. Then, the garment is let only affected by gravity. When the software simulates the cloth
falling, it performs several computations in order to avoid physical incongruities or collisions,
needing a considerable time to achieve realistic results.

Before gathering enough images to train the CNNs, we tried the synthetic images to appear
very similar to reality, despite of the camera noise. By varying cloth dynamic properties such
as compression, stretch and bend resistance, we modelled different types of cloth fabrics. The
following MEL code needs approximately three hours to generate approximately 3.000 jeans
depth images. It iterates between all the vertexes, moving each of them to the central position
to be at a fixed distance from all cameras, passes trough time and takes the images. This
process was repeated varying the size and physical properties of the garments until we had
roughly twenty thousand images for piece of cloth.

// Start the captures:
for($x = 0; $x < size($vertics_Jeans); $x = $x+1){

// Move grasping point to the centre:
currentTime 1;
string $instruction = $cloth+".vtx[" + $vertics_Jeans[$x] + "]";
float $pos[] = ‘pointPosition $instruction ‘;
select -r $cloth;
move -r (-1*$pos [0]) (60-1* $pos [1]) (-1*$pos [2]) ;
select -r $instruction;

// Fix the point position
createNConstraint transform 0;

// Pass trough time one by one
for($t=2; $t <500; ++$t){

currentTime $t ;
}

// Iterate through cameras to take photos:
for($c=1; $c <=36; ++$c){

string $cam = "camera" + $c;
string $final_name = "/Users/ecorona/Documents/Database/" + $cloth2 +

"_" + $x + "_" + $c + ".tif";
$direction = ‘render $cam ‘;
sysFile -move $final_name $direction;

}

11

// Unfix grasping point:
select -r dynamicConstraint1;
doDelete;

}

Listing 4.2: MEL code used to iterate over the selected vertexes in Jeans and simulate them
falling. Then, the cameras obtain their depth image.

Figure 4.4 shows one of the depth images obtained and compared to a color image where the
jeans texture can be appreciated. There is nothing in the image apart from the garment as
we want the convolutional network to focus on it. The points containing no depth were set to
zero. Therefore, the real images obtained have to be set to the same configuration by filtering
the depth further than the position of the jeans.

Figure 4.4: Synthetic color 4.4b and depth 4.4a images of jeans obtained with a physics
engine [1].

(a) Depth image of jeans. (b) Color image of jeans.

4.3 Network description

We trained a series of CNNs varying the most important details of the network such as the
amount of convolutional, pooling and fully connected layers, varying the size and amount of
the filters, etc. This showed what features were the most important and could improve the
network results.

One of the first techniques we applied was to add dropout [27] to the fully connected layers,
which consists of cancelling some nodes in the network with a certain probability. This helps
the network not rely only on a few features, but try to extract additional properties in different
ways. Although its use slows the training process, the accuracy of networks that use dropout
increases considerably. Dropout is sometimes being used on the convolutional layers, but its
effectiveness is still controversial [36]. Some tests were performed in this direction but the
dropout in these layers did not improve the results.

Second, penalizing the parameters when they become too big is habitually used to avoid the
filters from learning too complex features, usually known as regularization [37]. In addition,
data normalization is a common practice to increase the training speed and accuracy of the
algorithm. On the first approach, images were pixel-wise normalized by setting the mean to
zero and the standard deviation values to 1. We also tried Batch Normalization [28], which
consists of normalizing every set of images showed to the network instead of normalizing the
entire set of images previously, showing very good performances and faster training for our
case.

Both the real and synthetic images have a shape of 240 pixels height and 320 pixels width,
but the garments are always in the middle. Accordingly, the sides were cropped to have a size
of 240 height x 160 width which still contains all the images we have. This allows the network
to train and predict faster and also reduces considerably the amount of disk space needed to
save the images.

12

We noticed the synthetic images taken from the simulator have very precise information and
the borders of the garment appear very definite. Instead, images from real cameras return
different types of error. First, the uncertainty on the depth captured can be characterized
as Gaussian noise correlated to the distance to each point and the pixel position. Also,
considerable horizontal and vertical error appears, though it is only visible on object borders,
where the depth from a pixel to its neighbors is most different. Choo et al. [2] presented
a mathematical model to simulate this noise in images, which has given us our best results.
After adding this noise in our synthetic training images, our model has learnt not to rely much
on the borders and take depth noise into account. Figure 4.5 shows the appearance of the
noise in synthetic images..

Figure 4.5: From left to right: Synthetic image with no noise, synthetic image with added
kinect noise [2] and depth image taken from real jumper in a similar configuration.

The loss function used to train the network was based on categorical cross entropy, with added
regularization [37].

Loss(p, t) =
∑

(−t ∗ log(p)− (1− t) ∗ log(1− p)) +Regularization (4.1)

The training process is optimized to minimize the loss function, but does not provide us enough
information to evaluate the network reliability. Alternatively, we are using the accuracy to
know which model provides best results.

The ReLU function [29] proved to be faster and give more accurate results than the sigmoid
[30]. Table 4.1 presents the networks with best accuracy. They have common features, such
as fifty per cent of dropout [27] and are regularized [37] (see section 3), but the structure is
different. More details of these networks and their performance compared to the other networks
trained can be seen in Appendix C. They showed what features make CNNs approach more
accurately this problem. The networks trained with synthetic images giving best results were
refined using the training dataset formed by real depth images, that contains 3039 images.
Their results are presented in the last two columns of figure 4.1.

Table 4.1: Table of trained networks using synthetic images.

