
J Autom Reasoning (2017) 58:293–310
DOI 10.1007/s10817-016-9383-3

Higher-Order Pattern Anti-Unification in Linear Time

Alexander Baumgartner1 · Temur Kutsia1 ·
Jordi Levy2 · Mateu Villaret3

Received: 22 December 2015 / Accepted: 6 July 2016 / Published online: 27 July 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We present a rule-based Huet’s style anti-unification algorithm for simply typed
lambda-terms, which computes a least general higher-order pattern generalization. For a pair
of arbitrary terms of the same type, such a generalization always exists and is unique modulo
α-equivalence and variable renaming. With a minor modification, the algorithm works for
untyped lambda-terms as well. The time complexity of both algorithms is linear.

Keywords Generalizations of lambda terms · Anti-unification · Higher-order patterns

This research has been partially supported by the Austrian Science Fund (FWF) project SToUT (P
24087-N18), the Upper Austrian Government strategic program “Innovatives OÖ 2010plus”, the MINECO
projects RASO (TIN2015-71799-C2-1-P) and HeLo (TIN2012-33042), the MINECO/FEDER UE project
LoCoS (TIN2015-66293-R) and the UdG project MPCUdG2016/055.

B Temur Kutsia
kutsia@risc.jku.at

Alexander Baumgartner
abaumgar@risc.jku.at

Jordi Levy
levy@iiia.csic.es

Mateu Villaret
villaret@ima.udg.edu

1 Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria

2 Artificial Intelligence Research Institute (IIIA), Spanish Council for Scientific Research (CSIC),
Barcelona, Spain

3 Departament d’Informàtica i Matemàtica Aplicada (IMA), Universitat de Girona (UdG),
Girona, Spain

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/93126534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-016-9383-3&domain=pdf
http://orcid.org/0000-0001-5883-5746

294 A. Baumgartner et al.

1 Introduction

The anti-unification problem of two terms t1 and t2 is concernedwith finding their generaliza-
tion, a term t such that both t1 and t2 are instances of t under some substitutions. Interesting
generalizations are the least general ones. The purpose of anti-unification algorithms is to
compute such least general generalizations (lggs).

For higher-order terms, in general, there is no unique higher-order lgg. Therefore, special
classes have been considered for which the uniqueness is guaranteed. One of such classes
is formed by higher-order patterns. These are λ-terms where the arguments of free variables
are distinct bound variables. They were introduced by Miller [28] and gained popularity
because of an attractive combination of expressive power and computational costs: There are
practical unification algorithms [29–31] that compute most general unifiers whenever they
exist. Pfenning [31] gave the first algorithm for higher-order pattern anti-unification in the
Calculus of Constructions, with the intention of using it for proof generalization.

Since then, there have been several approaches to higher-order anti-unification, designing
algorithms in various restricted cases. Motivated by applications in inductive learning, Feng
and Muggleton [15] proposed anti-unification in Mλ, which is essentially an extension of
higher-order patterns by permitting free variables to apply to object terms, not only to bound
variables. Object terms may contain constants, free variables, and variables which are bound
outside of object terms. The algorithm has been implemented and was used for inductive
generalization.

Pientka [32] studied anti-unification of linear higher-order patterns in the framework of
developing substitution tree indexing for higher-order terms. Linear higher-order patterns
require that every meta-variable occurs at most once in them, and they apply to all distinct
bound variables in its context. The generalization algorithm has been used for the insertion
of terms into the index.

Lu et al. [26] investigated anti-unification in a restricted version of λ2 (a second-order
λ-calculus with type variables [3]) and its applications in analogical programming and ana-
logical theorem proving. The imposed restrictions guarantee uniqueness of the least general
generalization. This algorithm as well as the one for higher-order patterns by Pfenning [31]
have influenced the generalization algorithm used in the program transformation technique
called supercompilation [27].

There are other fragments of higher-order anti-unification, motivated by analogical rea-
soning. A restricted version of second-order generalization has an application in the replay
of program derivations [16]. A symbolic analogy model, called Heuristic-Driven Theory
Projection, uses yet another restriction of higher-order anti-unification to detect analogies
between different domains [21].

The last decade has seen a revived interest in anti-unification. The problemhas been studied
in various theories (e.g., [1,10,22]) and from different application points of view (e.g., [2,9,
21,25,26,35]). A particularly interesting application comes from software code refactoring,
to find similar pieces of code, e.g., in Python, Java [7,8] and Erlang [25] programs. These
approaches are based on the first-order anti-unification [33,34]. To advance the refactoring
and clone detection techniques for languages based on λ Prolog, one needs to employ anti-
unification for higher-order terms. Yet another motivation to look into the problem of higher-
order anti-unification in more detail would be the improvement of indexing techniques for
λ-terms used, e.g., in mathematical assistant systems.

In this paper, we revisit the problem of higher-order anti-unification and present a rule-
based anti-unification algorithm (in the style of Huet [19]) for simply typed λ-calculus. The

123

Higher-Order Pattern Anti-Unification in Linear Time 295

input of the algorithm are arbitrary terms in η-long β-normal form. The output is a higher-
order pattern. The global function for recording disagreements is represented as a store, in
the spirit of Alpuente et al. [1]. We prove that a least general pattern generalization always
exists and is unique modulo α-equivalence. The proposed algorithm computes it in linear
time. As it is done in related work, we assume that symbols and pointers are encoded in
constant space, and basic operations on them are performed in constant time. With a small
modification, the algorithm works for untyped lambda-calculus as well.

This paper is an extended and improved version of our conference publication [5]. There,
it is proved that the problem is solvable in cubic time. A free open-source implementation for
both simply typed and untyped calculi of this previous version of the algorithm is available.

Comparison with Some Related Work

The approaches which are closest to us are the following:

– Pfenning [31] studied anti-unification in the Calculus of Constructions, whose type sys-
tem is richer than the simple typeswe consider. Both the input and the output was required
to be higher-order patterns. Some questions have remained open, including the efficiency,
applicability, and implementations of the algorithm. Due to the nature of type dependen-
cies in the calculus, the authorwas not able to formulate the algorithm inHuet’s style [19],
where a global function is used to guarantee that the same disagreements between the
input terms are mapped to the same variable. The complexity has not been studied and
the proofs of the algorithm properties have been just sketched.

– Anti-unification inMλ [15] is performed on simply typed terms, where both the input and
the output are restricted to a certain extension of higher-order patterns. In this sense it is
not comparable to our case, becausewe do not restrict the input, but require patterns in the
output. Moreover, it contains neither the complexity analysis of the Mλ anti-unification
algorithm nor the proofs of its properties.

– The anti-unification algorithm proposed by Pientka [32] also considers simply typed
terms with the input and output restricted. The restriction requires terms to be linear
higher-order patterns. Complexity results are not reported. This approach is also different
from ours for the same reason as above: We do not restrict the input. It should be said
that omitting one of the rules in our algorithm (the merging rule), we can also compute
linear pattern generalizations for arbitrary input.

Some more remote results are listed below:

– Anti-unification for a restricted version of λ2 [26] requires the λ-abstraction not to be
used in arguments. The algorithm computes a generalization which is least general with
respect to the combination of several orderings defined in the paper. The properties of the
algorithm are formally proved, but the complexity has not been analyzed. As the authors
point out, the orderings they define are not comparable with the ordering used to compute
higher-order pattern generalizations.

– Generalization algorithms proposed by Hirata et al. [18] work on second-order terms
which contain no λ-abstractions. The output is also restricted: It may contain variables
which can be instantiatedwithmulti-hole contexts only.Varying restrictions on the instan-
tiation, various versions of generalizations are obtained. This approach is not comparable
with ours.

– Yet another anti-unification algorithm for λ-abstraction-free terms has been developed
for analogy making [21]. The application dictates the typical input to be first-order, while
their generalizationsmay contain second-order variables. A certainmeasure is introduced

123

296 A. Baumgartner et al.

to compare generalizations, and the algorithm computes those which are preferred by
this measure. This approach is not comparable with ours either.

– The approach of Hasker [16] is also different fromwhat we do. The anti-unification algo-
rithm there works on a restriction of combinator terms and computes their generalizations
(in quadratic time). It has been used for program derivation.

2 Preliminaries

In higher-order signatures we have types constructed from a set of basic types (typically δ)
using the grammar τ ::= δ | τ → τ , where→ is associative to the right. Variables (typically
X, Y, Z , x, y, z, a, b, . . .) and constants (typically f, c, . . .) have an assigned type.