Training details Train results After refinement
Training images Added Noise Normalization Loss Accuracy Loss Accuracy
Real No Pixelwise norm. 0.382 87.08 % - -
Synthetic No Batch norm. 0.381 86.48 % 0.138 95.28 %
Synthetic No Pixelwise norm. 0.623 82.87 % 0.201 94.26 %
Synthetic Gaussian noise Pixelwise norm. 0.715 72.87 % - -

Synthetic
Kinect noise
in x,y and
depth [2]

Batch norm. 0.354 88.61 % 0.125 96.85 %

The best model reaches an accuracy of almost 97 % of accuracy in real images. As seen
in image 4.6, its structure is based on four convolutional layers with different size for the
horizontal and the vertical axis, as the input image is not squared. After the convolutional

13

layers, four max-pooling layers to resize the image and increase the network invariance respect
to the position of the garment features. Next to them, two fully connected layers connect to
the last two softmax [34] neurons.

Figure 4.6: Network structure. The final model has four convolutional layers with non-
squared size, four max-pooling layers and two fully connected layers.

4.4 Results

The final accuracy and loss during training are shown in figure 4.7, first using synthetic depth
images and validated only by real images. When the accuracy stabilized in the first training,
approximately at the 100 epochs, the network was refined using the real training images with a
smaller learning rate and a higher regularization. As the training dataset is changed to a new
one, the training loss has a new peak. On the refinement, the training data is much smaller
and epochs pass much more rapidly. The global loss minimum is achieved in the 284 epoch
and, after that, the network starts to slightly overfit the training images. The validation curve
is not being reduced but the training loss is decreasing even though it has added difficulties
such as dropout and regularization.

The confusion matrix at figure 4.8 shows accuracy and missclassification rates on the four
garments included in the project. T-shirts appear to be very different to the other three, being
correctly identified in the nearly two hundred T-shirt depth images we dispose of. Differently,
the other three may have similar poses that makes the network mistake. Most significantly,
the towel is the garment causing more confusion, most often confounded with jeans.

Figure 4.9 presents correct predictions and mistakes committed by the network. As seen in the
second row, different garments can have very similar appearance in depth images. Among the
probabilities most regularly predicted, one of the options stands out the others. Nevertheless,
when the image does not contain characteristic features from the different garments, such as
the sleeves, the hoods on jumpers or the necks on the T-shirts; the probabilities predicted are
more balanced and imply more indecision.

To avoid being in these situations and maximize the identification confidence, the garment
can be rotated and identify the garment for different views of the same pose. Then, the
prediction would be the most voted output of the convolutional network. This way, we ensure
the distinctive parts of the garment have been viewed.

In other occasions, the network may fail predicting a high probability to a mistaken garment
due to the similarity of the poses adapted, as in the bottom row of figure 4.9. The long sleeves
of the jumper are very similar to the jeans legs, which is a common source of error to the
network. The confusion between the jeans and the towel could be due to the similarity of
towel views with some poses of the jeans having the legs together.

Comparing to other cloth identification research projects in figure 4.2, we achieve a similar
accuracy to the state of the art when training our convolutional network only with depth
images from real garments. In addition, our final model being trained with synthetic images
and refined with real ones, obtains a considerable improvement to other recent approaches
in research. Although this topic has been studied taking into account different number of
clothing, which difficulties the comparison. Furthermore, we and Mariolis et al. [17] have only

14

Figure 4.7: Accuracy and loss evolution during training, from epoch 0 to 100. Refinement
starts at epoch 100, approximately, and generates a training loss peak, due to the change in
training images.

Figure 4.8: Confusion matrix. The diagonal shows correctly identification rates per each
type of garment. The most relevant missclassification occurs between jeans and towels.

15

Figure 4.9: First row: Images of jeans, T-shirt and towel correctly identified, respectively.
Second row: The same garments in misleading poses that made the classifier mistake.

considered a fixed position for the garment while other approaches such as Li et al. [13] have
different views in other angles maintaining a fixed distance. Also, Lao et al. [16]) detect an
ample amount of garments in color images, more oriented to fashion rather than robotics.

Table 4.2: Results of cloth identification on this project compared to state of the art.

Approach Number of garments Accuracy
Li et al. [13] 3 81.67 %
Lao et al. [16] 16 74.5 %
Mariolis et al. [17] 3 89.38 %
Our approach only with real images 4 88.61 %
Our approach with synthetic and real images 4 96.85 %

16

5 Bringing cloth to a known configura-
tion

This section will describe how we approached the process of having an identified garment in
an unknown pose until it is grasped in a familiar configuration by the robot. As figure 5.1
presents, the current chapter will try to solve the problem of locating the grasp points in the
Cartesian space to provide them to two robotic arms that will grasp them in order until it is
being held in a well-known pose.

Figure 5.1: Goal of the current section in the project’s framework.

5.1 Approach

When hanging garments, we naturally manipulate the garment in our hands until we grasp the
cloth from these positions, having always a good sense of where they are. Differently, robots
cannot handle these types of objects this way. Their grippers do not let them to slightly
modify their position when handling a garment, as we can do. Instead, robots should grasp
one point first and then the second, taking into account that there may not be any grasping
point on the image: They may be on the other side of the garment or, in the case of jeans,
they are long enough to have the grasping point below the image.

Having our image identified as presented in figure 5.1, the grasp points may be visible or we
may have to rotate the garment to see them. To know when they are visible, we would need
a specialized network. After this network finds a visible grasp point, a regression CNN would
predict the Cartesian location of the point. Following with the grasping pipeline, having the
first point grasped we would need to identify the second grasping point in a new image using
the same method.

Training two networks to classify and to predict the location of the points, respectively, would
involve more complexity for each of the garments. At the end, we would need four different
Convolutional Networks for each cloth type. After trying different types of networks, we
decided to classify and apply regression in the same network by modifying their last layer,
which would increment the complexity in the training process but ease the implementation,
reduce the memory used and increase the prediction speed. For each garment considered we
end having two Convolutional Networks. The first would predict the visibility and location of
the two known grasping points, while the second would estimate the same properties of only
the non-grasped point.

5.2 Gathering data

Due to the clear difficulties of gathering enough real garment depth images linked to a grasping
position so that a Convolutional Network can be trained, this part was approached similarly
than in section 4. A new big amount of images from synthetic garments, referenced to the
known point positions, were generated and the resulting CNNs were trained with them.

Considering the scripts presented in section 4.2, we had to add modifications in order to locate
the grasping point at each pose and extract these values linked to the image, in a CSV file.

17

5.2.1 First point detection

Figure 5.2 shows the desired configuration for jeans. Their known grasp points are at the
waist, over the sleeves. For jumpers and T-shirts, the familiar holding points were set over
their shoulders.

Figure 5.2: Known configuration for jeans in the simulated environment.

To train a reliable network independently of the position of the position of the objects involved,
we set the Cartesian grasp point locations referenced to the camera. The origin was placed
in the garment holding point, which is 60 centimeters higher than the camera and at 150
centimetres in front of it.

Nevertheless, the point positions are more human-comprehensible once seen in images. Know-
ing the field of view of the camera, 57 degrees horizontally and 42.75 vertically, and the number
of vertical and horizontal pixels, 320 and 240 respectively, the grasping positions can be drawn
in images. The axis orientations are defined as in the Kinect camera [38]: The X-axis matches
the horizontal axis, where the positive direction is leftward. The Y-axis corresponds to the
vertical axis upward and the Z-axis represents outgoing depth. The equations obtaining the
pixel values are 5.1 and 5.2.

pixelx = 79− x

(150 + z) ∗ tan(57.0/2)/160
(5.1)

pixely = 119 +
−60− y

(150 + z) ∗ tan(42.75/2)/120
(5.2)

Although the pixel depth does not exactly correspond to the Cartesian Z value, due to quan-
tification error and the conversion from a decimal value of pixel to an integer, the visibility
of the point can be detected when these two values are nearer than a threshold, having com-
puted our ground truth with a limit of 1 centimeter. Otherwise, the grasp point is supposed to
appear behind the cloth. Figure 5.3 shows clothes with their labelled visible grasping points.

Figure 5.3: Synthetic ground truth for localizing the first grasp point, in white circles. From
left to right: Jeans, jumper and T-shirt.

18

5.2.2 Second point detection

Once the first point is grasped, the following CNN has to predict where the second grasping
point is located. Thus, the images shown to this network have to be garments grasped from
reference points or near them. Figure 5.4 shows the possible grasping points we labelled for
jeans to be grasped, from which the MEL scripts iterated over them to provide approximately
60 thousand depth images more per garment. In this case, we did not compute the X-axis
symmetry to double the number of images, as the selected vertexes were all around the inter-
esting points and we would have repeated images. Apart from this zone, other points around
the garment were selected, to transmit the CNN an intuition that the clothing can adapt a
great variety of poses, which could help us when the previous point had not been correctly
localized.

Figure 5.4: Possible grasping points, near the ground truth, selected in the simulated envi-
ronment, in the case of jeans. Other points were selected further from the ground truth to
capture images with a wider range of poses.

Having the images taken, the ground truth was computed to be the one of the two grasping
points that was further of the origin, being it in the holding point of the vertex. We want to
grasp the second grasping point once we have the first, but the images were taken from points
on all the waist. Hence, even if the first network was not accurate the second would predict a
point that could make the cloth end in a very similar position to our known configuration.

Figure 5.5: Synthetic ground truth for localizing the second grasp point, in white points.
From left to right: Jeans, jumper and T-shirt.

5.3 Network description

Considering that the robot is going to grasp only the visible points, the regression part of
the CNNs should focus on being accurate with the seen points. On the other hand, only
training the network with those images where grasp points appear would decrease the number

19

of training images and so decrease the ability of the CNN to pursue its objective. The best
results were obtained when training the network with all the available images, but penalising
the error committed with the visible points.

5.3.1 First point detection

The first network has to predict the two points location and visibility. Its output layer has 10
neurons, of which 6 are linear and predict the location in the space for each point. The other
four predict the probability of the points to be visible or not. When training, the ground truth
has to be structured as the last layer, with the Cartesian positions to be predicted in the place
of the linear neurons and the visibility in the Softmax layers.

However, being correctly arranged does not optimize the network, as there are two points to
predict, and the prediction order may not always correspond to the ground truth order. If we
force our network to predict the grasping locations in a certain arrangement, if random, will
not understand what we are looking for. If, instead, the points have a logical order as, for
example, the first point is the one on the left and the second is on the right, we are making
the network learn a more complex function.

In practice the order of the points predicted does not matter, as long as each point is attached to
its visibility. This would make the network train faster and improve its results. To implement
this idea, we look first the order of the points predicted and match it to the ground truth for
every image, following equation 5.3:

nearestpoint(p1, p2, t1, t2) = argmin(sqerr(p1, t1) + sqerr(p2, t2),

sqerr(p1, t2) + sqerr(p2, t1)) (5.3)

After finding the order of the predictions, the loss is computed depending on every image for
classification, equation 5.5, and for regression, as in 5.4:

lossregression(p1, p2, t1, t2) =

{
sqerr(p1, t1) + sqerr(p2, t2) when nearestpoint = 0

sqerr(p1, t2) + sqerr(p2, t1) when nearestpoint = 1
(5.4)

lossclassification(p1, p2, t1, t2) =

{
clerr(p1, t1) + clerr(p2, t2) if nearestpoint == 0

clerr(p2, t1) + clerr(p1, t2) if nearestpoint == 1
(5.5)

Both equations depend of the squared error of the point and the categorical cross entropy,
shown in equations 5.6 and 5.7 respectively. The subscripts indicate the value of the ground
truth and the predicted point in each axis, or their visibility, which has a binary value.

sqerr(p, t) = (px − tx)
2 + (py − ty)

2 + (pz − tz)
2 (5.6)

clerr(p, t) = (−tvisibility ∗ log(pvisibility)− (1− tvisibility) ∗ log(1− pvisibility)) (5.7)

To train the network to maximize both features equally, the total loss was the sum of the
regression and the classification losses, for every image. But the regression loss represents the
sum on squared differences in centimetres, while the classification error is in the order of units
or less. Therefore, the second one was scaled by a constant factor and, as shown in equation
5.8, summed to regularization [37], to prevent overfitting.