λ-terms (typically t, s, u, . . .) are built using the grammar

t ::= x | c | λx · t | t1 t2
where x is a variable and c is a constant, and are typed as usual. Terms of the form
(. . . (h t1) . . . tm), where h is a constant or a variable, will be written as h(t1, . . . , tm), and
terms of the form λx1. · · · .λxn · t as λx1, . . . , xn · t . We use #»x as a short-hand for x1, . . . , xn .

Other standard notions of the simply typed λ-calculus, like bound and free occurrences
of variables, α-conversion, β-reduction, η-long β-normal form, etc. are defined as usual
(see [13]). By default, terms are assumed to be written in η-long β-normal form. Therefore,
all terms have the form λx1, . . . , xn .h(t1, . . . , tm), where n,m ≥ 0, h is either a constant or
a variable, t1, . . . , tm have also this form, and the term h(t1, . . . , tm) has a basic type.

The set of free variables of a term t is denoted by Vars(t). When we write an equality
between two λ-terms, we mean that they are equivalent modulo α, β and η equivalence.

The size of a term t , denoted |t |, is defined recursively as |h(t1, . . . , tn)| = 1 + ∑n
i=1 |ti |

and |λx · t | = 1 + |t |.
The depth of a term t , denoted Depth(t) is defined recursively as Depth(h(t1, . . . , tn)) =

1 + maxi∈{1,...,n} Depth(ti) and Depth(λx · t) = 1 + Depth(t).
For a term t = λx1, . . . , xn .h(t1, . . . , tm) with n,m ≥ 0, its head is defined as

Head(t) = h.
Positions in λ-terms are defined with respect to their tree representation in the usual way,

as string of integers. For instance, in the term f (λx .λy · g(λz.h(z, y), x), λu · g(u)), the
symbol f stands in the position ε (the empty sequence), the occurrence of λx . stands in the
position 1, the bound occurrence of y in 1.1.1.1.1.2, the bound occurrence of u in 2.1.1, etc.

The path to a position in a λ-term is defined as the sequence of symbols from the root to
the node at that position (not including) in the tree representation of the term. For instance,
the path to the position 1.1.1.1.1 in f (λx .λy ·g(λz ·h(z, y), x), λu ·g(u)) is f, λx, λy, g, λz.

A higher-order pattern is a λ-term where, when written in η-long β-normal form, all
free variable occurrences are applied to lists of pairwise distinct (η-long forms of) bound
variables. For instance, λx . f (X (x), Y), f (c, λx .x) and λx .λy · X (λz.x(z), y) are patterns,
while λx · f (X (X (x)), Y), f (X (c), c) and λx · λy · X (x, x) are not.

Substitutions are finite sets of pairs {X1 �→ t1, . . . , Xn �→ tn} where Xi and ti have the
same type and the X ’s are pairwise distinct variables. They can be extended to type preserving
functions from terms to terms as usual, avoiding variable capture. The notions of substitution
domain and range are also standard and are denoted, respectively, by Dom and Ran.

We use postfix notation for substitution applications, writing tσ instead of σ(t). As usual,
the application tσ affects only the free occurrences of variables from Dom(σ) in t . We

123

Higher-Order Pattern Anti-Unification in Linear Time 297

write #»x σ for x1σ, . . . , xnσ , if
#»x = x1, . . . , xn . Similarly, for a set of terms S, we define

Sσ = {tσ | t ∈ S}. The composition of σ and ϑ is written as juxtaposition σϑ and is defined
as x(σϑ) = (xσ)ϑ for all x . Yet another standard operation, restriction of a substitution σ

to a set of variables S, is denoted by σ |S .
A substitution σ1 is more general than σ2, written σ1 � σ2, if there exists ϑ such that

Xσ1ϑ = Xσ2 for all X ∈ Dom(σ1) ∪Dom(σ2). The strict part of this relation is denoted by
≺. The relation � is a partial order and generates the equivalence relation which we denote
by 	. We overload � by defining s � t if there exists a substitution σ such that sσ = t .

A term t is called a generalization or an anti-instance of two terms t1 and t2 if t � t1 and
t � t2. It is a higher-order pattern generalization if additionally t is a higher-order pattern.
It is the least general generalization, (lgg in short), aka a most specific anti-instance, of t1
and t2, if there is no generalization s of t1 and t2 which satisfies t ≺ s.

An anti-unification problem (shortly AUP) is a triple X (#»x) : t � s where

– λ #»x · X (#»x), λ #»x · t , and λ #»x · s are terms of the same type,
– t and s are in η-long β-normal form, and
– X does not occur in t and s.

The variable X is called a generalization variable.The term X (#»x) is called the generaliza-
tion term. The variables that belong to #»x , as well as bound variables, are written in the lower
case letters x, y, z, Originally free variables, including the generalization variables, are
written with the capital letters X, Y, Z , This notation intuitively corresponds to the usual
convention about syntactically distinguishing bound and free variables. The size of a set of
AUPs is defined as |{X1(

#»x1) : t1 � s1, . . . , Xn(
#»xn) : tn � sn}| = ∑n

i=1 |ti |+|si |. Notice that
the size of Xi (

#»xi) is not considered.1

An anti-unifier of an AUP X (#»x) : t � s is a substitution σ such that Dom(σ) = {X} and
λ #»x · X (#»x)σ is a term which generalizes both λ #»x · t and λ #»x · s.

An anti-unifier of X (#»x) : t � s is least general (ormost specific) if there is no anti-unifier
ϑ of the same problem that satisfies σ ≺ ϑ . Obviously, if σ is a least general anti-unifier of
an AUP X (#»x) : t � s, then λ #»x · X (#»x)σ is a lgg of λ #»x · t and λ #»x · s.

Here we consider a variant of higher-order anti-unification problem:

Given: Higher-order terms t and s of the same type in η-long β-normal form.
Find: A higher-order pattern generalization r of t and s.

The problem statement means that we are looking for r which is least general among
all higher-order patterns which generalize t and s. There can still exist a term which is less
general than r , generalizes both s and t , but is not a higher-order pattern. For instance, if
t = λx, y. f (h(x, x, y), h(x, y, y)) and s = λx, y · f (g(x, x, y), g(x, y, y)), then r =
λx, y. f (Y1(x, y), Y2(x, y)) is a higher-order pattern, which is an lgg of t and s. However,
the term λx, y · f (Z(x, x, y), Z(x, y, y)), which is not a higher-order pattern, is less general
than r and generalizes t and s.

Below we assume that in the AUPs of the form X (#»x) : t � s, the term λ #»x · X (#»x) is a
higher-order pattern.

1 The proof of Theorem 1 and Example 2 motivate this decision. When in an AUP X (#»y) : t � s all variables
in #»y occur free in t or in s, this decision is not relevant. However, notice that at certain points we deal with
AUPs that do not have this property.

123

298 A. Baumgartner et al.

3 Transformation Rules for a Variant of Higher-Order Anti-Unification

In this section we describe a set of transformation rules for higher-order anti-unification.
These rules work on triples A; S; σ , which we call states. Here A is a set of AUPs of the
form {X1(

#»x1) : t1 � s1, . . . , Xn(
#»xn) : tn � sn} that are pending to anti-unify, S is a set of

already solved AUPs (the store), and σ is a substitution (computed so far) mapping variables
to patterns.

Remark 1 We assume that in the set A∪S each occurrence of λ binds a distinct name variable
(in other words, all names of bound variables are distinct), and that each Xi occurs in A ∪ S
only once.

Definition 1 The set of transformations P is defined by the following set of rules:

Dec: Decomposition

{X (#»x) : h(t1, . . . , tm) � h(s1, . . . , sm)} ·∪A; S; σ
⇒
{Y1(#»x) : t1 � s1, . . . , Ym(#»x) : tm � sm}∪A; S; σ {X �→λ #»x .h(Y1(

#»x), . . . , Ym(#»x))},
where h is a constant or h ∈ #»x , and Y1, . . . , Yn are fresh variables of the appropriate types.

Abs: Abstraction

{X (#»x) : λy.t � λz.s} ·∪A; S; σ
⇒
{X ′(#»x , y) : t � s{z �→ y}} ∪ A; S; σ {X �→ λ #»x , y.X ′(#»x , y)}.

where X ′ is a fresh variable of the appropriate type.