Loss =
∑

Lossregression + k ∗
∑

Lossclassification +Regularization (5.8)

The equations shaping the final loss function have to be calculated image by image to know
the correct order of the predictions. This can be vectorized in python and its implementation
can be found in a maintained git [39] repository containing the code written in this project,
using Theano [40] and Lasagne [41] libraries.

20

Incrementing the complexity of the network proved to be important to gain accuracy, since
the validation results were increasingly precise as the network became deeper. Table 5.1
shows some networks trained to predict the points and their results, and how increasing their
complexity also increased the accuracy. The networks shown have a dropout of 50 % [27],
regularization [37] and the same first convolutional filters shape.

Table 5.1: Trained networks. As CNNs became deeper, the results improved.

No of convolutional layers Average squared distance to grasping points Accuracy
2 62.809 cm2 61.18 %
3 28.39 cm2 72.73 %
4 6.43 cm2 85.88 %
ImageNet [24] 4.14 cm2 88.97 %

Adding convolutional filters and widening the layers improved the network performance. Train-
ing a big network from scratch requires a considerable amount of time and does not give as
good results. Therefore, after training networks with five layers, we started to use a pre-trained
ImageNet [24] changing their last layer, with over hundred and forty million parameters that
occupy 553 Megabytes. At the end, the network is slightly bigger than the original ImageNet
because their input image size is smaller. This involves a few new fully connected neurons
that were randomly initialized.

Figure 5.6: First points predicting network structure. Original image extracted from [24].

As the same network is used to predict regression and classes, both objectives share all the
network weights, except for the last layer, where the fully connected layer connects to six
linear neurons that predict the Cartesian position of the points and to four softmax [34] units
in charge of classifying. After that, the ten neurons are concatenated and the whole network
trained as one. The whole structure can be seen in figure 5.6.

5.3.2 Second point detection

In a similar approach than in section 5.3.1, the network last layer has five outputs: Three
linear values and the probabilities for the point to appear and not to appear. In this case,
only having one point to predict simplifies the loss functions, shown in figure 5.9, where the
squared error and the categorical cross entropy refer to the equations 5.6 and 5.7 respectively.

Loss(p, t) =
∑

sqerr(p, t) + k ∗
∑

clerr(p, t) +Regularization (5.9)

To compare our method of classifying and predicting the point position in the same network
to the specialized networks only predicting each feature at one time, we also trained the
classification and the regression networks. The validation accuracy and the average squared
distance during training, for the three networks, are shown in figure 5.7. Unexpectedly, an
only classifier network gives approximately one point less than our network, predicting both
properties. This may be consequence of the regression labels, being related to the visibility of
the points and, therefore, contributing to the network to learn trough another manner. It is
noticeable, though, that our network needs more training epochs to learn to classify the point
visibility, due to the other features to be learned.

21

The regression results, on the other side, are comparable and both networks follow a very
similar loss curve. The three networks were trained using Adam [32] optimization method
which adapts the learning rate depending on the magnitude of the loss function. At the end,
predicting the visibility and the position of the grasping points in only one network involves a
considerable reduction of memory used when saving the parameters and running the network.
Moreover, such complex networks may need a non-negligible amount of time when not running
in a GPU, being more rapid to compute with only one network.

Figure 5.7: Second point predicting network accuracy (top graphic) and average squared dis-
tance to ground truth (second graphic) compared to the networks specialized only in classifying
and predicting the point location, respectively.

The network structure is very similar to the one presented in figure 5.6, but the last layer
predicts only three linear values and the class. The resulting structure is shown in figure 5.8.

Figure 5.8: Second point predicting network structure. See figure 5.6 to compare. Original
image extracted from [24].

22

5.4 Results

This section will describe the results of the two CNNs trained for predicting the grasping
points position in synthetic and in real images.

5.4.1 Results in synthetic images

The average of squared Cartesian distance between the predicted position of the points to the
ground truth, evaluated in the test set, is shown in table 5.2, with the accuracy of the visibility
predicted. Logically, the first network has an error considerably bigger than the second, as
has to deal with a higher number of possible poses and, therefore, have to approximate a more
complex function. Apart from that, the error appears to be reasonable to grasp clothing with
a good succeeding rate. The direction having more error is the Z axis, in the depth direction,
that may involve problems identifying the points on the surface of the cloth. The X and Y
axis are the horizontal and vertical directions respectively. The error on these two axis appear
to be directly related to the shape the garments adapt. In the case of jeans, which can be
grasped from the jeans legs or the waist, for example, can have their grasp points in a very
wide vertical range of the image. Differently, T-shirts are rather smaller and this suggests
that, comparatively, the network errors on the Y axis is also more reduced.

Table 5.2: Errors per output neuron in final network, where regression error is in cm2.

First point Second point
Garment X Y Z Visibility acc. X Y Z Visibility acc.
Jeans 0.80 1.81 1.53 88.97 % 0.50 1.30 0.78 92.46 %
Jumper 1.22 1.50 2.70 88.54 % 0.54 0.59 1.05 94.92 %
T-Shirt 2.06 1.34 3.66 83.63 % 1.59 1.86 3.39 90.32 %

Table 5.3 summarizes the best errors committed by the network in more human-understandable
units: The distance from the predicted points to ground truth in centimetres. As shown, jeans
and jumpers achieve comparable results but T-shirts present slightly more difficult to deal
with, because of the wrinkles they form and the small characteristic features - only short
sleeves - that help to find cloth features.

Table 5.3: Distance from predicted point to ground truth in centimeters.

Garment Jeans Jumper T-Shirt
Average error distance
on the first grasping point 1.59 cm 2.22 cm 2.76 cm

Average error distance
on the second grasping point 1.52 cm 1.18 cm 2.16 cm

5.4.2 Synthetic images simulations

The process of bringing the cloth to known configuration was simulated using depth images
obtained of synthetic garment models. Supposing the robot would be able to grasp the garment
from the points found, the process is shown in the figure 5.9. We start from a random pose of
the grasped garment, in this case a pair of jeans, and evaluate its depth image with the first
identification CNN. Once it classifies the garment as jeans, the second CNN predicts if any of
the two possible grasping point are visible. If so, the Cartesian location of the points predicted
are used to validate if the values correspond to a valid point in the image. Otherwise the piece
of cloth is rotated.

After having grasped the first point, the third network predicts if the second reference point is
visible and, if it is, the values are used as in figures 5.3 and 5.5 to find the corresponding pixel
in the image. When there is a valid point, the robot would grasp it and, oppositely, would
rotate the garment. Finally, when the two points are grasped we would see the image in the
last column of figure 5.9.

The current simulation eludes typical hardware and planning problems, not taken into account
into this project, such as collisions between the two robotic arms or with other objects, and
supposes the grasping action always succeeds.

23

Figure 5.9: Synthetic simulation of grasping the garment from known points. The first image
shows the jeans in a random position and the predicted grasping points, in white, with the
ground truth, in green. Similarly, the second image presents the jeans grasped from one of the
two predicted points in the first image. It also presents the grasping point predicted in white.
The third image shows the jeans being grasped from the two points predicted before.

The whole process is simulated by two different sizes of jeans, never seen before by the network,
from which each of them groups 93 poses, being grasped from as many vertexes. As we have
the depth images from all their views in the space, we can pretend the garment is being
rotated. From all the simulations, the final configuration is summarized in table 5.4. Though
to simulate the process we only have a limited position of vertexes, so the distance of the final
grasping points to the ground truth in the final pose is quantified.

Table 5.4: Percentage of grasping points grasped in simulation and their distance to the
ground truth. Possible grasping points had to be discretized and were labelled in the synthetic
model.

Exact
point Between 2 - 4 cm Between 4

and 8 cm
Between 8
and 12 cm

Between 12
and 16 cm

Between 16
and 20 cm

1st point
grasped 81.18 % 4.3 % 5.38 % 5.38 % 2.15 % 1.07 %

2nd point
grasped 96.77 % 2.69 % 0.64 % 0.00 % 0.00 % 0.00 %

5.4.3 Results in real images

Grasp points predictions were obviously less accurate when predicting from real garment im-
ages, never seen by the convolutional network. In these cases, training them with added kinect
noise [2] helps the network to slightly increase its results, but a refinement would be necessary
to improve more considerably its accuracy, as in section 4.3.

Almost two hundred depth images of real jeans were hand-labelled to refine the convolutional
networks, being a highly time-consuming task that difficulties the goal of having a big set of
images. Also, the labelling process contains an added error as the grasping point is sometimes
not easily identifiable, apart from the inherent error committed by handmade tagging. The
labelled images were used to validate the models and obtained an error of approximately
6 centimeters. Nonetheless, this small amount of images did not improve the results when
refining the model, being rapidly overfitted.

24

Figure 5.10: Grasping point location predictions. From left to right: Grasping points pre-
diction for jeans, jumper and T-shirt. The upper row shows the supposed position of the two
first known points and the second row shows the predicted second grasp point location. A
filled white circle means the grasp point is visible, and therefore the robot could approach and
grasp it, while an empty circle suggests we need another view to see the point.

25

6 Budget

Table 6.1 shows the amortization of each hardware used in this project. The office supplies
and the specialized equipment have an amortization time of three and five years respectively.

Table 6.1: Hardware resources.

Means Amount Price per
unit

Amortization
time

Price per
hour Hours used Amortization

Server PC 1 1600 3 years 0.22 e 1210 266.2 e
Lab PC 1 1000 3 years 0.14 e 700 98 e
Barret WAM 2 100000 5 years 8.33 e 18 150 e
GPU 1 3400 5 years 0.28 e 1200 336 e

Total: 850.2 e

There are no software costs as we used only open source programs. The physics simulator [1]
used to simulate the synthetic garments was under a student license and the convolutional
networks were trained and tested in python language.

The costs associated to human resources are described in table 6.2 and take into account
different specialized jobs realized in this project.

Table 6.2: Human resources.

Position Wage Hours Total
Software engineer 8 e/h 712 5695 e
Project manager 15 e/h 42 630 e

Total: 6325 e

26

7 Conclusions and future work

In our initial problem, we have a piece of clothing unidentified in an unfamiliar position and
we need to have the piece of cloth recognized and in a known position to perform another
action, such as fold it. The process seems to need several recognition algorithms, for which we
used CNNs because of their increasingly good performances in several computer vision tasks.

We established a pipeline of three steps to achieve the recognition and grasping of each gar-
ment. Each of the three steps contains its specialized Convolutional Neural Network, whose
prediction defines how to move to the next stage.

To train the CNNs, we have used images from a synthetic source, which has proved to be a
very interesting approach that helps to increase the accuracy in cases where obtaining real
images may be as high time-consuming.

To grasp the garment, we decided to predict the Cartesian position of the known points only
trough their images, which apparently was remarkably complex function to learn by CNNs.
This would let us grasp the points in order, reaching a final known configuration dependant
on the identified garment.

Garment identification

From the ideas tested in the first part of the project, identifying garments, CNNs worked with
synthetic images to create comparable results to the current state of the art, that were refined
with real data to outperform the current best classification accuracy.

Two lessons related to synthetic datasets were learnt in this task. First, using synthetic images
confirmed to be rather useful when working with problems where gathering real datasets is a
highly time-consuming task. Making synthetic garment 3D objects appear to real ones can be
difficult, but some unexpected features, such as the camera noise or the deforming properties
of the garment, can be modelled.

Secondly, a dataset of real images should be obtained to optimize the networks for our con-
cise problem. When combining synthetic images with real ones, the accuracy can increase
considerably as seen in section 4.3.