Sol: Solve

{X (#»x) : t � s} ·∪A; S; σ
⇒
A; {Y (#»y) : t � s} ∪ S; σ {X �→ λ #»x .Y (#»y)},

where t and s are of a basic type, Head(t) = Head(s) or Head(t) = Head(s) = Z /∈ #»x , the
sequence #»y is a subsequence of #»x consisting of the variables that appear freely in t or in s,
and Y is a fresh variable of the appropriate type.

Mer: Merge

A; {X (#»x) : t1 � t2, Y (#»y) : s1 � s2} ·∪S; σ
⇒
A; {X (#»x):t1 � t2} ∪ S; σ {Y �→ λ #»y .X (#»x π)},

where π : { #»x }→{ #»y } is a bijection, extended as a substitution, with t1π = s1 and t2π = s2.

To compute generalizations for terms t and s, we start with the initial state {X : t �
s}; ∅; ∅, where X is a fresh variable, and apply the transformations as long as possible, until
no transformation applies. These final states have the form ∅; S;ϕ, where Mer does not
apply to S. Then, the result computed by P is Xϕ.

One can easily show that a triple obtained from A; S; σ by applying any of the rules above
to a state is indeed a state: For each expression X (#»x) : t � s ∈ A∪ S, the terms X (#»x), t and
s have the same type, λ #»x · X (#»x) is a higher-order pattern, s and t are in η-long β-normal
form, and X does not occur in t and s. Moreover, all generalization variables are distinct and
substitutions map variables to patterns.

The property that each occurrence of λ in A∪S binds a unique variable is also maintained.
It guarantees that in the Abs rule, the variable y is fresh for s. After the application of the
rule, y will appear nowhere else in A ∪ S except X ′(#»x , y) and, maybe, t and s.

123

Higher-Order Pattern Anti-Unification in Linear Time 299

Like in the anti-unification algorithms working on triple states [1,22], the idea of the
store here is to keep track of already solved AUPs in order to reuse an existing variable in
generalizations. This is important, since we aim at computing lggs.

The Mer rule requires solving a matching problem {t1⇀⇁s1, t2⇀⇁s2} with the substitution
π which bijectivelymaps the variables from #»x to the variables from #»y . In general, amatching
problem is defined as follows.

Definition 2 (Permuting matcher) Given a set of pairs of terms in η-long β-normal form
P = {t1⇀⇁s1, . . . , tn⇀⇁sn} and two sets of variables D and R such that D ⊆ ⋃n

i=1 Vars(ti)
and R ⊆ ⋃n

i=1 Vars(si), a permuting matcher is a bijection π : D → R such that, extended
as a substitution π of variables x ∈ D by variables π(y) ∈ R, satisfies tiπ = si , for
i = 1, . . . , n.

The permuting matcher, if it exists, is unique2 and is denoted by match(D, R, P). When
this map does not exist, we write match(D, R, P) = ⊥.

An algorithm that decides the existence of the permutingmatcher and computes it in linear
time is given in [5]. Here, in Sect. 5, we show that a more general problem can also be solved
in linear time.

Example 1 A couple of examples illustrating the generalizations computed by P:

– Let t = λx, y. f (U (g(x), y),U (g(y), x)) and s = λx ′, y′. f (h(y′, g(x ′)), h(x ′, g(y′))).
Then P performs the following transformations:

{X : λx, y. f (U (g(x), y),U (g(y), x)) � λx ′, y′. f (h(y′, g(x ′)), h(x ′, g(y′)))}; ∅; ∅

⇒2
Abs {X ′(x, y) : f (U (g(x), y),U (g(y), x)) � f (h(y, g(x)), h(x, g(y)))}; ∅;

{X �→ λx, y.X ′(x, y)}

⇒Dec {Y1(x, y) : U (g(x), y) � h(y, g(x)), Y2(x, y) : U (g(y), x) � h(x, g(y))}; ∅;

{X �→ λx, y. f (Y1(x, y), Y2(x, y)), X
′ �→ λx, y. f (Y1(x, y), Y2(x, y))}

⇒Sol {Y2(x, y) : U (g(y), x) � h(x, g(y))}; {Y1(x, y) : U (g(x), y) � h(y, g(x))};
{X �→ λx, y. f (Y1(x, y), Y2(x, y)), X

′ �→ λx, y. f (Y1(x, y), Y2(x, y))}

⇒Sol ∅; {Y1(x, y) : U (g(x), y) � h(y, g(x)), Y2(x, y) : U (g(y), x) � h(x, g(y))};

{X �→ λx, y. f (Y1(x, y), Y2(x, y)), X
′ �→ λx, y. f (Y1(x, y), Y2(x, y))}

⇒Mer ∅; {Y1(x, y) : U (g(x), y) � h(y, g(x))}; {X �→ λx, y. f (Y1(x, y), Y1(y, x)),

X ′ �→ λx, y. f (Y1(x, y), Y1(y, x)), Y2 �→ λx, y.Y1(y, x)}
The computed result is r = λx, y. f (Y1(x, y), Y1(y, x)). It generalizes the input terms
t and s: r{Y1 �→ λx, y.U (g(x), y)} = t and r{Y1 �→ λx, y.h(y, g(x))} = s. These
substitutions can be read from the final store.

– For λx, y, z.g(f (x, z), f (y, z), f (y, x)) and λx ′, y′, z′.g(h(y′, x ′), h(x ′, y′), h(z′, y′)),
P computes their generalization λx, y, z. f (Y1(x, y, z), Y1(y, x, z), Y1(y, z, x))

– For λx, y. f (λz.U (z, y, x),U (x, y, x)) and λx ′, y′. f (λz′.h(y′, z′, x ′), h(y′, x ′, x ′)), P
computes their generalization λx, y. f (λz.Y1(x, y, z), Y2(x, y)).

From the examples one can notice yet another advantage of using the store (besides helping
in the merging): In the final state, it contains AUPs from which one can get the substitutions
that show how the original terms can be obtained from the computed result.

2 In the uniqueness of permuting matchers it plays an important role the fact that D and R are subsets of the
free variables occurring in ti and si , respectively, and that these terms are in β-normal form.

123

300 A. Baumgartner et al.

4 Properties of the Set of TransformationsP

In this section we will prove termination (Theorem 1), soundness (Theorem 2) and complete-
ness (Theorem 3) of P.

Theorem 1 (Termination) The set of transformations P is terminating.
Moreover, any transformation sequence starting in the state A; S; σ terminates inO(|A|+

|S|) steps.
Proof We define the measure of a state as M(A; S; σ) = 2 |A| + |S|. All rules in P strictly
decrease this measure. ��
Theorem 2 (Soundness) If {X : t � s}; ∅; ∅
⇒∗

∅; S; σ is a transformation sequence
in P, then

(a) Xσ is a higher-order pattern in η-long β-normal form,
(b) Xσ � t and Xσ � s.

Proof To prove that Xσ is a higher-order pattern, we use the facts that first, X is a higher order
pattern and, second, at each step A1; S1;ϕ
⇒ A2; S2;ϕϑ if Xϕ is a higher-order pattern,
then Xϕϑ is also a higher-order pattern. The latter property follows from stability of patterns
under substitution application and the fact that substitutions in the rules map variables to
higher-order patterns. As for Xσ being in η-long β-normal form, this is guaranteed by the
series of applications of the Abs rule, even if Dec introduces an AUP whose generalization
term is not in this form. It finishes the proof of (a).

Proving (b) is more involved. First, we prove that if A1; S1;ϕ
⇒ A2; S2;ϕϑ is one step,
then for any X (#»x) : t � s ∈ A1 ∪ S1, we have X (#»x)ϑ � t and X (#»x)ϑ � s. Note that
if X (#»x) : t � s was not transformed at this step, then this property trivially holds for it.
Therefore, we assume that X (#»x) : t � s is selected and prove the property for each rule:

Dec: Here t = h(t1, . . . , tm), s = h(s1, . . . , sm), and ϑ = {X �→ λ #»x · h(Y1(
#»x),

. . . , Ym(#»x))}. Then X (#»x)ϑ = h(Y1(
#»x), . . . , Ym(#»x)). Let ψ1 and ψ2 be substitutions

defined, respectively, by Yiψ1 = λ #»x · ti and Yiψ2 = λ #»x · si for all 1 ≤ i ≤ m. Such
substitutions obviously exist since the Y ’s introduced by the Dec rule are fresh. Then
X (#»x)ϑψ1 = h(t1, . . . , tm), X (#»x)ϑψ2 = h(s1, . . . , sm) and, hence, X (#»x)ϑ � t and
X (#»x)ϑ � s.
Abs: Here t = λy1.t ′, s = λy2.s′, and ϑ = {X �→ λ #»x , y.X ′(#»x , y)}. Then
X (#»x)ϑ = λy.X ′(#»x , y). Let ψ1 = {X ′ �→ λ #»x , y.t ′} and ψ2 = {X ′ �→ λ #»x , y.s′}.
Then X (#»x)ϑψ1 = λy.t ′ = t , X (#»x)ϑψ2 = λy.s′ = s, and, hence, X (#»x)ϑ � t and
X (#»x)ϑ � s.
Sol: We have ϑ = {X �→ λ #»x ·Y (#»y)}, where #»y is the subsequence of #»x consisting of the
variables that appear freely in t or s. Let ψ1 = {Y �→ λ #»y · t} and ψ2 = {Y �→ λ #»y · s}.
Then X (#»x)ϑψ1 = t , X (#»x)ϑψ2 = s, and, hence, X (#»x)ϑ � t and X (#»x)ϑ � s.

If Mer applies, then there exists Y (#»y) : t ′ � s′ ∈ S1 such that match({ #»x }, { #»y },
{t⇀⇁t ′, s⇀⇁s′}) is a permuting matcher π , and ϑ = {Y �→ λ #»y · X (#»x π)}. Then X (#»x)ϑ � t
and X (#»x)ϑ � s obviously hold. As for the Y (#»y) : t ′ � s′, let ψ1 = {X �→ λ #»x · t}
and ψ2 = {X �→ λ #»x · s}. Then Y (#»y)ϑψ1 = (λ #»x · t)(#»x π) = tπ = t ′, Y (#»y)ϑψ2 =
(λ #»x · s)(#»x π) = sπ = s′, and, hence, Y (#»y)ϑ � t ′ and Y (#»y)ϑ � s′.

Now, we proceed by induction on the length l of the transformation sequence. In fact, we
will prove a more general statement: If A0; S0;ϑ0
⇒∗

∅; Sn;ϑ0ϑ1 · · · ϑn is a transforma-
tion sequence in P, then for any X (#»x) : t � s ∈ A0 ∪ S0 we have X (#»x)ϑ1 · · · ϑn � t and
X (#»x)ϑ1 · · · ϑn � s.

123

Higher-Order Pattern Anti-Unification in Linear Time 301

When l = 1, it is exactly the one-step case we just proved. Assume that the statement
is true for any transformation sequence of the length n and prove it for a transformation
sequence A0; S0;ϑ0
⇒ A1; S1;ϑ0ϑ1
⇒∗

∅; Sn;ϑ0ϑ1 · · · ϑn of the length n + 1.
Below the composition ϑiϑi+1 · · · ϑk is abbreviated as ϑk

i with k ≥ i . Let X (#»x) : t � s
be an AUP selected for transformation at the current step. (Again, the property trivially holds
for the AUPs which are not selected). We consider each rule:

Dec: t = h(t1, . . . , tm), s = h(s1, . . . , sm) and X (#»x)ϑ1
1 = h(Y1(

#»x), . . . , Ym(#»x)).
By the induction hypothesis, Yi (

#»x)ϑn
2 � ti and Yi (

#»x)ϑn
2 � si for all 1 ≤ i ≤ m.

By construction of ϑn
2 , if there is U ∈ Vars(Ran(ϑn

2)), then there is an AUP of the
form U (#»u) : t ′ � s′ ∈ Sn . Let σ (resp. ϕ) be a substitution which maps each such
U to the corresponding t ′ (resp. s′). Then Yi (

#»x)ϑn
2 σ = ti and Yi (

#»x)ϑn
2 ϕ = si . Since

X (#»x)ϑn
1 = h(Y1(

#»x), . . . , Ym(#»x))ϑn
2 , we get that X (#»x)ϑn

1 σ = t , X (#»x)ϑn
1 ϕ = s, and,

hence, X (#»x)ϑn
1 � t and X (#»x)ϑn

1 � s.
Abs: Here t = λy1.t ′, s = λy2.s′, X (#»x)ϑ1

1 = λy.X ′(#»x , y), and A1 contains the AUP
X ′(#»x , y) : t ′{y1 �→ y} � s′{y2 �→ y}. By the induction hypothesis, X ′(#»x , y)ϑn

2 �
t ′{y1 �→ y} and X ′(#»x , y)ϑn

2 � s′{y1 �→ y}. Since X (#»x)ϑn
1 = λy.X ′(#»x , y)ϑn

2 and
due to the way how y was chosen, we finally get X (#»x)ϑn

1 � λy.t ′{y1 �→ y} = t and
X (#»x)ϑn

1 � λy.s′{y2 �→ y} = s.
Sol: We have X (#»x)ϑ1

1 = Y (#»y) where Y is in the store. By the induction hypothesis,
Y (#»y)ϑn

2 � t and Y (#»y)ϑn
2 � s. Therefore, X (#»x)ϑn

1 � t and X (#»x)ϑn
1 � s.

For Mer, there exists Y (#»y) : t ′ � s′ ∈ S0 such that match({ #»x }, { #»y }, {t⇀⇁t ′, s⇀⇁s′})
is a permuting matcher π , and ϑ1

1 = {Y �→ λ #»y · X (#»x π)}. By the induction hypothesis,
X (#»x)ϑn

1 = X (#»x)ϑn
2 � t and X (#»x)ϑn

1 = X (#»x)ϑn
2 � s. These imply that X (#»x π)ϑn

1 � t ′
and X (#»x π)ϑn

1 � s′, which, together Yϑn
1 = X (#»x π), yields Y (#»y)ϑn

1 � t ′and Y (#»y)ϑn
1 � s′.

��
Hence, the result computed by P for X : t � s generalizes both t and s. We call Xσ

a generalization of t and s computed by P. Moreover, given a transformation sequence
{X : t � s}; ∅; ∅
⇒∗

∅; S; σ in P, we say that

– σ is a substitution computed by P for X : t � s;
– the restriction of σ on X , σ |X , is an anti-unifier of X : t � s computed by P.

Theorem 3 (Completeness) Let λ #»x · t1 and λ #»x · t2 be higher-order terms and λ #»x · s be a
higher-order pattern such that λ #»x · s is a generalization of both λ #»x · t1 and λ #»x · t2. Then,
there exists a transformation sequence {X (#»x) : t1 � t2}; ∅; ∅
⇒∗

∅; S; σ in P such that
λ #»x · s � Xσ .

Proof By structural induction on s. We can assume without loss of generality that λ #»x · s is
an lgg of λ #»x · t1 and λ #»x · t2. We also assume that it is in the η-long β-normal form.

If s is a variable, then there are two cases: Either s ∈ #»x , or s /∈ #»x . In the first case, we have
s = t1 = t2. The Dec rule gives σ = {X �→ λ #»x · s} and, hence, λ #»x · s � λ #»x · X (#»x)σ = s.
In the second case, either Head(t1) = Head(t2), or Head(t1) = Head(t2) /∈ #»x . Sol is
supposed to give us σ = {X �→ λ #»x · X ′(

#»

x ′)}, where #»

x ′ is a subsequence of #»x consisting of
variables occurring freely in t1 or in t2. But

#»

x ′ should be empty, because otherwise s would
not be just a variable (remember that λ #»x · s is an lgg of λ #»x · t1 and λ #»x · t2 in the η-long
β-normal form). Hence, we have σ = {X �→ λ #»x · X ′} and λ #»x · s � λ #»x · X (#»x)σ , because
s{s �→ X ′} = X (#»x)σ .

123

302 A. Baumgartner et al.

If s is a constant c, then t1 = t2 = c. We can apply the Dec rule, obtaining σ = {X �→
λ #»x · c} and, hence, s = c � X (#»x)σ = c. Therefore, λ #»x · s � λ #»x · X (#»x)σ .