Related to Convolutional Neural Networks, we learned what features usually work better. In
our experience, dropout [27], regularization [37], using ReLU functions [29] and deepening
the network were the techniques used to increase the accuracy. Also, batch normalization [28]
proved to be very useful, although has to be used carefully when predicting with images rather
different to the seen in the training set. To train the networks, Adam [32] optimization method
confirmed to be much faster than Stochastic Gradient Descent with Nesterov momentum [33].

Bringing cloth to a known configuration

Our results from section 5 imply this problem can also be fronted with CNNs and, using
synthetic images, achieve a good success rate when bringing a garment to a familiar pose.

Also, we show how to achieve regression and classification in the same network trough modi-
fying their last layer and expose how to approach order invariant result predictions when two
or more features are to be predicted.

In practice, a dataset of real depth images would improve much more the results when grasping
real clothes. Probably a refinement would decrease the distance from the predicted point to the
real known reference points. Nonetheless, a refinement in regression and in such a complex
function to be approximated such as this one, apparently needs a vast amount of images,
differently to classifying. Also, using a newer camera that provides less noise may definitely
increase the results as they may appear more similar to the synthetic images.

27

Future work

Approach the identification task not on a fixed distance, but more generally, could provide
robots of a certain autonomy to manipulate clothes wherever they may interest to. In the
physics simulator, creating cameras over the space at a different distances from the garment
and different angles, as in figure 7.1, can generate enough depth images to train a convolutional
network capable of identifying the garment independently on the position. However, the
identification accuracy would probably decrease when getting too close, not being able to see
all the pose, or too far, not to appreciate its texture.

Figure 7.1: Possible position of cameras to obtain images from more positions.

Also, we could increase the difficulty of the identification problem, considering the possibility
of having more than one garment grasped in the same point. When several clothing garments
form a pile, more than one can be caught at the same time.

On the other hand, to improve the manipulation results in real garments a set of images linked
to their grasping points should be obtained. This could be done in different ways. The points
could be differently tinted to apply color segmentation in color images to find where they are,
whenever they are visible. Differently, to generate a dataset where the non-visible grasping
points are also positioned, they could be joined to an infrared light that would be captured by
two or more calibrated infrared cameras, from which we could obtain the Cartesian position of
the points. As obvious this complicates the process but, as seen when identifying, real images
can rise considerably the network precision.

New approaches could be tried to predict the position of the point. The efficiency of Convo-
lutional Neural Networks is increasing with time and other techniques giving better results in
real images may appear, such as image segmentation with CNNs [42].

Similarly to identification, taking images of different distances and angles of view may give
autonomy to robots when grasping garments.

28

References

[1] “Maya.” http://www.autodesk.com/products/autodesk-maya.

[2] B. Choo, M. Landau, M. DeVore, and P. A. Beling, “Statistical Analysis-Based Error
Models for the Microsoft KinectTM Depth Sensor,” Sensors, vol. 14, no. 9, pp. 17430–
17450, 2014.

[3] “WAM Arm.” http://www.barrett.com/DS_WAM.pdf.

[4] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel, “Cloth grasp point
detection based on multiple-view geometric cues with application to robotic towel folding,”
in Robotics and Automation (ICRA), 2010 IEEE International Conference on, pp. 2308–
2315, IEEE, 2010.

[5] “Xtion.” https://www.asus.com/3D-Sensor/Xtion_PRO_LIVE/specifications/.

[6] M. Kaneko, Y. Tanaka, and T. Tsuji, “Scale-dependent grasp-a case study,” in Robotics
and Automation, 1996. Proceedings., 1996 IEEE International Conference on, vol. 3,
pp. 2131–2136, IEEE, 1996.

[7] M. Kaneko and M. Kakikura, “Planning strategy for putting away laundry-isolating and
unfolding task,” in Assembly and Task Planning, 2001, Proceedings of the IEEE Interna-
tional Symposium on, pp. 429–434, IEEE, 2001.

[8] A. Colomé Figueras, D. E. Pardo Ayala, G. Alenyà Ribas, and C. Torras, “External force
estimation for textile grasp detection,” in Proceedings of the 2012 IROS Workshop Beyond
Robot Grasping: Modern Approaches for Learning Dynamic Manipulation, pp. 1–1, 2012.

[9] B. Willimon, S. Birchfield, and I. Walker, “Classification of clothing using interactive
perception,” in Robotics and Automation (ICRA), 2011 IEEE International Conference
on, pp. 1862–1868, IEEE, 2011.

[10] B. Willimon, I. Walker, and S. Birchfield, “A new approach to clothing classification
using mid-level layers,” in Robotics and Automation (ICRA), 2013 IEEE International
Conference on, pp. 4271–4278, IEEE, 2013.

[11] Y. Kita, F. Kanehiro, T. Ueshiba, and N. Kita, “Clothes handling based on recogni-
tion by strategic observation,” in Humanoid Robots (Humanoids), 2011 11th IEEE-RAS
International Conference on, pp. 53–58, IEEE, 2011.

[12] M. Cusumano-Towner, A. Singh, S. Miller, J. F. O’Brien, and P. Abbeel, “Bringing cloth-
ing into desired configurations with limited perception,” in Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pp. 3893–3900, IEEE, 2011.

[13] Y. Li, C.-F. Chen, and P. K. Allen, “Recognition of deformable object category and pose,”
in 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5558–
5564, IEEE, 2014.

[14] Y. Li, Y. Yue, D. Xu, E. Grinspun, and P. K. Allen, “Folding deformable objects us-
ing predictive simulation and trajectory optimization,” in Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on, pp. 6000–6006, IEEE, 2015.

[15] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi,
J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinectfusion: Real-time dense surface mapping
and tracking,” in Mixed and augmented reality (ISMAR), 2011 10th IEEE international
symposium on, pp. 127–136, IEEE, 2011.