If s = λx .s′, then t1 and t2 must have the forms t1 = λx .t ′1 and t2 = λy.t ′2, and s′ must
be an lgg of t ′1 and t ′2. Abs gives a new state {X ′(#»x , x) : t ′1 � t ′2{x �→ y}}; ∅; σ1, where
σ1 = {X �→ λ #»x , x .X ′(#»x , x)}. By the induction hypothesis, we can compute a substitution
σ2 such that λ

#»x , x .s′ � λ #»x , x .X ′(#»x , x)σ2. Composing σ1 and σ2 into σ , we have X (#»x)σ =
λx .X ′(#»x , x)σ2. Hence, we get λ

#»x · s = λ #»x · λx .s′ � λ #»x · λx .X ′(#»x , x)σ2 = λ #»x · X (#»x)σ .
Finally, assume that s is a compound term h(s1, . . . , sn). If h /∈ #»x is a variable, then

s1, . . . , sn are distinct variables from #»x (because λ #»x · s is a higher-order pattern). That
means that s1, . . . , sn appear freely in t1 or t2. Moreover, either Head(t1) = Head(t2), or
Head(t1) = Head(t2) = h. In both cases, we can apply the Sol rule to obtain σ = {X �→
λ #»x · Y (s1, . . . , sn)}. Obviously, λ #»x · s � λ #»x · X (#»x)σ = λ #»x · Y (s1, . . . , sn).

If h ∈ #»x or if it is a constant, thenwe should haveHead(t1) = Head(t2). Assume they have
the forms t1 = h(t11 , . . . , t1n) and t2 = h(t21 , . . . , t2n). We proceed by the Dec rule, obtaining
{Yi (#»x) : t1i � t2i | 1 ≤ i ≤ n}; ∅; σ0, where σ0 = {X �→ λ #»x · h(Y1(

#»x), . . . , Yn(
#»x))}. By

the induction hypothesis, we can construct transformation sequences�1, . . . ,�n computing
the substitutions σ1, . . . , σn , respectively, such that λ #»x · si � λ #»x · Yi (#»x)σi for 1 ≤ i ≤ n.
These transformation sequences, together with the initial Dec step, can be combined into
one transformation sequence, of the form � = {X (#»x) : t1 � t2}; ∅; σ0
⇒ {Yi (#»x) : t1i �
t2i | 1 ≤ i ≤ n}; ∅; σ0
⇒∗

∅; Sn; σ0σ1 · · · σn .
Let for any term t , t |p denote the subterm of t at position p. If s does not contain duplicate

variables free in λ #»x · s, then the construction of � and the fact that λ #»x · si � λ #»x · Yi (#»x)σi
for 1 ≤ i ≤ n guarantee λ #»x · s � λ #»x · X (#»x)σ0σ1 · · · σn . If s contains duplicate variables
free in λ #»x · s (e.g., of the form λ # »u1 · Z(#»z1) and λ # »u2 · Z(#»z2), where

#»z1 and
#»z2 have the same

length) at positions p1 and p2, it indicates that

(a) t1|p1 and t1|p2 differ from each other by a permutation of variables bound in t1,
(b) t2|p1 and t2|p2 differ fromeach other by the same (modulo variable renaming) permutation

of variables bound in t2,
(c) the path to p1 is the same (modulo bound variable renaming) in t1 and t2. It equals

(modulo bound variable renaming) the path to p1 in s, and
(d) the path to p2 is the same (modulo bound variable renaming) in t1 and t2. It equals

(modulo bound variable renaming) the path to p2 in s.

Then, because of (c) and (d), we should have two AUPs in Sn : One, between (renamed
variants of) t1|p1 and t2|p1 , and the other one between (renamed variants of) t1|p2 and t2|p2 .
The possible renaming of variables is caused by the fact that Abs might have been applied
to obtain the AUPs. Let those AUPs be Z(#»z1) : r11 � r21 and Z ′(#»z2) : r12 � r22 . The
conditions (a) and (b) make sure that match({ #»z1}, { #»z2}, {r11⇀⇁r12 , r21⇀⇁r22 }) is a permuting
matcher π , which means that we can apply the rule Mer with the substitution σ ′

1 = {Z ′ �→
λ #»z2 · Z(#»z1π)}. We can repeat this process for all duplicated variables in s, extending � to
the transformation sequence �′ = {X (#»x) : t1 � t2}; ∅; σ0
⇒ {Yi (#»x) : t1i � t2i | 1 ≤ i ≤
n}; ∅; σ0
⇒∗

∅; Sn; σ0σ1 · · · σn
⇒∗
∅; Sn+m; σ0σ1 · · · σnσ ′

1 · · · σ ′
m , where σ ′

1, . . . , σ
′
m

are substitutions introduced by the applications of theMer rule. Letσ = σ0σ1 · · · σnσ ′
1 · · · σ ′

m .
By this construction, we have λ #»x · s � λ #»x · X (#»x)σ , which finishes the proof. ��

Depending which AUP is selected to perform a transformation, there can be different
transformation sequences in P starting from the same initial state, but leading to different
generalizations. The next theorem states that all those generalizations are equivalent.

123

Higher-Order Pattern Anti-Unification in Linear Time 303

Theorem 4 (UniquenessModulo) Let {X : t � s}; ∅; ∅
⇒∗
∅; S1; σ1 and {X : t � s};

∅; ∅
⇒∗
∅; S2; σ2 be two transformation sequences in P, where ∅; S1; σ1 and ∅; S2; σ2

are final states. Then Xσ1 	 Xσ2.

Proof It is not hard to notice that if it is possible to change the order of applications of rules
(but sticking to the same selected AUPs for each rule) then the result remains the same: If
�1 = A1; S1; σ1
⇒R1 A2; S2; σ1ϑ1
⇒R2 A3; S3; σ1ϑ1ϑ2 and �2 = A1; S1; σ1
⇒R2

A′
2; S′

2; σ1ϑ2
⇒R1 A′
3; S′

3; σ1ϑ2ϑ1 are two two-step transformation sequences, where R1
and R2 are (not necessarily different) rules and each of them transforms the same AUP(s)
in both �1 and �2, then A3 = A′

3, S3 = S′
3, and σ1ϑ1ϑ2 = σ1ϑ2ϑ1 (modulo the names of

fresh variables).
Dec, Abs and Sol rules transform the selected AUP in a unique way. We show that it is

irrelevant in which order we perform matching in the Mer rule.
Let A; {Z(#»z) : t1 � s1, Y (#»y) : t2 � s2} ·∪S; σ
⇒ A; {Z(#»z) : t1 � s1} ·∪S; σ {Y �→

λ #»y · Z(#»z π)} be the merging step with π = match({ #»z }, { #»y }, {t1⇀⇁t2, s1⇀⇁s2}). If we
do it in the other way around, we would get the step A; {Z(#»z) : t1 � s1, Y (#»y) : t2 �
s2} ·∪S; σ
⇒ A; {Y (#»y) : t2 � s2} ·∪S; σ {Z �→ λ #»z · Y (#»yμ)}, where μ = match({ #»y },
{ #»z }, {t2⇀⇁t1, s2⇀⇁s1}). But μ = π−1, because of bijection.

Let ϑ1 = σρ1 with ρ1 = {Y �→ λ #»y · Z(#»z π)} and ϑ2 = σρ2 with ρ2 = {Z �→
λ #»z · Y (#»yπ−1)}. Our goal is to prove that Xϑ1 	 Xϑ2. For this, we have to prove two
inequalities: Xϑ1 � Xϑ2 and Xϑ2 � Xϑ1. To show Xϑ1 � Xϑ2, we first need to prove the
equality:

λ #»y · Z(#»z π)ρ2 = λ #»y · Y (#»y). (1)

Its left hand side is transformed as λ #»y ·Z(#»z π)ρ2 = λ #»y ·Z(#»z π){Z �→ λ #»z ·Y (#»yπ−1)} =
λ #»y ·(λ #»z ·Y (#»yπ−1)(#»z π)). The β-reduction of λ #»z ·Y (#»yπ−1)(#»z π) replaces each occurrence
of zi ∈ #»z in Y (#»yπ−1) with ziπ , which is the same as applying π to Y (#»yπ−1). Since
#»yπ−1π = #»y , we get λ #»y · (λ #»z · Y (#»yπ−1)(#»z π)) = λ #»y · Y (#»yπ−1π) = λ #»y · Y (#»y) and (1)
is proved.

Next, starting from Xϑ1ρ2, we can transform it as Xϑ1ρ2 = Xσρ1ρ2 = Xσ {Y �→ λ #»y ·
Z(#»z π)ρ2, Z �→ λ #»z ·Y (#»yπ−1)} =by (1) Xσ {Y �→ λ #»y · Z(#»z π)ρ2, Z �→ λ #»z ·Y (#»yπ−1)} =
Xσ {Y �→ λ #»y ·Y (#»y), Z �→ λ #»z ·Y (#»yπ−1)} = Xσ {Y �→ λ #»y ·Y (#»y)}{Z �→ λ #»z ·Y (#»yπ−1)}.
At this step, since the equality = is αβη-equivalence, we can omit the application of the
substitution {Y �→ λ #»y ·Y (#»y)} and proceed: Xσ {Y �→ λ #»y ·Y (#»y)}{Z �→ λ #»z ·Y (#»yπ−1)} =
Xσ {Z �→ λ #»z · Y (#»yπ−1)} = Xσρ2Xϑ2. Hence, we got Xϑ1ρ2 = Xϑ2, which implies
Xϑ1 � Xϑ2.

The fact Xϑ2 � Xϑ1 can be proved analogously. Hence, Xϑ1 	 Xϑ2, which means that
it is irrelevant in which order we perform matching in the Merge rule. Therefore, no matter
how different transformation sequences are constructed, the computed generalizations are
equivalent. ��
Corollary 1 For any given terms t and s, and any transformation sequence {X : t �
s}; ∅; ∅
⇒∗

∅; S; σ inP, the higher-order pattern Xσ is the unique least general gener-
alization of t and s.

5 Complexity

In this section we describe an algorithm based on the set of transformationsP and prove that
this algorithm has linear time complexity. Notice that the Termination Theorem (Theorem 1)

123

304 A. Baumgartner et al.

already proves that any transformation sequence inP has at most linear length. However, the
direct application of one transformation rule, as described in Sect. 3, may require quadratic
time, what would result in a cubic time algorithm, similar to our previous one [5]. In this
section we will improve this result.

Remark 2 In the complexity analysis that follows we will assume the following:

1. All pointers require constant space and all basic operations on them can be done in
constant time. This assumption is popular in the literature, despite the fact that it is
inaccurate: In any implementation of trees based on the use of pointers, these will need
space O(log n), since they address a memory of size O(n). The same argument applies
to all traditional algorithms for first-order unification. In fact, all those claimed to be
linear, without this assumption would have O(n log n) time complexity. Therefore, we
will continue with this traditional assumption.

2. All symbols can be represented in constant space and all basic operations on them done
in constant time. Again, this assumption is traditional, but inaccurate. A term with O(n)

symbols, where all of them can be distinct, would require O(log n) space to represent
each single symbol.

3. When we represent lambda-terms in de Bruijn form, indexes of bound variables can be
represented in constant space.

In other words, we will neglect logarithmic factors in front of polynomial functions.

The proposed algorithm works in three phases. Later, we will prove that each one of them
can be done in linear time. The following lemma allows us to decompose any transformation
sequence in the three phases that we will analyze separately.

Lemma 1 (Phase division) Any sequence of transformations {X : t � s}; ∅; ∅
⇒∗
∅; S; σ in P can be decomposed into an equivalent sequence of transformations of the
form

{X : t � s}; ∅; ∅
⇒∗
Dec,Abs Pk; ∅; σk
⇒∗

Sol ∅; Sl ; σl
⇒∗
Mer ∅; S; σ.

Proof We apply rulesDec and Abs exhaustively until all equations can only be transformed
by the Sol rule. Notice that conditions of applicability of Dec and Abs and of Sol are
disjoint. Then, in the second phase we only apply the Sol rule. Notice that this rule does not
introduce new equations where Dec and Abs could be applicable. Then, in the third phase,
when the first component of the tuple is empty, we only apply theMer rule. Again, notice that
this rule does not introduce new equations in the first component. By Theorem 4, following
this strategy, we get an equivalent anti-unifier. ��
Example 2 From X : λx1 . . . xn . f (t1, . . . , tn) � λy1 . . . yn . f (s1, . . . , sn) after n applica-
tions of Abs and one of Dec, we get the problem set

{Y1(x1, . . . , xn) : t1 � s1{y1 �→ x1} . . . {yn �→ xn},
. . . ,

Yn(x1, . . . , xn) : tn � sn{y1 �→ x1} . . . {yn �→ xn}}.
Notice that, if we counted the number of symbols of Yi (x1, . . . , xn) to compute the size of
the new AUPs, this would be quadratic on the size of the original AUP. This is the reason
to only consider the number of symbols of the second and third component of the AUP to
define its size. Moreover, reusing the representation of x1, . . . , xn in a directed acyclic graph,
we can also represent the new AUPs in linear space on the size of the representation of the
original AUP.

123

Higher-Order Pattern Anti-Unification in Linear Time 305

Lemma 2 (First phase) There exists an algorithm that, given a representation of the AUP
{X : t � s}, computes a representation of P and σ , where

{X : t � s}; ∅; ∅
⇒∗
Dec,Abs P; ∅; σ

in time O(|t | + |s|). Moreover, |P| ≤ |X : t� s| = |t | + |s|.
Proof In the Dec rule, we reuse the representation of ti from f (t1, . . . , tm) to get a repre-
sentation of each ti . Using a directed acyclic graph, we also reuse the argument vector #»x
from the representation of X (#»x) in the original AUP and σ to construct the representation
of each Yi (

#»x) in the new AUPs and substitution. We assume that in constant time, by using
an appropriate hash table we can find the unique occurrence of X in σ , and hence compute
σ {X �→ λ #»x · h(Y1(

#»x), . . . , Ym(#»x))} in time O(m). Notice that β-reduction is trivial in this
use case. Therefore, the rule can be applied in time O(m), and the space requirements also
increase in O(m).

In the Abs rule, we reuse the representation of λy.t to construct the representation of t .
We also reuse the representation of #»x from X (#»x) when we construct the representation of
X ′(#»x , y). The most expensive step is to compute the substitution s{z �→ y}. We assume that,
using an appropriated data structure where all occurrences of the bound variable z are linked,
this can be done in linear time on the number of occurrence of this variable. This structure
can be constructed for the initial problem in linear time.

If we bound the complexity as the product of the number of times we can apply these rules
(linear) by the cost of every application (also linear in the worst case), we get a quadratic
bound. In order to refine this bound we need to introduce the notion of extended size of a
term, noted ‖t‖, defined inductively as:

‖h(t1, . . . , tm)‖ = m + ‖t1‖ + · · · + ‖tm‖ + 1,
‖λy.t‖ = r + ‖t‖ + 1 where r is the number of free occurrences of y in t.

It can be easily proved that ‖t‖ ≤ 3 |t |. We can prove that the applications of Dec and
Abs rules decrease the sum of the extended sizes of the terms of the equations in the same
amount as the time they needed to be applied. All these together prove that this phase of the
algorithm can be computed in linear time, and that the increase of space is also linear.

Finally, |P| ≤ |t | + |s| is proved by inspection of the rules. ��
Lemma 3 (Second phase) There exists an algorithm that, given a representation of P; ∅; σ ,
computes a representation of S and σ ′, where

P; ∅; σ
⇒∗
Sol ∅; S; σ ′

in time O(|P|). Moreover, |S| = |P|.
Proof In this second phase, we basically move equations from the problem set P to the
store S. However, notice that the arguments of generalization variables in X (#»x) : t � s are
narrowed in Y (#»y) : t � s, where #»y is a subset of #»x . As only those argument variables which
appear in one of the terms t and s are kept, the length of the narrowed vector #»y is bound by
|t | + |s|.

There is no need to share the representation of those narrowed argument vectors #»y any-
more. The representation of #»y can be constructed without reusing the representation of
#»x in linear time on the size of the AUP X (#»x) : t � s. The substitution composition
σ {X �→ λ #»x · Y (#»y)} used by Sol is equivalent to replacing the subterm X (#»x) by Y (#»y).
Again, this composition can also be done in linear time on |X (#»x) : t � s|. Therefore, all the
phase can be computed on time O(|P|).

123

306 A. Baumgartner et al.

Finally, |S| = |P| by inspection of the rule. ��
As a direct consequence of the previous two lemmas, we can conclude that the size of the

store S, after the first and second phase of the anti-unification algorithm, is linear on the size
of the original problem.

In order to prove that the third phase can also be implemented with a linear time algorithm,
we can not directly use the rules described in previous section. This would lead to a cubic
time algorithm, similar to our previous one [5].

First, we will reduce computation of permuting matchers to α-equivalence, using the
following lemma.