[16] B. Lao and K. Jagadeesh, “Convolutional neural networks for fashion classification and
object detection,”

[17] I. Mariolis, G. Peleka, A. Kargakos, and S. Malassiotis, “Pose and category recognition
of highly deformable objects using deep learning,” in Advanced Robotics (ICAR), 2015
International Conference on, pp. 655–662, IEEE, 2015.

[18] “AMDO.” http://amdo2016.uib.es/.

29

http://www.autodesk.com/products/autodesk-maya
http://www.barrett.com/DS_WAM.pdf
https://www.asus.com/3D-Sensor/Xtion_PRO_LIVE/specifications/
http://amdo2016.uib.es/

[19] F. Osawa, H. Seki, and Y. Kamiya, “Unfolding of massive laundry and classification types
by dual manipulator.,” JACIII, vol. 11, no. 5, pp. 457–463, 2007.

[20] A. Ramisa, G. Alenya, F. Moreno-Noguer, and C. Torras, “Finddd: A fast 3d descriptor to
characterize textiles for robot manipulation,” in 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 824–830, IEEE, 2013.

[21] A. Doumanoglou, A. Kargakos, T.-K. Kim, and S. Malassiotis, “Autonomous active recog-
nition and unfolding of clothes using random decision forests and probabilistic planning,”
in 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 987–
993, IEEE, 2014.

[22] Y. Li, D. Xu, Y. Yue, Y. Wang, S.-F. Chang, E. Grinspun, and P. K. Allen, “Regrasping
and unfolding of garments using predictive thin shell modeling,” in 2015 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 1382–1388, IEEE, 2015.

[23] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural
computation, vol. 1, no. 4, pp. 541–551, 1989.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-
tional neural networks,” in Advances in neural information processing systems, pp. 1097–
1105, 2012.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 1–9, 2015.

[26] “Imagenet.” http://image-net.org/about-overview.

[27] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
a simple way to prevent neural networks from overfitting.,” Journal of Machine Learning
Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[28] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[29] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations in
convolutional network,” arXiv preprint arXiv:1505.00853, 2015.

[30] A. C. Marreiros, J. Daunizeau, S. J. Kiebel, and K. J. Friston, “Population dynamics:
variance and the sigmoid activation function,” Neuroimage, vol. 42, no. 1, pp. 147–157,
2008.

[31] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in Neural Networks,
1989. IJCNN., International Joint Conference on, pp. 593–605, IEEE, 1989.

[32] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project adam: Building an
efficient and scalable deep learning training system,” in 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14), pp. 571–582, 2014.

[33] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the importance of initializa-
tion and momentum in deep learning.,” ICML (3), vol. 28, pp. 1139–1147, 2013.

[34] K. Duan, S. S. Keerthi, W. Chu, S. K. Shevade, and A. N. Poo, “Multi-category clas-
sification by soft-max combination of binary classifiers,” in International Workshop on
Multiple Classifier Systems, pp. 125–134, Springer, 2003.

[35] “Maya.” http://download.autodesk.com/global/docs/maya2014/en_us/index.
html?url=files/GUID-F48E3B78-3E56-4869-9914-CE0FAB6E3116.htm,topicNumber=
d30e144972.

[36] H. Wu and X. Gu, “Towards dropout training for convolutional neural networks,” Neural
Networks, vol. 71, pp. 1–10, 2015.

[37] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural networks architec-
tures,” Neural computation, vol. 7, no. 2, pp. 219–269, 1995.

[38] “Kinect specifications.” https://msdn.microsoft.com/en-us/library/hh973078.aspx.

[39] “Code used in this project.” https://gitlab.iri.upc.edu/ecorona/Maya_codes.git.

30

http://image-net.org/about-overview
http://download.autodesk.com/global/docs/maya2014/en_us/index.html?url=files/GUID-F48E3B78-3E56-4869-9914-CE0FAB6E3116.htm,topicNumber=d30e144972
http://download.autodesk.com/global/docs/maya2014/en_us/index.html?url=files/GUID-F48E3B78-3E56-4869-9914-CE0FAB6E3116.htm,topicNumber=d30e144972
http://download.autodesk.com/global/docs/maya2014/en_us/index.html?url=files/GUID-F48E3B78-3E56-4869-9914-CE0FAB6E3116.htm,topicNumber=d30e144972
https://msdn.microsoft.com/en-us/library/hh973078.aspx
https://gitlab.iri.upc.edu/ecorona/Maya_codes.git

[40] “Theano.” https://github.com/Theano/Theano.

[41] “Lasagne.” https://github.com/Lasagne/Lasagne.

[42] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic seg-
mentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3431–3440, 2015.

31

https://github.com/Theano/Theano
https://github.com/Lasagne/Lasagne

Appendices

32

A Project code

The related source code of the project is being maintained in a public Git repository in
https://gitlab.iri.upc.edu/ecorona/Maya_codes.git.

33

https://gitlab.iri.upc.edu/ecorona/Maya_codes.git

B Abstract of AMDO article

Abstract from the accepted paper in the IX Conference on Articulated Motion and Deformable
Objects [18]:

We present a system to deal with the problem of classifying garments in a pile of
clothes. This system uses a robot arm to extract a garment and show it to a depth
camera. The robot, then, moves the garment along the vertical axis in order to
provide different views of the garment until a prediction with enough confidence is
reached. For the classification task, a deep convolutional neural network has been
trained to label different types of garments given a depth image. In addition to
obtaining very high classification scores, compared to previous approaches to cloth
classification that match the sensed data against a database, our system provides
a fast and occlusion-robust solution to the problem.