Lemma 4 Given two terms t and s in η-long β-normal form, and two sets of variables
D ⊆ Vars(t) and R ⊆ Vars(s), we have match(D, R, {t⇀⇁s}) = ⊥ if, and only if, λ #»x · t is
α-equivalent to λ #»y · s, where #»x (resp. #»y) is an ordering of the set D (resp. R) such that, for
any i < j , the variable xi occurs free for the first time in t (resp s) before the first occurrence
of x j with respect to the depth-first pre-order traversal of t (resp s).

Moreover, we can decide if match(D, R, {t⇀⇁s}) = ⊥ in time O(|t | + |s|).
Proof Two terms λ #»x · t and λ #»y · s are α-equivalent if, and only if, t[#»x �→ #»y] and s are
α-equivalent. If all variables { #»x } occur free in t , all variables { #»y } free in s, and t and s
are in β-normal form, then t[#»x �→ #»y] and s are α-equivalent if, and only if, [#»x �→ #»y] =
match({ #»x }, { #»y }, {t⇀⇁s}). Now, notice that, if match(D, R, {t⇀⇁s}) = ⊥, then the permuting
matcher must be [#»x �→ #»y], with sequences #»x and #»y constructed as stated in the lemma.
Altogether, this proves the first part of the lemma.

The second part of the lemma relies on the first part. Given a term t (resp. s), we can
close it, adding lambda-bindings for all free variables in D (resp. R) in the same order they
appear for the first time in the term w.r.t. the depth-first pre-order traversal. Then, we can
transform it into de Bruijn form. Both processes can be done in linear time.3 Then, to check
if the two closing sequences (sequences of lambda-bindings) yield a permuting matcher for
the two terms, we only need to check, in linear time, if the de Bruijn forms of the closed
representations are equal. ��

However, we still have the problem that this should be repeated for any pair of AUPs in the
store. A naive implementation of this process would result into a quadratic algorithm in the
size of the store. However, this can be done in quasi-linear time using the following result.

Lemma 5 Given a sequence of numbers S = n1, . . . , nm written in binary, we can partition
this set into subsets of equal numbers in time O(|S| log |S|).
Proof If we assume that numbers are bounded and representable in constant space, then we
can use a perfect hash table. We add each number in the hash table, and construct the subsets
from them in time O(m) = O(|S|).

If numbers are unbounded, then we can use a similar idea, without using hash functions.
We use a trie, i.e. a binary tree T such that, for any i = 1, . . . ,m, tree T contains a node at
position ni with label i . Starting with the empty tree, we proceed adding all necessary nodes
to ensure that ni is a position in the tree. This can be done in linear time on the representation

3 Strictly speaking, this is false in the worst case, since we can have a linear number of bound variables,
and it would require de Bruijn indexes that can only be represented in logarithmic space. Then, the resulting
algorithm would be quasi-linear. However, as we do for encodings of symbols and pointers, we will follow
the standard practice and assume that de Bruijn indexes only require constant space.

123

Higher-Order Pattern Anti-Unification in Linear Time 307

of ni , i.e.O(log ni) = O(|ni |). Then, we add label i to the corresponding node, on time linear
on the representation of i . At the end, sets of labels will represent subsets of equal numbers
in S.

Since m = O(n),we have |i | = O(log |S|). Therefore, this algorithm requires time
O(|S| log |S|). ��

Using the same ideas as Hinze [17], the previous lemma can be generalized when, instead
of numbers written in binary, we have other objects represented in a fixed signature. In our
case, we will use the algorithm described in the proof of Lemma 5 to find subsets of α-
equivalent λ-terms. For this purpose, we translate α-terms into their de Bruijn form, and then
represent them by their pre-order traversal sequence.

We are now able to establish the complexity of the third phase of the algorithm.

Lemma 6 (Third phase) There exists an algorithm that, given a state ∅; S; σ , computes S′
and σ ′, where ∅; S; σ
⇒∗

Mer ∅; S′; σ ′, in time O(|S|).
Proof As we have described in the proof of Lemma 4, we close all terms, adding lambda
binders for all free occurrences of variables, and translate them into de Bruijn form. This can
be done in linear time. By Lemma 4, to decide the existence of a permuting matcher for two
terms, we only need to check α-equivalence, i.e., equality once the term is represented in
de Bruijn form. Here we assume that every de Bruijn index only requires constant space in
order to be represented. Assuming also that the rest of symbols also require constant space,
we can represent the terms by their pre-order traversal sequence. This traversal sequence has
size linear on the size of the term. By Lemma 5, we can partition the store S into subsets of
equal terms, i.e. subsets of permuting matchers. Then, applying rule Mer to all AUPs of the
subset, we remove all but one representative of each subset. In each application, the cost of
applying the rule is linear on the size of the removed equation, since the side condition of
the rule has already been checked. ��

From Lemmas 1, 2, 3 and 6 we can conclude the following result.

Theorem 5 (Complexity of P) Computing the least general higher-order pattern general-
ization of two simply typed lambda-terms in η-long β-normal form has linear time complexity
on the size of the input.

Remark 3 The previous result is only valid under the assumption that all pointers, de Bruijn
indexes, and representation of symbols only require constant space. Without these assump-
tions, we could prove that our anti-unification algorithm—like all traditional unification
algorithms—is, in fact, quasi-linear. One could argue that in traditional unification algo-
rithms, input terms are also represented as trees encoded with pointers; hence, input size
is also quasi-linear on the number of symbols of the terms, like the complexity of the
algorithm; therefore, the algorithm is quasi-linear in the number of symbols, but linear in
the size of the input. However, this is not true. As Jacobsen proves, for trees with a con-
stant number of distinct nodes, there exist succinct representations that only require linear
space on the number of nodes [20]. In this representation, even to simply access a node’s
child requires logarithmic time. Since in complexity theory inputs are assumed to be repre-
sented succinctly, even the traditional algorithm for tree traversal strictly requires quasi-linear
time.

123

308 A. Baumgartner et al.

6 Conclusion and Final Remarks

We designed an algorithm for computing higher-order pattern generalizations for simply
typed lambda terms. The algorithm does not assume any restriction on the input except
requiring them to be terms of the same type in the η-long β-normal form. The computed
pattern is a least general generalization of the input terms, and is unique modulo free variable
renaming and α-equivalence. It is computed in linear time in the size of input (under the
usual conventions made in the unification literature on the space requirements for encoding
symbols and pointers, and on the complexity of basic operations on them).

One can observe that the set of transformations P used in the paper can be adapted with
a relatively little effort to work on untyped terms (cf. the formulation of the unification
algorithm both for untyped and simply typed patterns [30]). One thing to be added is lazy
η-expansion: The AUP of the form X (#»x) : λy.t � h(s1, . . . , sm) should be transformed into
X (#»x) : λy.t � λz.h(s1, . . . , sm, z) for a fresh z. (Dually for abstractions in the right hand
side). In addition, Sol needs an extra condition for the case when Head(t) = Head(s) but
the terms have different number of arguments such as, e.g., in f (a, x) and f (b, x, y). Note
that the complexity of the algorithm will remain linear in the untyped case, since the side
enlargements in the lazy η-expansion are bounded by the size of the original problem in such
a way that in the worst case, by summing up all enlargements one would only duplicate the
size.

The anti-unification algorithm has been implemented (both for simply typed and untyped
terms, without perfect hashing, using a simpler but more expensive method to compute
permuting matchers) in Java as a part of an open-source anti-unification library [4]. It can be
used online or can be downloaded freely from http://www.risc.jku.at/projects/stout/software/
hoau.php.

As for the related topics, we mention nominal anti-unification. Several authors explored
relationship betweennominal terms andhigher-order patterns (see, e.g., [12,14,23,24] among
others), proposing translations between them in the context of unification. However, it is not
immediately clear how to reuse those translations for anti-unification, in particular, how to
get nominal generalizations from pattern generalizations. Therefore, we proposed a direct
algorithm for nominal anti-unification [6].

Studying anti-unification in the calculi with more complex type systems, such as the
extension of the system F with subtyping F<: [11], would be a very interesting direction of
future work, as it may have applications in clone detection and refactoring for the functional
programming languages in the ML family.

Acknowledgements Open access funding provided by Johannes Kepler University.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Alpuente, M., Escobar, S., Espert, J., Meseguer, J.: A modular order-sorted equational generalization
algorithm. Inf. Comput. 235, 98–136 (2014)

2. Armengol, E., Plaza, E.: Bottom-up induction of feature terms. Mach. Learn. 41(3), 259–294 (2000)
3. Barendregt, H.: Introduction to generalized type systems. J. Funct. Progr. 1(2), 125–154 (1991)

123

http://www.risc.jku.at/projects/stout/software/hoau.php
http://www.risc.jku.at/projects/stout/software/hoau.php
http://creativecommons.org/licenses/by/4.0/

Higher-Order Pattern Anti-Unification in Linear Time 309

4. Baumgartner, A., Kutsia, T.: A library of anti-unification algorithms. In: Fermé E., Leite J. (eds.) Logics
in Artificial Intelligence—14th European Conference, JELIA 2014, Funchal, Madeira, Portugal, 24–26
Sept 2014. Proceedings, Springer, Lecture Notes in Computer Science, vol. 8761, pp. 543–557 (2014)

5. Baumgartner, A., Kutsia, T., Levy, J., Villaret, M.: A variant of higher-order anti-unification. In: van
Raamsdonk F. (ed.) 24th International Conference on Rewriting Techniques and Applications, RTA 2013,
24–26 June 2013, Eindhoven, The Netherlands, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
LIPIcs, vol. 21, pp. 113–127 (2013)

6. Baumgartner, A., Kutsia, T., Levy, J., Villaret, M.: Nominal anti-unification. In: Fernández M. (ed.) 26th
International Conference on Rewriting Techniques and Applications, RTA 2015, 29 June to 1 July 2015,
Warsaw, Poland, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, LIPIcs, vol. 36, pp. 57–73 (2015)

7. Bulychev, P.: Duplicate code detection using Clone Digger. Python Mag. 9, 18–24 (2008)
8. Bulychev, P., Minea, M.: An evaluation of duplicate code detection using anti-unification. In: Proceedings

of the 3rd International Workshop on Software Clones, pp. 22–27, iESE Report 038.09/E (2009)
9. Bulychev, P.E., Kostylev, E.V., Zakharov, V.A. Anti-unification algorithms and their applications in pro-

gram analysis. In: Pnueli A., Virbitskaite I., Voronkov A. (eds.) Perspectives of Systems Informatics, 7th
International Andrei Ershov Memorial Conference, PSI 2009, Novosibirsk, Russia, 15–19 June 2009.
Revised Papers, Springer, Lecture Notes in Computer Science, vol. 5947, pp. 413–423 (2009)

10. Burghardt, J.: E-generalization using grammars. Artif. Intel. 165(1), 1–35 (2005)
11. Cardelli, L.,Martini, S.,Mitchell, J.C., Scedrov,A.:An extension of systemFwith subtyping. Inf. Comput.

109(1/2), 4–56 (1994)
12. Cheney, J.: Relating higher-order pattern unification and nominal unification. In: Proceedings of 19th

International Workshop on Unification, UNIF’05, pp. 104–119 (2005)
13. Dowek, G.: Higher-order unification and matching. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of

Automated Reasoning, pp. 1009–1062. Elsevier and MIT Press, New York (2001)
14. Dowek, G., Gabbay, M.J., Mulligan, D.P.: Permissive nominal terms and their unification: an infinite,

co-infinite approach to nominal techniques. Log. J. IGPL 18(6), 769–822 (2010)
15. Feng, C., Muggleton, S.: Towards inductive generalization in higher order logic. In: Sleeman D.H.,

Edwards P. (eds.) Proceedings of the Ninth International Workshop on Machine Learning (ML 1992),
Aberdeen, Scotland, UK, 1–3 July 1992, Morgan Kaufmann, pp. 154–162 (1992)

16. Hasker, R.W.: The replay of program derivations. PhD thesis, University of Illinois at Urbana-Champaign
(1995)

17. Hinze, R.: Generalizing generalized tries. J. Funct. Prog. 10(4), 327–351 (2000)
18. Hirata, K., Ogawa, T., Harao, M.: Generalization algorithms for second-order terms. In: Camacho R.,

King R.D., Srinivasan A. (eds.) Inductive Logic Programming, 14th International Conference, ILP 2004,
Porto, Portugal, 6–8 Sept 2004, Proceedings, Springer, Lecture Notes in Computer Science, vol. 3194,
pp. 147–163 (2004)

19. Huet, G.: Résolution d’équations dans des langages d’ordre 1, 2, . . . , ω. PhD thesis, Université Paris VII
(1976)

20. Jacobsen, E.: Unification and anti-unification. http://erikjacobsen.com/pdf/unification.pdf (1991)
21. Krumnack, U., Schwering, A., Gust, H., Kühnberger, K.U.: Restricted higher-order anti-unification for

analogy making. In: Orgun M.A., Thornton J. (eds.) AI 2007: Advances in Artificial Intelligence, 20th
Australian Joint Conference on Artificial Intelligence, Gold Coast, Australia, 2–6 Dec 2007, Proceedings,
Springer, Lecture Notes in Computer Science, vol. 4830, pp. 273–282 (2007)

22. Kutsia, T., Levy, J., Villaret,M.: Anti-unification for unranked terms and hedges. J. Autom. Reason. 52(2),
155–190 (2014)

23. Levy, J.,Villaret,M.:Nominal unification fromahigher-order perspective. In:VoronkovA. (ed.)Rewriting
Techniques and Applications, 19th International Conference, RTA 2008, Hagenberg, Austria, 15–17 July
2008, Proceedings, Springer, Lecture Notes in Computer Science, vol. 5117, pp. 246–260 (2008)

24. Levy, J., Villaret, M.: Nominal unification from a higher-order perspective. ACM Trans. Comput. Log.
13(2), 10 (2012)

25. Li, H., Thompson, S.J.: Similar code detection and elimination for Erlang programs. In: CarroM., Peña R.
(eds.) Practical Aspects of Declarative Languages, 12th International Symposium, PADL 2010, Madrid,
Spain, 18–19 Jan 2010. Proceedings, Springer, LectureNotes inComputer Science, vol. 5937, pp. 104–118
(2010)

26. Lu, J., Mylopoulos, J., Harao, M., Hagiya, M.: Higher order generalization and its application in program
verification. Ann. Math. Artif. Intel. 28(1–4), 107–126 (2000)

27. Mendel-Gleason, G.: Types and verification for infinite state systems. PhD thesis, Dublin City University
(2012)

28. Miller, D.: A logic programming language with lambda-abstraction, function variables, and simple uni-
fication. J. Log. Comput. 1(4), 497–536 (1991)

123

http://erikjacobsen.com/pdf/unification.pdf

310 A. Baumgartner et al.

29. Nadathur, G., Linnell, N.: Practical higher-order pattern unification with on-the-fly raising. In: Gabbrielli
M., Gupta G. (eds.) Logic Programming, 21st International Conference, ICLP 2005, Sitges, Spain, 2–5
Oct 2005, Proceedings, Springer, Lecture Notes in Computer Science, vol. 3668, pp. 371–386 (2005)

30. Nipkow, T.: Functional unification of higher-order patterns. In: Proceedings of the Eighth Annual Sym-
posium on Logic in Computer Science (LICS ’93), Montreal, Canada, 19–23 June 1993, IEEE Computer
Society, pp. 64–74 (1993)

31. Pfenning, F.: Unification and anti-unification in the calculus of constructions. In: Proceedings of the Sixth
Annual Symposium on Logic in Computer Science (LICS ’91), Amsterdam, The Netherlands, 15–18 July
1991, IEEE Computer Society, pp. 74–85 (1991)

32. Pientka, B.: Higher-order term indexing using substitution trees. ACM Trans. Comput. Log. (2009).
doi:10.1145/1614431.1614437

33. Plotkin, G.D.: A note on inductive generalization. Mach. Intel. 5(1), 153–163 (1970)
34. Reynolds, J.C.: Transformational systems and the algebraic structure of atomic formulas. Mach. Intel.

5(1), 135–151 (1970)
35. Schmid, U.: Inductive Synthesis of Functional Programs, Universal Planning, Folding of Finite Pro-

grams, and Schema Abstraction by Analogical Reasoning, Lecture Notes in Computer Science, vol.
2654. Springer (2003)

123

http://dx.doi.org/10.1145/1614431.1614437

	Higher-Order Pattern Anti-Unification in Linear Time
	Abstract
	1 Introduction
	Comparison with Some Related Work

	2 Preliminaries
	3 Transformation Rules for a Variant of Higher-Order Anti-Unification
	4 Properties of the Set of Transformations mathfrakP
	5 Complexity
	6 Conclusion and Final Remarks
	Acknowledgements
	References