34

C Trained classifier networks
N
et
w
or
k
pa

ra
m
et
er
s

T
ra
in
in
g

R
efi

ne
m
en
t

N
o

la
ye
rs

R
eg
ul
ar
iz
at
io
n

N
on

lin
ia
ri
ti
es

F
ir
st

co
nv

.
fil
te
r

A
dd

ed
no

is
e

D
ro
po

ut
N
or
m
al
iz
at
io
n

Lo
ss

A
cc

(%
)

Lo
ss

A
cc

(%
)

2
N
on

e
Si
gm

oi
d

12
8x

11
x1

1
N
on

e
N
on

e
P
ix
el
w
is
e

0.
69

4
78

.4
2

0.
32

8
88

.8
9

3
N
on

e
Si
gm

oi
d

12
8x

8x
8

N
on

e
D
ro
po

ut
=

0.
3

P
ix
el
w
is
e

0.
62

6
79

.8
1

0.
27

9
90

.2
8

4
N
on

e
R
ec
ti
fy

12
8x

11
x1

1
G
au

ss
ia
n
no

is
e

(s
td

=
0.
00

5
m
)

N
on

e
P
ix
el
w
is
e

0.
71

5
72

.8
7

-
-

4
N
on

e
R
ec
ti
fy

32
x8

x8
N
on

e
D
ro
po

ut
=

0.
5

B
at
ch

N
or
m
.

0.
49

4
80

.3
7

0.
27

90
.2
8

4
Y
es

(L
2)

R
ec
ti
fy

32
x8

x8
N
on

e
D
ro
po

ut
=

0.
5

B
at
ch

N
or
m
.

0.
38

1
86

.4
8

0.
13

8
95

.2
8

4
N
on

e
Si
gm

oi
d

64
x8

x8
N
on

e
D
ro
po

ut
=

0.
3

P
ix
el
w
is
e

0.
59

8
79

.5
6

0.
30

5
90

.2
8

4
Y
es

(L
2)

Si
gm

oi
d

64
x8

x8
N
on

e
D
ro
po

ut
=

0.
3

P
ix
el
w
is
e

0.
58

3
78

.8
9

0.
28

7
90

.2
8

4
Y
es

(L
1
+

L2
)

Si
gm

oi
d

64
x8

x8
N
on

e
D
ro
po

ut
=

0.
3

P
ix
el
w
is
e

0.
59

9
79

.5
3

0.
28

9
90

.0
0

4
Y
es

(L
2)

Si
gm

oi
d

64
x8

x8
N
on

e
D
ro
po

ut
=

0.
3

P
ix
el
w
is
e

0.
54

2
79

.4
4

0.
29

3
89

.7
2

4
Y
es

(L
2)

Si
gm

oi
d

64
x8

x8
N
on

e
D
ro
po

ut
=

0.
3

P
ix
el
w
is
e

0.
62

7
82

.8
7

0.
20

1
94

.2
6

4
Y
es

(L
2)

Si
gm

oi
d

64
x7

x9
N
on

e
D
ro
po

ut
=

0.
5

P
ix
el
w
is
e

0.
57

81
.8
5

0.
23

2
91

.9
4

4
Y
es

(L
2)

Si
gm

oi
d

64
x7

x9
N
on

e
N
on

e
B
at
ch

N
or
m
.

0.
50

2
80

.8
0

0.
29

0
90

.4
6

4
Y
es

(L
2)

R
ec
ti
fy

64
x8

x8
K
in
ec
t
no

is
e

in
x,
y
an

d
de

pt
h
[2
]

D
ro
po

ut
=

0.
5

P
ix
el
w
is
e

0.
52

82
.9
6

0.
21

6
93

.2
4

4
Y
es

(L
2)

R
ec
ti
fy

64
x7

x9
K
in
ec
t
no

is
e

in
x,
y
an

d
de

pt
h
[2
]

D
ro
po

ut
=

0.
5

P
ix
el
w
is
e

0.
53

85
.1
9

0.
20

1
94

.0
7

4
Y
es

(L
2)

R
ec
ti
fy

64
x8

x8
K
in
ec
t
no

is
e

in
x,
y
an

d
de

pt
h
[2
]

D
ro
po

ut
=

0.
5

B
at
ch

N
or
m
.

0.
54

84
.9
1

0.
29

2
92

.8
7

4
Y
es

(L
2)

R
ec
ti
fy

32
x8

x8
K
in
ec
t
no

is
e

in
x,
y
an

d
de

pt
h
[2
]

D
ro
po

ut
=

0.
5

B
at
ch

N
or
m
.

0.
35

4
88

.6
1

0.
12

5
96

.8
5

4
Y
es

(L
2)

R
ec
ti
fy

32
x7

x8
N
on

e
D
ro
po

ut
=

0.
3

B
at
ch

N
or
m
.

0.
57

6
79

.7
2

0.
25

6
90

.4
6

35

Glossary

Adam A method for stochastic optimization [32]. 22, 35

CNNs Convolutional Neural Networks. 1, 2, 5–9, 11, 12, 17, 19, 23, 27, 28, 35

CSV Comma-Separated Values. 17, 35

GPU Graphics Processing Unit. 6, 8, 22, 35

IRI Institut de Robòtica i Informàtica Industrial. 35

MEL Maya Embedded Language. 10–12, 19, 35

ReLU Rectified Linear Unit. 13, 27, 35

TIF Tagged Image File Format. 10, 35

36

	List of Figures
	List of Tables
	Introduction
	Objectives, methods and procedures
	Work plan, milestones and Gantt diagram
	Deviations from the initial plan and incidences

	State of the art
	Garment identification
	Bringing clothes to known configurations
	CNNs

	Convolutional networks theoretical background
	Cloth identification
	Approach
	Gathering data
	Physics engine environment
	Capturing images

	Network description
	Results

	Bringing cloth to a known configuration
	Approach
	Gathering data
	First point detection
	Second point detection

	Network description
	First point detection
	Second point detection

	Results
	Results in synthetic images
	Synthetic images simulations
	Results in real images

	Budget
	Conclusions and future work
	Garment identification
	Bringing cloth to a known configuration
	Future work

	References
	Appendices
	Appendix Project code
	Appendix Abstract of AMDO article
	Appendix Trained classifier networks
	Glossary

